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Abstract—We solve the problem of the classification of perfect 

quantum codes. We prove that the only nontrivial perfect 
quantum codes are those with the parameters 

(( 2 2 2( 1) ( 1) , ,3l n

q
q q q −− − ))l . There exist no other nontrivial 

perfect quantum codes. 
 

Index Terms—Perfect quantum codes, quantum 
error-correcting codes, quantum information. 
 

I. INTRODUCTION 
Quantum information can be protected by encoding it into a 

quantum error-correcting code [1]-[7]. For any prime power , 
a  quantum code with parameters ((  is a 

q
-aryq , , ))qn K d

K -dimensional subspace of the state space ( )q n⊗=H C  of  
quantum systems with q  levels that can detect all errors 
affecting less than  quantum systems, but cannot detect some 
errors affecting d  quantum systems. In the construction of 
quantum codes, one would like to have both large dimension 

n

d

K  and large minimum distance d , but these are two 
conflicting requirements on the quantum code. The trade off 
between the number of correctable errors and the size of the 
quantum code is usually quantified by various bounds. For 
example, a pure ((  quantum code satisfies the 
quantum Hamming bound 
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A pure quantum code for which equality holds in (1) is called 

perfect. Just as the name suggests, a perfect quantum code 
possesses perfect structure and properties that greatly interests 
people. So finding perfect quantum codes has been one of the 
research focuses in the field of quantum coding. 

Two types of perfect quantum codes were discovered in the 
early 2000’s: 

(i) The cyclic Hamming codes  with , 

, 

2(( , ,3))n m
qn q − 2m ≥

2gcd( , 1) 1m q − = 2 2( 1) (mn q q= − −1)

 

, see [8]-[10]. 
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(ii) The perfect twisted codes  with 2(( , ,3))n r
qn q − −

2 2( 1) ( 1)rn q q+ − − 2r ≥

=
= ∈

, ,  even, see [11]. r=
Finally there is the trivial perfect quantum code: a code 

containing the whole space. Subsequently people wondered if 
other perfect quantum codes could be discovered, or no others 
existed. To this date this problem remains open. 

In this correspondence, we solve this problem completely. 
We prove that the only nontrivial perfect quantum codes are 
those with the parameters of the quantum Hamming or twisted 
codes. So, in the future researches on perfect quantum codes, 
one can pay attention only to these codes, not to finding others. 
Our approach is based on the group algebra framework of 
quantum codes. In the following we shall use the language of 
this framework, for the details of which one can see [12]. 
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where  is a Krawtchouk polynomial. ( )iP x
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There are  vectors  of weight  which have 2( 1)i r n w w
i r r

q ⎛ ⎞ ⎛− −⎜ ⎟ ⎜⎜ ⎟ ⎜−⎝ ⎠ ⎝
− v i

i r−  nonzero components in the n  coordinates where u  
is 0, and r  nonzero components in the w  coordinates where 

 is nonzero. Each of these vectors  contributes ( 1

w−

u v )r−  to the 
sum. 

 
Let C  be an ((  quantum code with the orthogonal 

projector , and let {

, , ))qn K d

P }iA  and { }iA′  be the Hamming weight 
distributions and the dual Hamming weight distributions of C  
respectively. The annihilator polynomial of  is defined to be C
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where 1 20, , , , sσ σ σ…  are the subscripts  for which i 0iA ≠ . 
Note that for  either 0 i n< ≤ ( ) 0iα =  or . 0iA =

The expansion of ( )xα  in terms of Krawtchouk 
polynomials, 
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is called the Krawtchouk expansion of ( )xα , and the iα  are 
called the Krawtchouk coefficients. The expansion stops at 

 since ( )sP x ( )xα  is of degree s . Also 0sα ≠  and 
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If  is one of the w jσ ’s, ( ) 0wα =  by definition, but if not, 
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Second, if , 0h = 0 0 (0) ( ) ( )n na E K q I q K Iα = = . 
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then the annihilator polynomial ( )xα  of C  divides ( )xβ . 

Proof. From the proof of Theorem 2, it follows that all the 
jσ ’s must be the zeros of ( )xβ . 
 
In the following we shall prove that a pure 

(( , , 2 1))qn K d e= +  quantum code is perfect if and only if 
s e= . We conclude with an important necessary condition for 
a code to be perfect. 

 
Theorem 4. For any pure quantum code, 1

2 ( 1s d≥ − ) . 
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weight 1
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a contradiction with Theorem 2. Similarly if  is even. d
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so 1wα =  for 0,1, ,w s= … . 
 

Theorem 6. A pure (  quantum code C  is 
perfect iff 

( , , 2 1))qn K d e= +

s e= . 
Proof. Suppose s e= . Then by Theorem 2 and Lemma 5 
 

                               ,                            (2) †

0 wt( )

e

g g
i g i

E PE I
= =

=∑ ∑
 
which says that  is perfect. Conversely, suppose  is perfect, 
so that (2) holds. 

C C

We apply Lemma 3 with 0( ) ( ) ( )ex P x P xβ = + +"  and 
deduce that the annihilator polynomial ( )xα  of  must divide C

( )xβ . Hence 
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But s e≥  by Theorem 4. 
 

Thus the annihilator polynomial of a perfect quantum code is 
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This is called Lloyd’s polynomial and is denoted by . It 
follows that: 
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has  integer zeros e 1, , eσ σ…  satisfying 10 e nσ σ< < < <" . 
 

Let  be an  perfect quantum code, where 

,  is a prime. Then the following relations hold. 

C (( , , 2 1))qn K e +
rq p= p
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By Theorem 7 and Lemma 8 we can obtain the key result of 
this correspondence: 

 
Theorem 9. For any prime power q , a nontrivial  

perfect quantum code must have the parameters 
-aryq
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Remark. The proof of this theorem is long, and exactly 

follows that of the Tietavainen-Van Lint theorem in the 
classical coding theory [13, Ch. 6, Theorem 33]. Thus the proof 
is omitted here. 

 
So far we have solved the problem of the classification of 

perfect quantum codes. Theorem 9 tells us that besides the 
trivial one of the whole space, the only perfect quantum codes 
are those with the parameters ( )( )2 2 2( 1) ( 1) , ,3l n

q
q q q −− − l . 

For example, the Hamming codes and the twisted codes 
mentioned above are such codes. No other perfect quantum 
codes do exist. 
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A pure quantum code for which equality holds in (1) is called perfect. Just as the name suggests, a perfect quantum code possesses perfect structure and properties that greatly interests people. So finding perfect quantum codes has been one of the research focuses in the field of quantum coding.
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Finally there is the trivial perfect quantum code: a code containing the whole space. Subsequently people wondered if other perfect quantum codes could be discovered, or no others existed. To this date this problem remains open.

In this correspondence, we solve this problem completely. We prove that the only nontrivial perfect quantum codes are those with the parameters of the quantum Hamming or twisted codes. So, in the future researches on perfect quantum codes, one can pay attention only to these codes, not to finding others. Our approach is based on the group algebra framework of quantum codes. In the following we shall use the language of this framework, for the details of which one can see [12].
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Theorem 6. A pure 
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We apply Lemma 3 with 
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Thus the annihilator polynomial of a perfect quantum code is
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This is called Lloyd’s polynomial and is denoted by 
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Theorem 7. If there exists an 
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has 
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Let 

[image: image125.wmf]C


 be an 

[image: image126.wmf]((,,21))


q


nKe


+


 perfect quantum code, where 

[image: image127.wmf]r


qp


=


, 

[image: image128.wmf]p


 is a prime. Then the following relations hold.

Lemma 8. The dimension 
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for some integer 
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Proof. Since the code is perfect,
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Thus 
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By Theorem 7 and Lemma 8 we can obtain the key result of this correspondence:

Theorem 9. For any prime power 
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Remark. The proof of this theorem is long, and exactly follows that of the Tietavainen-Van Lint theorem in the classical coding theory [13, Ch. 6, Theorem 33]. Thus the proof is omitted here.

So far we have solved the problem of the classification of perfect quantum codes. Theorem 9 tells us that besides the trivial one of the whole space, the only perfect quantum codes are those with the parameters 
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. For example, the Hamming codes and the twisted codes mentioned above are such codes. No other perfect quantum codes do exist.
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