REDUCTION THEORY FOR STABLY GRADED LIE ALGEBRAS

JACK A. THORNE

Abstract

We define a reduction covariant for the representations à la Vinberg associated to stably graded Lie algebras. We then give an analogue of the LLL algorithm for the odd split special orthogonal group and show how this can be combined with our theory to effectively reduce the coefficients of vectors in a representation connected to 2-descent for odd hyperelliptic curves.

Contents

1. Introduction 1
2. The reduction covariant 3
3. Example: The stable $\mathbf{Z} / 2 \mathbf{Z}$-grading of $\mathfrak{s l}_{2 g+1}$ 6
4. A reduction algorithm for $\mathrm{SO}(J)$ 8
5. Example: Reducing a self-adjoint linear operator 11
References 12

1. Introduction

Let \mathfrak{h} be a semisimple Lie algebra over a field k of characteristic 0 , and let $m \geq 1$. By a $\mathbf{Z} / m \mathbf{Z}$-grading, we mean a direct sum decomposition

$$
\mathfrak{h}=\oplus_{i \in \mathbf{Z} / m \mathbf{Z} \mathfrak{h}_{i},}
$$

where for all i, j we have $\left[\mathfrak{h}_{i}, \mathfrak{h}_{j}\right] \subset \mathfrak{h}_{i+j}$. To such a grading, we can associate a pair (G, V), where G is the connected component of the identity in the group of automorphisms of \mathfrak{h} which preserve the grading, and $V=\mathfrak{h}_{1}$ is a k-vector space which is naturally a representation of the reductive group G. This representation is coregular, in the sense that the ring $k[V]^{G}$ of invariant polynomials is freely generated and the geometric quotient $B=\operatorname{Spec} k[V]^{G}$ is isomorphic to affine space [Vin76].

We say that the grading is stable if V contains G-orbits which are stable in the sense of geometric invariant theory (i.e. closed, with finite stabilizers in G). In this case the G-invariant locus $V^{s} \subset V$ of stable vectors is Zariski open and non-empty, and it is of interest to study the set of $G(k)$-orbits in a given geometric stable orbit. The stable gradings have been classified RLYG12 (at least when k is algebraically closed) and experience shows that it is frequently the case that there is a family of projective curves $C \rightarrow B^{s}$ and for each $b \in B^{s}(k)$ an injection

$$
\operatorname{Pic}^{0} C_{b}(k) / m \operatorname{Pic}^{0} C_{b}(k) \hookrightarrow G(k) \backslash V_{b}(k)
$$

When $k=\mathbf{Q}$, this can often be extended to an injection (with source the m-Selmer group of the Jacobian variety $\mathrm{Pic}^{0} C_{b}$)

$$
\operatorname{Sel}_{m} \operatorname{Pic}^{0} C_{b} \hookrightarrow G(\mathbf{Q}) \backslash V_{b}(\mathbf{Q}),
$$

with image is contained in the image of the map

$$
G(\mathbf{Z}) \backslash V_{b}(\mathbf{Z}) \rightarrow G(\mathbf{Q}) \backslash V_{b}(\mathbf{Q})
$$

(for a suitable choice of integral structures). For example, this is the case for stable $\mathbf{Z} / m \mathbf{Z}$-gradings of the semisimple Lie algebras of types A_{2}, D_{4}, E_{6} and E_{8} for $m=2,3,4$ and 5 , respectively, in which case C can be taken to be the Weierstrass family of elliptic curves (see CFS10, Fis13), and for the stable Z/2Z-gradings of the semisimple Lie algebras of types A_{n}, D_{n}, and E_{n} (see e.g. [BG13, Sha19, Lag22]).

It is therefore of particular interest to be able to understand the sets $G(\mathbf{Z}) \backslash V_{b}(\mathbf{Z})$ of integral orbits. This is the goal of reduction theory, which can be understood in this context to have two steps.

In the first step, one defines a reduction covariant, i.e. a $G(\mathbf{R})$-equivariant map

$$
\mathcal{R}: V^{s}(\mathbf{R}) \rightarrow X_{G}
$$

where X_{G} is the symmetric space of G (i.e. the homogeneous space $G(\mathbf{R}) / K$, where K is a maximal compact mod centre subgroup of $G(\mathbf{R}))$. In the second step, one introduces a notion of reducedness for elements of the symmetric space X_{G}, and say that an element $T \in V^{s}(\mathbf{R})$ is reduced if its reduction covariant $\mathcal{R}(T)$ satisfies this condition. For example, suppose given a fundamental set $\mathcal{F} \subset X_{G}$ for the action of $G(\mathbf{Z})$, i.e. a subset of \mathcal{F} such that $G(\mathbf{Z}) \cdot \mathcal{F}=X_{G}$ and \mathcal{F} intersects each orbit of $G(\mathbf{Z})$ finitely many times. Then we could say that T is \mathcal{F}-reduced if $\mathcal{R}(T) \in \mathcal{F}$. An immediate consequence is that any $T \in V^{s}(\mathbf{R})$ is $G(\mathbf{Z})$-conjugate to an \mathcal{F}-reduced element, and that if $b \in B(\mathbf{Z}) \cap B^{s}(\mathbf{R})$ then $V_{b}(\mathbf{Z})$ contains only finitely many \mathcal{F}-reduced elements.

In this paper we consider both the first and second steps described in the previous paragraph. Reduction covariants have been defined in the literature in some isolated cases for representations arising from stably graded Lie algebras (including, in the papers CFS10, Fis13, for the representations V associated to m-descent on elliptic curves for $m=2,3,4,5$). The first main result (Theorem 2.7) of this paper is the definition of a reduction covariant $\mathcal{R}: V^{s}(\mathbf{R}) \rightarrow X_{G}$ for any stably $\mathbf{Z} / m \mathbf{Z}$-graded Lie algebra. To define it, we think of X_{G} as the space of Cartan involutions of the real semisimple group $G_{\mathbf{R}}$. It turns out that for any Cartan subspace $\mathfrak{c} \subset V_{\mathbf{R}}$, there is a unique Cartan involution of $\mathfrak{h}_{\mathbf{R}}$ which respects the grading and leaves \mathfrak{c} invariant. A stable vector T is contained a unique Cartan subspace, and we define $\mathcal{R}(T)$ to be the restriction of the Cartan involution associated to this subspace to $G_{\mathbf{R}}$.

Regarding the second step, a good starting point is the reduction theory of Borel and Harish-Chandra BHC62, Bor19. They defined Siegel sets $\mathfrak{S}_{t} \subset G(\mathbf{R})$, which are rather explicit fundamental sets in the sense defined above, and which can serve to define a notion of reducedness. However, what is lacking is general is an explicit algorithm to transport elements into the Siegel set. One case where the existing theory works well is when G is isogenous to SL_{n} (or more generally, a product of such groups). In this case X_{G} may be identified with the set of lattices in \mathbf{R}^{n} of volume 1 and lattice reduction algorithms (such as the LLL algorithm described in LLL82) apply without change. The second main result of this paper, which
appears in $\S 4$ is an algorithm to transport elements of X_{G} into a Siegel set in the case that G is a split special orthogonal group $\mathrm{SO}_{2 g+1}$. This is the group that appears for the stable $\mathbf{Z} / 2 \mathbf{Z}$-grading of $\mathfrak{s l}_{2 g+1}$, used in [BG13] to study the 2-Selmer groups of Jacobians of odd hyperelliptic curves. This algorithm is based on the LLL algorithm. Roughly speaking, we observe that the two main steps of the LLL algorithm correspond either to acting by "integral unipotent transformations" or "simple reflections in S_{n} ". We simply replace S_{n} by the Weyl group of $\mathrm{SO}_{2 g+1}$. We consider the analogue of this, where $\mathrm{SO}_{2 g+1}$ is replaced by any split semisimple group, in another paper RT24.
1.1. Outline. In $\$ 2$ we define the reduction covariant \mathcal{R} using the theory of the Cartan involution. In $\S 3$, we compute the covariant explicitly in the case of the stable $\mathbf{Z} / 2 \mathbf{Z}$-grading of $\mathfrak{s l}_{2 g+1}$. In $\S 4$ we give our algorithm to move a given element of $X_{S O_{2 g+1}}$ into a Siegel set. Finally, in §5, we show how these ideas work together in an explicit example.
1.2. Notation. In this paper, a reductive group over a field k means a smooth connected linear algebraic group over a field k of trivial unipotent radical. In particular, by a reductive group H over \mathbf{R} we mean a connected algebraic group (although the associated set $H(\mathbf{R})$ of real points might not be connected). Similarly, a semisimple group is a reductive group of trivial radical.

We will use gothic letters to denote Lie algebras (so Lie $H=\mathfrak{h}$) and subscripts to denote base extension (so if H is an algebraic group over \mathbf{R}, then (Lie H) $\otimes_{\mathbf{R}}$ $\mathbf{C}=\mathfrak{h}_{\mathbf{C}}$). We use the notations $Z_{H}(\cdot)$ and $Z_{\mathfrak{h}}(\cdot)$ to denote group and Lie algebra centralizer, respectively.

We use superscript 0 to denote the connected component of the identity. Thus if H is a linear algebraic group over \mathbf{R} then there is an inclusion $H(\mathbf{R})^{0} \subset H^{0}(\mathbf{R})$ which is not in general an equality.

2. The reduction covariant

We will summarise the necessary properties of Cartan involutions of real reductive groups before proving the existence of the reduction covariant described in the introduction.

2.1. Background on Cartan involutions.

Definition 2.2. Let \mathfrak{h} be a semisimple Lie algebra over \mathbf{R}. A Cartan involution of \mathfrak{h} is a Lie algebra involution $\theta: \mathfrak{h} \rightarrow \mathfrak{h}$ satisfying the following equivalent conditions:
(1) The symmetric bilinear form $B_{\theta}(X, Y)=-B(X, \theta Y): \mathfrak{h} \times \mathfrak{h} \rightarrow \mathbf{R}$ (where B is the Killing form) is positive definite.
(2) The \mathbf{R}-vector subspace $\left\{X \in \mathfrak{h}_{\mathbf{C}} \mid \theta(X)=\bar{X}\right\}$ is a real form of $\mathfrak{h}_{\mathbf{C}}$ which is compact, in the sense that its Killing form is negative definite.

It is convenient to define Cartan involutions for disconnected groups. We do this following AT18 (see also Mos55).

Definition 2.3. Let H be a linear algebraic group over \mathbf{R} such that H^{0} is reductive. A Cartan involution of H is an involution $\theta: H \rightarrow H$ such that

$$
K_{\theta}=\{h \in H(\mathbf{C}) \mid \theta(h)=\bar{h}\}
$$

is a compact subgroup of $H(\mathbf{C})$ that meets every connected component of $H(\mathbf{C})$.

If θ is a Cartan involution, then $H(\mathbf{R})^{\theta}=K_{\theta} \cap H(\mathbf{R})$ is a maximal compact subgroup of $H(\mathbf{R})($ AT18, §4]).

Given an automorphism θ of an algebraic group H, we will also write θ for the induced automorphism of its Lie algebra \mathfrak{h}. The following proposition is well-known.

Proposition 2.4. Let H be a semisimple group over \mathbf{R}, and let θ be an involution of H. Then $\theta: H \rightarrow H$ is a Cartan involution if and only if $\theta: \mathfrak{h} \rightarrow \mathfrak{h}$ is a Cartan involution.

Proposition 2.5. Let H be a reductive group over \mathbf{R}.
(1) Cartan involutions of H exist. If θ, θ^{\prime} are Cartan involutions of H, then there exists $h \in H(\mathbf{R})^{0}$ such that $\theta^{\prime}=\operatorname{Ad}(h) \circ \theta \circ \operatorname{Ad}\left(h^{-1}\right)$.
(2) Suppose $M \subset H$ is a closed subgroup and θ is a Cartan involution of H such that $\theta(M)=M$. Then M^{0} is reductive and $\left.\theta\right|_{M}$ is a Cartan involution of M.
(3) Suppose $M \subset H$ is a closed subgroup with M^{0} reductive and that θ_{M} is a Cartan involution of M. Then there exists a Cartan involution θ_{H} of H extending θ_{M}.

Proof. See AT18, Theorem 3.12].
If H is a reductive group over \mathbf{R}, then we write X_{H} for the set of Cartan involutions of H. Proposition 2.5(1) shows that this is a homogeneous space for $H(\mathbf{R})$.

2.6. Application to graded Lie algebras.

Theorem 2.7. Let \mathfrak{h} be a semisimple Lie algebra over R. Suppose given a stable

(1) For any stable vector $T \in V^{s}(\mathbf{R})$, there exists a unique Cartan involution θ_{T} of H such that $\left[T, \theta_{T}(T)\right]=0$ and $\theta_{T}\left(\mathfrak{h}_{i}\right) \subset \mathfrak{h}_{-i}$ for each $i \in \mathbf{Z} / m \mathbf{Z}$.
(2) The map $\mathcal{R}=\mathcal{R}_{\mathfrak{h}}: V^{s}(\mathbf{R}) \rightarrow X_{G}$ defined by $\left.T \mapsto \theta_{T}\right|_{G}$ is $G(\mathbf{R})$-equivariant.

Proof. Giving an $\mathbf{Z} / m \mathbf{Z}$-grading is equivalent to giving a homomorphism $\mu_{m} \rightarrow$ Aut (\mathfrak{h}). Let $\sigma: \mathfrak{h}_{\mathbf{C}} \rightarrow \mathfrak{h}_{\mathbf{C}}$ be the image of $e^{2 \pi i / m} \in \mu_{m}(\mathbf{C})$. The identity $\theta_{T}\left(\mathfrak{h}_{i}\right) \subset$ \mathfrak{h}_{-i} may be equivalently expressed as $\sigma \theta_{T}=\theta_{T} \bar{\sigma}$. Let H denote the adjoint group over \mathbf{R} with Lie algebra \mathfrak{h}; then $\operatorname{Aut}(H)=\operatorname{Aut}(\mathfrak{h})$, and the embedding Ad: $H \rightarrow$ Aut (H) allows us to identify H with the connected component of the identity of the linear algebraic group $\operatorname{Aut}(H)$. Let $\mathfrak{c}=\mathfrak{z}_{\mathfrak{h}}(T)$, a Cartan subalgebra of \mathfrak{h} since T is regular semisimple, and let $C=Z_{H}(T)$ denote the maximal torus of H with Lie algebra c.

Let us first establish uniqueness. If a Cartan involution θ_{T} with the given properties exists, then the identity $\left[T, \theta_{T}(T)\right]=0$ shows that θ_{T} normalises \mathfrak{c} and C. The restriction of θ_{T} to C must be a Cartan involution of C. The torus C has a unique Cartan involution θ_{C}, so if θ_{T}^{\prime} is another Cartan involution with the given properties, then we can write $\theta_{T}^{\prime}=t \theta_{T}$ for some $t \in C(\mathbf{R})$.

The identities $\sigma \theta_{T}=\theta_{T} \bar{\sigma}, \sigma t \theta_{T}=t \theta_{T} \bar{\sigma}$ together imply that $t \in C^{\sigma}(\mathbf{R})$. This group is finite (because the grading is stable), hence compact, which implies that t, θ_{T} commute, and so $t^{2}=1$. We now consider the positive definite symmetric bilinear forms $B_{\theta_{T}}, B_{t \theta_{T}}$ on \mathfrak{h}. Computing

$$
B_{t \theta_{T}}(X, Y)=-B\left(X, t \theta_{T} Y\right)=-B\left(t^{-1} X, \theta_{T} Y\right)=B_{\theta_{T}}\left(t^{-1} X, Y\right)=B_{\theta_{T}}(X, t Y)
$$

shows that (with respect to the inner product determined by $B_{\theta_{T}}$) t is an orthogonal endomorphism of \mathfrak{h} with the property that $B_{\theta_{T}}(t X, X)>0$ for every non-zero $X \in \mathfrak{h}$. Since $t^{2}=1$, this is only possible if $t=1$, hence $\theta_{T}=\theta_{T}^{\prime}$.

We now establish existence of θ_{T}. Let $M=C \rtimes \mu_{m} \subset \operatorname{Aut}(H)$, and let θ_{M} be the Cartan involution of M given by the formula $\theta_{M}(c \rtimes \sigma)=\theta_{C}(c) \bar{\sigma}$. To show that this is a group homomorphism, we must show that the identity $\sigma \theta_{C}=\theta_{C} \bar{\sigma}$ holds in $\operatorname{Aut}\left(C_{\mathbf{C}}\right)$. Let $K_{C} \subset C(\mathbf{C})$ be the unique maximal compact subgroup. If $x \in K_{C}$, then $\theta_{C}(x)=\bar{x}$ and $\sigma(x) \in K_{C}$. For such x, we have $\sigma \theta_{C}(x)=\sigma(\bar{x})$ and $\theta_{C} \bar{\sigma}(x)=\overline{\bar{\sigma}(x)}=\sigma(\bar{x})=\sigma \theta_{C}(x)$. Since K_{C} is Zariski dense in $C_{\mathbf{C}}$, this shows that in fact $\sigma \theta_{C}=\theta_{C} \bar{\sigma}$.

By Proposition [2.5, we can extend θ_{M} to a Cartan involution θ of $\operatorname{Aut}(H)$. We set $\theta_{T}=\left.\theta\right|_{H}$. We claim that θ_{T} has the desired properties. It normalises C by construction, so satisfies $\left[T, \theta_{T}(T)\right]=0$. We must show that $\sigma \theta_{T}=\theta_{T} \bar{\sigma}$ in $\operatorname{Aut}(H)(\mathbf{C})$. To this end, we note that if $h \in H(\mathbf{C}) \subset \operatorname{Aut}(H)(\mathbf{C})$, and $\alpha \in$ $\operatorname{Aut}(H)(\mathbf{C})$, then $\alpha h \alpha^{-1}=\alpha(h)$. (More transparently, we have $\alpha \circ \operatorname{Ad}(h) \circ \alpha^{-1}=$ $\operatorname{Ad}(\alpha(h))$.) Since $\theta: \operatorname{Aut}(H) \rightarrow \operatorname{Aut}(H)$ is a group homomorphism, we have

$$
\theta\left(\alpha h \alpha^{-1}\right)=\theta(\alpha) \theta(h) \theta(\alpha)^{-1}
$$

The right-hand side equals $\theta(\alpha)\left(\theta_{T}(h)\right)$, while the left-hand side equals

$$
\theta(\alpha(h))=\theta_{T}(\alpha(h))
$$

Since h is arbitrary, this gives the identity $\theta(\alpha) \circ \theta_{T}=\theta_{T} \circ \alpha$ (composition in $\operatorname{Aut}(H)(\mathbf{C})$). Taking $\alpha=\bar{\sigma}$ and using the identity $\theta(\bar{\sigma})=\theta_{M}(\bar{\sigma})=\sigma$, we find $\sigma \theta_{T}=\theta_{T} \bar{\sigma}$, as required. This completes the proof of the first part of the Theorem. The second part follows from the properties which uniquely characterize θ_{T}.

We now record some basic properties of the reduction covariant \mathcal{R}.
Proposition 2.8. (1) Let $\mathfrak{h}, \mathfrak{h}^{\prime}$ be semisimple Lie algebras over R. Suppose given stable $\mathbf{Z} / m \mathbf{Z}$-gradings

$$
\mathfrak{h}=\oplus_{i \in \mathbf{Z} / m \mathbf{Z}} \mathfrak{h}_{i}, \mathfrak{h}^{\prime}=\oplus_{i \in \mathbf{Z} / m \mathbf{Z}} \mathfrak{h}_{i}^{\prime} .
$$

Let $\mathfrak{h}^{\prime \prime}=\mathfrak{h} \oplus \mathfrak{h}^{\prime}$ with its induced $\mathbf{Z} / m \mathbf{Z}$-grading. Then, with the obvious notation, we have $\mathcal{R}_{\mathfrak{h}^{\prime \prime}}=\mathcal{R}_{\mathfrak{h}} \times \mathcal{R}_{\mathfrak{h}^{\prime}}$.
(2) Let \mathfrak{h} be a semisimple Lie algebra over \mathbf{R}. Suppose given a stable $\mathbf{Z} / m \mathbf{Z}$ -
 $\operatorname{Res}_{\mathbf{C} / \mathbf{R}}\left(\mathfrak{h}_{\mathbf{C}}\right)$, with its induced grading $\mathfrak{h}^{\prime}=\oplus_{i \in \mathbf{Z} / m \mathbf{Z}} \operatorname{Res}_{\mathbf{C} / \mathbf{R}}\left(\mathfrak{h}_{i, \mathbf{C}}\right)$. Then this grading is stable and its associated pair may be identified as

$$
\left(G^{\prime}, V^{\prime}\right)=\left(\operatorname{Res}_{\mathbf{C} / \mathbf{R}} G_{\mathbf{C}}, \operatorname{Res}_{\mathbf{C} / \mathbf{R}} V_{\mathbf{C}}\right)
$$

Moreover, there is a commutative diagram

Proof. The first part follows quickly from the definition of \mathcal{R}. For the second, we note that the stability of the grading of \mathfrak{h}^{\prime} can be checked over \mathbf{C}. There is an isomorphism $\mathfrak{h}_{\mathbf{C}}^{\prime} \cong \mathfrak{h}_{\mathbf{C}} \oplus \mathfrak{h}_{\mathbf{C}}$, so the grading of \mathfrak{h}^{\prime} is stable. It is easy to check that $\left(G^{\prime}, V^{\prime}\right)$ has the claimed form.

All arrows in the commutative diagram are the natural ones, except for the bottom arrow, which we need to define. Let θ_{G} be a Cartan involution of G. We can then check directly from the definition that the involution θ_{G}^{\prime} of $G_{\mathbf{C}}^{\prime} \cong G_{\mathbf{C}} \times G_{\mathbf{C}}$, given on complex points $\left(x_{1}, x_{2}\right) \in G(\mathbf{C}) \times G(\mathbf{C})$ by the formula $\theta_{G}^{\prime}\left(x_{1}, x_{2}\right)=$ $\left(\theta_{G}\left(x_{2}\right), \theta_{G}\left(x_{1}\right)\right)$, is defined over \mathbf{R} and is a Cartan involution. We send θ_{G} to θ_{G}^{\prime}.

To show that the diagram is commutative, let $T \in V^{s}(\mathbf{R})$ and let θ_{T} be the associated Cartan involution of H, the adjoint group of \mathfrak{h}. Let $T^{\prime} \in V^{s}(\mathbf{C})=$ $\left(V^{\prime}\right)^{s}(\mathbf{R})$ be the image of T under the natural map. It follows from the definitions that θ_{T}^{\prime} (where θ_{T}^{\prime} is given by the same formula as in the previous paragraph) satisfies the conditions characterizing $\theta_{T^{\prime}}$. This completes the proof.

One possible use of the first part of Proposition 2.8 is the case where we start with a stably graded Lie algebra \mathfrak{h}_{0} over \mathbf{Q}, and take $\mathfrak{h}=\left(\operatorname{Res}_{K / \mathbf{Q}} \mathfrak{h}_{0}\right)_{\mathbf{R}}$, for a number field K / \mathbf{Q}. We find that the reduction covariant of $V^{s}(\mathbf{R})=V_{0}^{s}\left(K \otimes_{\mathbf{Q}} \mathbf{R}\right)$ is the product (over the set of infinite places v of K) of the reduction covariants for the stably graded Lie algebras $\operatorname{Res}_{K_{v} / \mathbf{R}} \mathfrak{h}_{0, K_{v}}$. One possible use of the second part is in computing the reduction covariant of $V^{s}(\mathbf{R})$ explicitly. For example, if we start with the stable $\mathbf{Z} / 3 \mathbf{Z}$-grading of the exceptional Lie algebra \mathfrak{g}_{2}, then V is (close to) the space of binary cubic forms. In [SC03], several reduction covariants on the space of binary cubic forms are considered, but it is shown that there is a unique one, namely the Julia invariant, which is compatible with extension of scalars from \mathbf{R} to \mathbf{C} (see [SC03, Proposition 3.4]). This characterisation may be used to relate the reduction covariant \mathcal{R} we construct in this case to the Julia invariant.

3. Example: The stable $\mathbf{Z} / 2 \mathbf{Z}$-GRADING of $\mathfrak{s l}_{2 g+1}$

The stable $\mathbf{Z} / m \mathbf{Z}$-gradings of semisimple Lie algebras over \mathbf{C} have been classified RLYG12. The first case is when $m=2$; then each semisimple Lie algebra over \mathbf{C} has a unique stable $\mathbf{Z} / 2 \mathbf{Z}$-grading, up to isomorphism.

Suppose instead that \mathfrak{h} is a semisimple Lie algebra over a field k of characteristic 0 , and let H be its associated adjoint group. In this case there need not be a unique $H(k)$-conjugacy class of stable $\mathbf{Z} / 2 \mathbf{Z}$-gradings over k, but if H is split then there is a unique $H(k)$-conjugacy class of stable $\mathbf{Z} / 2 \mathbf{Z}$-gradings with the property that \mathfrak{h}_{1} contains a regular nilpotent element (see [Tho13, Corollary 2.14]). When $k=\mathbf{Q}$, this distinguished class of stable gradings has been used to study the 2Selmer groups of families of algebraic curves BG13, Tho15, Sha19, Lag22. In this section we describe this distinguished $\mathbf{Z} / 2 \mathbf{Z}$-grading in Dynkin type $A_{2 g}$ and make explicit the construction of Theorem 2.7

Let $g \geq 1$ be an integer, and let $e_{-g}, \ldots, e_{-1}, e_{0}, e_{1}, \ldots, e_{g}$ denote the standard basis of $\mathbf{R}^{2 g+1}$ (with a shift in the indices). Let J be the Gram matrix of the symmetric bilinear form defined by $\left\langle e_{i}, e_{-j}\right\rangle=\delta_{i j}$ if $0 \leq i, j \leq g,\left\langle e_{i}, e_{j}\right\rangle=0$ if $1 \leq i, j \leq g$. Thus

$$
J=\left(\begin{array}{lll}
& & 1 \\
& . & \\
& \cdot & \\
1 & &
\end{array}\right)
$$

We define an involution of $\mathfrak{h}=\mathfrak{s l}_{2 g+1}$ (equivalently, a $\mathbf{Z} / 2 \mathbf{Z}$-grading) by the formula $\sigma(T)=-J^{t} T J$. This is stable. The associated group is

$$
G=\mathrm{SO}(J)=\left\{\left.x \in \mathrm{SL}_{2 g+1}\right|^{t} x J x=J\right\}
$$

and the associated representation is

$$
V=\left\{T \in \mathfrak{s l}_{2 g+1} \mid J^{t} T J=T\right\}
$$

The open subscheme $V^{s} \subset V$ consists of those operators whose characteristic polynomial has no repeated roots.

The following proposition describes the map $\mathcal{R}: V^{s}(\mathbf{R}) \rightarrow X_{G}$ in terms of linear algebra.

Proposition 3.1. (1) We can identify X_{G} with the set of inner products H on $\mathbf{R}^{2 g+1}$ which are compatible with J, in the sense that the associated Gram matrix satisfies $J H^{-1} J=H$. The associated Cartan involution θ_{H} acts on \mathfrak{g} by $\theta_{H}(T)=-H^{-1 t} T H$.
(2) If $T \in V^{s}(\mathbf{R})$, then there is a unique inner product $H=H_{T}$ compatible with J such that T is normal with respect to H (i.e. such that T commutes with its H-adjoint $H^{t} T H^{-1}$). We have $\mathcal{R}(T)=\theta_{H_{T}}$.

Proof. Let Y_{J} denote the set of positive definite symmetric matrices H satisfying $J H^{-1} J=H$. (Observe that any such matrix satisfies $\operatorname{det}(H)=1$.) If $H \in Y_{J}$, then $\theta(X)=-H^{-1 t} X H$ is a Cartan involution of \mathfrak{g}. (It preserves \mathfrak{g} because H, J are compatible, and B_{θ} is positive definite because H is an inner product.) Thus there is a map $Y_{J} \rightarrow X_{H}$ which is easily checked to be $G(\mathbf{R})$-equivariant, where $x \in G(\mathbf{R})$ acts on H by $H \mapsto{ }^{t} x^{-1} H x^{-1}$. We need to check that this map is bijective. To see that it is surjective, note that Y_{J} is non-empty, as it contains the identity matrix H_{0} (otherwise said, the standard inner product on $\mathbf{R}^{2 g+1}$), and $G(\mathbf{R})$ acts transitively on X_{G}. To see that is injective, it suffices (by $G(\mathbf{R})$-equivariance) to show that if $\theta_{H}=\theta_{H_{0}}$, then $H=H_{0}$. However, if $\theta_{H}=\theta_{H_{0}}$ then $-H^{-1 t} X H=-{ }^{t} X$ for all $X \in \mathfrak{g}$, so H is scalar (by Schur's lemma). Since H is positive definite and $\operatorname{det}(H)=1$, this forces $H=H_{0}$.

Since the Lie bracket on $\mathfrak{s l}_{2 g+1}$ is given by $[X, Y]=X Y-Y X$, the second part of the proposition is asking for a unique H such that $\left[T, \theta_{H}(T)\right]=0$. The existence and uniqueness therefore follows from Theorem 2.7.

To complete Proposition 3.1, we explain how to compute H explicitly in terms of T. Supposing that H exists, we extend it to a Hermitian inner product on $\mathbf{C}^{2 g+1}$. Since the characteristic polynomial of T has no repeated roots, T is diagonalisable, and we can find $P \in \mathrm{GL}_{2 g+1}(\mathbf{C})$ such that $P^{-1} T P$ is diagonal. Since T is normal with respect to H, its eigenvectors are orthogonal and so $D={ }^{t} P H \bar{P}$ is also diagonal, with positive real diagonal entries. Since T is also self-adjoint with respect to $J,{ }^{t} P J P$ is also diagonal, and thus ${ }^{t} P H \bar{P},{ }^{t} P J P$ commute. Starting with the identity $H=J H^{-1} J$, we get

$$
{ }^{t} P H \bar{P}={ }^{t} P J H^{-1} J \bar{P}={ }^{t} P J P P^{-1} H^{-1 t} \bar{P}^{-1} t \bar{P} J \bar{P}={ }^{t} P J P\left({ }^{t} \bar{P} H P\right)^{-1 t} \bar{P} J \bar{P},
$$

hence

$$
D^{2}={ }^{t} P H \bar{P}^{t} \bar{P} H P={ }^{t} P J P^{t} \bar{P} J \bar{P}
$$

This characterizes H uniquely as

$$
\begin{equation*}
H={ }^{t} P^{-1}\left({ }^{t} P J P^{t} \bar{P} J \bar{P}\right)^{1 / 2} \bar{P}^{-1} \tag{3.1}
\end{equation*}
$$

where $P \in \mathrm{GL}_{2 g+1}(\mathbf{C})$ is such that $P^{-1} T P$ is diagonal.

4. A Reduction algorithm for $\operatorname{SO}(J)$

In this section, we will describe a reduction algorithm for the symmetric space X_{G} associated to the group $G=\mathrm{SO}(J)$ introduced in 83 . All of the action takes place on the group G : the ambient grading plays no role. To orient the reader, we note that we will have to consider three symmetric bilinear forms on $\mathbf{R}^{2 g+1}$ simultaneously. First, the form J defining the group G; second, the standard inner product H_{0} on $\mathbf{R}^{2 g+1}$, which defines a base point in X_{G}; and third, a second inner product H, compatible with J, which we hope to bring closer to H_{0} using the action of the group $G(\mathbf{Z})$.

We continue to define

$$
G=\mathrm{SO}(J)=\left\{\left.x \in \mathrm{SL}_{2 g+1}\right|^{t} x J x=J\right\},
$$

which we think of as a group scheme over \mathbf{Z}. We write $A, N \subset G$ for the subgroups consisting of the diagonal and unipotent upper-triangular matrices, respectively. Then $G_{\mathbf{Q}}$ is reductive, and $A_{\mathbf{Q}}, A_{\mathbf{Q}} N_{\mathbf{Q}}$ are a maximal torus and Borel subgroup.

Let H_{0} denote the inner product on $\mathbf{R}^{2 g+1}$ with respect to which e_{-g}, \ldots, e_{g} is an orthonormal basis. We define $K \subset G(\mathbf{R})$ to be subgroup of matrices which preserve H_{0}.

Proposition 4.1. (1) H_{0} is compatible with J, and K is a maximal compact subgroup of $G(\mathbf{R})$.
(2) The product map $K \times A(\mathbf{R})^{0} \times N(\mathbf{R}) \rightarrow G(\mathbf{R}),(k, a, n) \mapsto k a n$, is a diffeomorphism.
(3) If H is an inner product which is compatible with J, then we can find a unique pair $(a, n) \in A(\mathbf{R})^{0} \times N(\mathbf{R})$ such that $H={ }^{t}($ an $) H_{0}$ an.

Proof. Looking at Proposition 3.1] we see that H_{0} is compatible with J and $\theta_{0}(x)=$ $H_{0}^{-1 t} x^{-1} H_{0}={ }^{t} x^{-1}$ is a Cartan involution of $G_{\mathbf{R}}$. Therefore $K=G(\mathbf{R})^{\theta_{0}}$ is a maximal compact subgroup of $G(\mathbf{R})$. The second part of the proposition is a statement of the Iwasawa decomposition of $G(\mathbf{R})$, determined by the data of θ_{0}, A, and N Kna02, Theorem 7.31]. The third part of the proposition follows from the uniqueness of the Iwasawa decomposition and the fact that $G(\mathbf{R})$ acts transitively on X_{G} with $\operatorname{Stab}_{G(\mathbf{R})}\left(\theta_{0}\right)=K$.

The components of the Iwasawa decomposition can be computed using the Gram-Schmidt process. Let $e_{-g}^{*}, \ldots, e_{g}^{*}$ denote the result of carrying out the GramSchmidt orthogonalization process on the basis e_{-g}, \ldots, e_{g} with respect to the inner product defined by H. Thus we have formulae

$$
e_{-g}=e_{-g}^{*}, \ldots, e_{j}=e_{j}^{*}+\sum_{i=-g}^{j-1} \mu_{i, j} e_{i}^{*}, \ldots, e_{g}=e_{g}^{*}+\sum_{i=-g}^{g-1} \mu_{i, g} e_{i}^{*}
$$

with

$$
\mu_{i, j}=\left(e_{j}, e_{i}^{*}\right)_{H} /\left(e_{i}^{*}, e_{i}^{*}\right)_{H}
$$

In particular, we take $\mu_{j, j}=1$ and $\mu_{i, j}=0$ if $i>j$.
Lemma 4.2. Let $n=n_{H}=\left(\mu_{i, j}\right)_{-g \leq i, j \leq g}$ and $a=a_{H}=\operatorname{diag}\left(\left\|e_{i}^{*}\right\|_{H}\right)_{-g \leq i \leq g}$. Then $a \in A(\mathbf{R})^{0}, n \in N(\mathbf{R})$, and $H={ }^{\bar{t}}(a n)$ an.

Proof. Let θ_{1} denote the Cartan involution $\theta_{1}: \mathrm{SL}_{2 g+1} \rightarrow \mathrm{SL}_{2 g+1}, g \mapsto{ }^{t} g^{-1}$. Let $K_{1}=\mathrm{SL}_{2 g+1}(\mathbf{R})^{\theta_{1}}$ and let A_{1}, N_{1} be the subgroups of diagonal and unipotent
upper-triangular matrices in $\mathrm{SL}_{2 g+1}$, respectively. The Iwasawa decomposition for $\mathrm{SL}_{2 g+1}$ is the statement that the product map

$$
K_{1} \times A_{1}(\mathbf{R})^{0} \times N_{1}(\mathbf{R}) \rightarrow \mathrm{SL}_{2 g+1}(\mathbf{R})
$$

is a diffeomorphism. It is a standard fact that the Gram-Schmidt process gives the Iwasawa decomposition for $\mathrm{SL}_{2 g+1}$, in the sense that $H={ }^{t}$ (an)an and that these are the unique elements $a \in A_{1}(\mathbf{R})^{0}, n \in N_{1}(\mathbf{R})$ with this property. We need to explain why the assumption that H, J are compatible implies that in fact a, n lie in $G(\mathbf{R})$. However, we have $K \leq K_{1}, A \leq A_{1}$, and $N \leq N_{1}$, by construction, so the existence of the Iwasawa decomposition for G and the uniqueness for $\mathrm{SL}_{2 g+1}$ implies that the Gram-Schmidt process for $\mathrm{SL}_{2 g+1}$ must be compatible with the Iwasawa decomposition for G.

Lemma 4.3. For any $n=\left(n_{i j}\right) \in N(\mathbf{R})$, there exists $m \in N(\mathbf{Z})$ satisfying the following conditions:
(1) $\left|(n m)_{i j}\right| \leq 1 / 2$ for all $-g \leq i<j, j=-g, \ldots,-1$.
(2) $\left|(n m)_{i, 0}\right| \leq 1$ for all $-g \leq i \leq-1$.
(3) $\left|(n m)_{i, j}\right| \leq 1 / 2$ for all $-g \leq i<-j, j=1, \ldots, g$.

Proof. Right multiplication by m corresponds to performing column operations on n. We can check that the following column operations on n are induced by elements of $N(\mathbf{Z})$:

- $A(i, j, q)$: For $q \in \mathbf{Z},-g \leq j \leq-1$, and $-g \leq i<j$, add q times column i to column j and $-q$ times column $-j$ to column $-i$.
- $B(i, q): q \in 2 \mathbf{Z},-g \leq i \leq-1$, add q times column i to column 0 , and add $-q$ times column 0 and $-q^{2} / 2$ times column i to column $-i$.
- $C(i, j, q): q \in \mathbf{Z}, 1 \leq j \leq g$, and $-g \leq i \leq-j$, add q times column i to column j and $-q$ times column $-j$ to column $-i$.
We therefore carry out column operations as follows in order to satisfy the conditions of the lemma (noting that the order of operations is chosen so that once we have forced a given $n_{i j}$ to satisfy the conditions of the lemma, its value will not be changed by later operations):
(1) For each $j=-g, \cdots-1$, then for each $i=j-1, j-2, \ldots,-g$, let q denote the closest integer to $n_{i j}$ and do $A(i, j, q)$.
(2) For each $i=-1, \ldots,-g$, let q denote the closest even integer to $n_{i 0}$ and do $B(i, q)$.
(3) For each $j=1, \ldots, g$, then for each $i=-j-1, \ldots,-g$, let q denote the closest integer to $n_{i j}$ and do $C(i, j, q)$.

The following definition is the analogue in our context of [LL82, (1.4), (1.5)].
Definition 4.4. Let $\delta \in(1 / 2,1)$, and let H be an inner product on $\mathbf{R}^{2 g+1}$ compatible with J. We say that H is δ-reduced if the following conditions are satisfied:
(1) n_{H} satisfies the conditions of Lemma 4.3 .
(2) For each $i=-g+1, \ldots,-1$, we have $\left\|e_{i}^{*}+\mu_{i, i-1} e_{i-1}^{*}\right\|_{H}^{2} \geq \delta\left\|e_{i-1}^{*}\right\|_{H}^{2}$.
(3) $\left\|e_{1}^{*}+\mu_{1,0} e_{0}^{*}+\mu_{1,-1} e_{-1}^{*}\right\|_{H}^{2} \geq \delta^{2}\left\|e_{-1}^{*}\right\|_{H}^{2}$.

Remark 4.5. The above conditions may be reformulated in terms of the matrices n_{H}, a_{H} as follows:
(1) n_{H} satisfies the conditions of Lemma 4.3
(2) For each $i=-g+1, \ldots,-1$, we have $a_{i, i}^{2}+\mu_{i, i-1}^{2} a_{i-1, i-1}^{2} \geq \delta a_{i-1, i-1}^{2}$.
(3) $a_{-1,-1}^{-2}+\frac{1}{2} \mu_{0,-1}^{2} \geq \delta$.

The following lemma is evidence that this is a useful notion.
Lemma 4.6. If H is δ-reduced, then $a_{H} n_{H}$ lies in the Siegel set $\mathfrak{S}_{\delta}=K A_{\delta} N_{c}$ defined as follows:

$$
\begin{aligned}
& A_{\delta}=\left\{a=\left(a_{-g}, \ldots, a_{g}\right) \in A(\mathbf{R})^{0} \mid\right. \\
& \forall i=-g, \ldots,-2, a_{i} / a_{i+1} \leq(\delta-1 / 4)^{-1 / 2} ; \\
&\left.a_{-1} \leq(\delta-1 / 2)^{-1 / 2}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& N_{c}=\{n \in N(\mathbf{R}) \mid \\
& \forall j=-g, \ldots,-1,-g \leq i<j, \max \left(\left|n_{i j}\right|,\left|n_{i,-j}\right|\right) \leq 1 / 2 \\
& \left.\forall i=-g, \ldots,-1,\left|n_{i 0}\right| \leq 1\right\} .
\end{aligned}
$$

Proof. Since n_{H} lies in N_{c} by definition of being δ-reduced, we just need to check that a_{H} satisfies the required inequalities. Re-arranging gives

$$
a_{i+1}^{2} / a_{i}^{2} \geq \delta-\mu_{i+1, i}^{2} \geq \delta-1 / 4
$$

for each $i=-g, \ldots,-2$, and

$$
a_{1}^{2} \geq \delta-\mu_{0,-1}^{2} / 2 \geq \delta-1 / 2
$$

as required.
The Weyl group $W(G, A)$ is generated by its simple reflections (with respect to the choice of positive roots determined by N). These simple reflections can be represented by the following elements s_{-g}, \ldots, s_{-1} of $G(\mathbf{Z})$, which we define by their action on basis vectors:

- For each $i=-g, \ldots,-2, s_{i}$ sends e_{i} to e_{i+1}, e_{i+1} to e_{i}, e_{-i} to $e_{-(i+1)}$, $e_{-(i+1)}$ to e_{i}, and fixes the remaining basis vectors.
- s_{-1} sends e_{-1} to e_{1}, e_{1} to e_{-1}, e_{0} to $-e_{0}$, and fixes the remaining basis vectors.
Here finally is an algorithm which, starting with any H as above, finds $\gamma \in G(\mathbf{Z})$ such that ${ }^{t} \gamma \mathrm{H} \gamma$ is δ-reduced:
(1) Let $\gamma_{1}=1, H_{1}=H$.
(2) Set $H_{1}:={ }^{t} \gamma_{1} H \gamma_{1}$. Compute the matrices $n_{H_{1}}, a_{H_{1}}$ using Gram-Schmidt. If H_{1} is δ-reduced, return γ_{1}. Else, proceed to Step 3.
(3) Find γ_{n} such that $n_{H_{1}} \gamma_{n}$ satisfies the conclusion of Lemma 4.3.,
(4) For each $i=-g, \ldots,-2$: if $a_{i+1, i+1}^{2}+\mu_{i+1, i}^{2} a_{i, i}^{2}<\delta a_{i, i}^{2}$, set $\gamma_{1}:=\gamma_{1} \gamma_{n} s_{i}$ and go to Step 2.
(5) If $a_{-1,-1}^{-2}+\frac{1}{2} \mu_{0,-1}^{2}<\delta$, set $\gamma_{1}:=\gamma_{1} \gamma_{n} s_{-1}$ and go to Step 2.
(6) Set $\gamma_{1}:=\gamma_{1} \gamma_{n}$ and return γ_{1}.

Proposition 4.7. The above algorithm always terminates.
Proof. It suffices to show that the simple reflections s_{i} are applied only finitely many times. At each instance of Step 2 we are given a basis $f_{i}=\gamma_{1} e_{i}$ of $\mathbf{Z}^{2 g+1}$, to which we associate the flag $F_{i}=\oplus_{k=-g}^{i} \mathbf{Z} f_{k}, i=-g, \ldots, g$. If $i=-g, \ldots,-2$, then
acting by s_{i} changes F_{i} and F_{-i} but leaves the remaining F_{j} unchanged. Acting by s_{-1} changes F_{-1} and F_{0} and leaves the remaining F_{j} unchanged. In particular, among $F_{-g}, \ldots, F_{-1}, s_{i}$ changes only F_{i}.

The inner product H on $\mathbf{R}^{2 g+1}$ determines one on $\wedge^{i} \mathbf{R}^{2 g+1}$ for each $i=1, \ldots, 2 g+$ 1 by the usual formula $\left(x_{1} \wedge \cdots \wedge x_{i}, y_{1} \wedge \cdots \wedge y_{i}\right)_{H}=\operatorname{det}\left(\left(x_{j}, y_{k}\right)_{H}\right)$. Since $\wedge^{i} \mathbf{Z}^{2 g+1}$ contains finitely many vectors of bounded norm, it suffices to show that applying the simple reflection s_{i} decreases the norm of the vector (which, up to sign, depends only on $\left.F_{i}\right) f_{-g} \wedge \cdots \wedge f_{i} \in \wedge^{i+g+1} \mathbf{Z}^{2 g+1}$. A calculation shows that this norm is multiplied by a scalar which is strictly less than δ. As $\delta<1$, this completes the proof.

5. Example: Reducing a self-adjoint linear operator

We now show how to combine the theory of the previous two sections in an example. Take $g=3$, and consider the group $G=\mathrm{SO}(J) \subset \mathrm{SL}_{7}$ and representation $V \subset \mathfrak{s l}_{7}$ associated to the $\mathbf{Z} / 2 \mathbf{Z}$-grading of $\mathfrak{s l}_{7}$ defined in $\S 3$. We consider the genus 3 hyperelliptic curve

$$
C_{f}: y^{2}=f(x)=x^{7}-x^{5}-2 x^{4}-x^{3}+5 x-5
$$

This curve has the integral point $P=(14,10237)$. Associated to P is the matrix

$$
T=\left(\begin{array}{ccccccc}
-14 & 1 & 0 & 0 & 0 & 0 & 0 \\
-195 & 0 & 1 & 0 & 0 & 0 & 0 \\
-2728 & 0 & 7 & 0 & -1 & 0 & 0 \\
-10237 & 0 & 0 & 14 & 0 & 0 & 0 \\
19095 & -6 & -48 & 0 & 7 & 1 & 0 \\
1546 & -26 & -6 & 0 & 0 & 0 & 1 \\
390 & 1546 & 19095 & -10237 & -2728 & -195 & -14
\end{array}\right) \in V(\mathbf{Z})
$$

of characteristic polynomial $f(x)$, which we obtain e.g. from the subregular Slodowy slice studied in Tho13. We compute the reduction covariant $H=\mathcal{R}(T) \in X_{\mathrm{SO}(J)}$ using the formula (3.1). We obtain numerically
$H=\left(\begin{array}{ccccccc}3.74708 & 53.7691 & 750.242 & 2813.43 & -5244.78 & -421.526 & -47.2448 \\ 53.7691 & 776.143 & 10830.1 & 40612.6 & -75708.6 & -6080.03 & -681.676 \\ 750.242 & 10830.1 & 151130 . & 566729 . & -1.05648 \times 10^{6} & -84842.6 & -9520.71 \\ 2813.43 & 40612.6 & 566729 . & 2.12521 \times 10^{6} & -3.96175 \times 10^{6} & -318157 . & -35704.6 \\ -5244.78 & -75708.6 & -1.05648 \times 10^{6} & -3.96175 \times 10^{6} & 7.38537 \times 10^{6} & 593097 . & 66564.2 \\ -421.526 & -6080.03 & -84842.6 & -318157 . & 593097 . & 47660.8 & 5338.34 \\ -47.2448 & -681.676 & -9520.71 & -35704.6 & 66564.2 & 5338.34 & 660.273\end{array}\right)$.
We then apply the algorithm of $\left\{4\right.$ to H with $\delta=0.9$ to obtain an element $\gamma_{1} \in G(\mathbf{Z})$ such that ${ }^{t} \gamma_{1} H \gamma_{1}$ is δ-reduced. The resulting matrix is

$$
\gamma_{1}=\left(\begin{array}{ccccccc}
-2 & -1 & -15 & 2 & -3 & -5 & 26 \\
0 & -8 & -117 & 12 & 0 & 9 & 203 \\
-8 & -104 & -1462 & 180 & -16 & 184 & 2557 \\
4 & 56 & 784 & -97 & 8 & -98 & -1372 \\
1 & 15 & 209 & -26 & 2 & -26 & -366 \\
0 & 1 & 15 & -2 & 0 & -2 & -26 \\
0 & 0 & 1 & 0 & 0 & 0 & -2
\end{array}\right)
$$

yielding

$$
\gamma_{1}^{-1} T \gamma_{1}=\left(\begin{array}{ccccccc}
0 & 0 & -1 & 2 & 2 & -2 & 3 \\
1 & 0 & 1 & 0 & 0 & 0 & -2 \\
0 & 1 & 1 & -2 & 0 & 0 & 2 \\
0 & 0 & 1 & -2 & -2 & 0 & 2 \\
0 & 0 & 0 & 1 & 1 & 1 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Since the lower left-hand 3×3 submatrix is 0 , we see that the orbit of T is distinguished, in the sense of BG13. It follows that the divisor class of $P-P_{\infty}$ is divisible by 2 in $J_{f}(\mathbf{Q})$ (where P_{∞} is the point at infinity of C_{f} and J_{f} is the Jacobian of C_{f}).

References

[AT18] Jeffrey Adams and Olivier Taïbi. Galois and Cartan cohomology of real groups. Duke Math. J., 167(6):1057-1097, 2018.
[BG13] Manjul Bhargava and Benedict H. Gross. The average size of the 2-Selmer group of Jacobians of hyperelliptic curves having a rational Weierstrass point. In Automorphic representations and L-functions, volume 22 of Tata Inst. Fundam. Res. Stud. Math., pages 23-91. Tata Inst. Fund. Res., Mumbai, 2013.
[BHC62] Armand Borel and Harish-Chandra. Arithmetic subgroups of algebraic groups. Ann. of Math. (2), 75:485-535, 1962.
[Bor19] Armand Borel. Introduction to arithmetic groups, volume 73 of University Lecture Series. American Mathematical Society, Providence, RI, 2019. Translated from the 1969 French original by Lam Laurent Pham, Edited and with a preface by Dave Witte Morris.
[CFS10] John E. Cremona, Tom A. Fisher, and Michael Stoll. Minimisation and reduction of 2-, 3- and 4-coverings of elliptic curves. Algebra Number Theory, 4(6):763-820, 2010.
[Fis13] Tom Fisher. Minimisation and reduction of 5-coverings of elliptic curves. Algebra Number Theory, 7(5):1179-1205, 2013.
[Kna02] Anthony W. Knapp. Lie groups beyond an introduction, volume 140 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, second edition, 2002.
[Lag22] Jef Laga. The average size of the 2-Selmer group of a family of non-hyperelliptic curves of genus 3. Algebra Number Theory, 16(5):1161-1212, 2022.
[LLL82] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients. Math. Ann., 261(4):515-534, 1982.
[Mos55] G. D. Mostow. Self-adjoint groups. Ann. of Math. (2), 62:44-55, 1955.
[RLYG12] Mark Reeder, Paul Levy, Jiu-Kang Yu, and Benedict H. Gross. Gradings of positive rank on simple Lie algebras. Transform. Groups, 17(4):1123-1190, 2012.
[RT24] Beth Romano and Jack A. Thorne. An LLL algorithm with symmetries. preprint, 2024.
[SC03] Michael Stoll and John E. Cremona. On the reduction theory of binary forms. J. Reine Angew. Math., 565:79-99, 2003.
[Sha19] Ananth N. Shankar. 2-Selmer groups of hyperelliptic curves with marked points. Trans. Amer. Math. Soc., 372(1):267-304, 2019.
[Tho13] Jack A. Thorne. Vinberg's representations and arithmetic invariant theory. Algebra Number Theory, 7(9):2331-2368, 2013.
[Tho15] Jack A. Thorne. E_{6} and the arithmetic of a family of non-hyperelliptic curves of genus 3. Forum Math. Pi, 3:e1, 41, 2015.
[Vin76] È. B. Vinberg. The Weyl group of a graded Lie algebra. Izv. Akad. Nauk SSSR Ser. Mat., 40(3):488-526, 709, 1976.

