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We investigate the potential of gravitational-wave background searches to constrain cosmic his-
tories characterized by a stiff equation of state, preceded by a period of matter domination. Such
a scenario leads to a characteristic peak in the primordial gravitational-wave spectrum originating
from cosmological inflation. Assuming instant transitions between distinct epochs, which allows for
an analytical treatment of the gravitational-wave spectrum, we perform a Bayesian inference analysis
to derive constraints from the first three observing runs of the LIGO-Virgo-KAGRA Collaboration.
Additionally, we consider a smooth transition, employing an axion-like particle physics model, and
highlight the differences compared to the instant transition approximation. Finally, we forecast
detection prospects for such a cosmic history through future gravitational-wave experiments.

I. INTRODUCTION

The LIGO-Virgo-KAGRA (LVK) Collaboration has
already detected approximately one hundred transient
gravitational-wave (GW) signals arising from compact
binary coalescences (CBCs) at the end of its third ob-
serving run [1, 2]. In addition, a significant amount
of weak, unresolved sources are expected to contribute
to a statistically random gravitational-wave background
(GWB) [3, 4]. The GWB can be of astrophysical (e.g.,
binary black holes (BBH), binary neutron stars (BNS),
black hole-neutron star (BHNS) systems) or cosmolog-
ical (e.g., first order phase transitions, topological de-
fects, inflation [5]) origin. On one hand, studies of the
astrophysical GWB can provide useful information on as-
pects such as star formation rates, supernova explosions,
the mass distribution of newly born black holes, and the
mechanisms behind their growth [6]. On the other hand,
studies of the cosmological GWB can provide informa-
tion regarding early Universe mechanisms and theories
beyond the Standard Model of particle physics whose en-
ergies are not accessible by accelerators [5].

In what follows, we focus on the primordial GWB spec-
trum sourced by inflation [7, 8] and explore how this
GWB spectrum changes due to a non-conventional cos-
mological history with a period characterised by a stiff
equation of state, motivated by particle physics theories
beyond the Standard Model. Traditionally, a model with
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a stiff epoch soon after inflation has been considered as
an interesting example to enhance the inflationary GW
amplitude at interferometer scale [9–16]. While in this
paper, we consider another cosmological model in which
a stiff epoch is preceded by a period of matter domina-
tion. This model is appealing because the traditional
stiff domination model is severely constrained by the ob-
servational bounds by the cosmic microwave background
(CMB) and Big Bang Nucleosynthesis (BBN), due to the
increasing spectral amplitude towards high frequencies,
which consequently restricts the parameter space acces-
sible by GW experiments [14–16]. In contrast, by in-
cluding the matter domination epoch, the GW spectrum
is suppressed at high frequencies, allowing for evasion
of the CMB and BBN constraints. We investigate both
instantaneous and smooth transitions from the matter
epoch to the stiff epoch. The degree of smoothness in
this transition is highly dependent on the specific model
employed, and we illustrate this dependency using an
axion-motivated model as an example [17–19].

The possibility of probing the cosmological history by
properties imprinted in the primordial GWB spectrum,
originating from scenarios with a non-standard cosmo-
logical history, has been investigated in several studies,
see e.g. [20–36]. Observational constraints on such non-
standard cosmological histories can be inferred by in-
terpreting the results of the isotropic GWB search per-
formed by the LVK Collaboration [37–39], from which
constraints on the GWB with a power-law spectral tilt
are derived. Although the spectrum of the GWB of this
model is typically described by a power-law as long as
we consider a narrow frequency range, this approxima-
tion can be violated when the frequency of observation
corresponds to the transition phase from matter domi-
nation to stiff domination. In this paper, we present the
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first Bayesian inference search utilising LVK data from
the first three observing runs (O1-O3) to constrain the
parameters of an unconventional cosmological history,
which includes a stiff epoch. Bayesian inference searches
accommodate such exceptional cases where the power-
law approximation cannot be utilised and also enable us
to apply appropriate priors for the model parameters.
Furthermore, we assess the detection prospects for fu-
ture GW experiments, specifically for Advanced LIGO
A+ [40], Laser Interferometer Space Antenna (LISA)
[41], Einstein Telescope (ET) [42], and a network of
third-generation (3G) detectors, consisting of two ET-
like detectors and two Cosmic Explorer (CE)-like detec-
tors [43, 44].

This article is organised as follows: In Section II we
review the basics of the primordial GWB sourced by in-
flation and how it is affected by a non-standard cosmo-
logical history. In Section III, we build the GWB spec-
trum sourced by a period of stiff equation. In Section IV,
we study both current and future detection prospects by
performing the Bayesian inference using the O1-O3 LVK
data as well as mock data with future Advanced LIGO
A+ sensitivity. Additionally, we present detectability es-
timates for next-generation detectors. We conclude with
a short discussion in Section V.

II. PRIMORDIAL GRAVITATIONAL WAVES IN
THE FRAMEWORK OF COSMOLOGY WITH A

STIFF EQUATION OF STATE

In standard cosmology and under the assumption of an
inflationary phase, one considers that the period of infla-
tion is followed by a radiation dominated (RD) era and
a matter dominated (MD) era, which in turn transitions
into a dark energy dominated (ΛD) era. A common way
to parameterise these different eras is through the equa-
tion of state w = P/ρ, where P is the pressure and ρ is
the energy density of the fluid describing the Universe1.
While such a cosmological model is supported by obser-
vations of the CMB and BBN, there are still alternative
scenarios possible between the end of inflation and the
beginning of BBN.

In what follows, we study the primordial GWB spec-
trum induced by inflation and how it gets modified
by an era with a non-standard equation of state (i.e.,
1/3 < w ≤ 1) and how such a scenario can be iden-
tified and constrained through current and future GW
experiments (see e.g. [16, 18, 19, 35] for previous stud-
ies). We consider a model-independent parametrisation
for the non-standard (referred to as stiff ) era, so that our
analysis covers several particle physics models leading to
such non-standard cosmologies.

1 Note that w = 1/3 for RD, w = 0 for MD, and w = −1 for
inflation and for ΛD.

A. Primordial gravitational-wave spectrum from
inflation

In this section, we briefly discuss how the GW spec-
trum from inflation can be constructed, see e.g. [26, 45]
for a more complete review. For this purpose, one
considers GWs decomposed into Fourier modes and as-
sumed to satisfy the transverse-traceless gauge condi-
tions, propagating in a Friedmann-Lemâıtre-Robertson-
Walker (FLRW) Universe and neglect anisotropic stresses
that could affect their evolution. The GW equation of
motion (EOM) reads

h
′′λ
k (τ) + 2

a′(τ)

a(τ)
h

′λ
k (τ) + k2hλ

k(τ) = 0 , (1)

where k is the wave-vector of the Fourier mode, λ is the
polarisation index (+ or ×), τ is the conformal time de-
fined as dτ = dt/a(t), and primes denote derivatives with
respect to τ . Thus, the evolution of GWs in Eq. (1) is
dictated only by the scale factor a(τ) and its time deriva-
tive.
During inflation, the GWmodes oscillate quantum me-

chanically with,

hλ
k(τ) →

√
16πG

e−ikτ

a(τ)
√
2k

, (2)

and once they exit the horizon (and become super-
horizon) their amplitude freezes. At later times τk, they
re-enter the horizon (and become sub-horizon), so that
k = a(τk)H(τk), with H = (da/dτ)/a2 the Hubble pa-
rameter. Then, their amplitude decreases with the scale
factor as

hλ
k(τ) ∝

1

a(τ)
e±ikτ . (3)

The GW spectrum can be defined in terms of the GW
energy density, ρGW, and the critical energy density of
the Universe today, ρc,0, as

ΩGW(f) =
1

ρc,0

dρGW

d ln(k)
, (4)

where ρc,0 = 3H2
0/(8πG) and with H0 representing the

Hubble parameter today, defined as H0 = 100 h km s−1

Mpc−1. Throughout this paper we adopt a value for the
dimensionless Hubble constant of h = 0.674. The GW
energy density, expressed as a Fourier transform, reads

ρGW =
1

32πG

∫
d3k

(2π)3
k2

a2

∑
λ

|hλ
k |2 .

Therefore,

ΩGW(τ, k) =
k2

12a2(τ)H2(τ)
∆2

h(τ, k) , (5)

where the tensor power spectrum is defined as ∆2
h(τ, k) ≡

k3

π2

∑
λ |hλ

k |2.
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For super-horizon modes, the GW spectrum is nearly
scale invariant, since the primordial tensor power spec-
trum is described by

∆2
h,inf(τi, k) =

2

π2

(
Hinf

mp

)2(
k

kp

)nt

. (6)

Note that τi is included to emphasise that we refer to
times prior to horizon re-entry. Here, nt denotes the
tilt of the spectrum, kp is a pivot wavenumber, which
is typically taken at the CMB scale, and Hinf is the
Hubble energy scale at which the kp mode exits the
Hubble horizon [46]. In what follows, we assume a scale
invariant tensor power spectrum at super-horizon scales,
i.e. nt = 0.

For sub-horizon modes, this formula is not valid and
one needs to take into account a time-dependent factor,
known as the transfer function T 2

h (k, τ) [47, 48]

∆2
h(τ, k) = T 2

h (τ, k)∆
2
h,inf(τi, k) . (7)

If the horizon re-entry at τk occurs during a period in
which the Universe is evolving with a constant equation
of state, such that a ∝ τα, with α defined as

α ≡ 2

1 + 3w
, (8)

the transfer function reads

T 2
h (τ, k) =

1

2

(
a(τk)

a(τ)

)2

Aα . (9)

Note that α should be evaluated at horizon re-entry. The
ratio of scale factors captures the redshift from the hori-
zon re-entry to later times τ , while Aα is a coefficient
which accounts for a small difference in the GW evolution
depending on the equation of state at horizon re-entry,
given by [22]

Aα ≡ Γ2(α+ 1/2)

π

(
2

α

)2α

. (10)

For instance, we haveA1 = 1 in an RD era andA2 = 9/16
in a MD era. We can thus infer the shape of the GW
spectrum today which entered the horizon in different
cosmological eras, as

ΩGW ∼ k2(1−α) with 2(1− α) = 2

(
3w − 1

3w + 1

)
.

(11)
Hence, for modes entering the horizon during RD the
GW spectrum is flat, while it increases or decreases with
k, for w > 1/3 or w < 1/3, respectively. Consequently,
in the conventional cosmological history the inflationary
GWB is flat.

However, in general, T 2
h (τ, k) should be obtained by

solving Eq. (1) for each mode, taking into account a pos-
sible non-trivial evolution of the scale factor. In partic-
ular, for modes which cross the horizon while the equa-
tion of state of the Universe is changing, the evolution

of the co-moving Hubble horizon cannot be described by
a simple power law. As a result, the transfer function
and the resulting GW spectrum should be determined
by numerically solving Eq. (1) or analytically by match-
ing the transition points assuming instant transitions. In
the following, we employ both analytical and numerical
approaches to address this scenario.

B. Cosmological scenario with a stiff equation of
state

In this section, we consider a non-standard cosmologi-
cal scenario, in which the Universe goes through an exotic
era characterised by a stiff equation of state ws, that pre-
cedes the standard RD era at BBN scales. Such a stiff
dominated (SD) era would lead to a blue-tilted inflation-
ary GWB spectrum at frequencies higher than the one
corresponding to BBN, hence implying the potential for
detectable GW signatures (see e.g [9–14, 16, 22, 35] for
previous studies).
There are multiple models that motivate the presence

of an SD period. For instance, in quintessence mod-
els, an SD era could occur just after inflation, charac-
terised by an inflaton potential with a polynomial of
degree 2n, leading to an equation of state with w =
(n − 1)/(n + 1) [49]. In such a scenario, the equation
of state ranges from MD w = 0 (for n = 1) to the maxi-
mum allowed value for the equation of state during an
SD era, which is referred to as kination, w ≃ 1 (for
n ≫ 1). Alternatively, between the end of inflation and
BBN, the energy density of the Universe can temporar-
ily be dominated by a sector with an evolving equation
of state, including an SD epoch. This phenomenon has
been demonstrated in axion-like models in [17–19] where
an intermediate period of kination, preceeded by a period
of MD, has been studied.

In what follows, we work in a model-independent
framework, where we consider a general Hubble evolu-
tion that can capture different scenarios. We consider
a cosmological history in which the inflationary epoch
precedes a first period of radiation domination (referred
to as RD1), followed by a period of matter domination
(referred to as MD1), which is then followed by a stiff
dominated epoch (referred to as SD). Subsequently, the
SD era is followed by eras of radiation domination and
matter domination (denoted as RD2 and MD2 respec-
tively). The evolution of the co-moving Hubble radius as
a function of the scale factor is shown in Fig. 1, and can
be summarised as follows:

(aH)−1 ≡ (k)−1 ∼



a−1 for a < ai (Inflation)

a for ai ≤ a < aMD (RD1)√
a for aMD ≤ a < aSD (MD1)

a
1
2
(1+3ws) for aSD ≤ a < aRD (SD)

a for aRD ≤ a < aeq (RD2)√
a for aeq ≤ a (MD2)

(12)

This scenario depends on several parameters: the Hubble
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FIG. 1. Schematic diagram illustrating the evolution of the
co-moving Hubble radius (aH)−1, represented in green, plot-
ted against a/aeq. Here, the equation of state during the stiff
era is set to its maximum value: ws = 1. Additionally, the
Hubble radius for the standard cosmological model is plotted
with a dashed dark red line.

scale of inflation Hinf , the value of the equation of state
parameter during the stiff period ws, the wavenumber of
the RD1-to-MD1 transition kMD, the wavenumber of the
MD1-to-SD transition kSD, and the wavenumber of the
SD-to-RD2 transition kRD

We assume that during the MD1 era and the SD era
that precede the standard RD2 era, no entropy is in-
jected. This can be seen in Fig. 1, from the fact that
the red dashed line, which corresponds to the history in
standard cosmology, connects the exotic RD1 era to the
standard RD2 era. If we work in an entropy conservation
scenario, the frequency at the RD1-to-MD1 transition
can be related to the other transition frequencies and to
the equation of state during the stiff era as

fMD = fαs−1
RD f2−αs

SD , (13)

where αs denotes the index defined in Eq. (8) during
the stiff era. The cosmological history is thus described
by four independent parameters, Hinf , αs, fRD and fSD,
which will be used as basis in our parameter estimations
performed in Section IV.

Assuming that the Hubble scale remains constant dur-
ing inflation and that there is no entropy injection be-
tween RD1 and RD2, the frequency associated to the
end of inflation reads

fi = 1.8× 108
( gs,RD

106.75

)− 1
3
( g∗,RD

106.75

) 1
4

(
Hinf

Hinf,max

)
Hz ,

(14)

where gs represents the entropic degrees of freedom and
g∗ the effective number of relativistic degrees of free-
dom and RD denotes the value at the RD era well be-
fore the particles becomes non-relativistic, here assumed
to be equal to g∗,RD = gs,RD = 106.75. Addition-
ally, we normalise the Hubble scale during inflation with
Hinf,max = 5.12 × 1013 GeV, which will be discussed in
more detail in the next subsection.

Our parametrisation actually encompasses several pos-
sibilities, where the most general one is the one given
in Fig 1. Assuming entropy conservation, fMD is deter-
mined by the values of fSD, fRD and αs as in Eq. (13),
and fMD,max = fi is the maximum allowed value within
our scenario. When fMD = fi, the MD1 period starts
right at the end of inflation. From a phenomenological
point of view we can consider values of fMD larger than
this, but in this case the cosmological history should be
modified such that inflation directly connects to the MD
era, possibly posing further model building challenges
that go beyond our study. We nevertheless include the
case fMD > fi in our parameter studies, since it can be
easily re-interpreted in other scenarios.

C. Asymptotic shape of the gravitational-wave
spectrum

In this section, we study the asymptotic behaviour of
the inflationary GW spectrum in presence of the uncon-
ventional cosmological history.

If the k-mode enters the horizon in a regime far from
transitions between two different eras, and the evolution
of the Universe is governed by a constant equation of
state, the scaling of the GWB amplitude can be calcu-
lated relatively easily. Using Eqs. (5) - (10), in these
regimes, the GWB spectrum scales as

ΩGW(f) = ΩGW|(0)plateau



A1 for f ≪ fRD

Aαs

(
f

fRD

)2(1−αs)

for fRD ≪ f ≪ fSD

A2

(
fSD
fRD

)2(1−αs) (
fSD
f

)2
for fSD ≪ f ≪ fMD

A1

(
fSD
fRD

)2(1−αs) (
fSD
fMD

)2
for fMD ≪ f

(15)

where we have defined [16]

Ω
(0)
GW|plateau ≡ Gk

Ω
(0)
rad

12π2

(
Hinf

mPl

)2

, (16)

with Ω
(0)
rad ≈ 9 × 10−5 and the reduced Planck mass
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mPl = 1/
√
8πG ≈ 2.44× 1018 GeV. Furthermore, we in-

clude a change in relativistic degrees of freedom through
the factor Gk = [g∗,k/g∗,0][gs,0/gs,k]

4
3 which is frequency-

dependent, where subscript 0 denotes the values today
(g∗,0 = 3.36 and gs,0 = 3.91) and subscript k repre-
sents the value when the corresponding mode enters the
horizon at k = aH. Its full evolution can be found
in [26, 50, 51]. The variation is small, ranging from
Gk ∼ 1 for f ∼ 10−12 Hz to Gk ≃ 0.39 for f > 10−5

Hz.

The GBW spectrum has a peak around fSD. However,
the exact shape of this peak cannot be accurately repre-
sented by the asymptotic behaviour described in Eq. (15).
Instead, it should be determined by solving the GW
EOM across the MD1-to-SD transition, either analyti-
cally or numerically. In particular, in Fig. 1 the transi-
tions between the different eras have been approximated
as instantaneous. This approximation allows for a fully
analytical derivation of the GW spectrum, achieved by
matching the GW and its time derivative across different
eras, following an approach previously adopted in [16].
In more realistic models, the transition of the scale fac-
tor between two subsequent eras occurs smoothly, with
the energy density of the Universe changing continuously
as it transitions between components with different equa-
tions of state. In the subsequent sections, we will consider
both the instantaneous approximation and a smooth case
to quantify their differences.

D. Observational constraints

Here, we describe observational constraints related to
the GWB spectrum. The inflationary scale can be writ-
ten in terms of the tensor-to-scalar ratio r, as Hinf =
2.7 × 1014 r1/2 GeV. The tensor-to-scalar ratio has an
upper bound of r < 0.036 at 2σ, combining data from the
CMB polarisation experiments Planck 2018, BICEP2,
Keck Array and BICEP3 [46]. This implies Hinf <
Hinf,max = 5.12 × 1013 GeV, which is used throughout
our analysis. For the next generation CMB experiment
LITEBird [52], the upper bound on r is expected to im-
prove to r < 0.002 at 2σ, leading to Hinf < 1.21 × 1013

GeV.

Furthermore, requiring that BBN should happen dur-
ing an RD era and the SD epoch should end before,
we impose fRD ≥ fBBN ≃ 1.41 × 10−11 Hz. Hence,
fBBN ≤ fRD < fSD < fMD ≤ fi. In addition, there is
a constraint on the GW energy density in terms of the
effective number of neutrino species present in the ther-
mal bath after e+e−-annihilation ∆Neff [53]

(
h2ρGW

ρc

) ∣∣∣
τ=τ0

≤ h2Ω0
γ

7

8

(
4

11

)4/3

∆Neff , (17)

where h2Ω0
γ = 2.47 × 10−5 is the density parameter of

photons today, and(
h2ρGW

ρc

) ∣∣∣
τ=τ0

=

∫
df

f
h2ΩGW(f) . (18)

Considering a broken power law with a peak described
in Eq. (15), we approximate the integral as [53](

h2ρGW

ρc

) ∣∣∣
τ=τ0

≈ 1

2(1− αs)
h2ΩGW(f) . (19)

The recent joint CMB+BBN analysis implies ∆Neff <
0.136 at 2σ [54], that leads to

h2ΩGW(f) < (1− αs) · 1.53× 10−6 . (20)

The next generation of ground-based telescope experi-
ments (CMB Stage-4) may improve the limit to ∆Neff <
0.02−0.03 at 1σ [55] Similar limits are expected from the
Simons Observatory [56]. By considering the 2σ-bound
(taking ∆Neff < 0.04) we obtain

h2ΩGW(f) < (1− αs) · 4.49× 10−7 . (21)

Depending on the specific underlying model leading
to the non-standard cosmological histories, further con-
straints could be set on the parameter space. For in-
stance, for a particle physics model with a complex
scalar field (radial mode plus axion), like the one we
discuss in Appendix B, further constraints could arise
from the mechanism responsible for damping the radial
mode (see [18, 19]). In the spirit of a model-independent
parametrisation of non-standard cosmological histories,
we do not impose such constraints in our analysis and we
restrict to the bounds which are directly set by the GW
spectrum.

III. GRAVITATIONAL-WAVE SPECTRUM

In what follows, we derive the full inflationary GWB
spectrum modified due to the cosmological history as de-
scribed in Fig. 1. As we mentioned before, the non-trivial
parts of the GW spectrum correspond to the transitions
between the different eras.

In order to calculate the full shape of the GWB spec-
trum including the transition regimes, we first assume
that the transitions between the different eras occur in-
stantaneously. While this is not a realistic assumption, it
has the advantage that one can solve the GW spectrum
analytically. Next, we study a more physical scenario
in which the MD1-to-SD transition is defined smoothly,
motivated by axion models.

A. Gravitational-wave spectrum in the instant
transition scenario

Here, we consider instantaneous transitions, character-
ising a sudden change between subsequent eras and oc-
curring over a period significantly shorter than the Hub-
ble scale at the transition moment. In this case, the
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equation of state can be described as a step-wise func-
tion, implying the following behaviour of the total energy
density of the Universe throughout the different cosmo-
logical eras:

ρtot =


ρi(

a
ai
)−4 if τi ≤ τ ≤ τMD (RD1)

ρMD(
a

aMD
)−3 if τMD ≤ τ ≤ τSD (MD)

ρSD(
a

aSD
)−3(1+ws) if τSD ≤ τ ≤ τRD (SD)

ρRD(
a

aRD
)−4 if τ ≥ τRD (RD2)

(22)

where ai = a(τi), aMD = a(τMD) and so forth denote the
scale factors at the corresponding transition times and
where the normalisation constants are equal to

ρMD = ρ∗(
aMD

a∗
)−4

ρSD = ρMD(
aSD

aMD
)−3

ρRD = ρSD(
aRD

aSD
)−3(1+ws)

. (23)

Given ρtot, we then use the Friedmann-Lemâıtre equa-
tion to rewrite Eq. (1) as a Bessel equation. During a
cosmological era, referred to as era 1, which is followed
by another era 2, the solutions of the GW EOM are found
to be

h1(y) = A1(α1y)
1
2 (1−2α1)J 1

2 (−1+2α1)(α1y)

+B1(α1y)
1
2 (1−2α1)Y 1

2 (−1+2α1)(α1y) , (24)

where we have omitted the polarisation index and where
we introduced the variable y ≡ k/(aH).
Jν(x) and Yν(x) are Bessel functions of the first and

second kind, respectively. The coefficients A and B can
be found by matching the GW solutions of Eq. (24) and
their time derivatives across different subsequent epochs.
In Appendix A, we give more details to this procedure
and we work out the GW spectrum analytically. This
matching procedure ensures that the full GW spectrum
contains information from all the considered eras. The
full spectrum reads

ΩGW(τ0, k) =
4−2GkH

2
infΩ

(0)
radΓ

(
3
2

)2
3π3α4

sm
2
Pl

×
(

f

fRD

)−2αs
(

f

fSD

)2(αs−3)

×F(f, fRD, fSD, fMD, αs) , (25)

where F stands for a function which is a combination of
Bessel functions.

In Fig. 2, we show the analytic GWB spectrum for a
few benchmarks and the sensitivity curves for Advanced
LIGO A+, LISA, ET, and a network of 3G detectors (see
Table III and Section IVC for the details of these future
experiments and their sensitivity curves). The scaling of
the analytical spectrum in the asymptotic regions is con-
sistent with Eq. (15). As seen in the figure, fRD sets the
turning point between the flat inflationary spectrum and

the increasing part and fSD sets the GWB peak position,
corresponding to the MD1-to-SD transition. We can also
see that αs = 2/(1+3ws) determines the increasing slope
of the GW spectrum, and that kination leads to the most
promising scenario for detection. The parameter fMD is
fixed using Eq. (13). Finally, the inflationary scale Hinf

sets the overall amplitude of the GWB spectrum. Here
and in what follows, we fix Hinf to its maximally allowed
value: Hinf = Hinf,max, as discussed in Section IID.

From Fig. 2, one can note that the detectable part of
the spectrum is concentrated around the peak frequency
fSD, while the region around fRD is too small to be de-
tectable. Hence, GW signals with the same value of the
productHinff

αs−1
RD yield the same peak amplitude at fSD.

This is what we refer to as a parameter degeneracy, which
arises betweenHinf and fRD. We thus note that our anal-
ysis withHinf fixed to its maximum, can be re-interpreted
in models with different inflationary scales H ′

inf , by map-
ping fRD to the frequency

f ′
RD = fRD

(
H ′

inf

Hinf

) 1
1−αs

= fRD

(
H ′

inf

5.12× 1013 GeV

) 1
1−αs

, (26)

noting that f ′
RD should be larger than fBBN.

FIG. 2. The analytically derived GWB spectrum assuming
instantaneous transitions for different values of ws. The sen-
sitivity curves for the future experiments that we will discuss
later (see Table III) are also shown. The parameters that in-
fluence the GW spectrum are chosen to be Hinf = Hinf,max,
fRD = 3.6 × 10−7 Hz, fSD = 1 Hz, and fMD is fixed accord-
ing to Eq. (13). The purple dashed line gives the standard
inflationary GWB. The parameter Hinf influences the overall
amplitude of the GWB spectrum, we denote this effect by the
double arrow.



7

B. Gravitational-wave spectrum in the smooth
transition scenario

In this section, we study a smooth MD1-to-SD transi-
tion, for which we focus on the most promising scenario
for a GWB detection, namely when the SD era is kina-
tion, with ws = 1. As an example, we consider an axion
model previously discussed in [17–19], which we review
in Appendix B. This framework is based on a logarith-
mic potential for a complex scalar field, which splits in a
radial mode and an axion. In such a model, the energy
density at high temperature scales as matter, while at
lower temperatures it scales as kination. The equation of
state changes slowly, and the matter era is only reached
asymptotically at high temperatures, implying that the
peak in the GWB spectrum will be different from the
case of an instant transition.

To facilitate a clear comparison, we first introduce the
transfer functions to describe the GW spectrum for the
case of kination with instantaneous transitions. The full
analytic expression derived in the previous subsection can
be fitted with the transfer functions as

ΩGW(f) = Ω
(0)
GW|plateauT 2

h (f, fRD, fSD, fMD) , (27)

with

T 2
h = T 2

RD(f, fRD)T
2
SD(f, fSD)T

2
MD(f, fMD) , (28)

and where

T 2
RD(f, fRD) = 1− 0.5

(
f

fRD

)2/3

+
A1/2

A1

f

fRD
,

T 2
SD(f, fSD) =

[
1 + 0.55

f

fSD

−1.3

(
f

fSD

)2

+
A1/2

A2

(
f

fSD

)3
]−1

,

T 2
MD(f, fMD) = 1− 0.5

f

fMD
+

A1

A2

(
f

fMD

)2

. (29)

The asymptotics of Eq. (29) are consistent with the scal-
ing in Eq.(15). The most interesting region for observa-
tions is the MD1-to-kination transition described by T 2

SD,
which characterises the GWB peak. The GWB spectrum
obtained by the transfer function fit shows relative devia-
tions of at most 30% (around the transition points) with
respect to the full analytic expression of the instant tran-
sition case.

To describe the shape of the GWB corresponding to
the smooth transition discussed in Appendix B, we first
numerically solve for the GW spectrum and then fit the
resulting GWB peak with a transfer function Tlog that
should satisfy

T 2
log(f ≪ fSD) ∼ 1 ,

T 2
log(f ≫ fSD) →

(
f

fSD

)−3
A2

A1/2
. (30)

Eq. (30) provides a definition of fSD for the smooth case,
allowing a comparison between the smooth and instant
transition cases (see Appendix B for details). We find
that the smooth MD1-to-kination transition can be well
described with the fit

T 2
log(f, fSD) =

[
1 + 15

(
f

fSD

)5/2

(31)

+5

(
f

fSD

)2

+
A1/2

A2

(
f

fSD

)3
]−1

.

In Fig. 3 we compare the GWB spectrum for a smooth
and an instant transition. In both cases, the RD1-to-MD
transition and the kination-to-RD2 transition are mod-
elled as instantaneous ones, since their specific shape is
beyond observational reach. In terms of transfer func-
tions, this corresponds to a GW spectrum

ΩGW(f) = Ω
(0)
GW|plateauT 2

RD(f, fRD)T
2
log(f, fSD)T

2
MD(f, fMD) .

The only transition that differs is the matter-kination
one, around fSD.

We subsequently investigate the impact of modelling
the transition as instantaneous or smooth regarding de-
tection prospects, and conclude that the type of transi-
tion has minor impact on the parameter region reach of
GW experiments. Consequently, we infer that the results
obtained in the instantaneous transition case remain ap-
plicable for the smooth transition case. Hence, in the
next section we will solely conduct a data analysis on the
instantaneous transition case.

FIG. 3. Comparison of the GW spectra derived for kination
with ws = 1, assuming an instant MD1-to-kination transition
(green) and a smooth one (dashed red). The parameters,
Hinf , fRD, fSD, fMD, are set in the same way as in Fig. 2.
The purple dashed line indicates the standard inflationary
GWB spectrum.
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IV. DETECTION PROSPECTS

In this section, we present the detection prospects for
current and future detectors. Although current ground-
based detectors have not yet made a GWB detection, we
can place stringent constraints on the parameter space
of our model using O1-O3 LVK data. In what follows,
we first discuss the general methodology and then per-
form a Bayesian inference search considering both a CBC
background and an inflationary GWB signal enhanced
by a stiff epoch with the current LVK data. We then
investigate the detection prospects of future experiments
assuming Advanced LIGO A+ sensitivity.

A. Bayesian inference formalism used in Gaussian,
stationary, unpolarised and isotropic

gravitational-wave background searches

We use O1-O3 LVK data to constrain the exotic cos-
mological model with a stiff epoch [37–39, 57, 58]. We
perform a Bayesian inference search as described in [59–
62]. The Gaussian likelihood for the search of an isotropic
unpolarised GWB reads

p(ĈIJ(f)|θ) ∝ exp

−1

2

∑
IJ

∑
f

(
ĈIJ(f)− ΩM(f |θ)

σIJ(f)

)2
,

(32)

where quantity ĈIJ(f) is the cross-correlation estimator
of the GWB, computed using data from detectors I and
J , and σIJ(f) its associated variance [4, 63, 64]. The
sums run over the detector baselines IJ and over the fre-
quencies f . The parameter ΩM(f |θ) describes the GWB
model, where θ represents the model parameters. In our
case, ΩM(f |θ) = ΩSD(f) + Ωcbc(f), where ΩSD(f) rep-
resents the inflationary GWB enhanced by a stiff epoch
and Ωcbc(f) accounts for the astrophysical GWB from
unresolved CBCs. Within the frequency range of inter-
est, the latter takes the form [60]

Ωcbc(f) = Ωref

(
f

fref

)2/3

, (33)

where fref is a reference frequency, set to fref = 25 Hz
and Ωref is the amplitude of the CBC background at the
reference frequency.
Furthermore, we will quote a Bayesian upper limit (UL)
at 95% confidence level (CL). For a parameter a and data
d, this is defined as [4]

Prob(0 < a < a95%UL|d) = 0.95. (34)

In order to compare different models, we make use of
Bayes factors. Given two models Ma and Mb, the Bayes
factor can be computed as

Ba
b (d) =

p(d|Ma)

p(d|Mb)
, (35)

where p(d|Mi) denotes the evidence for model Mi (i =
a, b). Additionally, one can compute ln(Ba

b (d)):

ln(Ba
b (d)) ≡ ln(Ba

Noise(d))− ln(Bb
Noise(d)) . (36)

Positive values of ln(Ba
b (d)) imply preference for model

Ma over Mb. All the results presented in the following
are produced using the Python packages pygwb [64] and
Bilby [65] using the Dynesty sampler.

B. Constraints on the stiff epoch using LVK
gravitational-wave background search data

Here, we employ the formalism described in Sec-
tion IVA to constrain the model parameters character-
ising the full unconventional cosmological history with a
stiff epoch. Using the GW data obtained from the ini-
tial three observing runs of the LVK Collaboration, we
do an analysis considering both a CBC background and
an inflationary GWB enhanced by a stiff epoch, from
now on referred to as SD +CBC model. Furthermore,
we perform Bayesian inference searches using mock data
consisting of the expected noise of the Advanced LIGO
A+ sensitivity and injecting an SD + CBC GWB.
As seen previously, the parameter space is given by

θ = (Ωref , Hinf , fMD, fSD, fRD, αs). For the parameters
Hinf and fMD, we adopt delta priors centred around their
respective maximum values In particular, in order to en-
compass generic scenarios (see discussion in Section IID),
we do not impose the entropy conservation condition in
Eq. (13) and we fix fMD to fi. With this configuration,
the GW spectrum in the LVK sensitivity band is deter-
mined by fRD and fSD and, at frequencies higher than
fSD, the spectrum continues to decrease with ΩGW ∝ f−2

until fi. Since this high-frequency part is not detectable
with the LVK sensitivity, the choice of fMD does not af-
fect our analysis. The priors chosen for the remaining
parameters are given in Table I.

Parameters θ Priors

Ωref LogU(10−13, 10−5)
fRD [Hz] LogU(10−10, 10−5)
fSD [Hz] LogU(10−3, 106)

αs U(0.5, 1)

TABLE I. Priors applied to the Bayesian inference. They are
categorised as either uniform (U) or uniform in logarithmic
scale (LogU). The prior set for Ωref is derived from previous
estimates of the CBC background contribution [66]. The pri-
ors for αs are theoretically determined, based on the minimum
and maximum values of ws: 1/3 ≤ ws ≤ 1. Considering that
the RD2 epoch precedes the SD epoch and that BBN should
happen during RD2, it follows that fBBN ≥ fRD > fSD. The
prior ranges for fRD and fSD are chosen wide enough to make
sure that a subset of them leads to signals detectable within
the LVK frequency band. We checked that extending the
prior ranges do not significantly modify the resulting poste-
rior distributions.
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1. O1-O3 LVK data

In Fig. 4, we show the results from a Bayesian infer-
ence search, as described in Section IVB, illustrating the
resulting posterior distributions. The top panel shows
the results for a general SD era, where αs is varied, while
the lower panel discusses a kination scenario, for which a
delta prior centred around αs = 0.5 is set. The posterior

FIG. 4. Posterior distributions from Bayesian inference as-
suming an SD+CBC model. Contour regions in dark blue
correspond to 1σ CL and those in lighter blue to 2σ CL.
In the upper part of the triangular plot, the 1-dimensional
marginalised posterior distribution is shown and the dashed
vertical lines represent the 1σ CL. Furthermore, the median
and errors of the posteriors are shown on the top. In the top
panel, all parameters vary, while in the bottom panel we show
the full kination case where αs is fixed to αs = 0.5.

distributions depicted in Fig. 4 allow us to establish 95%

CL ULs on Ωref . Specifically, these limits are determined
to be around 2.8 × 10−9 for both cases of varying and
fixing αs. These findings align with previous ULs on the
amplitude of the CBC background, which were reported
to be 3.4 × 10−9 at 25 Hz [62]. Moreover, the contours
representing the 1σ CL for fRD, fSD, and αs are shaded
in dark blue, while those corresponding to the 2σ CL
are presented in lighter blue. The vertical dashed lines
in the histograms of the posterior distributions denote
the 1σ CL. In the full kination case (as shown in the
lower panel of Fig. 4), a 95% CL UL can be established
for fSD, yielding 21716 Hz and a 95% CL lower limit2

for fRD of 2.35 × 10−10 Hz. This suggests a preference
for lower values of fSD and higher values of fRD. The
first three observing runs of the LVK Collaboration en-
able us to constrain certain regions in parameter space.
Specifically, within the (fRD, fSD) space, small values of
fRD and large values of fSD are excluded at 2σ CL. This
exclusion region corresponds to signals that would have
been detected with O1-O3 data.
In the general case (top panel of Fig. 4), a portion of

the (fRD, αs) parameter space is excluded at the 2σ CL,
corresponding to small values of αs and fRD. Similarly,
another portion of the (fSD, αs) parameter space is also
excluded at the 2σ CL for small values of αs and large val-
ues of fSD. Moreover, within the (fRD, fSD) space, 2σ CL
exclusions apply to small values of fRD and large values
of fSD. Notably, this exclusion region is comparatively
smaller than that observed for the full kination case, as
variability in αs in the top panel results in weaker signals.
The posterior distribution of αs exhibits a preference for
larger values. Additionally, the posterior distribution of
fRD exhibits a slight increasing trend, while the one of
fSD shows a slight declining trend, in agreement with our
expectations from the full kination case.
We also compute the Bayes factors comparing the hy-

pothesis of data containing an SD+CBC signal versus
noise only. In the case of kination, the Bayes factor
is ln(Bkination+CBC

Noise ) = −1.11. In the case of a vary-

ing αs, ln(BSD+CBC
Noise ) = −0.65, indicating no evidence

for an SD+CBC signal in the data. Similarly, we obtain
Bayes factors between the hypothesis of data containing a
CBC background versus noise only: ln(BCBC

Noise) = −0.62,
showing no evidence for a CBC background in the data.
Moreover, we compute the Bayes factors comparing the
hypothesis of data containing a CBC background versus
an SD+CBC signal. For the kination case, we obtain
ln(Bkination+CBC

CBC ) = −0.49, indicating a preference for a
CBC background in the data. In the case of varying αs,
ln(BSD+CBC

CBC ) = −0.03, showing a slight preference for a
CBC background only.
In summary, we do not find evidence in the data for

a CBC background nor for a signal coming from a stiff

2 While typically ULs are determined using O1-O3 data, in this
instance, we discuss a lower limit. This is because lower values
of fRD correspond to higher peaks in the GW signal.
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epoch. We are therefore able to set 95% CL ULs on
some of the parameters describing the exotic cosmological
history.

2. Recovery of injections using Advanced LIGO A+
sensitivity

In this section, we study some possible challenges that
may arise with the detection of an SD+CBC GWB. To
address these challenges, we again perform a Bayesian
inference search by using mock data consisting of the
expected noise of the Advanced LIGO A+ sensitivity,
where we further inject two GWB signals: one originat-
ing from a CBC background and the other from the ex-
otic cosmological history with instant transitions. The
CBC background amplitude is set to Ωref = 7 × 10−10,
which corresponds to the central value of the estimated
astrophysical GWB as derived in the O1-O3 LVK analy-
sis [62].

A first inherent challenge arises, which has been
discussed in [67], when employing Bayesian inference
searches to simultaneously reconstruct the GWB from
CBCs and a GWB originating from cosmological mod-
els. These challenges persist within our framework as
well. In particular, our model predicts a broken power-
law spectrum, where the location of the peak corresponds
to fSD. The results of the parameter estimation signifi-
cantly depend on the location of this peak for the injected
signal. If fSD is relatively large (fSD ≳ 50 Hz), the re-
sulting GWB signal resembles, within the LVK frequency
range, a power-law spectrum with positive spectral index,
mimicking the spectrum of the CBC background. Conse-
quently, the Bayesian analysis cannot accurately recover
the CBC parameter Ωref and the parameters of the cos-
mological model simultaneously.

Conversely, if the value of fSD falls below the frequency
range of LVK, the resulting GWB signal appears as a
power law with negative spectral index within this range.
This enables to better resolve the GWB signal from the
stiff epoch and the one from the CBC background. We
perform a Bayesian inference on this second case. The
cosmological parameters are listed in Table II and we
employ the same priors as before, given in Table I.

The resulting posterior distributions are illustrated in
Fig. 5. The parameter Ωref is not successfully recov-
ered due to the weaker strength of the CBC signal com-
pared to the stiff signal (ΩSD(25 Hz ) = 1.9 × 10−9 and
Ωcbc(25 Hz ) = 7×10−10), but we nevertheless obtain an
upper bound on the CBC background amplitude. The
stiff parameter fSD is recovered within 1σ. However, the
recovery of the other two stiff parameters, fRD and αs, is
less successful due to their degeneracy in determining the
overall GWB amplitude in the LVK frequency range, an
issue which explains the elongated 2D contour regions.
This poses a second challenge that arises in our model,
which has multiple signal degeneracies. While the de-
generacy between Hinf and fRD has been previously ad-

Parameters θ Benchmark values

fRD [Hz] 2.5× 10−10

fSD [Hz] 5
fMD [Hz] 1.8× 108

Hinf [GeV] 5.12× 1013

αs 0.588

TABLE II. Benchmark values used for the injected signal in
the Bayesian inference search. These values were selected to
ensure detectability of the signal by the expected Advanced
LIGO A+ sensitivity, and to have a stiff signal behaving dif-
ferently than the CBC signal in LVK frequency range. For
ws, we choose a value of 0.8, corresponding to αs = 0.588.
For fMD and Hinf , we adopt their maximum values allowed
by observational constraints. A relatively small value is as-
signed to fRD based on the fact that smaller values give rise
to stronger GWB signals.

dressed in Section II B, we now further explore additional
ones3 within the LVK frequency band.

FIG. 5. Posterior distributions from running a Bayesian anal-
ysis assuming an SD+CBC model, using mock data at Ad-
vanced LIGO A+ sensitivity. The injected values are indi-
cated by the red lines.

To further clarify this, we focus on the degeneracy be-
tween fRD and αs. Again, an injection is made with

3 While we employ the term degeneracies, it is important to note
that the ones we discuss in this subsection might appear as such,
but they are not true degeneracies. This resemblance arises due
to the inability of LVK to distinguish accurately between slopes.
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FIG. 6. Comparison between Bayesian inference results and
the analytically derived degeneracy in the (fRD, αs) parameter
space. The analytically derived degeneracy curve is shown in
yellow.

parameter values given in Table II, but we now only set
varying priors on fRD and αs. Furthermore, we do not in-
clude the CBC background. The results are shown in Fig.
6, where the degeneracy in the (fRD, αs) plane is clearly
visible in the blue contour regions. In the same figure, we
include the theoretically expected degeneracy depicted in
yellow. For this purpose, we examine the injected GW
amplitude at the frequency of highest sensitivity (f ≈ 35
Hz), which is equal to ΩSD(35 Hz ) ≃ 9.6 × 10−10. We
then employ the analytic formula for the GWB to iden-
tify the combinations of fRD and αs that produce a GWB
spectrum with ΩSD(35 Hz ) ≃ 9.6 × 10−10 . This deter-
mines a degeneracy line that is shown in yellow in Fig.
6. From this figure, one can see that the analytically de-
rived degeneracy corresponds to the retrieved 2D contour
regions. We have verified that the other parameter de-
generacies of the cosmological model seen in Fig. 5 can
be reconstructed using similar analytic arguments.

In conclusion, our analysis shows that a partial recon-
struction of a possible signal from a stiff epoch will be
feasible at Advanced LIGO A+ sensitivity, even though
the presence of the CBC background and of the degen-
eracies in the predicted GWB pose challenges to a robust
recovery of the relevant parameters.

C. Detection prospects for the stiff epoch for
future gravitational-wave experiments

Here, we discuss the future detectability prospects
across a wide parameter space, which is possible with
future experiments that span various frequency bands.
We assess the detectability for different values of fRD

and fSD using the Advanced LIGO A+ sensitivity, LISA,
ET, and a network of 3G detectors, with correspond-

ing power-law integrated (PLI) sensitivity curves given
in Table III, for which we have assumed design sensitiv-
ities [68]. The sensitivity estimate used for ET is ET-D,
the most updated version assuming a triangular config-
uration with arms of 10 km, obtained by incorporating
additional noise sources [43]. The 3G network consists of
four detectors: two CE-like detectors with arms of 40 km,
located in the current LIGO detectors’ locations, and two
ET-D-like detectors co-located and co-aligned at Virgo’s
location4 . Finally, for LISA we assume data processing
with Time Delay Interferometry (TDI) variables and con-
sider auto-correlation of two orthogonal signal channels,
so called A- and E-channels that correspond to +-and
×-independent polarisation modes.
We fix ws to three different values: ws = 1.0, ws = 0.8

and ws = 0.6, corresponding to the maximum possible
value of ws (kination), and two middle ones. Consider-
ing smaller values of ws leads to weaker GWB signals,
and hence a narrower detectable parameter space. The
RD1-to-MD1 transition frequency fMD and the inflation-
ary scale Hinf are always fixed to their maximum val-
ues. As one can see from Fig. 7, a significant part of
the (fRD, fSD) detectable space is excluded by indirect
bounds, depicted in pink. This occurs when fSD is large
and hence the GW energy density exceeds the current
∆Neff bound (see Eq. (20)). However, there remains a
substantial portion of allowed parameter space that is
detectable by future experiments. For larger values of
fRD, the network of 3G detectors has the strongest reach,
while for low values of fSD LISA is the most promising.
We also add future expected indirect bounds from ∆Neff

as derived in Eq. (21). The area above the black dashed
line, denoted as fMD > fMD,max, represents the parame-
ter region where fMD, as defined by Eq. (13). exceeds its
maximum value, defined in Eq. (14). We conclude that
future GW experiments can significantly probe regions of
the parameter space that would otherwise be untestable
via indirect probes.
We end this section by inspecting the differences in the

detection prospects between the instant and the smooth
case. As was shown earlier, the GW peak of a smooth
MD1-to-kination transition is different than the one of
an instant transition. We investigate whether this differ-
ence leads to sizeable modifications in the detectability
prospects. In Fig. 8 we show the detectability regions
in the (fRD, fSD) parameter space for the smooth GW
spectrum given in Eq. (32). For comparison, we show
the corresponding sensitivity regions for an instant MD-
kination transition with dashed lines (which is the same
case as in the top panel of Fig. 7). We find that there
only is a minor difference in the reach of GW experi-
ments. The difference arises because for a fixed fSD, the

4 For simplicity, in this study we have assumed ET and CE to be
located at the current LIGO and Virgo locations. However, their
real locations are still under discussion. Furthermore, we work
with the ET-D configuration, but there a different configurations
possible for ET, see e.g. [69] for a recent study.
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FIG. 7. The (fRD, fSD) parameter regions accessible by
future detectors are shown for three different values of ws

(from top to bottom: ws = 1.0, 0.8, and 0.6). The coloured
regions represent areas detectable by various future detectors:
blue for LISA, orange for ET, purple for Advanced LIGO A+,
and green for a network of 3G detectors. The dashed line
indicates fMD = fi, and the region above this line may require
a modification of the cosmological history such that inflation
ends in a MD era (see discussion after Eq. (14)). The pink
region gives the parameter space excluded by indirect limits
from BBN and CMB, as described in Eq. (20). The pink
dashed line gives the future indirect limits region, described
in Eq. (21).

GW spectrum of the instant transition has a peak which
is more pronounced and more shifted to high frequencies

with respect to the smooth transition case. However, it
is important to note that the majority of the interesting
regions for the future GW experiments is not modified.
Thus, for realistic models with smooth transitions, there
would not be major modifications with respect to the
findings assuming instant transitions.

FIG. 8. (fRD, fSD) parameter regions for the smooth MD1-
to-kination transition model, described in Section III B. The
coloured regions correspond to regions that are detectable by
different future detectors, where the different colours used are:
blue for LISA, orange for ET, purple for A+ and green for
a network of 3G detectors, and the dashed lines correspond
to the instant MD1-to-kination model. The pink region gives
the parameter space for the smooth case excluded by indirect
limits from BBN and CMB, as described in Eq. (20). The
pink dashed line gives the parameter space for the instant
case excluded by indirect limits.

V. CONCLUSION AND DISCUSSION

We have considered a cosmological history, where an
extra radiation dominated, a matter dominated and an
era dominated by a stiff equation of state are present
between the end of inflation and the onset of BBN. We
have studied the influence of this unconventional cosmo-
logical history on the GWB sourced by inflation. The
transitions between the different eras are described ei-
ther as instantaneous (sudden) or smooth (gradual). The
instant transitions serve as proxies for realistic models,
enabling an analytical derivation of the GWB spectrum
and capturing its phenomenology. Conversely, while the
smooth transition scenario is more physically motivated,
it demands numerical analysis. We explore both types of
transitions and work out the GWB in each case, resulting
in a broken power law spectrum, with a distinctive peak.
We then perform a Bayesian inference analysis using

O1-O3 LVK data. Even though our analysis shows no
evidence for a GWB signal in the data, we can set 95%
CL ULs on some model parameters as well as on the am-
plitude of the CBC background, which is consistent with
the previously found upper limit [62]. In the case of
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PLI curve name Description Observation time SNR Co-located and co-aligned ASD curve

A + HL network, design sensitivities 1 year 1 No [40]
ET 2 ET-D-like detectors 1 year 1 Yes [43]
LISA Auto-correlation of A- and E-channels 1 year 1 - [70]

3G network 2 ET-D-like detector and 2 CE-like detectors 1 year 1 No [43], [71]

TABLE III. Description of the PLI sensitivity curves used throughout this paper. The second column describes the configuration
of each network. The third and fourth columns indicate the assumed observation time and the signal-to-noise ratio (SNR) used
for the construction of these PLI curves. The fifth column specifies whether the detectors involved are co-located and co-aligned.
Finally, the sixth column provides a reference for the amplitude spectral density (ASD) noise curves used in constructing these
PLI sensitivity curves. The A+ PLI curve consists of the Hanford-Livingston (HL) network. The 3G network PLI curve consists
of two ET-D-like-detectors co-located and co-aligned at the Virgo site, along with two CE-like detectors, each with 40 km arms,
located at the current LIGO-Hanford and LIGO-Livingston sites.

kination (w = 1), the data can exclude scenarios where
the value of the MD1-to-kination transition frequency is
larger than ∼ 10 Hz and the kination-to-radiation tran-
sition is smaller than ∼ 10−5Hz (see the bottom panel of
Fig. 4). We also applied a Bayesian inference analysis
using mock data assuming Advanced LIGO A+ sensi-
tivity and injecting the GWB signals originating from a
stiff epoch and of a CBC background. Within this frame-
work, various parameter degeneracies present challenges
for extracting information on model parameters.

We have then investigated the impact of future GW
experiments, specifically Advanced LIGO A+, LISA,
ET, and a 3G network made of two ET-D-like detectors
and two CE-like detectors. We have shown that there
is a large parameter region that can be tested by
future GW experiments and that is not in the reach of
current and future indirect bounds. Finally, we have
discussed the potential of the future GW experiments
to differentiate between signals corresponding to instant
or smooth transitions between the matter-to-stiff epochs.

There are several possible extensions to the work pre-
sented here. It has been shown that second-order ef-
fects in GW perturbations can arise, depending on the
speed of transitions between epochs, leading to additional
features and enhancements in the GWB spectrum (see
e.g. [72–76]). We leave the investigation of these (model-
dependent) effects and how they affect the detectability
of the exotic cosmological history for the future. In ad-
dition, we have neglected the backreaction of the GW
energy density in the evolution of the Universe which,
although typically small, could potentially result in ad-
ditional indirect constraints [9, 35].

Throughout the paper, we have assumed a model
of inflation with vanishing primordial tilt (nt = 0) in
the tensor power spectrum. We note that the GWB
from the exotic cosmological history we considered, with
nt = 0, cannot accommodate the recent Pulsar Timing
Array (PTA) observations [77–80] due to the lower limit
on fRD > fBBN (see e.g., [35]). This limitation prevents
the spectrum from having a sufficient frequency range to
increase at frequencies lower than the nano-Hertz band.
Instead, in scenarios with the described exotic cosmol-
ogy and a non-vanishing tilt, the inflationary GWB

spectrum can reach the PTA sensitivity region5 [82].
The assumption of nt = 0 could be easily relaxed and
our data-analysis could be repeated at the cost of adding
an extra parameter (the spectral tilt), which would have
a high degree of degeneracy with the equation of state
during the stiff epoch. We leave this possibility for
future investigations.
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Appendix A: Analytical derivation of the
gravitational-wave spectrum

We show the formalism needed to analytically derive
the GW spectrum, when assuming instant transitions of
the equation of state. The solutions to the GW EOM
during era 1, which is followed by era 2, are given by
Eq. (24). A non-trivial task that rests us is to determine
the coefficients A and B for each epoch. This is achieved
by matching the solutions and their time derivatives to
those obtained for the subsequent epoch at the transition
moment τ1→2 (see [16] for the inflation-SD-RD transition
case). These matching conditions are expressed as{

hepoch1(τ1→2) = hepoch2(τ1→2)

h
′epoch1(τ1→2) = h

′epoch2(τ1→2) ,
(A1)

where

h
′epoch1(τ1→2) =

1

α1

dhepoch1(y)

dy

∣∣∣
y=κ1→2

,

with κ1→2 ≡ k/k1→2 ≡ k/(a1→2H1→2). Additionally,
the specific value of α1 depends on the nature of era 1,
for instance, for RD eras α1 = 1, for MD eras α1 = 2
and for SD eras α1 = αs.

The only matching that does not follow Eq. (A1), is
the first matching we perform, at the transition moment
τi between inflation and the RD1 era. For this, we impose

the following boundary conditionshRD1(κi) = hinf for κi ≪ 1
dhRD1(y)

dy

∣∣∣
y=κi

= 0 for κi ≪ 1
(A2)

where κi ≡ k/(aiHi) and

hinf ≡
1√
k3

(
Hinf

mPl

)
. (A3)

Therefore, we are able to find the solution of Eq. (1)
during the RD1 era:

hRD1(y) = 2
1
2hinfΓ

(
3

2

)
y−

1
2 J 1

2
(y) . (A4)

For the next epochs, we impose the continuity of the ten-
sor modes and their derivatives, as given in Eq. (A1).
We apply these matching conditions for the RD1-to-MD1
transition at τMD, for the MD1-to-SD transition at τSD
and for the SD-to-RD2 transition at τRD. In this Ap-
pendix, we work out one example: the matching at RD1-
to-MD1 transition. In MD1, the solution is given by

hMD1(y) = AMD1(2y)
− 3

2 J 3
2
(2y) (A5)

+BMD1(2y)
− 3

2Y 3
2
(2y) , (A6)

We then demand thathRD1(κMD) = hMD(κMD)
dhRD1(y)

dy

∣∣∣
y=κMD

= 1
2
dhRD1(y)

dy

∣∣∣
y=κMD

The coefficients are then found to be equal to, in terms
of κMD = k/kMD = yMD:{
AMD1(κMD)

BMD1(κMD)
= 2hinfΓ

(
3

2

)
× 1

cMD1(κMD)

{
aMD1(κMD)

bMD1(κMD)
,

with

cMD1(κMD) =
(
J 5

2
(2κMD)− J 1

2
(2κMD)

)
Y 3

2
(2κMD)

+ J 3
2
(2κMD)

(
Y 1

2
(2κMD)− Y 5

2
(2κMD)

)
,

aMD1(κMD) =
(
2κMD

(
J− 1

2
(κMD)− J 3

2
(κMD)

)
Y 3

2
(2κMD)

+J 1
2
(κMD)

(
−2κMDY 1

2
(2κMD) + Y 3

2
(2κMD) + 2κMDY 5

2
(2κMD)

))
and

bMD1(κMD) =
(
2κMD

(
J− 1

2
(κMD)− J 3

2
(κMD)

)
J 3

2
(2κMD)

+J 1
2
(κMD)

(
−2κMDJ 1

2
(2κMD) + J 3

2
(2κMD) + 2κMDJ 5

2
(2κMD)

))
.

Repeating this procedure for MD1-to-SD and for the SD-
to-RD2 transition, we are able to construct the GW spec-
trum

ΩGW(τ, k) =
k2

12a2(τ)H2(τ)
∆2

h(τ, k) , (A7)
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where the present-day tensor power spectrum is

∆2
h(τ0, k) =

2k3

π2
(hRD2(τ0)2) . (A8)

To construct the present GW spectrum, we need to work
with the RD2 solution hRD2(y), which contains all infor-
mation on the previous eras encoded in the coefficients
ARD2(κMD, κSD, κRD, αs) and BRD2(κMD, κSD, κRD, αs)
and is given by

hRD2(y) =

√
2

π

ARD2 sin(y)−BRD2 cos(y)

y
. (A9)

By squaring and averaging over its mode oscillations, we
get

(
hRD2(y)

)2
=

A2
RD2 +B2

RD2

π
y2 , (A10)

Using (HRD

H0
)2(aRD

a0
)4 = Ω

(0)
radGk, the final GW spectrum

can be found to be

ΩGW(τ0, k) =
4−2GkH

2
infΩ

(0)
radΓ

(
3
2

)2
3π3α4

sm
2
Pl

×
(

f

fRD

)−2α(
f

fSD

)2(αs−3)

×F(f, fRD, fSD, fMD, αs) , (A11)

where F(f, fRD, fSD, fMD, αs) is a combination of Bessel
functions. For conciseness, we refrain from explicitly
stating its expression here. However, it can be derived
through the procedure outlined above6.

Appendix B: Logarithmic potential for a smooth
transition

We review the results of [18] and show how we obtained
the transfer function associated to the smooth case sce-
nario. We consider the model proposed in [17–19] where
a simple realisation of a period of kination is studied by
considering a complex scalar field with a logarithmic po-
tential

V = m2
S|P |2

[
log

(
2|P |2

f2
a

)
− 1

]
+

1

2
m2

Sf
2
a . (B1)

The complex field is split in a radial mode S and an
angle θ, and P is defined as P = (S/

√
2)eiθ/fa . The

EOM for θ implies the conservation of the angular mo-
mentum, θ̇S2 ∼ a−3 in an expanding Universe. To start,
we assume that at large field value for the radial mode

6 We give the full expression of the GWB here: https:

//github.com/HanDuval/GWB-from-stiff-epoch/tree/

6ef78504b13bef2491385ff580e0101bf4b0bad9.

S ≫ fa, the evolution goes from a matter equation of
state to kination. The precise shape of the transition can
be obtained by solving the EOM in the approximation
Ṡ ∼ S̈ ∼ 0 leading to

S2 =
2a3iS

2
i

a3

√√√√√√ log
(

Si

fa

)
W

[
4a6

iS
4
i log( Si

fa
)

a6f4
a

] , (B2)

where Si is the initial field value, with Si ≫ fa, ai is the
initial scale factor, and W is the Lambert function. The
logarithmic derivative of the energy density is:

d log ρ

d log a
= −

6S2 log
(

S2

f2
a

)
f2
a

−S2

f2
a
+

2S2 log

(
S2

f2
a

)
f2
a

+ 1

 . (B3)

The evolution of the energy density goes from MD (when
S ≫ fa) to kination (when S = fa). One then solves
the GW EOM numerically for a Universe dominated by
the energy density of this complex field, and obtains the
spectrum as shown in Fig. 9. In this figure, we also show

FIG. 9. The numerically derived GWB spectrum, shown in
blue, and the GWB fitted using the transfer function method,
depicted in red. The horizontal and vertical axes are nor-
malised by fSD and ΩGW(fSD) respectively.

the fitted transfer function we have derived and reported
in the main text of the paper. It accurately reproduces
the numerical GW spectrum. Note that the frequency
fSD is defined by requiring that asymptotically, for large
f , the spectrum goes as (f/fSD)

−3
(A2/A1/2). Since the

smooth transition reaches the MD era only asymptoti-
cally, this procedure cannot unambiguously fix fSD. We
verified that our choice does not lead to modifications of
more than a few percentages on the resulting GWB peak.
Note that, given that the energy density evolution in

the smooth transition is not symmetric on the two sides
of the transition, the resulting peak is not aligned with
the frequency fSD.

https://github.com/HanDuval/GWB-from-stiff-epoch/tree/6ef78504b13bef2491385ff580e0101bf4b0bad9
https://github.com/HanDuval/GWB-from-stiff-epoch/tree/6ef78504b13bef2491385ff580e0101bf4b0bad9
https://github.com/HanDuval/GWB-from-stiff-epoch/tree/6ef78504b13bef2491385ff580e0101bf4b0bad9
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[65] G. Ashton, M. Hübner, P. D. Lasky, C. Talbot, K. Ack-
ley, S. Biscoveanu, Q. Chu, A. Divakarla, P. J. Easter,
B. Goncharov, F. H. Vivanco, J. Harms, M. E. Lower,
G. D. Meadors, D. Melchor, E. Payne, M. D. Pitkin,
J. Powell, N. Sarin, R. J. E. Smith, and E. Thrane,
“Bilby: A user-friendly bayesian inference library for
gravitational-wave astronomy,” The Astrophysical Jour-
nal Supplement Series, vol. 241, p. 27, Apr. 2019.

[66] B. P. Abbott, R. Abbott, and T. D. e. a. Ab-
bott, “Gw170817: Implications for the stochastic
gravitational-wave background from compact binary co-
alescences,” Physical Review Letters, vol. 120, Feb. 2018.

[67] K. Martinovic, P. M. Meyers, M. Sakellariadou, and
N. Christensen, “Simultaneous estimation of astrophysi-
cal and cosmological stochastic gravitational-wave back-
grounds with terrestrial detectors,” Physical Review D,
vol. 103, Feb. 2021.

[68] S. Hild, S. Chelkowski, and A. Freise, “Pushing towards
the et sensitivity using ’conventional’ technology,” 11



18

2008.
[69] M. Branchesi et al., “Science with the Einstein Telescope:

a comparison of different designs,” JCAP, vol. 07, p. 068,
2023.

[70] C. Caprini, D. G. Figueroa, R. Flauger, G. Nardini,
M. Peloso, M. Pieroni, A. Ricciardone, and G. Tasinato,
“Reconstructing the spectral shape of a stochastic grav-
itational wave background with LISA,” JCAP, vol. 11,
p. 017, 2019.

[71] K. Kuns, E. Hall, V. Srivastava, J. Smith, M. Evans,
P. Fritschel, L. McCuller, C. Wipf, and S. Ballmer,
“Cosmic explorer strain sensitivity,” CE Document CE-
T2000017-v7, Jan 2021.

[72] K. Inomata, K. Kohri, T. Nakama, and T. Terada, “En-
hancement of Gravitational Waves Induced by Scalar
Perturbations due to a Sudden Transition from an Early
Matter Era to the Radiation Era,” Phys. Rev. D, vol. 100,
p. 043532, 2019. [Erratum: Phys.Rev.D 108, 049901
(2023)].

[73] K. Inomata, M. Kawasaki, K. Mukaida, T. Terada, and
T. T. Yanagida, “Gravitational Wave Production right
after a Primordial Black Hole Evaporation,” Phys. Rev.
D, vol. 101, no. 12, p. 123533, 2020.

[74] G. Domènech, “Induced gravitational waves in a general
cosmological background,” Int. J. Mod. Phys. D, vol. 29,
no. 03, p. 2050028, 2020.

[75] K. Harigaya, K. Inomata, and T. Terada, “Gravita-
tional wave production from axion rotations right after
a transition to kination,” Phys. Rev. D, vol. 108, no. 8,
p. L081303, 2023.

[76] M. Pearce, L. Pearce, G. White, and C. Balázs, “Gravita-
tional Wave Signals From Early Matter Domination: In-
terpolating Between Fast and Slow Transitions,” 11 2023.

[77] G. Agazie et al., “The NANOGrav 15 yr Data Set: Evi-
dence for a Gravitational-wave Background,” Astrophys.
J. Lett., vol. 951, no. 1, p. L8, 2023.

[78] J. Antoniadis et al., “The second data release from the

European Pulsar Timing Array - III. Search for gravita-
tional wave signals,” Astron. Astrophys., vol. 678, p. A50,
2023.

[79] D. J. Reardon et al., “Search for an Isotropic
Gravitational-wave Background with the Parkes Pulsar
Timing Array,” Astrophys. J. Lett., vol. 951, no. 1, p. L6,
2023.

[80] H. Xu et al., “Searching for the Nano-Hertz Stochastic
Gravitational Wave Background with the Chinese Pulsar
Timing Array Data Release I,” Res. Astron. Astrophys.,
vol. 23, no. 7, p. 075024, 2023.

[81] K. Harigaya, K. Inomata, and T. Terada, “Induced grav-
itational waves with kination era for recent pulsar timing
array signals,” Phys. Rev. D, vol. 108, no. 12, p. 123538,
2023.

[82] S. Kuroyanagi, T. Takahashi, and S. Yokoyama, “Blue-
tilted inflationary tensor spectrum and reheating in the
light of NANOGrav results,” JCAP, vol. 01, p. 071, 2021.

[83] J. D. Hunter, “Matplotlib: A 2d graphics environment,”
Computing in Science & Engineering, vol. 9, no. 3,
pp. 90–95, 2007.

[84] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The
numpy array: A structure for efficient numerical compu-
tation,” Computing in Science & Engineering, vol. 13,
p. 22–30, Mar. 2011.

[85] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland,
T. Reddy, D. Cournapeau, E. Burovski, P. Peterson,
W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nel-
son, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Po-
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