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Abstract—The Memory stress (Mess) framework provides a
unified view of the memory system benchmarking, simulation
and application profiling.

The Mess benchmark provides a holistic and detailed memory
system characterization. It is based on hundreds of measurements
that are represented as a family of bandwidth–latency curves.
The benchmark increases the coverage of all the previous tools
and leads to new findings in the behavior of the actual and
simulated memory systems. We deploy the Mess benchmark to
characterize Intel, AMD, IBM, Fujitsu, Amazon and NVIDIA
servers with DDR4, DDR5, HBM2 and HBM2E memory. The
Mess memory simulator uses bandwidth–latency concept for the
memory performance simulation. We integrate Mess with widely-
used CPUs simulators enabling modeling of all high-end memory
technologies. The Mess simulator is fast, easy to integrate and
it closely matches the actual system performance. By design, it
enables a quick adoption of new memory technologies in hardware
simulators. Finally, the Mess application profiling positions the
application in the bandwidth–latency space of the target memory
system. This information can be correlated with other application
runtime activities and the source code, leading to a better overall
understanding of the application’s behavior.

The current Mess benchmark release covers all major CPU
and GPU ISAs, x86, ARM, Power, RISC-V, and NVIDIA’s PTX.
We also release as open source the ZSim, gem5 and OpenPiton
Metro-MPI integrated with the Mess memory simulator for DDR4,
DDR5, Optane, HBM2, HBM2E and CXL memory expanders.
The Mess application profiling is already integrated into a suite
of production HPC performance analysis tools.

I. INTRODUCTION

The importance of the main memory in the overall system’s
design [1]–[3] drives significant effort for memory system
benchmarking, simulation, and memory-related application
profiling. Although these three memory performance aspects
are inherently interrelated, they are analyzed with distinct and
decoupled tools. Memory benchmarks typically report the
maximum sustainable memory bandwidth [4]–[6] or perfor-
mance of the bandwidth-limited application kernels [7]. This
is sometimes complemented with latency measurements in
unloaded memory systems [8]–[10] or for a small number
of memory-usage scenarios [11], [12]. Memory simulators

determine the memory system response time for a given traffic.
Simple simulators model memory with a fixed latency, or
calculate its service time based on queueing theory or simplified
DDR protocols [13]–[19]. Dedicated cycle-accurate memory
simulators consider detailed memory device sequences and tim-
ings [20]–[25]. Application profiling tools determine whether
applications are memory bound based on the memory access
latency [26]–[28], the position in the Roofline model [29], [30]
or the the memory-related portion of the overall CPI stack [31].

Our study argues that the memory system benchmarking,
simulation and application profiling can and should be based
on a unified view of memory system performance. We
provide this view with the Memory stress (Mess) frame-
work comprised of the Mess benchmark, memory simulator
and application profiling tool (Figure 1). Mess benchmark
(Section II) describes the memory system performance with
a family of bandwidth–latency curves. The benchmark
covers the full range of the memory traffic intensity, from the
unloaded to fully-saturated memory system. It also considers
numerous compositions of read and write operations, plotted
with different shades of blue in Figure 1 (middle). The Mess
benchmark is designed for holistic and detailed memory system
characterization that is easily adaptive to different target
platforms. The current benchmark release covers all major CPU
and GPU ISAs, x86, ARM, Power, RISC-V, and NVIDIA’s
Parallel Thread Execution (PTX), and it is applied to a
number of actual hardware platforms and simulators.

We deploy the Mess benchmark to characterize Intel, AMD,
IBM, Fujitsu and Amazon servers as well as NVIDIA
GPUs with DDR4, DDR5, HBM2 and HBM2E memory
(Section II-D). We report and discuss a wide range of memory
system behavior even for the hardware platforms based on the
same standard. These differences are especially pronounced in
the high-bandwidth areas which have the greatest impact on
memory-intensive applications. To the best of our knowledge,
we are the first ones to detect and analyze the effect of memory
system over-saturation, a scenario in which further increase of
the memory request rate causes the system performance drop.

1

ar
X

iv
:2

40
5.

10
17

0v
1 

 [
cs

.A
R

] 
 1

6 
M

ay
 2

02
4



We also use the Mess benchmark to evaluate memory models
of the widely-used hardware simulators: event-based ZSim [15],
cycle-accurate gem5 [16] and RTL simulator OpenPiton
Metro-MPI [32] (Section II-E). Unfortunately, all tested
memory simulators, including well-established and trusted
gem5 DDR models and cycle-accurate memory simulators [22],
[24], poorly resemble the actual system performance. The
simulators show an unrealistically low load-to-use latency
(starting at 4 ns), high memory bandwidth (exceeding 1.8×
the maximum theoretical one), and a simulation error of tens
of percents for memory-intensive benchmarks, STREAM [5],
LMbench [8] and Google Although it was not the initial design
target, we also detected a case in which holistic and detailed
Mess benchmarking diagnosed a CPU design error. In particular,
Mess benchmarking of the OpenPiton measured an unexpected
memory traffic, which led us to a bug in the coherency protocol
generated by the OpenPiton framework.

Apart from the memory system characterization, the Mess
bandwidth–latency curves can be also used for the memory
performance simulation (Section III). We develop and integrate
the Mess memory simulator in the ZSim, gem5, and
OpenPiton Metro-MPI simulators, enabling simulation of
high-end memory systems based on DDR4, DDR5, Optane,
HBM2, and HBM2E technologies, and Compute Express
Link (CXL) [33]. The Mess integration is easy, based on the
standard interfaces in the CPU simulators that enable external
memory simulation [15], [16], [34]. The Mess simulator
closely matches the actual memory systems performance. The
simulation error for memory-intensive STREAM, LMbench
and Google multichase is between 0.4% and 6%, which is
significantly better than all other memory models we tested.
Mess is also fast. For example, Mess integrated with ZSim
introduces only 26% simulation time increment over the
fixed-latency memory model, while the speed-up over the
Ramulator and DRAMsim3 ranges between 13× and 15×.
Another advantage of the Mess simulator is that it removes the
current lag between the emergence of memory technologies and
development of the reliable simulation models. For example,
Mess is the first memory simulator that models CXL memory
expanders, enabling further research on these novel memory
devices. The simulation is based on the bandwidth–latency
curves obtained from Micron Technology’s SystemC hardware
model (Section III-C).

Finally, the Mess memory bandwidth–latency curves
enhance application profiling and performance analysis
(Section IV). Mess application profiling determine positions
of application execution time segments on the corresponding
memory bandwidth–latency curves. The application memory
stress can be combined with the overall application timeline
analysis and can be linked to the source code. The Mess
application profiling is already integrated into a suite of
production HPC performance analysis tools [35].

The inherent dependency between the used memory band-
width and the access latency is by no means a new phenomenon,
and the community has known about it at least for a couple of
decades [36]. The Mess framework extends the previous work
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Fig. 1. Mess framework: The Mess benchmark describes the memory system
performance with a family of bandwidth–latency curves. We deploy the
benchmark to characterize memory systems of actual servers and hardware
simulators. The Mess bandwidth–latency curves can be also used for the
memory performance simulation and memory-related application profiling.

in three important aspects. Previous studies typically use a
single bandwidth–latency memory curve to illustrate a general
memory system behavior [12], [27], [36]–[39]. The Mess
benchmark is designed for holistic, precise and close-to-the-
hardware memory system performance characterization. To
reach this objective, the Mess benchmark is developed directly
in the assembly, and the experiments are tailored to minimize
and mitigate the impact of the system software. Mess bench-
mark performs a detailed characterization of the particular
system under study. It detects and quantifies some aspects
of the memory systems behavior not discussed in previous
studies, such as the impact of the read and write memory traffic
on performance, or discrepancies between different memory
systems, both in actual platforms and hardware simulators.
Second, the Mess framework tightly integrates the memory
performance characterization into the memory simulation.
The Mess simulator avoids complex memory system simulation
and simply adjusts the rate of memory instructions (provided
by the CPU simulator) to the actual memory performance.
The accuracy of this simulation approach relies on the input
memory performance characterization. This characterization
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therefore has to be holistic, detailed and specific to the system
under study, closely matching the Mess benchmark design.
Third, the framework closely couples the memory-related
profiling of hardware platforms and applications. Similar
to the Mess simulator, the Mess application profiling itself is
uncomplicated, and its real value comes from the application
analysis in the context of the memory system characteristic.
The quality of the memory characterization therefore directly
impacts the the quality of the overall analysis. For this reason,
the analysis cannot be performed with generic bandwidth–
latency approximations, but it requires detailed Mess-like
memory performance description.

The Mess benchmark is released as open source and it is
ready to be used in x86, Power, ARM, and RISC-V CPUs
and NVIDIA GPUs. The release also contains all bandwidth–
latency measurements shown in the paper, including the CXL
expander curves provided by Micron Technology. We also
release as open source the ZSim, gem5 and OpenPiton
Metro-MPI integrated with the Mess memory simulator
supporting DDR4, DDR5, Optane, HBM2, HBM2E and
CXL expanders. Also, the public releases of the production
HPC performance analysis tools already include the Mess
application profiling extension. The released tools are ready
to be used by the community for better understanding of the
current and exploration of future memory systems.

II. MESS BENCHMARK

This section describes the Mess benchmark use, and analyzes
its characterization of actual platforms and hardware simulators.

A. Mess benchmark: Memory bandwidth–latency curves

The Mess memory characterization comprises tens of
bandwidth–latency curves, each corresponding to a specific
ratio between the read and write memory traffic. The
Mess benchmark kernels cover the whole range of memory
operations, from 100%-loads to 100%-stores. The 100%-
load kernel generates a 100%-read memory traffic, while the
100%-store kernel creates 50%-read/50%-write traffic. This
is because the contemporary CPUs deploy the write-allocate
cache policy [40]. With this policy, each store instruction first
reads data from the main memory to the cache, then modifies it,
and finally writes it to the main memory once the cache line is
evicted. Each store instruction, therefore, does not correspond
to a single memory write, but to one read and one write.1

The Mess bandwidth–latency curves are illustrated in Fig-
ure 1 (middle). The curves with different composition of read
and write traffic are plotted with different shades of blue.
Each curve is constructed based on tens of measurement
points that cover the whole range of memory-traffic intensity.
Figure 1 (top) illustrates the construction process for one of

1Memory traffic with more than 50% of writes can be generated with non-
temporal (streaming) stores that directly store data in the main memory. These
instructions, however, are not supported in all HPC platforms. Even when
supported, they are seldom used. In SPEC CPU2006 [41], SPEC CPU2017 [42],
and SPLASH-2 [43] benchmarks running on the Intel Skylake server with
Intel Pin tool [44], the non-temporal stores correspond to <1% of the overall
memory instructions.

the curves. The memory access latency is measured with a
pointer-chase benchmark [45], [46] executed on one CPU core
or one GPU Stream Multiprocessor (SM). This determines the
y-axis position of the measurement. The x-axis corresponds to
memory bandwidth, monitored with hardware counters [47]–
[50]. Running pointer-chase alone measures the unloaded
memory access latency. To measure the latency of the loaded
memory system, concurrently with the pointer-chase, on the
remaining CPU cores or GPU SMs, we run a memory traffic
generator. The traffic generator is designed to create a wide
range of memory traffic with configurable memory bandwidth
utilization and read/write ratio. Both, pointer-chase and traffic
generator are implemented in assembly to minimize any
compiler intervention. The detailed implementations of pointer-
chase and traffic generator is presented in Appendix A. To
minimize the latency penalties introduced by the TLB misses
and the page walk, the Mess data-structures are allocated in
huge memory pages. Additionally, at runtime, these overheads
are monitored with hardware counters and subtracted from the
memory latency measurements. The Mess benchmark release
includes the source code and its detailed description, as well as
the instructions for the benchmark compilation and execution.

B. Validation

The Mess benchmark provides a holistic and detailed
memory characterization exceeding all existing benchmarks
and tools. Still, these tools can validate some of the Mess
measurements.

The unloaded memory system latency can be measured with
LMbench and Google multichase in CPU platforms, and P-
chase [51] in GPUs. We used these benchmarks to validate the
Mess unloaded latency measurements in all hardware platforms
under study, see Table I. In all experiments, Mess closely
matches the LMbench, Google multichase and P-chase results.

In Intel systems, the maximum sustained memory bandwidth
can be measured with the Intel Advisor [4]. In the Skylake,
Cascade Lake and Sapphire Rapids servers under study, the
Mess benchmark matches the Advisor measurements, with
a difference below 1%.

The Intel Memory Latency Checker (MLC) [11], can
measure the memory latency for a selected memory traffic
intensity, i.e. memory bandwidth. The memory bandwidth can
be fine-tuned, but the tool provides a sparse analysis of different
traffic compositions, i.e. read and write memory operations. We
compare the Intel MLC results and the corresponding subset of
the Mess measurements for all Intel platforms under study. The
MLC and Mess results show the same trend, with slightly lower
(<5%) latencies reported by the Mess benchmark. This is
because the Mess is designed for close-to-the-hardware memory
characterization, so it excludes the latency penalties introduced
by the OS overheads, the TLB misses and the page walk.

C. Performance analysis

Figure 2 illustrates the Mess benchmark performance
analysis with an example of the 24-core Intel Skylake server
with six DDR4-2666 memory channels [52]. The figure
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confirms a general trend of the memory access latency which
is initially roughly constant and then increases with higher
memory pressure (i.e. bandwidth) due to resource contention
among parallel accesses [36], [53], [54].

Detailed and close-to-the-hardware Mess characterization
reveals some memory system aspects not discussed by previous
studies. The most important one is the impact of the read and
write memory traffic. The best performance, the lowest latency
and the highest achieved bandwidth, are obtained for 100%-
read traffic. Memory writes reduce the memory performance
and reach the saturation point sooner. This is due to the extra
timing constraints such as tWR and tWTR, which come with
memory write operations [55]. We detect this behavior for
all the Intel, AMD, IBM, Fujitsu, and Amazon servers as
well as NVIDIA GPUs used in the study with DDR4, DDR5,
HBM2 and HBM2E memory (Section II-D). However, we
see a very different write traffic impact on CXL memory
expanders [33]. We analyze this behavior of CXL memory
expanders in Section III-C.

Apart from the memory bandwidth–latency curves, we use
the Mess benchmark to derive memory system performance
metrics, also depicted in Figure 2, for quantitative comparison
of different memory systems. In addition to the commonly-used
unloaded memory latency, the detailed Mess characterization
quantifies the maximum latency range of memory access
latencies for all read-to-write ratios and the saturated
bandwidth range. The memory system is saturated when any
further increase in the memory system pressure, i.e. bandwidth,
leads to a high increase in the memory access latency. We
consider that the saturated bandwidth area starts at the point in
which the memory access latency doubles the unloaded latency.
In some of the platforms under study, we also detect a memory
system over-saturation. Any increase in the memory system
pressure after the over-saturation point causes a decline in the
used memory bandwidth, while the access latency continues to
increase. This behavior is observed in the bandwidth–latency
curves as a “wave form” seen in Figure 2. The causes for this
memory behavior are analyzed in Section II-D. To the best of
our knowledge, our study is the first one to detect and analyze
this suboptimal memory system behavior.

Although STREAM is the de facto standard for measuring
sustained memory bandwidth [5], [56], Figure 2 shows
significant gap between the STREAM bandwidth and the
maximum measurements of the Mess benchmark. The sources
of this gap are analyzed in the next section.

D. Performance characterization: Actual systems

We use the Mess measurements to compare the memory
system performance of Intel, AMD, IBM, Fujitsu and Amazon
servers as well as NVIDIA GPUs with DDR4, DDR5, HBM2
and HBM2E. The platform and memory system characteristics
are listed in Table I while Figure 3 shows their bandwidth–
latency curves. The unloaded memory latency varies sig-
nificantly between different platforms. It ranges from 85 ns
in the Cascade Lake server with DDR4, to 122 ns in the
A64FX servers with HBM2 and 129 ns in the Graviton 3

Unloaded	latency

Memory	system	
						over-saturationSTREAM

						bandwidth

Saturated	bandwidth	range

Maximum	
latency	
range

Fig. 2. The Mess benchmark models the memory system performance with a
family of bandwidth–latency curves. It covers the whole feasible read/write
ratio of memory operations, and the whole space of the traffic intensity, from
unloaded to fully-saturated memory systems.

with DDR5 main memory. This difference should not be
directly associated to the memory technology and standard. For
example, the AMD Zen2 comprises DDR4 technology with
practically the same command latencies (in nanoseconds) as
the Intel Cascade Lake server, and still it shows almost 30 ns
higher unloaded memory latency. This is because the load-to-
use latency considers the time memory requests spend within
the CPU chip, including the cache hierarchy and network on
chip. These timings can differ significantly between different
CPU architectures independently of the target memory system.
Actually, we detect the highest unloaded memory latencies
in the chips with the largest number of cores (Zen2, A64FX,
Graviton 3) indicating that at least a portion of this latency
is likely to be attributed to the network on chip which is
larger and more complex in these architectures. NVIDIA H100
GPU shows higher unloaded latency due to its massive number
of arithmetic processing units, lower on-chip frequency, and
complex memory hierarchy [51], [63].

We also detect a wide maximum latency range between
different platforms, and even within a single platform for
different read and write memory traffic. Maximum memory
latency is a primary concern in real-time systems, and it is
less critical in high-performance computing (HPC). Still it
has to be bound to guarantee quality of service of some HPC
applications. We believe that our study may open a discussion
about the sources of different maximum latencies in different
systems, e.g. due to the different lengths of the memory queues,
and about its desirable limits.

All platforms except AMD Zen2 CPU and NVIDIA H100
show a similar saturated bandwidth range, between approx-
imately 70% and 90% of the maximum theoretical bandwidth.
The maximum achieved bandwidth cannot reach the theoretical
one because part of it is “lost” due to factors such as DRAM
refresh cycles blocking the entire chip, page misses causing
precharge and activate cycles, and timing restrictions at the
bank, rank, and channel levels [64]. The efficiency of the
memory bandwidth utilization also depends on the memory
controller design. As expected (see Section II-C), the best
utilization is achieved for 100%-read memory traffic, and it
reduces with the increment of the memory writes. AMD Zen2 is
an exception in two ways. First, its saturated bandwidth range
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TABLE I
CPU AND GPU PLATFORMS UNDER STUDY: QUANTITATIVE MEMORY PERFORMANCE COMPARISON.

Platform Intel Skylake
Xeon Platinum [52]

Intel Cascade Lake
Xeon Gold [52]

AMD Zen 2
EPYC 7742 [57]

IBM Power 9
02CY415 [58]

Amazon
Graviton 3 [59]

Intel Sapphire Rapids
Xeon Platinum [60]

Fujitsu
A64FX [61]

NVIDIA Hopper
H100 [62]

Released 2015 2019 2019 2017 2022 2023 2019 2023
Cores @ frequency 24 @2.1 GHz 16 @2.3 GHz 64 @2.25 GHz 20 @2.4 GHz 64 @2.6 GHz 56 @2GHz 48 @2.2 GHz 132 SMs@1.1GHz
Main memory 6×DDR4-2666 6×DDR4-2666 8×DDR4-3200 8×DDR4-2666 8×DDR5-4800 8×DDR5-4800 4×HBM2 4×HBM2E
Theoretical bandwidth 128 GB/s 128 GB/s 204 GB/s 170 GB/s 307 GB/s 307 GB/s 1024 GB/s 1631 GB/s

% of the max theoretical bandwidth
Saturated bandwidth range 72–91% 68–87% 57–71% 67–91% 63–95% 60–86% 72–92% 51–95%
Stream kernels 53–61% 51–57% 46–51% 32–36% 78–82% 63–66% 49–55% 64–69%
Unloaded latency 89 ns 85 ns 113 ns 96 ns 122 ns 109 ns 129 ns 363 ns
Maximum latency range 242–391 ns 182–303 ns 257–657 ns 238–546 ns 332–527 ns 238–406 ns 338–428 ns 699–1433 ns

is significantly lower, 57–71% of the maximum theoretical
one. Second, it does not follow the expected impact of the
write traffic on the bandwidth utilization. Instead, the traffic
with the maximum rate of memory writes shows a very good
performance, very close to the 100%-read traffic, while the main
drop is detected for a mixed, e.g. 60%-read/40%-write, traffic.

We detect the memory system over-saturation, in some
AMD Zen 2, Intel Skylake and Intel Cascade Lake bandwidth–
latency curves. In Amazon Graviton 3, Intel Sapphire Rapids
and NVIDIA H100 the over-saturation is frequent for the
memory traffic with high percent of writes.2 We explored this
behavior in the Cascade Lake servers in which we had access
to additional memory system counters, e.g. monitoring the row-
buffer statistics. In all the memory over-saturation experiments
we detect a significant increase in row-buffer misses. In case
of a row-buffer miss, the current content of the row is stored in
the memory array and the correct row is loaded into the row-
buffer. These additional operations increase the memory access
time and reduce the effective device bandwidth, matching the
over-saturated memory behavior. To confirm these findings, we
increased the memory system pressure by removing four out of
six DIMMs in each socket. In these experiments, we detected
a large over-saturation areas in all bandwidth–latency curves.
And indeed, the measurement confirmed that the over-saturation
is highly correlated with the row-buffer miss rate.

Finally, we detect that in most of the platforms the
bandwidths reported by the STREAM kernels are significantly
below the Mess measurements.3,4 In the Intel and A64FX
platforms, the STREAM reports around half of the maximum
theoretical bandwidth. In IBM Power 9, the STREAM reports
only one third of it. There are two main sources of this gap.
The first one is that the STREAM does not measure, but
estimates the memory bandwidth. This estimate is based on

2These findings are consistent with two recent studies which report that
running high-bandwidth benchmarks on all CPU cores may lead to lower
memory bandwidths w.r.t. the experiment in which some cores are not used [6],
[65].

3The STREAM benchmark measures the performance of four kernels: Copy,
Scale, Add and Triad. All the results presented in this study follow the Stream
guidelines: they are obtained with the C version of the benchmark running with
64-bit data types with no significantly modified code or assembly language [66].

4In Graviton 3 and NVIDIA H100, the results reported by STREAM are very
close to the maximum Mess measurements for the corresponding read/write
ratio. This would correspond to a architecture with a write-through cache
policy. We did not find any public document that details this aspect of the
Graviton 3 and NVIDIA H100 cache organization.
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Fig. 3. We detect a wide range of memory system behavior, even for the
hardware platforms with the same memory standard.

the application execution time, size of the data structures used
in the computation, and number of load and store instruction
in each STREAM kernel. In particular, STREAM calculation
assumes one memory read for each load instruction and one
memory write for each store. This is not the case in most
of the state-of-the-art HPC servers because they deploy a
write-allocate cache policy. Each store instruction, therefore,
does not correspond to a single memory write, as assumed in
the STREAM bandwidth calculation, but to one read and one
write (see Section II-A). The second cause of the gap between
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the Mess and STREAM bandwidth is the composition of the
memory traffic. The Mess benchmark achieves the maximum
bandwidth for a 100%-read traffic. The write memory traffic,
present in all STREAM kernels, adds timing constrains and
reaches sooner the bandwidth saturation point.

E. Performance characterization: Memory simulators

Mess benchmark can also be used to characterize memory
simulators and compare them with the actual systems they intent
to model. We illustrate this Mess capability with the gem5,
ZSim, and OpenPiton Metro-MPI simulators with different
internal memory models and widely-used external memory
simulators, DRAMsim3 and Ramulator.

1) gem5: The gem5 [16] is a cycle-accurate full-system
simulator. In our experiments, the simulator is configured to
model the Graviton 3 server with 64 Neoverse N1 cores [59].
The cache hierarchy includes 64 KB of 4-way L1 instruction
and data cache, 1 MB of 8-way private L2 cache and 64 MB
of 16-way shared L3. The main memory system has eight
eight DDR5-4800 memory channels. Figure 4 compares Mess
bandwidth–latency curves of the actual server with gem5
internal memory models: simple memory model and internal
DDR model. To maintain a reasonable simulation time, we
model each system with a family of six curves, from 50% to
100% read memory traffic with a 10% step.

Practically in the whole bandwidth range, the gem5 simple
memory model delivers a fixed latency of 4–49 ns. The latency
increases only when the bandwidth asymptotically approaches
its theoretical maximum. Contrary to the Graviton 3 server, the
highest latencies are measured for a 100%-read traffic, and the
latency drops with the percent of memory writes. Also, unlike
in the actual platform, for some memory traffic increasing the
bandwidth reduces the memory access latency. For example,
the 50%-read/50%-write traffic reaches the lowest simulated
latency of only 4 ns at the 200 GB/s bandwidth. The same traffic
in the actual system has the memory access latency of 261 ns.

The more detailed internal DDR model shows small
improvements over the simple memory model, but still poorly
resembles the actual system behavior. The simulated latencies
are unrealistically low, most of them in the range of 14–100 ns.
Similarly to the gem5 simple memory model, the latencies
drops with the percent of memory writes. For all the curves
exept 100%-read, the saturated bandwidth is significantly
lower from the one measured on the actual system. Again,
the error increases with the percent of memory writes.

2) ZSim: We select ZSim [15] as a representative of event-
based hardware simulators. We use publicly-available ZSim
modeling 24-core Intel Skylake processor connected to six
DDR4-2666 channels [67]. The cache hierarchy of the modeled
CPU includes 64 KB of 8-way L1 instruction and data cache,
1 MB of 16-way private L2 cache and 33 MB of 11-way shared
L3. The simulator is extensively evaluated against the actual
hardware platform [68]. The ZSim comprises three internal
memory models: fixed-latency, M/D/1 queue model and the
internal DDR model. Also it is already connected to Ramula-
tor [24], [69] and DRAMsim3 [22]. To avoid any error due
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Fig. 4. The gem5 memory models poorly resemble the actual system
performance. The simulated memory access latency is unrealistically low,
starting at 4 ns. Contrary to the actual system, the latencies drop with the
percent of memory writes.
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(a) Intel Skylake with 6×DDR4-2666.
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(b) ZSim: Fixed-latency model
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(c) ZSim: M/D/1 Queue model
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(d) ZSim: Internal DDR model
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(e) ZSim+DRAMsim3 simulator.
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(f) ZSim+Ramulator simulator.

Fig. 5. Memory system performance of the actual Intel Skylake server and
various ZSim memory models.

to the integration of an event-based CPU simulator with cycle-
accurate memory models [46], [70], [71], we use the ZSim
interfaces included in the Ramulator and DRAMsim3 releases.

We compare the Mess bandwidth–latency curves of the actual
server with all five ZSim approaches for the main memory
simulation (see Figure 5). We configure the fixed-latency model
with the unloaded memory latency measured in the actual
system. The M/D/1 queue model also requires user to specify
the maximum theoretical bandwidth, which is 128 GB/s in the
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platform under study. The internal DDR model, Ramulator
and DRAMsim3 are based on the detailed simulation of the
DDR4-2666.

As expected, the fixed-latency memory model provides
a constant latency in the whole bandwidth domain. Given
that this latency is configured by a user, it can be set to
match the unloaded memory latency in the actual system.
On the down side, the memory bandwidth provided by this
model is unrealistic: the maximum simulated bandwidth is
342 GB/s, which exceeds the maximum theoretical one by
2.7×. The M/D/1 queues correctly model the memory system
behavior in the linear part of the curves. The modeling of the
system saturation is less accurate. The queue model does show
some difference between read and write memory traffic, but
the reported performance does not correspond to the actual
system trend in which increasing the write traffic lowers the
performance. The internal DDR model shows the closest
performance match to the actual system — it models the linear
and saturated segments of the curves, and the impact of the
memory writes. Still, there are three main difference w.r.t.
to the actual system. First, the simulator underestimates the
saturated bandwidth area to 69–93 GB/s, significantly below
the 92–116 GB/s measured in the actual system. Second, the
simulator excessively penalizes the memory writes which is
seen as a wider spread of the curves with a higher write
memory traffic. Third, we detect some unrealistic memory-
latency peaks in the low-bandwidth 1–4 GB/s curve segments.
The DRAMsim3 shows a similar trend as the M/D/1 queue
model in the linear segments of the memory curves, with some
latency error, 52–63 ns in the DRAMsim3 versus 89–109 ns in
the actual system. The simulator does not model the saturated
bandwidth area. Finally, the Ramulator provides a fixed 25 ns
latency in the whole bandwidth area and for all memory traffic
configurations. Also, similar to the fixed-latency model, the
simulated bandwidth is unrealistic, exceeding by 1.8× the
maximum theoretical one.

Our evaluation of the memory models and detailed hardware
simulators detected major differences w.r.t. the actual memory
systems performance. DRAMsim3 and Ramulator, which rely
on detailed memory models, are considered de facto standard
for the memory system simulation. Also, both of them are
evaluated against the manufacturer’s Verilog implementations
and they show no violation of the JEDEC timings [55].
However, as our results demonstrate, this does not guarantee
that the simulators properly model the full system performance.

3) RTL simulators: OpenPiton and Metro-MPI: OpenPiton
framework [72] provides an open-source RTL implementation
of a tiled architecture based on Ariane RISC-V cores [73]–
[75]. Developed in the Verilog RTL, the OpenPiton simulation
is slow, especially for large number of cores. We use the
OpenPiton simulation accelerated by Metro-MPI [32]. This
approach uses Verilator [76] to convert the RTL code of
each tile into a cycle-accurate C++ simulation model. Then,
all the tiles are simulated in parallel and their interconnect
communication is done with the MPI programming interface.

In our experiments, the OpenPiton framework is configured
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Fig. 6. Memory system performance of the OpenPiton Metro-MPI simulator.

to generate 64-core Ariane architecture which includes 16 KB
of 4-way L1 instruction and data cache, and 4 MB of 4-way
shared L2 cache. The main memory is originally modeled with
a single-cycle latency, and it is recently extended with a fixed-
latency model [74]. We set this latency to 170 ns. Our Mess
measurements, see Figure 6, confirm that both models deliver
the expected load-to-use latency. Also, as expected, we see
no difference between read and write memory traffic, leading
to a perfect overlap of the curves. The only difference is in
the maximum observed memory bandwidth. For a single-cycle
memory latency, 100%-read memory traffic achieves 32 GB/s,
limited by the memory concurrency of the 64 in-order Ariane
cores. Memory writes do not stall the cores, so the achieved
memory bandwidth increases with the write memory traffic
ratio. Still, a small 2-entry miss status holding registers (MSHR)
limits the memory bandwidth to 47 GB/s for 50%-read/50%-
write traffic. We detect the same trend for the fixed memory
model.

The Mess evaluation of the OpenPiton Metro-MPI resulted
in an unexpected discovery: in some experiments we detected
significantly higher memory write traffic than anticipated. By
analysis of the system behavior for various Mess configurations,
we connected the extra memory traffic to the unnecessary
eviction of the data from the last-level cache. Instead of
evicting only the dirty cache lines, the system was evicting
all of them. The source of the error is the coherency protocol
generated by the OpenPiton framework. The error is reported
to the OpenPiton developers and they confirmed its existence.
Although not part of the original plan, our exploration
discovered that holistic and detailed Mess performance
characterization can be also used to uncover CPU design errors.

III. MESS SIMULATOR

In this section we will present the Mess memory simulator
and show how it significantly improves the memory simulation
accuracy.

A. Design

The CPU and memory simulators are typically connected
in the following way: the CPU simulator issues the memory
operations and the memory simulator determines their latencies.
The Mess simulator does this based on the application’s
position in the memory bandwidth–latency curves. This
process is complex due to the inherent dependency between
the memory system latency, timings of the memory operations
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and all dependent instructions, and the generated memory
bandwidth. We simplify the problem by designing the Mess
simulator not to compute the exact memory latency for a given
memory traffic, but to detect and correct discrepancies between
the memory access latency and the simulated bandwidth.
This approach, together with the fundamental principle of
application’s position in the memory bandwidth–latency
curves, enables the Mess simulator to surpass the accuracy of
all other memory simulators, while remaining simple and fast.

The Mess simulator acts as a feedback controller [77] from
the classical control theory [78], illustrated in Figure 7. The
CPU simulation can start from any memory access latency,
e.g. the unloaded one. The feedback control loop monitors the
simulated bandwidth and controls whether it correspond to the
memory latency used in the CPU simulation. If this is not the
case, the memory latency is being adjusted with an iterative
process we describe later. The control process is performed at
the end of each simulation window, which, in our experiments,
comprises 1000 memory operations. This is much smaller than
the length of the application phases [64], so the error due to the
transition between different application phases has a negligible
impact on the simulator’s accuracy.

Figure 8 describes one iteration of the Mess simulator control
loop. We start with the Mess estimate of the application’s
bandwidth–latency position in the ith simulation window,
(messBWi, Latencyi) 1 . From that point on, all the issued
memory requests are simulated with Latencyi. At the end of
the simulation window, based on the outcomes of the CPU
simulation, the Mess simulator monitors the simulated memory
bandwidth, cpuBWi 2 , and compares it with the messBWi

estimated at the beginning of the window 3 .
If the simulation is in a steady-state and the application did

not change its behavior, there will be no major difference be-
tween cpuBWi and messBWi. This confirms the consistency
in the simulated memory access latency, the CPU timings
and the achieved memory bandwidth. Therefore, the CPU
simulation in the next window will continue with the same
memory latency: Latencyi+1 = Latencyi.

Otherwise, a difference between cpuBWi and messBWi

suggests inconsistent simulated memory latency and bandwidth.
This can happen, for example, if the application changes its
behavior. Figure 8 illustrates the case in which the application
increases the frequency of memory request leading to the
higher bandwidth: cpuBWi > messBWi 3 . In this case, the
simulated memory bandwidth cpuBWi does not correspond
to the memory Latencyi used in the CPU simulation. To
address this inconsistency, the Mess simulator adjusts the
predicted application position in the bandwidth–latency curves.
The objective of this adjustment is not to reach the correct
(BW,Latency) position in a single iteration. The next Mess
estimate, (messBWi+1, Latencyi+1), will be positioned in-
between messBWi and cpuBWi 4 . The exact position is
determined based on the user-defined convergence factor:
messBWi+1 = messBWi + convFactor × (cpuBWi −
messBWi). The approach is based on the proportional–integral
controller mechanism from the control theory [77], [78]. Finally,
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Fig. 7. Mess simulator uses a feedback control loop to adjust the simulated
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Fig. 8. One control loop iteration: Mess simulator monitors the simulated
memory bandwidth, cpuBWi, and compares it with the messBWi estimated
at the beginning of the simulation window. If a major difference is detected,
the Mess simulator adjusts the application position in the bandwidth–latency
curves.

the Mess uses messBWi+1 to read the Latencyi+1 from the
corresponding bandwidth–latency memory curve. The next
simulation window starts with the Mess simulator providing
memory access Latencyi+1 to the CPU simulator.

B. Evaluation

We evaluate the Mess simulator integrated with ZSim and
gem5 against the actual hardware. We compare the simulated
and actual bandwidth–latency curves as well as the performance
of memory-bound benchmarks: STREAM [5], LMbench [8],
and Google multichase [9].

1) ZSim: Figure 9 shows the DDR4, DDR5 and HBM2
bandwidth–latency curves measured with the ZSim connected
to the Mess simulator.5 The configurations of the simulators
match the actual Intel Skylake with 24-core and six DDR4-
2666 memory channels. The simulated Mess curves, depicted
in Figure 9(a), closely resemble the actual memory systems
behavior (Figure 3(a)). The simulation error of the unloaded
memory latency is below 1%, and it is around 3% for the
maximum latencies. The difference between the simulated
and the actual saturated bandwidth range is only 2%. Fig-
ures 9(b) and 9(c) show the ZSim+Mess simulation results
for the high-end DDR5 and HBM memories. To saturate the
8-channel DDR5-4800 and 32-channel HBM2, we increase the
number of simulated cores to 58 and 192, respectively. Again,
the simulated bandwidth–latency curves closely resemble the
performance of the corresponding actual memory systems
(Figures 3(g) and 3(e)).

5Mess simulator also supports the Intel Optane technology. Optane’s
bandwidth–latency curves are measured on a 16-core Cascade Lake server with
6×DDR4-2666 16 GB and 2×Intel Optane 128 GB memory in App Direct
mode. Since Intel Optane technology is discontinued since 2023, we do not
analyze its performance characteristics and simulation.
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Figure 10 shows the evaluation results, w.r.t. to the actual
Intel Skylake server, of all six ZSim memory models when
running memory intensive STREAM [5], LMbench [8] and
Google multichase [9]. The simulation errors are closely
correlated with the similarity between the simulated and
actual bandwidth–latency curves. The Mess shows the best
accuracy with only 1.3% average error, followed by the M/D/1
and internal DDR model. The fixed-latency simulation and
Ramulator show the highest errors of more than 80%. The
Mess simulator is also fast. It increases the simulation time
by only 26% higher w.r.t. a simple fixed-latency memory,
and it is 2% and 15% faster than the M/D/1 and internal
DDR model. The ZSim+Mess simulation speed-up over the
ZSim+Ramulator and ZSim+DRAMsim3 is 13× and 15×.

2) gem5: Figure 11 shows the DDR5 and HBM2
bandwidth–latency curves simulated with the gem5 connected
to the Mess memory simulator. In all experiments, the gem5
is configured to model Graviton 3 cores [59] described in
Section II-E1. To reduce simulation time, we simulate 16
CPU cores connected to a single memory channel.6 The
simulated bandwidth–latency curves, when scaled to eight
DDR5 channels or 32 HBM2 channels, closely resemble
actual system behavior (Figures 3(e) and 3(g)).

We also evaluate the Mess memory simulation against
the gem5’s built-in simple memory model and internal
DDR5 model when running STREAM, LMbench, and
Google Multichase benchmarks. In these experiments we
simulate a whole server comprising 64 Graviton 3 cores and
8×DDR5-4800, and compare the results against the benchmark
executions on the actual server. The results are presented in
Figure 12. The Mess simulator decreases the average error
from 30% (gem5 simple memory model) and 15% (internal
DDR5 model) to only 3%. Such a low error is unprecedented
in any prior validation attempts [79]–[82]. Moreover, the gem5
with Mess simulator reduces the simulation time by 1.6% w.r.t.
to much simpler built-in memory models.

C. Simulation of novel memory systems: CXL memory ex-
panders

The memory system complexity and the scarcity of publicly-
available information often result in a considerable gap
between a technology release and the support for its detailed
hardware simulation. For example, public memory simulators
started to support the DDR5 in 2023 [23], three years after
production servers with DDR5 DIMMs hit the market.

The Mess simulator provides a fundamental solution for this
gap because it can simulate emerging memory systems as soon
as their bandwidth–latency curves are available. For memory
technologies available on the market the curves can be measured
on a real platform. For emerging memory devices that are not
yet available in off-the-shelf servers, the bandwidth–latency
curve can be measured on a developer board with a prototype of

6Simulation of a whole server comprising 64 Graviton 3 cores and 8×DDR5-
4800 requires more than five hours to obtain a single bandwidth–latency
datapoint. The full simulation of the bandwidth–latency curves would require
more than a year.
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(a) ZSim: 24 cores, 6× DDR4-2666
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(b) ZSim: 58 cores, 8× DDR5-4800
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(c) ZSim: 192 cores, 32×HBM2 channels

Fig. 9. ZSim with the Mess simulator closely matches the actual memory
systems.
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Fig. 10. The ZSim+Mess simulation error for STREAM, LMbench and Google
multichase is only 1.3%.
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(a) gem5: 16 cores & 1×DDR5-4800
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(b) gem5: 16 cores & 1×HBM2 channel

Fig. 11. gem5 with the Mess simulator, when scaled, closely follows the
actual memory system curves (Figures 3(e) and 3(g)).
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Fig. 12. The gem5+Mess simulation error for STREAM, LMbench and Google
multichase is only 3%.

the new device, or alternatively it can be provided by the man-
ufacturers, e.g. based on their detailed proprietary RTL models.

We will demonstrate the Mess simulation of novel memory
systems with an example of the Compute Express Link (CXL)
memory expanders. CXL is an emerging interconnect standard
for processors, accelerators and memory devices. The CXL
memory expanders enable a straightforward enlargement of the
memory system capacity and bandwidth, as well as the explo-
ration of unconventional disaggregated memory systems [33].
One of the main limitations for an academic research in this
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field, however, is the lack of reliable performance models for
these devices.

The Mess simulation is performed with the CXL memory
expanders bandwidth–latency curves provided by Micron Tech-
nology based on their detailed hardware model. In particular,
we model a CXL memory expander connected to the host via
the CXL 2.0 PCIe 5.0 interface with 1×8 Lanes. The device
comprises one memory controller connected to a DDR5-5600
DIMM with two ranks. All the CXL modules, Front end,
Central controller and Memory controller, are implemented
in SystemC. The modules communicate by using the man-
ufacturer’s proprietary Transaction Level Modeling (TLM)
framework, which is based on SystemC TLM [83].

The obtained bandwidth–latency curves are shown in
Figure 13(a). The figure plots the round-trip latency from the
CXL host input pins. To consider a full load-to-use latency, a
user should add the round-trip time between the CPU core and
the CXL host. We measure this latency component with the
Intel MLC [11]. The CXL memory expanders show a similar
performance trends as the DDRx or HBM memory systems:
latency that increases with the system load, significant non-
linear increase after a saturation point, and the impact of the
traffic read/write ratio. One major difference is that the CXL
interface provides the best performance for a balanced reads
and writes traffic, while its performance drops significantly for
the 100%-read or 100%-write traffic. This is because, unlike
the DDRx interfaces, CXL is a full-duplex interconnect with
independent read and write links. Therefore, the CXL can
transmit simultaneously in both directions, but in the case of
the unbalanced traffic one CXL transmission direction could
be saturated while other direction is negligibly used.

We use the obtained CXL memory bandwidth–latency
curves in the Mess simulator integrated with ZSim, gem5 and
OpenPiton Metro-MPI simulators (see Figure 13). To reduce
long OpenPiton Metro-MPI simulation time, we model only
25 curves with a small number of experimental points in each
curve. For this reason some segments of the curves are discrete.
Nevertheless, the OpenPiton Metro-MPI simulations match
the general trend and the saturated bandwidth range of the
manufacturer’s curves. The maximum latency range is below
the manufacturers CXL curves because the simulated small
in-order Ariane cores with only 2-entry MSHRs cannot saturate
the target memory system. This behavior is already detected and
discussed in Section II-E3. ZSim and gem5 results practically
match the manufacturer’s CXL curves. In Appendix B, we
compare our CXL simulation platform against prior approach
to emulate memory-over-CXL.

IV. MESS APPLICATION PROFILING

The Mess framework also enhances the memory-related
application profiling. We demonstrate this functionality with
the Mess extension of Extrae and Paraver, production HPC per-
formance tools for detailed application tracing and analysis [35].
The Mess application profiling adds a new layer of information
related to the application’s memory performance metrics. This
information can be correlated with other application runtime
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(b) OpenPiton: Ariane 64-core CPU
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(c) gem5: Amazon Graviton3 16-core CPU
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(d) ZSim: Intel Skylake 24-core CPU

Fig. 13. Bandwidth–latency curves of the CXL memory expander. Mess
simulator closely follows the Manufacturer’s SystemC model.

activities and the source code, leading to a better overall
understanding of the application’s characteristics and behavior.

A. Background: Extrae and Paraver

Paraver is a flexible data browser for application performance
analysis [84], [85]. It can display and analyze application MPI
calls, duration of the computing phases, values of the hardware
counters, etc. Paraver can also summarized application behavior
in histograms and link it with the corresponding source code.
The input data format for Paraver is a timestamped trace of
events, states and communications [86]. For parallel applica-
tions, the traces are usually generated with the Extrae tool [87].

Extrae automatically collects entry and exit call points to the
programming model runtime, source code references, hardware
counters metrics, dynamic memory allocation, I/O system calls,
and user functions. It is is compatible with programs written
in C, Fortran, Java, Python, and combinations of different
languages, and it supports a wide range of parallel programming
models. Extrae is available for most UNIX-based operating
systems and it is deployed in all relevant HPC architectures,
including CPU-based systems and accelerators.

B. Use cases

We illustrate the capabilities of the Mess application profiling
with an example of the memory-intensive HPCG benchmark [7],
[88] running in a dual-socket Cascade Lake server (Table I). We
fully utilize the one CPU socket by executing 16 benchmark
copies, one on each core. Extrae monitors the application
memory behavior with a dedicated profiling process which
traces the memory bandwidth counters. The sampling frequency
is configurable, and it is 10 ms by default. Even with this fine-
grain profiling, the introduced overhead is negligible, below
1%.

The extended Paraver tool correlates the application memory
bandwidth measurements with Mess memory curves. The
application measurements are plotted on the curves as a set of
points, each of them corresponding to 10 ms of the application
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runtime. The application memory use can be also incorporated
into the Paraver trace file, so a user can analyze its evolution
over time, and correlate it with other application’s behavior
and the source code.

1) Bandwidth–latency curves: Figure 14 depicts the Mess
memory-related profile of the HPCG benchmark. Most of the
HPCG execution is located in the saturated bandwidth area,
above 75 GB/s. Sporadically, the benchmark even reaches the
maximum sustained bandwidth with peak memory latencies
in the range of 260–290 ns. Also, each HPCG point on the
curves is associated with a memory stress score. The score
value ranges from 0, for the unloaded memory system, to 1,
corresponding to the right-most area of the bandwidth–latency
curves. Memory stress score in a given point is calculated as
a weighted sum of two parameters, the memory latency and
the curve inclination. The latency itself is a good proxy of the
system stress, while the inclination shows the memory system
sensitivity to a bandwidth change. Gentle inclination indicates
that a memory bandwidth change would have a minor impact on
the memory access latency and the overall performance. In the
steep curve segments, e.g. 95–100 GB/s area in Figure 14, small
bandwidth changes can rapidly saturate the memory system
leading to a major latency increase. The Mess extension of
Paraver already includes the stress score visualization with a
green–yellow–red gradient that can be easily interpreted by
application developers.

2) Timeline analysis: Once the memory stress score is
incorporated into the application’s Paraver trace, it can be
combined with other aspects of the application analysis, as
illustrated in Figure 15. The figure analyzes around two seconds
of the HPCG runtime, from 241,748,818µs to 243,728,242µs
(x-axis). Guided by the sequence of MPI calls illustrated in
Figure 15 (top), we identify the application’s main iterative
loop and, using MPI Allreduce (pink) as delimiter, we select
two iterations to focus the analysis on the compute phases
(Figure 15, middle). The color gradient corresponds to the
length of the compute phase: green to blue gradient for short to
long phases. Figure 15 (bottom) shows the memory stress score
for this region. The longest compute phases (blue) exhibits two
distinct memory pressure behaviors: at the start of the phase, the
memory stress score rises to 0.71, and then halfway through the
phase it decreases to 0.64. The fine-grain application profiling
can detect different memory stress score values even within a
single compute phase.

3) Links to the source code: Extrae also collects callstack
information of the MPI calls, referred to as the MPI call-points,7

which are used to link the application runtime behavior with
the source code. With the Mess application-profiling extension
of Paraver, the application source code can be linked to its
memory-related behavior. This is fundamental for making data
placement decisions in heterogeneous memory systems, e.g.
comprising DDRx DIMMs and HBM devices [89], [90].

7A callpoint refers to the file and line number where the program initiates
an MPI call at a given level of the callstack, typically the last one. This point
serves as a boundary for a region that begins with the current MPI call and
extends until the next one. In the tables, we indicate the starting callpoint.

Fig. 14. Most of the HPCG execution is located in the saturated bandwidth
area, above 75 GB/s. The Mess application-profiling extension of Paraver
already includes the memory stress score visualization with a green–yellow–
red gradient.

Fig. 15. Timeline showing two iterations of the HPCG benchmark with MPI
calls (top), computations duration (middle) and memory stress score (bottom).

V. RELATED WORK

Mess framework provides a unified view of the memory
system performance that covers the memory benchmarking,
simulation and application profiling. Although these three
memory performance aspects are inherently interrelated, they
are currently analyzed with distinct and decoupled tools.

A. Memory system benchmarks

Memory access latency and utilized bandwidth are com-
monly treated as independent concepts measured by separate
memory benchmarks. LMbench [8] and Google Multichase [9]
measure the load-to-use latency in an unloaded memory system,
while STREAM [5], [66], STREAM2 [91], Hopscotch [92],
CAMP [6], and HPCG [7], [88] measure the maximum ob-
tainable memory bandwidth or performance of the application
kernels that are proportional to it. Only recently the community
started to make the first steps in measuring latencies in loaded
memory systems. The Intel Memory Latency Checker (MLC)
tool [11] is used to show how memory access latency increases
for higher used memory bandwidths [27], [37] and to compare
systems based on fundamentally different memory technologies,
such as the DRAM and Optane [38]. X-Mem benchmark [12]
reports loaded access latencies for cache subsystem, main
memory, and NUMA memory nodes. The impact of the read
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and write traffic to the memory system performance is not
measured nor analyzed. Overall, current memory systems
benchmarks provide a small number of data points in a very
large and complex memory-performance space.

The Mess benchmark is designed for holistic close-to-the-
hardware memory system performance characterization that
is easily adaptive to different target platforms. It significantly
increases the coverage and the level of detail of the previous
tools, leading to new findings in memory behavior of the
hardware platforms and simulators under study.

B. Memory system simulation

The Mess framework tightly integrates the memory per-
formance characterization into the memory simulation. We
compare the Mess simulator with the state-of-the-art memory
models included in the CPU simulators [13], [14], [18],
[46], [73]–[75], [80], [81] as well as the external cycle-
accurate memory simulators [22], [24]. The Mess memory
simulator is fast, accurate and easily-integrated with the CPU
simulators. It can support novel memory systems as soon
as their detailed bandwidth–latency curves are measured on
actual production systems or prototypes, or provided by the
manufacturers. Therefore, Mess can simulate high-end and
future memory systems much sooner than the standard memory
simulators which consider detailed memory device sequences
and timings [20]–[25]. Mess is the first memory simulator to
support CXL memory expanders.

Apart from the hardware simulation, system performance can
be analyzed with analytical models. The PROFET model [53]
and Interval model [93] predict memory system impact on the
overall application performance. The predictions are based on
the application runtime profiling combined with an analytical
performance model. The main objective is to provide an
alternative to complex and slow CPU simulations. This is
orthogonal and complementary to the Mess simulator that
targets the main memory simulation.

C. Application profiling

ProfileMe [26] and PerfMemPlus [27] determine whether
the application is memory bound based on its memory access
latency, measured with the Intel’s Event Based Sampling
(PEBS) [28]. The Roofline model [29], [30] analyzes com-
pute performance and memory bandwidth. The application
is classified as compute or memory bound based on the
comparison with the performance roofs of the target hardware
platform. The Top-down model [31] analyzes the application
CPI stack. The application is categorized as memory bound if
its significant CPI component is caused by the main memory
accesses. The model also distinguishes between the memory
latency and bandwidth stalls depending on the occupancy of
the memory controller queues. Below 70% occupancy, the
stalls are considered latency-bound; above this threshold they
are bandwidth-bound.

As a part of future work, we will synthesize the Mess
application profiling with the Roofline and Top-down models.

The Mess and Roofline integration will connect the applica-
tion memory bandwidth–latency analysis with its compute
performance. The Top-down model will provide the CPI stack.
Also, the Top-down distinction between the memory latency
and bandwidth stalls will be enhanced with the Mess detailed
bandwidth–latency analysis.

VI. CONCLUSIONS

The Memory stress (Mess) framework offers a comprehen-
sive and unified approach to memory system benchmarking,
simulation, and application profiling. It is publicly-released and
ready to be used by the community for better understanding
of the current and exploration of future memory systems.

The Mess benchmark provides a detailed and holistic and
memory systems performance view represented by a family of
bandwidth–latency curves. The current Mess benchmark release
covers x86, ARM, Power, RISC-V, and NVIDIA’s PTX ISAs,
and we used it to characterize servers from Intel, AMD, IBM,
Fujitsu, Amazon, and NVIDIA with DDR4, DDR5, HBM2, and
HBM2E main memory. The Mess characterization significantly
expands coverage of the existing tools, uncovering new insights
into the memory systems performance and behavior. We also
used Mess to benchmark established publicly-available memory
models and simulators. Our detailed evaluation shows that the
existing memory models poorly resemble the actual system
performance, leading to high error rates when simulating
memory intensive workloads.

The Mess memory simulator couples memory simulation to
memory performance benchmarking and predicts the memory
access latencies based on the application position on the
bandwidth–latency curves. A memory system can be, therefore,
simulated as soon as its bandwidth–latency curves are available,
which removes the current lag between the emergence of mem-
ory technologies and development of the reliable simulation
models. The Mess simulator closely matches the actual memory
systems performance and it shows an unprecedented low error
of 0.4–6% when simulating widely-used memory benchmarks.
It is also fast and reduces the simulation time of cycle-accurate
memory simulators by 13–15×. The Mess simulator is easily
integrated with ZSim, gem5, and OpenPiton Metro-MPI CPU
simulators and it supports a wide range of memory systems
based on DDR4, DDR5, Optane, HBM2, HBM2E and CXL
memory expanders.

The Mess application profiling determines application
position on the corresponding memory bandwidth–latency
curves. This information, correlated with other runtime
activities and source code, enhances overall understanding
of application behavior. The integration of Mess application
profiling into a suite of production HPC performance analysis
tools further enhances its utility and accessibility.
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APPENDIX

A. Mess benchmark implementation

In this appendix, we discuss Mess benchmark implementa-
tion. It includes implementation of pointer-chase and traffic
generator. The scripts and manuals for the experimental setup,
execution and measurements is included in the public Mess
repository. The measurements post-processing removes the
outliers, mitigates the noise and plots the results.

1) Pointer-chase: The pointer-chase contains a sequence of
dependent back-to-back load instructions that access the main
memory. Since the instructions are dependent, their execution is
serialized, so the average memory access latency is calculated
as the ratio between the total execution time and the number
of instructions executed. This is guaranteed by the pointer-
chase design. In the benchmark initialization, we allocate a
contiguous section of memory and initialize it in such a way
that a given array element contains the address of the next array
element (memory location) that we want to access. This ensures
the dependency between the consecutive load instructions. To
force accesses to the main memory (and not on-chip caches),
the pointer-chase traverses the whole array whose size exceeds
the last-level cache. To avoid any cache-line spatial locality,
each array element occupies the whole cache line (64 Byte).
Finally, to diminish the impact of data prefetching and temporal
locality during traversing, the pointer-chase traverses the array
in a random pattern. The pointer-chase source code is detailed
in Listing 1:

Listing 1
POINTER-CHASE SOURCE CODE. X86 ASSEMBLY. IN OUR STUDY WE ALSO

USE THE BENCHMARK FOR THE ARM, IBM POWER, AND RISC-V ISA.

Line Source code Explanation

0001 register struct line *next asm("rax"); struct line owns pointer to the next access
0002 register int i asm("ecx"); ecx is the loop counter
0003 i = 1000000; initialization of the loop counter. C format.
0004 next = ptr->next first memory access in C format
0005 start_loop: beginning of the loop
0006 mov (%rax), %rax load instruction (pointer-chase)
0007 mov (%rax), %rax load instruction (pointer-chase)
... ... . . .
1007 mov (%rax), %rax load instruction (pointer-chase)
1008 dec %ecx decrement loop counter
1009 jnz start_loop if counter is not zero jump to start of the loop

• Lines 0001–0004 initialize the benchmark: set the number
of load instructions, initialize the registers, etc.

• Lines 0006–1007 are the core of the benchmark. They are
a series of back-to-back load instructions for traversing
the array. Each load instruction has data dependency on
the previous one, so their execution is serialized.

• Line 1008 decrements the loop counter.
• Line 1009 checks the loop exit condition.

2) Traffic generator: We write the core of the memory
traffic generator directly in assembly. This enables the de-
velopment of more precise code (changes at the level of
the assembly instruction) and prevents any system software
optimizations (e.g. compiler optimizations). The benchmark
generates different read and write memory traffic by executing
a different mix of load and store instructions in the source
code, each of them in a separate assembly file. In the current
implementation, the benchmark can execute from 100% load
to 100% store operations, with a step of 2%.8 The generated
memory bandwidth is adjusted the issue rate of the memory
operations. This is done by interleaving the load/store operation
sequence with a configurable dummy loop of nop operations.
To reduce the overhead of the loop management, loop counter
decrement and jump operations, we employ a long loop of
around 100 load/store operations. Listings 2, and 3 show the
memory traffic generator implementation in the x86 ISA. The
benchmark is also available for ARM, IBM Power, and RISC-V
ISAs.

• Lines 001–008 initialize the benchmark:

– Lines 001–002 loads the addresses of the arrays a
and c into the registers.

– Lines 003–004 initialize a register as the loop counter.
– Lines 005–006 set the size of the array a and c.
– Lines 007–008 set the iteration of the dummy nop

function. This controls the rate of the memory
operations, i.e. used memory bandwidth.

8The ratio of loads and stores executed by the benchmark does not lead to
the same ratio of the reads and writes in the memory traffic. This is because
most of the state-of-the-art HPC servers deploy a write-allocate cache policy.
With this policy each store operation targeting data in main memory is first read
into the cache (memory read), then modified, and finally written to the main
memory once the cache line is evicted. Since each store operation causes one
memory read and one memory write, e.g. 100% store kernel causes 50%-read
50%-write memory traffic.
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Listing 2
MEMORY TRAFFIC GENERATOR, X86 ISA. DIFFERENT READ AND WRITE
MEMORY TRAFFIC IS GENERATED BY EXECUTING A DIFFERENT MIX OF

LOAD AND STORE INSTRUCTIONS IN THE SOURCE CODE, EACH OF THEM IN
A SEPARATE ASSEMBLY FILE. THE GENERATED MEMORY BANDWIDTH IS

ADJUSTED THE ISSUE RATE OF THE MEMORY OPERATIONS. THIS IS DONE
BY INTERLEAVING THE LOAD/STORE OPERATION SEQUENCE WITH A

CONFIGURABLE DUMMY LOOP OF NOP OPERATIONS.

Line Source code Explanation

001 register double *a asm("r10"); load array a address into the register r10
002 register double *c asm("r11"); load array c address into the register r11
003 register ssize_t i asm("rbx"); register rbx holds the loop counter
004 i = 0; initialize the counter (i) by 0
005 register ssize_t n asm("r12"); r12 holds the size of the arrays
006 n = *array_size; load r12 with size of the arrays
007 register int *p asm("r15"); register r15 holds the nopCount value
008 p = nopCount; load r15 with value of nopCount
009 ..L_50: the beginning of the kernel loop
010 vmovupd (%r10,%rbx,8), %ymm0; load instruction
011 vmovupd %ymm1, (%r11,%rbx,8); store instruction
012 vmovupd 32(%r10,%rbx,8), %ymm0; load instruction
013 vmovupd %ymm1, 32(%r11,%rbx,8); store instruction
014 vmovupd 64(%r10,%rbx,8), %ymm0; load instruction
015 vmovupd %ymm1, 64(%r11,%rbx,8); store instruction
016 movq %r15, %rdi; send number of nopCount as an input of nop function
017 call nop; call nop function
... ... . . .
... ... . . .
138 vmovupd 1536(%r10,%rbx,8), %ymm0; load instruction
139 vmovupd %ymm1, 1536(%r11,%rbx,8); store instruction
140 vmovupd 1568(%r10,%rbx,8), %ymm0; load instruction
141 vmovupd %ymm1, 1568(%r11,%rbx,8); store instruction
142 movq %r15, %rdi; send number of nopCount as an input of nop function
143 call nop; call nop function
144 add $200, %rbx; increment the loop counter
145 cmp %r12, %rbx; check the exit condition
146 jb ..L_50; conditional jump to beginning of the kernel loop

• The main loop of the kernel starts at line 009. The loop
comprises a series of load and store instructions (Lines
010–015) followed by the call to the dummy nop function
(Lines 016–017).

– The nop function is shown in Listing 3. The number
of nop operations is configurable: the larger the
number of nop operations in each function call, the
lower the rate of memory instruction, and therefore
the lower used memory bandwidth. This configuration
is managed by the value of nopCount parameter.
When nopCount parameter is set to 0, i=0 in
Listing 3, the function is finalized without entering
the nop loop. This causes only a negligible halt in
the load and store sequence, leading to the maximum
pressure to the memory system. As we increase the
value of the nopCount parameter, we increase the
number of the iterations in the dummy nop loop, and
therefore reduce the rate of the memory operations
issued by the memory traffic generator.

• The sequence of interleaved load and store instructions,
and calls to the nop function is repeated until the line
143. This is the core of the benchmark. In the current
implementation, each iteration of the main loop comprises
100 load and store instructions.

• Lines 144–146 finalize the loop iteration: increment the
loop counter, check the exit condition, and conditionally
jump to the beginning of the loop.

B. Case study: Remote-socket memory emulation of CXL
memory expanders

Recent industrial studies emulate CXL memory expansion
in cloud and datacenter servers with conventional dual-socket

Listing 3
DUMMY NOP FUNCTION IS USED TO GENERATE A PAUSE IN THE SEQUENCE

OF THE LOAD AND STORE INSTRUCTIONS IN THE MEMORY TRAFFIC
GENERATOR (SEE LISTING 2). THE INPUT PARAMETER NOPCOUNT IS THE
NUMBER OF THE DUMMY LOOP ITERATIONS. THE LARGER THE NUMBER OF
ITERATIONS, THE LOWER THE RATE OF MEMORY INSTRUCTION AND THE

LOWER THE GENERATED MEMORY BANDWIDTH.

Line Source code Explanation

001 int nop(int *nopCount) { definition of nop function
002 unsigned int i = *nopCount; i is the loop counter; number of loops for nop operations
003 if ( !i ) { if i is zero then return immediately
004 return 0;
005 } else { assembly section of nop function
006 asm( it is written in extended assembly format
007 mov %0, %%ecx; move the value of %0 register into ecx register
008 the_loop%=: the beginning of the loop
009 nop; nop instruction
010 dec %%ecx decrementing the counter
011 jnz the_loop%= conditional jump to beginning of the loop
012 : "r" (i) : ecx put the value of i into register %0 (extended assembly)
013 );
014 }
014 return 0;
015 }

(a) The perlbench experiences higher
remote-memory latency which leads to
5% lower performance.

(b) The lbm reaches higher remote-
memory bandwidth which leads to 11%
higher performance.

Fig. 16. Remote-socket emulation of CXL memory expanders: Bandwidth–
latency curves and implications
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Fig. 17. Remote-socket memory emulation of CXL memory expanders:
Application performance difference is correlated with its bandwidth utilization.
SPEC2006 benchmarks, 24-core Intel Skylake CPU.

systems: one socket is used as a host CPU and the other socket
as a CPU-less memory expander [94], [95]. To evaluate this
approach, we perform a detailed simulation of both systems.
The CPU host is simulated with the ZSim configured to model
the Intel 24-core Skylake processor (Section II-E2). We use
Micron Technology’s bandwidth–latency curves to model the
CXL memory expander, and measurements from the actual
dual-socket server to model the remote-socket memory. In each
system configuration, we simulate 500 billion instructions of
the multiprogramed SPEC CPU2006 workloads [41].

Figure 16 plots the CXL (green) and remote-socket (blue)
memory curves, and the benchmark behavior. Each 20.000
simulated instructions we monitor the benchmark read and
write memory bandwidth, and then plot each observation as a
point on the corresponding bandwidth–latency curve. The figure
shows two characteristic use-cases. The perlbench benchmark
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(Figure 16(a)) has a low bandwidth utilization. In this area
remote-socket memory curves shows approximately 28 ns
higher latency, which leads to somewhat lower performance
w.r.t. target CXL system. We detect the opposite behavior
for high-bandwidth benchmarks. The remote-socket curves
have a higher bandwidth saturation area. This leads to higher
achieved bandwidths and the overall performance of the
bandwidth-intensive benchmarks, such as the lbm illustrated
in Figure 16(b). The overall performance trend is illustrated in
Figure 17. The figure plots the results for all SPEC CPU2006
benchmarks, sorted from the lowest to the highest bandwidth
utilization. For low-bandwidth benchmarks, remote-socket
emulation provides up to 12% lower performance w.r.t. to the
target CXL system. Both system provide a similar performance
for the benchmarks with medium bandwidth utilization between
30% and 50% of CXL max theoretical bandwidth. For the high-
bandwidth benchmarks, the remote-socket memory provides
11%–22% higher performance.

To the best of our knowledge, this is the first study that
enables a detailed simulation of CXL memory expanders
based on the manufacturer’s SystemC model. The model is
already integrated and publicly released with ZSim, gem5
and OpenPiton Metro-MPI simulators. We also provide the
performance analysis and correction factors that can be useful
for future studies who want to keep useing remote-socket
memory emulation, e.g. due to its much faster execution time.
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