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Abstract—A Kubernetes cluster typically consists of trusted
nodes, running within the confines of a physically secure datacen-
ter. With recent advances in edge orchestration, this is no longer
the case. This poses a new challenge: how can we trust a device
that an attacker has physical access to? This paper presents an ar-
chitecture and open-source implementation that securely enrolls
edge devices as trusted Kubernetes worker nodes. By providing
boot attestation rooted in a hardware Trusted Platform Module, a
strong base of trust is provided. A new custom controller directs
a modified version of Keylime to cross the cloud-edge gap and
securely deliver unique cluster credentials required to enroll an
edge worker. The controller dynamically grants and revokes these
credentials based on attestation events, preventing a possibly
compromised node from accessing sensitive cluster resources.
We provide both a qualitative and a quantitative evaluation of
the architecture. The qualitative scenarios prove its ability to
attest and enroll an edge device with role-based access control
(RBAC) permissions that dynamically adjust to attestation events.
The quantitative evaluation reflects an average of 10.28 seconds
delay incurred on the startup time of the edge node due to
attestation for a total average enrollment time of 20.91 seconds.
The presented architecture thus provides a strong base of trust,
securing a physically exposed edge device and paving the way
for a robust and resilient edge computing ecosystem.

Index Terms—remote attestation, TPM, measured boot, secure
boot, edge, node enrollment, k8s

I. INTRODUCTION

As computing environments evolve, so do the challenges as-
sociated with ensuring their security. Typically, Kubernetes [1]
nodes reside within secure data centers, shielded from physical
tampering and unauthorized access. However, recent advance-
ments in edge container orchestration, such as Fledge [2] and
KubeEdge [3] , have ushered in a new era where clusters can
extend beyond the confines of datacenters to embrace even the
smallest devices. These devices are often deployed in remote
and physically exposed locations making them exceptionally
vulnerable to compromise.

While existing research has explored various aspects of
Kubernetes security, such as protecting workloads from
each other [4] or safeguarding them against privileged user
threats [5], our focus is on protecting the entire cluster from
physically compromised nodes. By providing hardware-based

This work has been partially funded by the European Union (NATWORK
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boot attestation of the edge device, a trusted base can be
provided that other features such as runtime attestation or
kernel security features can rely on.

Keylime [6] provides an abstraction on top of TPM boot and
runtime attestation, allowing for easier secure bootstrapping
of managed hardware attested devices. Efforts are underway
to make it easily deployable to cloud-native clusters such as
Kubernetes and OpenShift. But integration of the Kubernetes
API into its various parts is still lacking, making it impractical
to automate attestation management. More importantly in this
context, it lacks the ability to manage cluster permissions
granted to an edge node in relation to attestation events. A crit-
ical aspect of our approach involves integrating flexible role-
based access control (RBAC) mechanisms, to comply with
Kubernetes security best practices [7]. Specifically adapted
to the context of edge worker nodes, these RBAC policies
enable swift and granular adjustments to access permissions
in response to attestation events. These responses can prevent
untrusted devices from accessing sensitive information or
quarantine it to prevent scheduling of sensitive workloads.
By swiftly limiting an edge node’s access to cluster resources
upon compromise, our architecture aims to bolster the overall
security posture of distibuted Kubernetes cloud-edge clusters.

This paper presents an exploration of our proposed open-
source1 [8] platform, addressing key research questions:

RQ1. How can a toolchain automate enrollment of an edge
device as a trusted Kubernetes worker node, ensuring full boot
attestation verified by the cluster?

RQ2. How can such a platform integrate into the authenti-
cation and authorization framework of the orchestrator itself,
in order to ensure granular permission adjustments in response
to attestation events?

This paper is structured as follows: section II provides
essential context on TPM attestation, measured boot, and the
Keylime software and outlines other work related to these
topics. Section III delves into the components constituting the
proposed architecture. Section IV details the full enrollment
and trust management process, explaining the functionalities
and interactions of various components. Section V presents
the evaluation results and addresses RQ1 and RQ2. Finally,
section VI explores potential avenues for future research.

1https://github.com/idlab-discover/trust-edgePre-print of article accepted to IEEE ICCCN 2024 ©2024 IEEE
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II. BACKGROUND AND RELATED WORK

A. TPMs and the boot process

A Trusted Platform Module is a secure cryptographic copro-
cessor, one of its most important functionalities is its ability to
measure digests into so-called platform configuration registers
(PCRs) [9]. The core idea of these PCRs is built around
two basic operations: extend and reset. The extend operation
performs an XOR operation with the current PCR state and
the new digest as operands and saves the hash of the result as
the new PCR value.

Proving that a device is running trusted software is a very
complex process, stretching all the way from the lowest levels
of the boot sequence to the kernel, the operating system and
the applications it runs. These components form a chain,
relying on a lower level to tie the next to a trusted state by
measuring the next binary into a TPM platform configuration
register in a process called a measured boot. The lowest
level of the chain is the so called core root of trust for
measurement (CRTM) [10] which anchors the entire chain to
a piece of immutable CPU code. If a system lacks a proper
measurement for any part of this chain, it could compromise
the system’s ability to protect workloads as many container
isolation mechanisms rely on security features provided by
the Linux kernel (such as cgroups and namespaces).

Fig. 1: A measured boot extends a digest of each part of the boot
chain into the TPM, this is in contrast with a secure boot which only
verifies a part’s signature.

It is important to recognize the distinction between such a
measured boot and a secure boot. Fig. 1 provides a schematic
comparison between the two. Where measured boot stores
digests of each part of the boot chain in the TPM, a secure
boot only validates the parts’ signatures against a known good
public key. If one of the system’s components does not contain
an approved signature, the system will simply interrupt the
boot and shut down. A device using secure boot thus makes
its own trust decision, compared to a measured boot, which
just securely documents the boot process in PCRs and allows
an external verifier to judge the TPM measurements.

TPMs are often used in edge research to provide hardware-
based trust. It is, however, essential to acknowledge a critical
oversight regularly present in such implementations. These de-
signs are often implemented on devices lacking a CRTM (e.g.,
Raspberry Pi). Without a CRTM, the chain of trust, crucial for
ensuring the integrity of the system, lacks a solid anchor [11].
Consequently, reliance on a potentially compromised kernel
to transmit measurements to the TPM can render the entire
attestation process unreliable. Simply plugging a TPM into
an edge device and trusting it is not enough. This oversight
highlights the importance of ensuring that the foundational
elements, such as a complete boot attestation anchored in the
CRTM, are present.

This lack of manufacturer provided CRTM renders many
edge devices useless in an environment where trust is required.
Recent research into software TPMs could, however, provide
a future for such devices. In contrast to hardware-based
TPMs, software TPMs leverage Trusted Execution Environ-
ments (TEEs) to establish trust without necessitating a built-
in CRTM. There are some research projects developing such
TPMs [12] [13] for various platforms such as ARM TrustZone
and Intel SGX, however no implementation has been widely
adopted.

A final issue with TPMs is their complexity. Interacting
with a TPM requires a very good understanding of the com-
plex architecture [14] and is generally done by transmitting
low level binary commands [15] to the device. In recent
years, the Trusted Computing Group (TCG) [16] has put a
lot of effort into developing and standardizing higher level
APIs [17] to interact with the TPM resulting in a toolset called
tpm2-tools. These tools allow for higher-level interactions
with the TPM using the CLI. While the low-level code
complexity has been reduced significantly, a deep knowledge
of the inner workings and mechanisms of a TPM is still
required to actively use it in an application. Research projects
like Keylime could help alleviate this complexity issue.

B. Keylime

Keylime is an open-source CNCF project originally devel-
oped by MIT’s Lincoln Laboratory [18]. It has since seen
increased adoption with the support of RedHat, who are
actively developing it for RHEL and OpenShift. Keylime
provides another abstraction layer to TPM attestation on top
of the existing tpm2-tools and allows developers to easily
integrate boot and runtime attestation into their architectures.
Keylime consists of cloud components written in Python
(verifier, registrar, and tenant) and a Rust agent running on
the machine that is to be attested.

The Keylime architecture is controlled by the tenant CLI
application, which allows a system administrator to enroll
a device and set it up for TPM-based boot and runtime
attestation using specific golden values for each. These values
contain known good states of the system and serve as a
reference for future attestation. The tenant interacts with the
other cloud components to deliver a secure payload to an
agent. This agent is a device’s connection point to the Keylime



Fig. 2: An overview of the Keylime architecture: a system adminis-
trator uses the Keylime tenant CLI to set up attestation of a device
that runs an agent and deliver a payload.

cloud components. It provides an API over HTTPS, which
allows for an abstracted interaction with the device’s TPM.

Efforts are underway to develop a cloud operator [19] that
can manage TPM-enabled nodes in a Kubernetes compati-
ble environment. This operator is designed to simplify the
deployment of Keylime in cloud Kubernetes environments
to provide node attestation. It is currently still in the early
development phase. While it provides useful functionality,
mainly the ability to easily deploy the complex network of
Keylime cloud components using Helm, it is directed towards
cloud environments and does not address the specific needs
of the cloud-edge use-case outlined by this paper. Mainly the
interaction with a device external to the cluster, the unique
RBAC identity tied to such a device, and its dynamic RBAC
permissions. For our platform we make use of an early fork
of this project to deploy our customized tenant, verifier and
registrar using Helm.

Berbecaru et al. [20] implemented a prototype that uses
Keylime to provide attestation on a Raspberry Pi edge device
and proposed some solutions to the lack of CRTM on such a
device. It does however not integrate with any orchestration
systems such as Kubernetes nor does it provide any automated
management of the device.

III. ARCHITECTURE

The next paragraphs outline the various components that
compose the architecture proposed in this paper. An overview
can be found in Fig. 3.

The EdgeNode custom resource is the center of this
architecture, as it represents the edge device in the Kubernetes
API. The custom resource contains all the information required
to identify and attest the device, which is provided by a system
administrator. The EdgeNode’s status is the most important
field, as it directs the controller’s actions. An EdgeNode
resource is initially deployed with an ‘unregistered’ status
and will move through the ‘registered’ state towards either
an ‘attested’ or an ‘unattested’ state throughout its lifetime.

Kubebuilder [21] serves as a scaffold for the development
of the EdgeNode controller and provides easy deployment
to the cluster. The controller monitors the state of EdgeNode
resources and is responsible for enrolling an edge node and
steering its corresponding custom resource to an ‘attested
state’. It interacts with the Kubernetes API to manage unique
RBAC roles for each edge device and provides it with the
right permissions to join the cluster. The controller interfaces
with the tenant through its API to deliver these credentials to
attested nodes and sets up continuous attestation. Throughout
the node’s lifecycle, it is responsible for modifying the unique
permissions in reaction to attestation events.

The tenant application is built on top of the Keylime tenant.
It provides an API layer that integrates into the source of
Keylime to solve shortcomings in the original design. This
original design is CLI based and is meant to be called by a sys-
tem administrator to enroll an attested device. The command
takes a description of the node’s desired state and the payload
that is to be delivered as an argument. It reads these files
from disk and executes the necessary operations to securely
deliver the payload to an attested device. Keylime has already
attempted to bypass this reliance on an interactive system
administrator by offering a script that uses kubectl commands
to automatically copy the necessary files to the tenant pod
and execute the appropriate tenant command. This reliance on
an external script however, introduces a few additional issues
that can be improved upon. First, it requires multiple disk
read/write operations to achieve, likely increasing latency. The
controller must write the payload it generates in memory to
disk, kubectl then reads it again and writes it to the tenant’s
disk after which the tenant can finally read it again to process
it. Calling an external bash script presents a second issue,
introducing extra overhead both in code complexity and code
efficiency. Our API allows the tenant’s functionality to be
called natively by the controller using a REST interface instead
of outsourcing the interactions to an external script. The API’s
business logic extends into the tenant’s source code to carry the
in-memory payload and reference boot state, generated by the
controller, into the tenant to avoid expensive disk read/write
operations.

Our verifier extends the Keylime verifier by integrating its
attestation responses into the cluster. The verifier is responsible
for providing continuous attestation managed by the tenant. It
polls the agent for signed TPM quotes and validates them
against the reference. When an attestation fails, Keylime has
built in functionality to notify other components using either
ZeroMQ or a webhook. To provide a better integration of
the verifier into the cluster and avoid having to add extra
components to the architecture, we add a third option to our
verifier: a native Kubernetes revocation. By integrating the
Kubernetes Python client, our verifier can patch the EdgeNode
custom resource’s status to reflect its unattested state. This will
notify the controller, allowing it to take corrective actions.

The registrar plays a crucial role in storing and man-
aging essential data for agent operation, including identity,
attestation information, and metadata. Acting as the initial



Fig. 3: An overview of our architecture: the attestation controller interacts with the tenant API to enroll a trusted edge device into the cluster,
it monitors the EdgeNode custom resource for attestation events and adjust RBAC permissions accordingly.

point of contact for edge devices, the registrar facilitates
the verification of agent identity using its Endorsement Key
(EK) and mTLS certificate. To automate the response to this
initial contact, we extended the Keylime registrar to include
Kubernetes API support. After validating the identity, it can
notify the controller of the edge device’s presence by patching
the EdgeNode custom resource with the ‘registered’ state,
kickstarting the enrollment process.

IV. ENROLLMENT WORKFLOW

This section covers the complete enrollment of an attested
Kubernetes edge node with unique RBAC credentials. Fig. 3
shows an overview of the complete flow with numbers indi-
cating the sequence of operations.

A. Registration of edge device

First, the system administrator uses a Helm chart [22] to cre-
ate an instance of the EdgeNode custom resource (0), loaded
with the reference state and TPM identification information.
The reference state consists of a JSON containing information
on the allowed state of various boot components such as the
CRTM, firmware, kernel, and keys. To provide identification
for the TPM, an endorsement key (EK) certificate signed by
the TPM’s manufacturer must be included in the custom re-
source. An administrator can use the tpm2-tools to extract
the EK certificate from the TPM’s non-volatile memory. It is
important to note that the system administrator is considered
to be a fully trusted entity that determines the definition of
trust for the edge device.

When an edge device is initially turned on, it will attempt
to contact the registrar (1). The registrar will subject it to
an identity verification (2) by making the device encrypt a
nonce with the private EK stored in its TPM. This is validated
using the matching public key contained in the EK certificate
provided by the device. After successfully passing this check,
the registrar adds the node’s information to its records. As
described in section III, we integrated Kubernetes API support

into the registrar which allows it to set the EdgeNode status
to ‘registered’ (3), notifying the controller.

B. Generation of RBAC credentials

After device registration, the controller has to execute a
series of tasks to steer the EdgeNode resource to an ‘attested’
state and deploy the device as an edge worker node. First,
the controller must verify that the entity previously registered
with the registrar matches the one provided by the system
administrator using the EdgeNode custom resource (4). Simply
comparing the two certificates for a match is enough since the
registrar has already performed a verification of the certificate
provided by the edge device.

Next, the controller needs to provide the edge device with
a unique identity and the necessary permissions to enroll as
an edge worker node using an edge orchestration framework
like Fledge. It generates a new key pair and uses it to request
a signed certificate from the Kubernetes cluster (5), linking
the edge device to a unique Kubernetes user. This generated
user does not yet have permissions to access any of the cluster
resources. Next the controller creates a unique Kubernetes role
for the edge device with the required RBAC permissions and
links it to the user certificate using a Kubernetes rolebind-
ing (6).

C. Enrollment of edge node

The payload required to enroll the edge device in the cluster
is now complete. The controller packs it into a ZIP archive
and together with the reference boot state from the EdgeNode
custom resource, sends it to the tenant’s REST endpoint (7).
The tenant encrypts the payload with a composite U-key
(which is a bitwise xor of two other keys called the K- and
V-keys), and starts the delivery process. First, it contacts the
registrar (8) to obtain the edge device’s information, which
includes its IP and port as well as the stored EK certificate.
The tenant contacts the agent (9) running on the edge device
and once again verifies that the device’s TPM does in fact own



Fig. 4: Kubernetes event log shows successfull detection of node
attestation failure during continous monitoring.

the EK certificate. Once the identity is established, the tenant
sends the first part of the composite encryption key (U-key)
as well as the encrypted payload to the edge device.

Next, the tenant forwards the second part of the payload
encryption key (K-key) as well as the reference state to the
verifier to set up continuous attestation (10). The verifier
requests an integrity check from the agent and validates its
PCR values and boot record. After successful attestation, the
verifier delivers the key to the agent (11), allowing it to decrypt
and execute the payload that starts the Fledge service and
enrolls the device as an edge worker node (12). Finally, the
verifier sets the status of the EdgeNode custom resource to
‘attested’ to notify the controller of the attestation event (13).

The verifier will periodically check the integrity of the edge
node, should a failure occur at any point it will change the
EdgeNode custom resource’s status to ‘unattested’, allowing
the controller to revoke RBAC permissions for the edge
device’s unique identity.

V. EVALUATION RESULTS

We evaluated the design through three scenarios to assess
its effectiveness in ensuring the integrity and security of
the Kubernetes edge workers. A quantitative analysis was
also performed to measure the impact of attestation on the
startup time of a Kubernetes edge node. This evaluation was
performed using a Dell Latitude 5540 as an edge device with
16GB RAM and an Intel Core i7. The Kubernetes cluster is
provisioned using CloudNativeLab [23] with 1 worker node
with 2 CPU cores and 8 GB RAM. The raw data is published
on GitLab [24].

1) In the first scenario, an edge device successfully passes
initial attestation and receives its payload, including
credentials linked to a unique RBAC role, which it
uses to start Fledge and enroll as an edge node. This
demonstrates the system’s capability to verify the in-
tegrity of an edge device and provide them with the
necessary granular credentials. The Kubernetes event log
indicates a successful attestation process, with attestation
being achieved 11 seconds after first contact by the edge
device.

2) The second scenario involved intentionally causing a
node attestation failure to evaluate the system’s response.
We booted a node with an unknown kernel to simulate an
attacker starting a custom, possibly compromised kernel.
The Kubernetes event log captures the detection of an
unattested node, indicating that the system appropriately

identifies integrity failures. The verifier notified the con-
troller of this failure within 7 seconds. No payload was
delivered to the edge device and its RBAC permissions
were taken away, denying it the ability to enroll as a
worker node.

3) In the third scenario, the system’s continuous monitoring
capability was assessed by inducing a node attestation
failure after the system had already been successfully
attested. This simulates an attacker rebooting an attested
system that already serves as a worker node and loading
a compromised kernel. Fig. 4 illustrates the Kubernetes
event log detecting a node attestation failure during
continuous monitoring. In response to this failure, the
controller swiftly retracted the RBAC permissions linked
to this worker’s unique identity, preventing it from
accessing cluster resources. This scenario validates the
system’s effectiveness in maintaining security posture
over time by promptly identifying attestation failure and
revoking cluster access for compromised nodes.

Finally, we present a quantitative evaluation (Fig. 5). We
executed the first scenario 50 times and measured the time
between the agent service and the Fledge service starting
as well as the time Fledge needs to register as an edge
worker. The results indicate an increase in startup time due
to attestation of 10.28 seconds (std 0.30s). This is in addition
to the startup time of Fledge, which measured on average,
10.52 seconds (std 0.20s), for a total average startup time of
an attested edge node of 20.91 seconds (std 0.36s).

The evaluation results of the proposed architecture effec-
tively address the research questions. Scenario one demon-
strates the architecture’s capability in securely enrolling edge
nodes into a Kubernetes cluster (RQ1) by verifying device
integrity and delivering necessary credentials. Furthermore,
scenario two and three show that the system provides granular
cluster permissions in response to attestation events (RQ2),
dynamically adjusting RBAC permissions based on node sta-
tus. Thus, the evaluation validates the system’s ability to
achieve secure enrollment and provide tailored permissions,
aligning with the research objectives.

Fig. 5: Attestation takes on average 10.28 seconds for a total node
registration time of 20.91 seconds.



VI. FUTURE WORK

A major challenge remains the binary nature of attes-
tation. In traditional schemes, a node either passes or fails
attestation. When using boot attestation, this means that a node
running a newer kernel that was not included in the reference
will automatically be considered insecure. This binary decision
is at odds with the flexible and granular nature of Kuber-
netes access control and scheduling. Instead of deciding on
a pass/fail basis if a certain combination of CRTM, firmware,
and kernel should be trusted, a more nuanced description
of trust must be employed. An older kernel version is not
necessarily insecure, but to comply with security SLAs one
could limit such a node’s access to sensitive resources and
prevent the scheduling of certain workloads to such nodes
while still allowing it to execute non-sensitive ones.

A final problem that is outside the scope of this paper but
requires future attention is network access control. This paper
focuses on setting up a unique RBAC identity for an attested
edge node that allows flexible adjustments to Kubernetes
resource access. It does however, not cover that node’s access
to the different networks. The node currently has full access to
the local network through its VPN connection, and thus any
resources exposed on any of the cloud nodes. This network
access should also be managed by the controller, initially
limiting the connection to only the registrar and expanding
network access as the attestation state evolves.

VII. CONCLUSION

In conclusion, this research paper proposes a novel ar-
chitecture and open-source implementation for secure and
automated enrollment of Kubernetes edge nodes after remote
attestation, ensuring the integrity of the entire cluster even
in physically exposed environments. By leveraging hardware-
based boot attestation rooted in Trusted Platform Modules
(TPMs), the architecture establishes a strong base of trust
for edge devices. The integration of role-based access control
(RBAC) mechanisms enables granular adjustments to access
permissions in response to attestation events, further protecting
sensitive cluster resources from untrusted edge nodes.

Through qualitative scenarios and a quantitative evaluation,
the effectiveness of the proposed architecture has been demon-
strated. The system successfully enrolls edge nodes into the
Kubernetes cluster, verifies their integrity, and dynamically
adjusts RBAC permissions based on attestation events. Attesta-
tion adds on average 10.28 seconds to the enrollment time, for
a total average of 20.91 seconds. This addresses the research
questions regarding automated enrollment and integration with
authentication and authorization frameworks, showcasing the
architecture’s capability in enhancing security within cloud-
edge computing ecosystems.

We identify future work in addressing the binary nature
of attestation decisions and implementing network access
control to further bolster the security of edge deployments.
Overall, this research paves the way for resilient and secure
edge computing environments, crucial for the proliferation of
distributed and decentralized computing infrastructures.
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