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UNIFORM DUAL APPROXIMATION TO VERONESE CURVES IN

SMALL DIMENSION

JOHANNES SCHLEISCHITZ

Abstract. We refine upper bounds for the classical exponents of uniform approxima-
tion for a linear form on the Veronese curve in dimension from 3 to 9. For dimension
three, this in particular shows that a bound previously obtained by two different meth-
ods is not sharp. Our proof involves parametric geometry of numbers and investigation
of geometric properties of best approximation polynomials. Slightly stronger bounds
have been obtained by Poels with a different method contemporarily. In fact, we obtain
the same bounds as a conditional result.

1. Introduction

1.1. New results. Davenport and Schmidt [5], in the course of investigating approxima-
tion to real numbers by algebraic integers related to the famous open problem of Wirsing
[19], implicitly studied uniform exponents of approximation on the Veronese curve in
dimension n defined as {(ξ, ξ2, . . . , ξn) : ξ ∈ R}. Two variants of these exponents were
addressed in [5], one for simultaneous approximation to successive powers of ξ and one
for small values of a linear form (degree n polynomial). Both types of exponents are
indeed closely linked to Wirsing’s problem and variants of it, see besides [5] for example
also [2]. In this paper, we refine upper bounds for the uniform exponents with respect to
the latter polynomial setting. For ξ a real number and n ≥ 1 an integer, let us denote
them by ŵn(ξ) which are defined as the supremum of w so that

H(P ) ≤ X, 0 < |P (ξ)| < X−w

has a solution in an integer polynomial P = P (X) of degree at most n, for all large X .
Let us directly define the associated ordinary exponent of approximation wn(ξ) as well,
given as supremum of w so that

0 < |P (ξ)| < H(P )−w

has infinitely many solutions in integer polynomials P of degree at most n. Clearly
wn(ξ) ≥ ŵn(ξ) by choosing X = H(P ), and moreover

w1(ξ) ≤ w2(ξ) ≤ · · · , ŵ1(ξ) ≤ ŵ2(ξ) ≤ · · ·
hold for any real number ξ. Moreover Dirichlet’s Theorem shows the lower bounds

wn(ξ) ≥ ŵn(ξ) ≥ n.
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A well-known consequence of the subspace theorem is that for ξ any real algebraic number
of degree d we have wn(ξ) = ŵn(ξ) = min{n, d − 1}, so we may only consider transcen-
dental numbers ξ below. It is well-known that ŵ1(ξ) = 1 for all irrational real numbers
ξ, see Khintchine [6], so we may restrict to n ≥ 2. As indicated above, upper bounds for
ŵn(ξ) have first been studied by Davenport and Schmidt [5], whose result shows in our
notation that

(1) ŵn(ξ) ≤ 2n− 1, n ≥ 2,

holds for any real ξ. For n = 2, they proved a stronger bound of the form

(2) ŵ2(ξ) ≤
3 +

√
5

2
= 2.6180 . . . ,

which surprisingly turned out to be optimal as shown by Roy [12]. For n ≥ 3 the optimal
bound remains unknown. It took almost 50 years for the first small improvements to
(1) in [3], where an upper bound of order 2n − 3

2
+ o(1) as n → ∞ with positive error

term for each n was established. The method also reproved the optimal upper bound (2)
for n = 2. In fact, as noticed in [15], the method in [3] when combined with the later
proved optimal ratio for ordinary and uniform exponents by Marnat and Moshchevitin
[8], directly yields

(3) ŵn(ξ) ≤ αn := max{2n− 2, σn} =

{
σn, 2 ≤ n ≤ 9,

2n− 2, n ≥ 10.

where σn is the real solution to

(n− 1)x

x− n
− x+ 1 =

(
n− 1

x− n

)n

in the interval x ∈ (n, 2n − 1). The case n = 2 indeed recovers (2). We have σn =
2n− C + o(1) as n → ∞, where C = 2.25... is explicitly computable, see [14] for details.
In case of strict inequality wn(ξ) > wn−1(ξ), the term 2n − 2 in (3) can be ignored,
thereby implying the bound ŵn(ξ) ≤ σn which is stronger than (3) for n ≥ 10. The
estimate ŵ∗

n(ξ) ≤ σn is true unconditionally, where ŵ∗
n(ξ) is a closely related classical

exponent measuring uniform approximation by algebraic numbers of degree at most n,
we prefer not to define it here and refer to [3]. However the latter exponent is always
bounded above by ŵn(ξ), hence giving a weaker claim.

In a later paper the author [15] introduced another method, involving parametric ge-
ometry of numbers. It turned out that in [15] the same bound for n = 3 as in (3) that
reads ŵ3(ξ) ≤ 3 +

√
2 = 4.4142 . . . = α3 was obtained, however for larger n the bounds

became slightly weaker than αn. Some significantly stronger but conditional results were
stated in [15, § 2] as well. In a very recent preprint that appeared just days before the
current paper, Poels [10] improved on (3) obtained in [3] by establishing stronger bounds
of the form

(4) ŵn(ξ) ≤ 2n− 2, (n ≥ 4), ŵ3(ξ) ≤ 2 +
√
5 = 4.23 . . . .
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Moreover, for large enough n, a bound of the form

ŵn(ξ) ≤ 2n− 1

3
n1/3

was obtained in [10].

In this paper, we refine the method from the latter paper [15] to improve the bound
αn = σn from (3) in the range 3 ≤ n ≤ 9. Unfortunately, our bounds in this range will
be weaker than the very recent estimates (4). We want to point out however that our
method is considerably different from the one in [10] and may be of independent interest
for future improvements. Our main result reads as follows.

Theorem 1.1. For any n ≥ 2 and any real number ξ we have

ŵn(ξ) ≤ βn

where βn is the root of the monic quartic polynomial

Qn(T ) = T 4 + a3T
3 + a2T

2 + a1T + a0

in the interval (2n− 2, 2n− 1), where

a3 = 4− 4n,

a2 = 5n2 − 12n+ 8,

a1 = −2n3 + 11n2 − 18n+ 7,

a0 = −2n3 + 6n2 − 4n.

Any polynomial Qn has four distinct real roots and βn is the largest among them. For
n = 2 we again obtain the optimal bound β2 = 2.6180 . . . from (2) obtained by Davenport
and Schmidt [5] and independently in [3] and [15]. For n = 3 we get

(5) ŵ3(ξ) ≤ β3 = 4.3234 . . . < 4.4142 . . . = 3 +
√
2 = α3.

The value α3 is from (3) and was obtained with an alternative proof in [15] as well. It
turns out that similarly, for 3 ≤ n ≤ 9 we get an improvement to (3).

We further provide new, stronger conditional results. For brevity we delay the definition
of best approximation polynomials and refer to § 2.1 below.

Definition 1. We say an integer k ≥ 2 is good for n, ξ if the triple of consecutive best
approximation polynomials {Pk−1, Pk, Pk+1} defined in Definition 2 below associated to
n, ξ is linearly independent.

It is well-known and follows from Lemma 2.3 below that there are infinitely many good
k for each pair n, ξ. Assuming refinements yield improvements as follows.

Theorem 1.2. Let n ≥ 2 be an integer and ξ be a real number.

(i) Assume that infinitely often, the integers k− 1 and k are both good for n, ξ. Then

ŵn(ξ) ≤ γn
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where γn is the root of the monic cubic polynomial

Rn(T ) := T 3 − (4n− 4)T 2 + (5n2 − 11n+ 6)T + (−2n3 + 8n2 − 10n+ 3).

in the interval (2n− 2, 2n− 1).
(ii) Assume all sufficiently large integers k are good for n, ξ. Then

ŵn(ξ) ≤ ρn := max

{√
5 + 1

2
n−

√
5− 1

2
, 2n− 2

}
=





√
5+3
2

, n = 2√
5 + 2, n = 3

2n− 2, n ≥ 4.

Note that the conditional bounds ρn coincide with those obtained unconditionally by
Poels in (4).

Again all roots of Rn are real and γn is the largest. The condition in (i) can be relaxed
to assuming that on a subsequence of good k, we have

logPℓ−1

logPk
→ 1, k → ∞

(understood inside the subsequence) with ℓ = ℓ(k) ≥ k + 1 chosen minimal so that
{Pk−1, Pk, Pℓ} are linearly independent. A similar relaxation of the hypothesis in (ii)
can be stated. Conversely, a stronger assumption then in (i) is four consecutive best
approximation polynomials being linearly independent infinitely often. In view of [9],
it is questionable if either condition is true for all real numbers ξ, see the comments in
§ 2.2 below. Nevertheless, we conjecture that at least the bounds γn of Theorem 1.2 hold
unconditionally and it would be desirable to prove this.

The quality of the bounds are illustrated in the following table, with decimal expansions
cut off after four digits.

n new bound βn bound αn = σn derived from [3] cond. bd. γn cond. bd. ρn
2 2.6180 2.6180 2.6180 2.6180
3 4.3234 4.4142 4.3028 4.2360
4 6.1592 6.2875 6.1451 6
5 8.0865 8.2010 8.0791 8
6 10.0528 10.1382 10.0488 10
7 12.0352 12.0906 10.0328 12
8 14.0251 14.0532 14.0236 14
9 16.0187 16.0231 16.0177 16

As in [15], as an artefact of the method, our bound satisfies the asymptotics

βn = 2n− 2 + o(1), n → ∞,

with positive error terms for each n, however the limit being approached faster than in
[15]. The same holds for γn, ρn. Since αn = 2n − 2 for n ≥ 10 by (3), our largest value
n = 9 where an improvement is obtained in either theorem above is a natural barrier,
and surpassing it would probably require significant new ideas in the method.
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We emphasize again that especially the improvement compared to (5) for n = 3 is
remarkable, as it shows that the previously best known bound 3 +

√
2 that had been

obtained from two different methods in [3, 15], is not sharp. There is no reason to believe
that the new bounds βn of Theorem 1.1 are optimal for any n ≥ 3, possibly the same
is true for the conditional bounds. Indeed, conversely, if n ≥ 3 it is not known if the
exponent ŵn can take a value larger than n for any real number ξ. If this is not the case
for some n ≥ 3, this would imply an affirmative answer to Wirsing’s problem (and some
variants) for this value of n, see [5, Lemma 1].

1.2. Ideas of the proof and related exponents. The foundation of our method will be
similar to [15], using an approach inspired by parametric geometry of numbers, however
with several technical twists. Firstly, we need a claim on consecutive best approxima-
tion polynomials (see Definition 2) lying in two-dimensonal subspaces (Lemma 2.3, only
needed for Theorem 1.1). Moreover, some step from the proof in [15] is simplified (via
Lemma 2.2), which is necessary for our method here. Furthermore, some technical im-
provement in the treatment of parametric geometry of numbers is obtained (Lemma 3.1).
These new elements will be combined in a concise way to beat the bounds from [15].

While we restrict ourselves to the linear form exponents here, we want to briefly remark

on the according exponents usually denoted λ̂n(ξ) for the dual problem of simultaneous
approximation to consecutive powers of a real number, also closely connected to Wirsing’s
problem and variants. There similar progress in form of (rather small) improvements of
the original bound by Davenport and Schmidt [5] have been made, some very recently.
The first improvement for odd n was due to Laurent [7], and a stronger bound for n = 3
due to Roy [13]. For even n, the author improved the bound from [5] in [16, 17]. Then in a
very recent paper Badziahin [1] improved on the previous results for n ≥ 4, which in turn
has been refined by Poels and Roy [11] to constitute the currently best known bounds for

λ̂n(ξ). In private communication, D. Roy pointed out to me that he recently obtained a
very small improvement on his result [13] for n = 3, in a paper in preparation. However,
as in the case of linear form exponents, all obtained refinements compared to the original
result by Davenport and Schmidt [5] are rather small, moreover again it remains unclear
if the minimum value 1/n is exceeded for any n ≥ 3 and any real number ξ. In summary,
both types of exponents remain rather poorly understood for n ≥ 3.

Acknowledgment. The paper originates in the author’s visit to the University of
Sydney in the International Visitor Program in 2023. The author thanks the University
of Sydney and his host Dzmitry Badziahin for the hospitality.

2. On best approximation polynomials

2.1. Definition and a linear independence result. An important object for the study
of exponents of Diophantine approximation are integer minimal points, used for example
in [4, 5], which are polynomials in our case. Let us first define this sequence of best
approximation polynomials (Pk)k≥1 as in [15, Definition 2.1].
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Definition 2. For n ≥ 1 an integer and ξ a real number, an integer polynomial P of
degree at most n will be called best approximation polynomial associated to (n, ξ) if it
minimizes |P (ξ)| among all non identically zero integer polynomials of degree at most
n and height (maximum of absolute values of coefficients) at most H(P ). Any pair n, ξ
with ξ not algebraic of degree at most n thus gives rise to a uniquely determined (up to
sign) infinite sequence of best approximation polynomials. We denote it by (Pk)k≥1 and
the height of Pk by Hk.

Recall that they satisfy

(6) |P1(ξ)| > |P2(ξ)| > · · · , H1 < H2 < · · · .
We derive for k ≥ 2 the quantities

(7) µk := − log |Pk−1(ξ)|
logHk

, vk := − log |Pk(ξ)|
logHk

.

and see the relation to the classical exponents is given by

(8) ŵn(ξ) = lim inf
k→∞

µk, wn(ξ) = lim sup
k→∞

vk.

We comprise some results that were implicitly derived in [15], see more precisely the
beginning of the proof of [15, Theorem 1.1] and [15, §3.2]. Following notation of [15], let

(9) Vk = {Pk, TPk, . . . , T
n−2Pk}, k ≥ 1,

consisting of n− 1 integer polynomials of degree at most 2n− 2.

Lemma 2.1 ([15]). Let n ≥ 2 be an integer and ξ a real number that satisfies

(10) ŵn(ξ) > 2n− 2.

Then for all large enough k, the polynomial Pk from Definition 2 is irreducible of degree

exactly n. Consequenctly, for any large k, the set Vk−1 ∪ Vk is linearly independent and

thus spans a hyperplane in the space of polynomials of degree at most 2n− 2. Moreover

we have

(11)
wn(ξ)

ŵn(ξ)
≤ n− 1

ŵn(ξ)− n
.

Some claims of the lemma originate in results from [3]. We aim to prove Theorem 1.1
by contradiction, assuming throughout we had

(12) ŵn(ξ) > βn

for some ξ and showing that it is impossible. Therefore, as βn > 2n − 2, the condition
(10) is not restrictive. The same applies to Theorem 1.2. It will occur frequently.

The next, new lemma extends the claim about the dimension of unions of consecutive
Vk from Lemma 2.1. Thereby it avoids case 2 from the proof of [15, Theorem 1.1] and
gives us more flexibility. The proof uses similar arguments. It can be interpreted as a
partial result towards proving the conditional bounds from [15, § 2], however per se it
does not lead to an improvement in this framework.
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Lemma 2.2. Let n ≥ 2 be an integer and ξ a real number. Assume (10) holds. For all

large enough, good k in sense of Definition 1, the polynomials from the union

Rk := Vk−1 ∪ Vk ∪ Vk+1

span the space of polynomials of degree at most 2n− 2.

Remark 1. The linear independence assumption of the lemma is clearly also needed,
else the union spans a space of dimension at most 2n− 2 (with equality if (10) holds).

Remark 2. The proof below shows that the claim holds for any three linearly independent
irreducible polynomials of exact degree n, in particular upon (10) by Lemma 2.1 for any
linearly independent triple of best approximation polynomials.

Proof. By Lemma 2.1, it suffices to show that some polynomial from Vk+1 does not belong
to the span of Vk−1 ∪Vk. If Pk+1 ∈ Vk+1 is not contained in this space, then we are done.
So assume it does belong to the span. Then we can write

(13) Pk+1 = Q1Pk−1 +Q2Pk

for rational polynomials Qi = Qi,k ∈ Q[T ] of degrees at most

m := max
i=1,2

degQi ≤ n− 2.

On the other hand, m ≥ 1 follows from the linear independence assumption of the lemma.
Without loss of generality, assume degQ1 = m, the other case works analogously. Then
consider T n−m−1Pk+1 which has degree at most 2n− 2 so it lies in Vk+1. Again if it does
not lie in the span of Vk−1 ∪ Vk we are done. So we can assume it does, which again
means that there is some identity

(14) T n−m−1Pk+1 = B1Pk−1 +B2Pk

with rational polynomials Bi ∈ Q[T ] of degrees

(15) degBi ≤ n− 2, i = 1, 2.

On the other hand, by (13) we can write

(16) A1Pk−1 + A2Pk = T n−m−1Pk+1,

where Ai ∈ Q[T ], i = 1, 2, are rational polynomials given as Ai = T n−m−1Qi. Note that
degA1 = (n−m− 1) +m = n− 1. Hence by (15) also

(17) deg(A1 − B1) = n− 1.

Now from (14), (16) we have an identity

B1Pk−1 +B2Pk = T n−m−1Pk+1 = A1Pk−1 + A2Pk.

This yields to an identity over Q[T ] given as

(A1 − B1)Pk−1 = −(A2 −B2)Pk,

and multiplying with the common denominator we get an equality

(Ã1 − B̃1)Pk−1 = −(Ã2 − B̃2)Pk
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over integer polynomials Ãi, B̃i ∈ Z[T ]. So since Pk−1, Pk are distinct and irreducible of
degree exactly n by Lemma 2.1, we must have that Pk divides Ã1 − B̃1 over Z[T ], but
since the latter has degree n− 1 by (17), this is impossible. The lemma is proved. �

2.2. On consecutive best approximations in two-dimensional subspaces. As al-
luded by (8), for studying uniform exponents, it is important to understand how fast
consecutive best approximations occur. Hence we define

(18) τk =
logHk

logHk−1

> 1, k ≥ 2,

that is

Hk = Hτk
k−1.

All error terms below will be understood as k → ∞. Then, upon assuming (10), by (11)
and a well-known argument (see for example [18, Lemma 1]) we have

(19) 1 < τk ≤ wn(ξ)

ŵn(ξ)
+ o(1) ≤ n− 1

ŵn(ξ)− n
+ o(1).

Note that only the most right estimate of (19) requires a condition on ξ. Furthermore as
a consequence of (8) we have

(20) H
−wn(ξ)/τk−o(1)
k = H

−wn(ξ)−o(1)
k−1 ≪ |Pk−1(ξ)| ≪ H

−ŵn(ξ)+o(1)
k .

The next lemma, only required for the proof of Theorem 1.1, estimates for how long a set
of consecutive best approximation polynomials can lie in a two-dimensional subspace. The
proof follows closely ideas of Davenport and Schmidt [4] and refines it in a quantitative
way. As in [4], it is not specific to points on the Veronese curve and can be formulated for
linear forms in any n real variables that are Q-linearly independent together with {1}.
Definition 3. Given n, ξ, for k ≥ 2 an integer, let ℓ = ℓ(k) ≥ k+1 be the maximal integer
so that Pk−1, Pk, . . . , Pℓ−1 from Definition 2 lie in a two-dimensional space (spanned by
Pk−1, Pk).

Note that k is good in sense of Definition 1 if and only if ℓ(k) = k + 1.

Lemma 2.3. Let n ≥ 2 be an integer, ξ be a transcendental real number, and let (Pj)j≥1

be the sequence of best approximation polynomials for degree n as in Definition 2. For

k ≥ 2 an integer, assume

(21) Hk > 2 ·Hk−1.

Let ℓ = ℓ(k) ≥ k + 1 be as in Definition 3 and let vk−1 be as in (7). Then we have

(22)
logHℓ−1

logHk

≤
vk−1

τk
− 1

ŵn(ξ)− 1
+ o(1), k → ∞.

In particular

(23)
logHℓ−1

logHk
≤

wn(ξ)
τk

− 1

ŵn(ξ)− 1
+ o(1), k → ∞.
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Hence Pk−1, Pk, Pℓ are linearly independent and

(24)
logHℓ

logHk
≤

wn(ξ)
τk

− 1

ŵn(ξ)− 1
· τℓ + o(1), k → ∞.

Remark 3. The factor two in (21) can be replaced by any value larger than 1. The claim
probably remains true without condition (21) at all, however for us this condition will
not cause major problems below.

Remark 4. If (10) holds, then we may use (11) to eliminate wn(ξ) and express the right
hand sides in terms of n, ŵn(ξ), τk, τℓ only. For example (24) becomes

logHℓ

logHk
≤ (n− 1)ŵn(ξ)− τk(ŵn(ξ)− n)

τk(ŵn(ξ)− 1)(ŵn(ξ)− n)
· τℓ + o(1), k → ∞.

This will be used in the proof of Theorem 5.1 below.

We will only explicitly need (24) below. It implies that we cannot have that all but
finitely many best approximations lie in a two-dimensional space, a claim from [4, §4]. The
latter is false for three-dimensional subspaces and general real vectors of any dimension
n ≥ 3 (possibly none of the exceptions lie on the Veronese curve though), see [9]. Note
further that the ratio in (23) decreases to 1 as τk approaches its upper bound from (19).

Proof. Following the method of Davenport and Schmidt [4, §4] stated for n = 2 only but
which generalizes to any n by the same argument, we see the following: Whenever con-
secutive best approximations Pk−1, Pk, . . . , Pℓ−1 lie in a two-dimensional space, denoting
xj > 0 the leading coefficient of Pj we have

(25) |xk−1Pk(ξ)− xkPk−1(ξ)| = |xℓ−2Pℓ−1(ξ)− xℓ−1Pℓ−2(ξ)|.
The choice of the leading coefficient is not critical, the according identity remains true
when choosing the coefficient of any other power (the same power for all Pj) by the same
underlying determinant argument, not explicitly carried out in [4]. Hence we may assume

xk = Hk

as otherwise we choose instead the coefficient for the power that induces Hk and the
argument below works analogously. Now by (21), (6) and as xk−1 ≤ Hk−1 is obvious, this
leads to

|xk−1Pk(ξ)− xkPk−1(ξ)| ≥ |xkPk−1(ξ)| − |xk−1Pk(ξ)|
≥ |HkPk−1(ξ)| − |Hk−1Pk(ξ)|
≥ |HkPk−1(ξ)| − |(Hk+1/2)Pk(ξ)|
≥ |HkPk−1(ξ)| − |(Hk/2)Pk−1(ξ)|

=
1

2
·Hk|Pk−1(ξ)|

=
1

2
Hk ·H−vk−1/τk

k

=
1

2
H

1−vk−1/τk
k .(26)
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On the other hand (20), (6) imply

|xℓ−2Pℓ−1(ξ)− xℓ−1Pℓ−2(ξ)| ≤ |xℓ−2Pℓ−1(ξ)|+ |xℓ−1Pℓ−2(ξ)|
≤ 2xℓ−1|Pℓ−2(ξ)|
≤ 2Hℓ−1|Pℓ−2(ξ)|
≪ H

1−ŵn(ξ)+o(1)
ℓ−1 .(27)

Combining the three claims (25), (26), (27) gives the estimate (22). Since vk−1 ≤ wn(ξ)+
o(1) as k → ∞ by (8), we infer (23). The last claim (24) follows in turn from (23) via

logHℓ

logHk
=

logHℓ−1

logHk
· logHℓ

logHℓ−1
≤

wn(ξ)
τk

− 1

ŵn(ξ)− 1
· τℓ + o(1), k → ∞.

The lemma is proved. �

3. Parametric geometry of numbers: Introduction and a lemma

Our final prerequisite lemma will be formulated in the language of parametric geometry
of numbers, which will also be used in the proofs of the main claims Theorem 4.1, 5.1
below. We only give a brief summary of the most important notation. We consider
the classical lattice point problem induced by linear form (polynomial) approximation
to (ξ, ξ2, . . . , ξ2n−2), as in [15]. Concretely, we consider the successive minima functions
κj(Q), 1 ≤ j ≤ 2n − 1, with respect to the lattice and parametrised family of convex
bodies of constant volume

Λξ = {(a1, . . . , a2n−2, a0 + a1ξ + · · ·+ a2n−2ξ
2n−2) ∈ R2n−1 : ai ∈ Z},

K(Q) = [−Q
1

2n−2 , Q
1

2n−2 ]2n−2 × [−Q−1, Q−1] ⊆ R2n−1, Q > 1,

in R2n−1 and we derive the parametric functions

Lj(q) = log κj(e
q), q > 0, 1 ≤ j ≤ 2n− 1.

These are piecewise linear with slopes among {−1/(2n−2), 1}, as locally they are realised
by the trajectory of some integer polynomial P of degree at most 2n− 2 and height HP ,
defined as

(28) LP (q) = max

{
logHP − q

2n− 2
, log |P (ξ)|+ q

}
.

In other words, for each q ≥ 0 there are linearly independent polynomials P (1), . . . , P (2n−1)

as above (depending on q) with integer coefficients and of heights H(1), . . . , H(2n−1), so
that

(29) Lj(q) = LP (j)(q) = max

{
logH(j) − q

2n− 2
, log |P (j)(ξ)|+ q

}
, 1 ≤ j ≤ 2n− 1.

The polynomial P (1) minimizes LP over all relevant choices of P , hence

L1(q) = minLP (q) = minmax

{
logHP − q

2n− 2
, log |P (ξ)|+ q

}

with minimum taken over all non-zero integer polynomials P of degree at most 2n− 2.
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In Lemma 3.1 as well as in Theorems 4.1, 5.1 below, we will consider the trajectories
(28) for P = Pj the best approximation polynomials of degree at most n (which their
naturally inclusion in the set of polynomials of degree at most 2n− 2) as in Definition 2,
hence

(30) LPj
(q) = max

{
logHj −

q

2n− 2
, log |Pj(ξ)|+ q

}
, j ≥ 1.

More generally, we will consider LP (q) for P ∈ Vk as defined in (9). We recall that
Minkowski’s Second Convex Body Theorem is equivalent to

(31)

∣∣∣∣∣

2n−1∑

j=1

Lj(q)

∣∣∣∣∣ = O(1).

The constant depends on n only. We recall that the quality of approximation |P (ξ)|
induced by some integer polynomial P is essentially encoded by the quotient LP (q)/q at
its unique global minimum point q where the rising and decaying part of the trajectory
LP in (28) coincide. Now we can finally state our lemma.

Lemma 3.1. Let n ≥ 2 be an integer and ξ be a real number satisfying (10). Let Pk−1, Pk

be two consecutive minimal polynomials with respect to approximation to (ξ, ξ2, . . . , ξn)
as in Definition 2. Consider the combined graph with respect to (ξ, ξ2, . . . , ξ2n−2), with in-

duced piecewise linear functions LPj
as in (30) and successive minima functions L1, . . . , L2n−1.

Let qk be the unique point where LPk−1
(qk) = LPk

(qk) and sk < qk be the place where LPk−1

is minimized, i.e. so that LPk−1
(sk) = minq>0 LPk−1

(q). Then

L2n−1(qk) ≥ −(2n− 2) · LPk−1
(qk) +

2n2 − 5n+ 2

2n− 2
(qk − sk)−O(1).

The gain compared to the method in [15, Theorem 1.1] is the non-negative expression
((2n2 − 5n+ 2)/(2n− 2)) · (qk − sk). If τk exceeds some θ > 1 strictly, then the estimate
qk − sk ≫θ qk can be verified, leading to an improvement for n ≥ 3. On the other hand,
the identity 2n2 − 5n + 2 = 0 for n = 2 naturally agrees with the bound (2) for n = 2
from [5] (also obtained with different proofs in [3] and [15]) being optimal.

The proof of Lemma 3.1 is rather straightforward.

Proof. Since the slope of any trajectory is at least −1/(2n− 2), we clearly have

(32) L2n−1(qk) ≥ L2n−1(sk)−
qk − sk
2n− 2

.

On the other hand, it is clear that in the interval (sk, qk) the function LPk−1
increases

with slope 1, whereas LPk
has slope −1/(2n− 2). Thus

(33) LPk−1
(qk) + LPk

(qk) ≥ LPk−1
(sk) + LPk

(sk) + (1− 1

2n− 2
)(qk − sk).

Since we assume (10), we may apply Lemma 2.1 to see that Vk−1 ∪ Vk span a space of
dimension 2n − 2 (hyperplane). We may assume ξ ∈ (0, 1) so that |Pj(ξ)| = max |P (ξ)|
with maximum taken over P ∈ Vj, for all j. Since the heights of all P ∈ Vj coincide (all
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equal to Hj), via (28) in particular this implies LPj
(q) maximise LP (q) on (0,∞) among

all P ∈ Vj, for all j ≥ 1, i.e.

(34) LPj
(q) = max

P∈Vj

LP (q), q > 0, j ≥ 1.

Then (33) implies

2n−2∑

j=1

Lj(sk) ≤
∑

P∈Vk−1∪Vk

LP (sk)

≤ (n− 1)(LPk−1
(sk) + LPk

(sk))

≤ (n− 1)

(
LPk−1

(qk) + LPk
(qk)− (1− 1

2n− 2
)(qk − sk)

)

= (n− 1)

(
2LPk

(qk)− (1− 1

2n− 2
)(qk − sk)

)

= (2n− 2)LPk
(qk)− (n− 3

2
)(qk − sk).

Thus by (31)

L2n−1(sk) ≥ −
2n−2∑

j=1

Lj(sk)−O(1)

≥ −(2n− 2)LPk
(qk) + (n− 3

2
)(qk − sk)− O(1).(35)

Now combining (32), (35) gives

L2n−1(qk) ≥ −(2n− 2)LPk−1
(qk) + (n− 3

2
− 1

2n− 2
)(qk − sk)− O(1)

= −(2n− 2)LPk−1
(qk) +

2n2 − 5n+ 2

2n− 2
(qk − sk)− O(1),

the claimed inequality. �

4. A bound for ŵn(ξ) increasing in τk

The method of the proof of [15, Theorem 1.1] essentially implicitly gives the following
estimate.

Theorem 4.1. Assume n ≥ 2 is an integer and ξ is a real number. Let k ≥ 2 be an

integer and τk be defined as in (18) and µk as in (7). Then for all good k in terms of

Definition 1, we have

τk+1 ≥ µk − (2n− 3).

By (8) we conclude that for any ε > 0 and all good k ≥ k0(ε) we have

(36) τk+1 ≥ ŵn(ξ)− (2n− 3)− ε.
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Proof. We may assume (10) as otherwise the claim is obvious by τk > 1. We use the
parametric geometry of numbers setup introduced in §3. Very similarly to the proof of
[15, Theorem 1.1], at the position qk where the trajectories LPk−1

and LPk
meet we have

(37) L2n−2(qk) ≤ LPk
(qk) =

2n− 2− µk

(2n− 2)(1 + µk)
· qk.

The inequality stems from Lemma 2.1. For the latter identity notice that it is clear that
LPk

decreases with slope −1/(2n − 2) up to this point qk whereas LPk−1
increases with

slope 1 on some left neighborhood of qk. Hence by (30) we have

(38) log |Pk−1(ξ)|+ qk = LPk−1
(qk) = LPk

(qk) = logHk −
qk

2n− 2

and the identity can be derived with some calculation and the definition of µk. We remark
that by (8), we may deduce

L2n−2(qk) ≤ LPk
(qk) ≤

(
2n− 2− ŵn(ξ)

(2n− 2)(1 + ŵn(ξ))
+ o(1)

)
· qk, k → ∞,

which is precisely [15, (49)]. Combining (37) with the most right identity of (38) we get

(39) logHk ≤
(

2n− 2− µk

(2n− 2)(1 + µk)
+

1

2n− 2

)
· qk.

On the other hand, again very similar to [15] from (31), (37) we get

L2n−1(qk) ≥ −(2n− 2)L2n−2(qk)− O(1) ≥ µk − 2n+ 2

1 + µk
· qk.

Let P of height HP denote the integer polynomial realizing the last minimum at qk, i.e.
LP (qk) = L2n−1(qk). Since LP is easily seen to decrease until qk with slope −1/(2n− 2)
(see the proof of [15, Theorem 1.1] for details) by (28) we get

logHP = LP (qk) +
qk

2n− 2

= L2n−1(qk) +
qk

2n− 2
≥
(
µk − 2n + 2

1 + µk
+

1

2n− 2

)
· qk.(40)

By the linear independence assumption and Lemma 2.2, we must have

(41) Hk+1 ≥ HP .

Assume otherwise Hk+1 < HP . By Lemma 2.2 we have T jPk+1(T ) not in the span of
Vk−1∪Vk for some 0 ≤ j ≤ n−2. We may assume j = 0 the other cases work analogously.
Then since both LPk+1

and LP clearly decrease until qk, from (28) we get

LPk+1
(qk) = logHk+1 −

qk
2n− 2

< logHP − qk
2n− 2

= LP (qk) = L2n−1(qk),

contradicting the linear independence of Vk−1 ∪ Vk ∪ {Pk+1}. Combining the estimates
(39), (40), (41), we get

τk+1 =
logHk+1

logHk

≥ logHP

logHk

≥
µk−2n+2
1+µk

+ 1
2n−2

2n−2−µk

(2n−2)(1+µk)
+ 1

2n−2

.

Finally, the right hand side can be simplified to the desired expression µk − (2n− 3). �
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Remark 5. If we combine (36) with (19) for index k + 1, we get the upper bound for
ŵn(ξ) from [15, Theorem 1.1]. Recall this bound is weaker than αk from § 1.1.

Note that we only used Lemma 2.1 and Lemma 2.2, the latter can even be omitted upon
introducing a more complicated argument, see Case 2 from the proof of [15, Theorem 1.1].

From τk given in (18), derive

(42) τ := lim sup
k→∞

τk.

For the concern of Theorem 1.1, we will only apply Theorem 4.1 in form of the following
corollary.

Corollary 4.2. Assume n ≥ 2 is an integer and ξ is a real number satisfying (10). Then

ŵn(ξ) ≤ τ + 2n− 3.

Proof. Since infinitely many k are good (as follows from Lemma 2.3, or Davenport and
Schmidt’s method [4] extended to general n), considering such a subsequence, the estimate
follows directly from Theorem 4.1. �

5. A bound for ŵn(ξ) decreasing in τk, τℓ

The main new contribution to improve the upper bound for ŵn(ξ) is the following
slightly technical result whose proof uses all three new lemmas from § 2 and § 3.

Theorem 5.1. Let n ≥ 2 be an integer and ξ be a real number satisfying (10). For

any ε > 0, there exists k0(ε) > 0 such that for any integer k ≥ k0(ε) satisfying (21), if
ℓ = ℓ(k) is as in Definition 3 and with τ. defined in (18), we have

Θn = Θn(ŵn(ξ), τk, τℓ) ≤ ε

where

Θn = d3ŵn(ξ)
3 + d2ŵn(ξ)

2 + d1ŵn(ξ) + d0
with dj = dj(n, τk, τℓ) given by

d3 = τk,

d2 = −(2nτk + n− 2),

d1 = τkτℓ + (n2 + n− 1)τk + (1− n)τℓ + n2 − n− 2,

d0 = −n · ((n− 1 + τℓ)τk + n− 2).

Remark 6. Again the assumption (21) is probably not necessary.

We prove the theorem.

Proof of Theorem 5.1. We again consider the combined graph with respect to approxi-
mation to (ξ, ξ2, . . . , ξ2n−2), with notation as in § 3. Take a sequence of k satisfying (21).
Recall qk is the first coordinate of the meeting point of LPk−1

and LPk
. Define Ωk < 0 by

(43) Ωk :=
LPk−1

(qk)

qk
=

LPk
(qk)

qk
.
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As in the proof of Theorem 4.1, again by [15, (49)] we have

(44) Ωk ≤ 2n− 2− ŵn(ξ)

(2n− 2)(1 + ŵn(ξ))
+ o(1), k → ∞.

From Lemma 3.1 similarly to the proof of Theorem 4.1 we get

L2n−1(qk) ≥ −(2n− 2)L2n−2(qk) + (qk − sk)
2n2 − 5n+ 2

2n− 2
− O(1)

≥ −(2n− 2)Ωk · qk + (qk − sk)
2n2 − 5n + 2

2n− 2
−O(1)

=

(
2n2 − 5n+ 2

2n− 2
− (2n− 2)Ωk

)
qk −

2n2 − 5n+ 2

2n− 2
sk −O(1).(45)

We next provide an estimate for sk in terms of qk and τk. Notice first that the definition
of qk implies that LPk

decays with slope −1/(2n− 2) on the interval (0, qk), so (28) and
(43) imply

logHk = LPk
(qk) +

qk
2n− 2

= qk ·
(

1

2n− 2
+ Ωk

)
.(46)

Since LPk−1
decreases with slope −1/(2n− 2) up to sk and increases with slope 1 from sk

to qk by (28), we get

LPk−1
(qk) = logHk−1 −

sk
2n− 2

+ (qk − sk)

=
logHk

τk
− sk

2n− 2
+ (qk − sk)

≤
(

1
2n−2

+ Ωk

τk

)
qk −

sk
2n− 2

+ (qk − sk)

=

(
1

2n−2
+ Ωk

τk
+ 1

)
qk −

2n− 1

2n− 2
sk.(47)

On the other hand by (43) we have

(48) LPk
(qk) = LPk−1

(qk) = Ωkqk.

Comparing (47), (48) and solving for sk we get

sk ≤
2n− 2

2n− 1
·
(

1
2n−2

+ Ωk

τk
+ 1− Ωk

)
· qk.(49)
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Note that the bound for sk becomes qk if τk = 1, an intuitively result. Inserting (49) in
(45) and dividing by qk we get

L2n−1(qk)

qk
≥ 2n2 − 5n+ 2

2n− 2
− (2n− 2)Ωk

− 2n2 − 5n+ 2

2n− 2
· 2n− 2

2n− 1
·
(

1
2n−2

+ Ωk

τk
+ 1− Ωk

)

=
2n2 − 5n+ 2

2n− 2
− (2n− 2)Ωk

− 2n2 − 5n+ 2

2n− 1
·
(

1
2n−2

+ Ωk

τk
+ 1− Ωk

)
.

Now by differentiating the bound with respect to Ωk and observing (2n − 2)(2n − 1) =
4n2−6n+2 ≥ 2n2−5n+2 for n ≥ 1, we readily check that this lower bound decreases in
the variable Ωk. Hence we may assume asymptotic equality in (44) as k → ∞. Inserting,
after rearrangements this leads to the estimate

(50)
L2n−1(qk)

qk
≥ (2n− 2)τk · ŵn(ξ)− (2n2 − 3n + 2)τk − (2n2 − 5n+ 2)

(2n− 2)τk(1 + ŵn(ξ))
− ǫ

2
,

for ǫ > 0 and any large enough k ≥ k0(ǫ).

We now aim to find a reverse upper bound for L2n−1(qk)/qk. With ℓ = ℓ(k) as in
Definition 3, note that Pk−1, Pk, Pℓ are linearly independent and so by Lemma 2.2 the
polynomials Vk−1∪Vk∪Vℓ span the space of polynomials of degree at most 2n−2 (Lemma
2.2 holds for any linearly independent triple of Pj, see Remark 2). Thus T jPℓ(T ) does
not lie in the span of Vk−1 ∪ Vk for some 0 ≤ j ≤ n − 2. We may assume for simplicity
j = 0 so that Pℓ ∈ Vℓ does not belong to the span of Vk−1∪Vk, the other cases work very
similarly. So Vk−1 ∪ Vk ∪ {Pℓ} are linearly independent. Now

LPℓ
(qk) > 0 > max

P∈Vk−1∪Vk

LP (qk) = LPk
(qk)

is easily verified where the last identity comes from (34) and LPk−1
(qk) = LPk

(qk) by
definition of qk. Moreover, again by (28), the function LPℓ

obviously decays with slope
−1/(2n− 2) in the interval (0, qk) as its minimum is taken at some qℓ > qk. Combining
all these facts we get

L2n−1(qk) ≤ max
P∈Vk−1∪Vk∪{Pℓ}

LP (qk) = LPℓ
(qk) = logHℓ −

qk
2n− 2

.(51)

To bound the right hand side we next estimate Hℓ. Note that we may apply Lemma 2.3
by assumption (21). By applying in this order (24) of Lemma 2.3, (46), (44), and (11),
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we get

logHℓ ≤
(

wn(ξ)
τk

− 1

ŵn(ξ)− 1
· τℓ + o(1)

)
· logHk

≤
(

wn(ξ)
τk

− 1

ŵn(ξ)− 1
· τℓ
(

1

2n− 2
+ Ωk

)
+ o(1)

)
· qk

≤
(

wn(ξ)
τk

− 1

ŵn(ξ)− 1
· τℓ ·

2n− 1

(2n− 2)(1 + ŵn(ξ))
+ o(1)

)
· qk

≤
(
(n− 1)ŵn(ξ)− τk(ŵn(ξ)− n)

τk(ŵn(ξ)− 1)(ŵn(ξ)− n)
· (2n− 1)τℓ
(2n− 2)(1 + ŵn(ξ))

+ o(1)

)
· qk.(52)

See also Remark 4. Inserting in (51) and dividing by qk yields

(53)
L2n−1(qk)

qk
≤ ∆− 1

2n− 2
+

ǫ

2

where

∆ =
(n− 1)ŵn(ξ)− τk(ŵn(ξ)− n)

τk(ŵn(ξ)− 1)(ŵn(ξ)− n)
· (2n− 1)τℓ
(2n− 2)(1 + ŵn(ξ))

,

for ǫ > 0 and k ≥ k1(ǫ) again.

Comparing the lower bound (50) and the upper bound (53) obtained for L2n−1(qk)/qk
gives a relation involving n, τk, τℓ and ŵn(ξ) of the form

(2n− 2)τk · ŵn(ξ)− (2n2 − 3n+ 2)τk − (2n2 − 5n+ 2)

(2n− 2)τk(1 + ŵn(ξ))

≤ (n− 1)ŵn(ξ)− τk(ŵn(ξ)− n)

τk(ŵn(ξ)− 1)(ŵn(ξ)− n)
· (2n− 1)τℓ
(2n− 2)(1 + ŵn(ξ))

− 1

2n− 2
+ ǫ,

for k ≥ max{k0(ǫ), k1(ǫ)}. Subtracting the right side from the left, multiplying with the
common denominator and some rearrangements lead to the estimate in Theorem 5.1 upon
modifying ǫ. �

6. Deduction of Theorem 1.1 from Theorems 4.1, 5.1

Recall that we want to prove the claim indirectly, assuming (12) holds for some ξ and
leading it to a contradiction. Hence, as βn > 2n− 2, we can assume the condition (10) of
Theorem 5.1 is satisfied. Recall τ from (42). Notice this quantity depends on ξ, n only.
We distinguish two cases.

Case 1: τ = 1. Then Corollary 4.2 directly implies ŵn(ξ) ≤ τ + 2n− 3 = 2n− 2 < βn.

Case 2: τ > 1. We may assume the sequence τ < ∞ in view of (19), otherwise again
the strengthened bound ŵn(ξ) ≤ 2n − 2 < βn follows immediately. Choose a sequence
of values k converging to τ . For any large enough k in this sequence, by assumption of
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Case 2 we have τk > θ > 1 is strictly bounded away from 1, in particular condition (21)
of Lemma 2.3 and Theorem 5.1 holds. Thus for such k we can apply Theorem 5.1. Note
that its bound Θn increases as a function in the third argument τℓ (but decreases in the
argument τk). As τk → τ and clearly τℓ ≤ τ + o(1) for ℓ = ℓ(k) as in Definition 3 as
k → ∞, we may put τk = τℓ = τ in the inequality claim of Theorem 5.1 upon modifying
ǫ. In the limit we may ignore this error term ǫ and we obtain

(54) Θn(ŵn(ξ), τ , τ) ≤ 0.

It can be checked that (54) induces a bound

ŵn(ξ) ≤ Fn(τ)

for some decreasing function Fn : (1,∞) → R. Combined with Corollary 4.2 we get

ŵn(ξ) ≤ min{τ + 2n− 3, Fn(τ)}.
Now the left bound increases while the right bound decreases in τ , hence the maximum
(worst case) of the above minimum is obtained for the equilibrium τ where the expressions
coincide. Hence we can put

τ = ŵn(ξ)− 2n+ 3

in the defining equation (54) of Fn and solve for equality

Θn(ŵn(ξ), τ , τ) = Θn(ŵn(ξ), ŵn(ξ)− 2n+ 3, ŵn(ξ)− 2n+ 3) = 0

in the variable ŵn(ξ). After simplifications, this gives a quartic polynomial equation
Qn(ŵn(ξ)) = 0 for Qn(T ) precisely the polynomial in Theorem 1.1. Its largest root βn is
checked to be in the interval (2n− 2, 2n− 1) and so Theorem 1.1 is proved.

7. Sketch of the proof of Theorem 1.2

We establish a variant of Theorem 5.1. Assume first hypothesis (i) of Theorem 1.2
holds and fix any large good k. Then ℓ = k + 1 in Definition 3, hence in (52) within the
proof of Theorem 5.1 the factor (wn(ξ)/τk − 1)/(ŵn(ξ)− 1) derived from Lemma 2.3 can
be omitted (replaced by 1). Proceeding as in the proof of Theorem 5.1 this results in an
estimate

(55) Θ̃n = Θ̃n(ŵn(ξ), τk, τℓ) ≤ ǫ,

for ǫ > 0 provided that k ≥ k0(ǫ) is good, where

Θ̃n :=(2n− 2)τkŵn(ξ)− (2n2 − 3n + 2)τk − (2n2 − 5n+ 2)− τk((2n− 1)τℓ − 1− ŵn(ξ)).

This again defines an inequality ŵn(ξ) ≤ F̃n(τk, τℓ)+o(1) with some function F̃n decreasing
in τk and increasing in τℓ. Now we estimate τℓ as in (19) in terms of ŵn(ξ) to derive a
bound ŵn(ξ) ≤ G̃n(τk) + o(1) for some decreasing one-parameter function G̃n. Since
linear independence is assumed for Pk−2, Pk−1, Pk as well, on the other hand we may
apply Theorem 4.1 for index k − 1 and combining we get

ŵn(ξ) ≤ min{τk + 2n− 3, G̃n(τk)}+ o(1).
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We let k → ∞ within our subsequence to make the error term disappear, and the worst
case scenario happens when the bounds coincide which in particular means τk = ŵn(ξ)−
2n+ 3. Plugging this into Θ̃n yields

Θ̃n(ŵn(ξ), ŵn(ξ)− 2n+ 3,
n− 1

ŵn(ξ)− n
) ≤ 0

and the claimed bound γn follows after some rearrangements.

Now as in (ii) assume the linear independence hypothesis holds for all large k. For the
same reasons as in § 6 we may again assume the sequence (τk)k≥1 is bounded from above.

Then choosing a subsequence of k with τk → τ < ∞, by (55) and as Θ̃ increases in τℓ we
obtain

(56) Θ̃n = Θ̃n(ŵn(ξ), τ , τ) ≤ ǫ1, k ≥ k1(ǫ1).

This results in a bound of the form ŵn(ξ) ≤ H̃n(τ) + o(1) for the function

H̃n(x) = x+ n− 1 +
n− 2

x
.

This function has a local minimum at x =
√
n− 2 and decreases on x ∈ (1,

√
n− 2), if

non-empty, and increases for x >
√
n− 2. Moreover it can be checked to be smaller than

x + 2n − 3 from Theorem 4.1 for all x > 1. By these observations and since τ ≥ 1, it
follows from (19) that

ŵn(ξ) ≤ max{H̃n(1), H̃n(
n− 1

ŵn(ξ)− n
)} = max{2n− 2, H̃n(

n− 1

ŵn(ξ)− n
)},

where the left bound applies if τ ≤
√
n− 2 and the right bound applies if τ >

√
n− 2.

In case that the right hand side value is the maximum, rearrangements lead to the bound

ŵn(ξ) ≤
√
5 + 1

2
n−

√
5− 1

2
.

Finally it is checked that precisely for integers n ≥ 4 this is smaller than 2n− 2.

Remark 7. Assume a slight generalization of Lemma 2.2, namely that the polynomials
need not be irreducible of exact degree n (which was implied by assumption (10) via
Lemma 2.1) for the implication. Then the proof above shows that, for n ≥ 4 we could
improve the bound ρn = 2n−2 in the setting (ii) if we can settle a non-trivial lower bound
for τ . A related estimate for simultaneous approximation is obtained in [8], however the
result for linear forms is not implied immediately. Thus for n ≥ 10 we would improve the
best known bounds αn in (3) from [3].
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