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In this work, we theoretically study a modified Su-Schrieffer-Heeger (SSH) model in which each
unit cell consists of three sites. Unlike existing extensions of the SSH model which are made by
enlarging the periodicity of the (nearest-neighbor) hopping amplitudes, our modification is obtained
by replacing the Pauli matrices in the system’s Hamiltonian by their higher dimensional counter-
parts. This in turn leads to the presence of next-nearest neighbor hopping terms and the emergence
of different symmetries than those of other extended SSH models. Moreover, the system supports
a number of edge states that are protected by the time-reversal symmetry rather than the usual
chiral symmetry. Finally, our system could be potentially realized in various experimental platforms
including superconducting circuits as well as acoustic/optical waveguide arrays.

I. INTRODUCTION

In condensed matter physics, the topological features
of matter have gained a lot of interest ever since topo-
logical insulators were discovered [1–3]. Topological in-
sulators are peculiar types of materials that display an
insulating bulk, as expected from insulating materials,
but their edges are conducting. Due to these materials’
unique properties and potential applications, for exam-
ple, in the field of quantum computing and spintronics
[4–7], topological insulators are still actively studied in
the last few years [8–12].

The Su-Schrieffer-Heeger (SSH) model [13] is the sim-
plest and most fundamental model of topological insu-
lators [14]. The SSH model describes a one-dimensional
(1D) chain of unit cells, each of which contains two sites
(dimers), and the coupling between intracell and intercell
sites alternates. Two topologically distinct phases can
be observed in the SSH structure. One of these phases,
which is termed topologically nontrivial, is characterized
by the presence of topologically protected zero-energy
modes at the system’s two edges. Such edge modes are
absent in the other phase, which is thus termed topolog-
ically trivial [14]. The SSH model has been thoroughly
studied both experimentally and theoretically in various
physical platforms, including photonics and optical sys-
tems [15–20], thermodynamic systems [21, 22], plasmonic
systems [23–27], ultracold atoms and gases [28–32], fer-
romagnetic systems [33, 34], acoustic waveguide [35–39],
and superconducting systems [40–44] and circuits [45–
47]. Due to its simplicity, the SSH model has further been
the subject for the study of topological entanglement [48–
50]. Finally, a creative use of the SSH model that illus-
trates quantum state transfer is revealed in Refs. [51–58].

In recent years, the SSH model has undergone a trans-
formative extension, marked by the inclusion of long-
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range hopping parameters [59–64], interaction effect [65–
71], nonlinearity [72–74], non-Hermiticity [75–77], and/or
periodic driving [78–82]. Other extensions of the SSH
model include the modifications of its unit cell to being
trimer [83–86] or tetratomic [87–89]. Instead of adhering
to conventional constraints of being the simplest topo-
logical insulator, such extended SSH models recognise
the complexity of topological quantum phases and aim
to uncover richer topological effects. This change in em-
phasis highlights the flexibility of the SSH model and its
ability to deciphering the intricacies present in quantum
processes across a wide range of physical systems. This
in turn puts the family of extended SSH models at the
forefront of theoretical and experimental investigation of
exotic topological phases.

Our study investigates an extension of the SSH model
by means of enlarging the unit cell to contain three
sites (trimers). While a similar theme has been ex-
plored in previous studies such as Refs. [83–86], we con-
sider a totally different approach in developing our ex-
tended SSH model. That is, instead of considering three
different nearest-neighbor hopping strengths, our model
is obtained by replacing the Pauli matrices in the sys-
tem’s Hamiltonian with their three-dimensional general-
izations. As a result, our model also naturally incor-
porates some next-neighbor hopping terms. Due to this
fundamental difference, our extended SSH model has dif-
ferent symmetries and topological properties from those
of other trimer SSH models [83–86]. The extended SSH
model we propose here features a number of edge states.
Remarkably, these edge states persist despite the pres-
ence of time-reversal symmetry preserving perturbations,
thus highlighting their topological nature. Finally, it is
expected that our model could be experimentally imple-
mented in various platforms that have been previously
utilized to realize the SSH model. These include super-
conducting circuits [90–92] and acoustic/optical waveg-
uide arrays [93–95].

This paper is organized as follows. In Section II, we
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provide a detailed description of our model. There, we
start by presenting the system’s Hamiltonian and eluci-
date its physical meaning. We then perform the momen-
tum space analysis of the system to obtain the bulk band
structure and uncover its four symmetries in IIA. In the
same section, we also identify and calculate an appropri-
ate topological invariant that dictates the system’s topol-
ogy. We end the section with II B by analytically iden-
tifying the edge states at some special parameter values,
then further supporting the findings by presenting the
numerically obtained edge states at more general param-
eter values. In Sec. III A, we briefly discuss the potential
for realizing our system in experiments. We then con-
sider four generic types of perturbations and investigate
how they affect our model in Sec. III B. In Section IV,
we summarize our results and present potential aspects
for future studies.

II. MODEL DESCRIPTION

We consider an extended SSH model that has three
sites per unit cell but only two coupling parameters; the
coupling parameter J1 controls the nearest-neighbor in-
tracell hopping, while J2 couples two neighboring unit
cells (see Fig. 1). Mathematically, it is described by the
Hamiltonian

Ĥ =

N∑
j=1

(
J1 c

†
A,jcB,j + J1 c

†
B,jcC,j + h.c.

)

+

N−1∑
j=1

(
J2 c

†
A,j+1cB,j + J2 c

†
B,j+1cC,j + h.c.

)
,

(1)

where c†ζ,j and cζ,j are the creation and annihilation op-

erators at sublattice ζ = A,B,C of the jth unit cell, N is
the number of unit cells, J1 and J2 are the intracell and
intercell hopping parameters, respectively.

FIG. 1: Schematic of our extended lattice model with
N = 3 unit cells, A, B, and C are the three sublattices

found in each unit cell.

A. Momentum space analysis

The origin of our model construction could be better
understood by writing Eq. (1) in the momentum space,

(a) (b) (c)

FIG. 2: The energy spectrum corresponding to Eq. (2).
(a) The energy bands touch one another at E = 0 and
k = ±π when J1 = J2. (b,c) The bands are gapped

when J1 ̸= J2.

i.e.,

ˆH (k) =
∑
k

ψ†
kh(k)ψk,

h(k) = (J1 + J2 cos(k))Sx + (J2 sin(k))Sy, (2)

where ψk = (cA,k, cB,k, cC,k)
T , Sx =

(
0 1 0
1 0 1
0 1 0

)
and Sy =(

0 −i 0
i 0 −i
0 i 0

)
are the higher dimention generalizations of

Pauli matrices. It is worth noting that h(k) takes the
same form as the momentum space Hamiltonian of the
regular SSH model, but with the Pauli matrices σx and
σy replaced by their three-dimensional counterparts. Our
construction could then be, in principle, further general-
ized by replacing σx and σy by their D-dimensional coun-
terparts. However, we choose to focus on the D = 3 case
in this paper as the obtained model already exhibits rich
topological effects.

Before presenting its spectral and topological features,
we shall first identify the system’s symmetries. Specifi-
cally, we find that the system respects the chiral, time-
reversal, particle-hole, and inversion symmetries. In
terms of the momentum space Hamiltonian h(k), there
exists operators Γ, T , P, and S which respectively satisfy
Γ−1h(k)Γ = −h(k), T −1h(k)T = h(−k), P−1h(k)P =
−h(−k), and S−1h(k)S = h(−k). These operators are
explicitly given by Γ = diag(−1, 1,−1), T = K (K be-
ing the complex conjugation operator), P = ΓK, and

S =

0 0 1
0 1 0
1 0 0

. It is worth emphasizing that the above

symmetries are different from those respected by other
trimer SSH models previously studied in Refs. [83–86].
In particular, the models of Refs. [83–85] do not have
chiral symmetry, whereas the model of Ref. [86] lacks the
particle-hole symmetry.

Due to the presence of chiral symmetry Γ, the energy
spectrum of our model is symmetrical about E = 0. In-
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deed, the eigenvalues of h(k) are calculated as follows,

E1 = 0,

E2 =
√
2(J2

1 + J2
2 + 2J1J2 cos(k)),

E3 = −
√
2(J2

1 + J2
2 + 2J1J2 cos(k)). (3)

These three bands are generically gapped (see Fig. 2),
except at J1 = J2 where they touch one another at the
boundaries of the first Brillouin zone (k = ±π). While
the cases J1 > J2 and J2 > J1 appear to yield qualita-
tively similar spectral profiles, we will show in the fol-
lowing that they are topologically distinct. Moreover,
our analysis in the next section further demonstrates the
presence of edge states in the topologically nontrivial
regime.

To unravel the topological origin of our model, we com-
pute the normalized sublattice Zak’s phase, which was
first introduced in Ref. [84], as

Zζ
λ =

i

2

∮
dk⟨ψ̃ζ

λ(k)|∂kψ̃
ζ
λ(k)⟩, (4)

|ψ̃ζ
λ(k)⟩ =

Pζ |ψλ(k)⟩√
⟨ψλ(k)|Pζ |ψλ(k)⟩

,

where |ψλ(k)⟩ is the eigenstate coresponding to Eλ, λ =
1, 2, 3, and Pζ ≡ |ζ⟩⟨ζ| is the projector to sublattice ζ, |ζ⟩
being an eigenstate of the chiral symmetry Γ associated
with the sublattice ζ. As detailed in Appendix A, we find
that

ZB
2,3 =

{
π, if J2 > J1
0, if J2 < J1

.

B. Formation of edge states in the real space

Having identified the band closing location, i.e., at
J1 = J2, that separates the two distinct topological
phases in the previous section we now turn our attention
again to the real space description of Eq. (1). In par-
ticular, we aim to demonstrate the correlation between
topology and the presence of edge states, i.e., the topo-
logically nontrivial regime J2 > J1 supports robust lo-
calized eigenstates near the system’s edges, whilst such
edge states are absent in the topologically trivial regime
J1 > J2.

We start by writing Eq. (1) under open boundary con-
ditions in the form

H =
(
c†A,1 c†B,1 c†C,1 · · · c†C,N

)
H


cA,1

cB,1

cC,1

...
cC,N

 , (5)

FIG. 3: The energy spectrum of Eq. (1) versus the
intracell hopping amplitude J1 for N = 50 unit cells

under open boundary conditions. The intercell hopping
amplitude is fixed at J2 = 1. The inset shows the

zoomed-in version of the energy spectrum near one of
the edge states. The red curve depicts the analytically

obtained edge state energy under second-order
perturbation theory (see Sec. II B).

where H is a 3N × 3N matrix of the form

H =

N∑
j=1

(J1 |A, j⟩⟨B, j|+ J1 |B, j⟩⟨C, j|+ h.c.)

+

N−1∑
j=1

(J2 |A, j + 1⟩⟨B, j|+ J2 |B, j + 1⟩⟨C, j|+ h.c.) ,

(6)

|S, j⟩ is a 3N × 1 column vector whose elements are 1
at the (3j − s)th row (s = 2, 1, 0 for S = A,B,C) and
0 elsewhere. By numerically diagonalizing H above, we
obtain the system’s energy spectrum in Fig. 3. There,
we verify that the bands are gapped, except at J1 = J2.
Moreover, in-gap states are clearly observed in the regime
J1 < J2, as we previously claimed. In Fig. 4, the wave
function profiles of such in-gap states at fixed J1 and J2
values demonstrate their localized nature near the left
or right end. This shows that, despite not being pinned
at E = 0 as in the regular SSH model, the observed in-
gap states are in fact the sought after edge states. Upon
closer inspection of Fig. 3, the energy of the observed
edge states is quadratic with respect to J1 and is exactly
E = ±J2 at J1 = 0. This insight allows us to support
the above numerical results with an analytical treatment
that will be discussed next.
To obtain the system’s edge states analytically, we

start by setting J1 = 0 and solve the eigenvalue equation
H |ψ⟩ = E |ψ⟩ with E = ±J2. By deferring the mathe-
matical details to Appendix B, we obtain (ignoring any
normalization constant)
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FIG. 4: Edge states’ profiles for Eq. (1) with J1 = 0.2,
J2 = 1, and N = 50 unit cells. Subplot (a) shows the
distinct left and right edge states at E = −0.96 and

subplot (b) illustrates the two edge states at E = 0.96.
The three sublattices are marked with different colors

according to the schematic of Fig. 1

|ψL,±⟩ = |B, 1⟩ ± |A, 2⟩,

for the left localized edge states and

|ψR,±⟩ = |B,N⟩ ± |C,N − 1⟩,

for the right localized ones.
At nonzero values of J1, the energy of the

edge states could be estimated via perturbation the-
ory. In particular, by taking the intracell hop-
ping term as the perturbative potential, i.e., Ho ≡∑N

j=1 (J1 |A, j⟩⟨B, j|+ J1 |B, j⟩⟨C, j|+ h.c.), we find
that the first-order energy correction for both edge states

is ∆E
(1)
L,± = ⟨ψL,±|Ho|ψL,±⟩ = 0. To obtain the lowest

nonzero correction, we then evaluate the second-order
correction as

∆E
(2)
L,± =

∑
m̸=(L,±)

|⟨ψL,±|Ho|ψm⟩|2

E
(0)
m − E

(0)
L,±

≈ |⟨ψL,±|Ho|ψL,∓⟩|2

E
(0)
L,∓ − E

(0)
L,±

= ∓ 2
|J1|2

J2
. (7)

In the second equality above, we ignored all but one
term in the summation. Specifically, we considered only
the term coming from the other edge state localized
in the same edge since it contains the largest overlap
|⟨ψL,±|Ho|ψL,∓⟩|2. Indeed, as demonstrated in the in-
set of Fig. 3, excellent agreement is observed between
the analytically obtained edge state under second-order
perturbative approximation above and the numerically
obtained one.

III. DISCUSSION

A. Potential experimental realizations

Due to its simplicity, the regular SSH model has
been realized in various experimental platforms, includ-
ing superconducting circuits [90–92] and acoustic/optical
waveguide arrays [93–95]. It is expected that, with suit-
able modifications, these experiments could be adapted
to realize our extended SSH model.
The potentially nontrivial component of our extended

SSH model that is not present in the regular SSH model
is the next-nearest neighbor coupling, which necessarily
arises due to the intercell hopping. Fortunately, such a
next-nearest neighbor coupling could be handled in at
least two different ways. First, specific to the optical
waveguides platform, a next-nearest neighbor coupling
could be achieved by using waveguide interference phe-
nomena [96]. That is, we may efficiently link waveguides
at extended distances by taking advantage of interfer-
ence processes involving an extra supplemental waveg-
uide in between. Alternatively, a potentially simpler
means of handling the next-nearest neighbor couplings is
by turning them into nearest neighbor ones. This could
be achieved by rearranging the lattice configuration into
a quasi-1D ladder as illustrated in Fig. 10.
The extended SSH model under Fig. 10 configuration

could be implemented in existing experimental platforms.
For example, in superconducting circuits, the sites could
represent Xmon qubits, whereas the coupling between
two neighboring sites could be achieved inductively by
a tunable coupler [58] or capacitively such as in [92].
In acoustic/optical waveguides, each lattice site is rep-
resented by a waveguide, the propagation direction of
which simulates the arrow of time. In this case, the cou-
pling between two neighboring waveguides is achieved by
a tunneling effect that can be controlled by their separa-
tion [97]. The presence of edge states in the system could
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FIG. 5: The quasi-1D configuration for our extended
SSH model which renders all couplings nearest-neighbor.

then be verified by exciting appropriate waveguides near
a lattice edge and tracking the propagation dynamics.

B. Effects of perturbation

Topological edge states are particularly attractive for
their robustness against perturbations that preserve the
system’s protecting symmetries. In the following, we fur-
ther support the topological signature of the system and
identify its protecting symmetries by investigating the
fate of its edge states in the presence of some represen-
tative perturbations. To this end, each of the following
terms shall be separately added to the momentum space
Hamiltonian of Eq. (2),

α(k) ≡ αo

0 −i 0
i 0 0
0 0 0

 , β(k) ≡ βo

 0 e−ik 0
eik 0 0
0 0 0

,
γ(k) ≡ γo

0 1 0
1 0 0
0 0 1

 , δ(k) ≡ δo

1 0 0
0 −1 0
0 0 1

, (8)

where αo, βo, γo, and δo are the respective perturbation
strengths. Under each of these perturbations, the respec-
tive real space Hamiltonian reads,

Ĥα =

N∑
j=1

[
(J1 − iαo) c

†
A,jcB,j + J1 c

†
B,jcC,j

]

+

N−1∑
j=1

[
J2 c

†
A,j+1cB,j + J2 c

†
B,j+1cC,j

]
+ h.c.,

(9)

Ĥβ =

N∑
j=1

[
J1 c

†
A,jcB,j + J1 c

†
B,jcC,j

]

+

N−1∑
j=1

[
(J2 + βo) c

†
A,j+1cB,j + J2 c

†
B,j+1cC,j

]
+ h.c.,

(10)

Ĥγ =

N∑
j=1

[
(J1 + γo), c

†
A,jcB,j + J1 c

†
B,jcC,j

]

+

N−1∑
j=1

[
J2 c

†
A,j+1cB,j + J2 c

†
B,j+1cC,j

]
+ h.c.

+ γo

N∑
j=1

c†C,jcC,j , (11)

Ĥδ =

N∑
j=1

[
J1 c

†
A,jcB,j + J1 c

†
B,jcC,j

]

+

N−1∑
j=1

[
J2 c

†
A,j+1cB,j + J2 c

†
B,j+1cC,j

]
+ h.c.

+ δo

N∑
j=1

[
c†A,j cA,j − c†B,j cB,j + c†C,j cC,j

]
. (12)

The perturbations α(k) and β(k) have the effect of
introducing imbalance between the two intracell and in-
tercell hopping amplitudes respectively. It is easily ver-
ified that both α(k) and β(k) preserve the chiral sym-
metry since Γ(−1)α(k)Γ = −α(k) and Γ(−1)β(k)Γ =
−β(k). In contrast to the perturbation α(k) which breaks
time-reversal, particle-hole, and inversion symmetries,
β(k) preserves time-reversal and particle-hole symmetries
while breaking inversion symmetry.
The perturbation γ(k) is chosen to introduce an on-site

potential on sublattice C, while at the same time further
introducing imbalance between the two intracell hopping
amplitudes. The perturbation δ(k) is chosen to introduce
on-site potentials on all three sublattices. Both γ(k) and
δ(k) break the chiral and particle-hole symmetries while
preserving time-reversal symmetry. On the other hand,
the inversion symmetry is broken by γ(k) and is preserved
by δ(k).
Figure 6 shows the energy spectra of our trimer SSH

model in the presence of each of the aforementioned per-
turbations. As shown in Fig. 6(a), we find that the per-
turbation α(k) may lead to the disappearance of the edge
states without being accompanied by band closing. On
the other hand, Fig. 6(b-d) demonstrate that the other
perturbations β(k), γ(k), and δ(k) merely modify the
edge states structure but do not destroy them, even at
considerably large values of βo, γo, and δo. Given that
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FIG. 6: Energy spectrum versus the perturbation
strengths for Eqs. (9–12) in a system of N = 50 unit

cells. The other parameters are chosen as J1 = 0.2 and
J2 = 3 for all cases.

the time-reversal symmetry is the only symmetry that
is simultaneously broken by α(k) and preserved by β(k),
γ(k), and δ(k), the above observations suggest that the
system’s topology is protected by the time-reversal sym-
metry rather than the chiral symmetry as expected from
the regular SSH model.

Note that the perturbations β(k), γ(k), and δ(k) have
different effects on the edge states. Specifically, the per-
turbation β(k) breaks the degeneracy between the left
and right edge states (see Fig. 6(b)). In this case, while
the energy of the right edge states remains unaffected by
the perturbation strength βo, the energy of the left edge
states is shifted closer to the nearest bulk band. Conse-
quently, at large enough βo, the left edge states merge
with the bulk bands and disappear, whilst the right edge
states remain present. Such an asymmetry between the
number of edge states on the left and right edge states is
unique to our extended SSH model and cannot be found
in a regular SSH model (without breaking the sublattice
degree of freedom). This phenomenon could be under-
stood from Eq. (8) by observing that the perturbation
β(k) only modifies the hopping involving sublattices A
and B from two neighboring unit cells. As the left edge
states have the largest support on sublattices A and B
(see Fig. 4), they are signficantly affected by such a per-
turbation. By contrast, the right edges, which have the

largest support on sublattices B and C (see Fig. 4), are
much more insensitive to β(k).
As the perturbation γ(k) also modifies the hopping in-

volving sublattices A and B while leaving the hopping
involving sublattices B and C intact, the left and right
edge states similarly develop an energy difference. More-
over, as the chiral symmetry is broken, there is further
asymmetry between the positive and negative energies.
In particular, as observed in Fig. 6(c), both the nega-
tive energy edge states eventually merge with the lower
bulk band and disappear at large enough γo. On the
other hand, at positive energy, only the right localized
edge state merges with the upper bulk, whilst the left
localized edge state persists even at very large γo. In-
terestingly, the perturbation γ(k) also leads to new edge
states emerging from the zero energy bulk states. One of
these edge states, which is localized near the left edge,
remains at zero energy and disappears at moderate γo af-
ter merging back with the center bulk band. The other,
which is localized near the right edge, remains present
at very large γo. It then follows that at γ0 → ∞, only
two (almost degenerate) edge states at positive energy
remain, one localized near the left edge whilst the other
is localized near the right edge of the system.
Finally, the perturbation δ(k) merely deforms the en-

ergy bands while leaving the edge states intact (see
Fig. 6(d)). The breaking of the chiral symmetry again
manifests itself as the asymmetry in the energy spectrum
around E = 0 that results from the center bulk band
shifting upward. Nevertheless, the edge states remain
well-gapped from the bulk bands even at large δo, thus
ruling out the possibility for these edge states to merge
with the bulk bands and disappear as in Fig. 6(a). This is
consistent with the expectation that the system’s topol-
ogy is protected by the time-reversal symmetry, which is
preserved by δ(k). For completeness, in Appendix C, we
show the wave function profiles of the various edge states
under the different perturbations above.

IV. CONCLUDING REMARKS

We have presented a trimerized extension to the
paradigmatic SSH model and uncovered its rich spectral
and topological features. Unlike similar extensions pro-
posed in existing literature, our model was obtained by
replacing the sublattice Pauli matrices in the regular SSH
model by their three-dimensional counterparts. Conse-
quently, our trimer SSH models were shown to demon-
strate fundamentally different edge state behaviors and
symmetry protection. For example, our model possesses
time reversal, chiral, particle-hole, and inversion symme-
tries. Moreover, in the topologically nontrivial regime,
two pairs of edge states emerge symmetrically at positive
and negative energies. In the presence of perturbations,
such edge states remain robust provided the time-reversal
symmetry is preserved.
Remarkably, some time-reversal preserving perturba-
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tions were found to destroy some existing edge states
while at the same yielding new edge states. This in turn
leads to an interesting scenario in which edge states are
localized only on one edge of the system. Such a feature
could find some useful application in the area of quantum
communications, particularly related to the task of quan-
tum state transfers [51–58]. Indeed, transferring some
quantum information from one edge of the lattice to the
other could be accomplished by first encoding it in a sub-
space spanned by the vacuum state and the edge states
(which are originally localized solely on one edge), then
slowly transforming the system’s Hamiltonian into that
which supports edge states solely on the other edge.

In the future, it would be worthwhile to extend our
procedure for obtaining a family of extended SSH mod-
els with n sites per unit cell. Such models are expected to
exhibit even richer properties, the full analysis of which
deserves a separate study. Another interesting direction
to pursue is to investigate the effect of periodic driving to
the present model. In particular, periodically driving a
regular SSH model has already been shown to yield novel
topological features with no static counterparts [98, 99].
It is thus envisioned that periodically driving our trimer
SSH model will lead to more unexpected topological phe-
nomena. Finally, non-Hermiticity [75–77], nonlinearity
[72–74], and interaction effect [65–71] are other aspects
that could be considered to further enrich the physics of
our model.
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Appendix A: Detailed analytical calculation of the
normalized sublattice Zak’s phase

Recall that the normalized sublattice Zak’s phase is
given as

Zζ
λ =

i

2

∮
dk⟨ψ̃ζ

λ(k)|∂kψ̃
ζ
λ(k)⟩, (A1)

where

|ψ̃ζ
λ(k)⟩ =

Pζ |ψλ(k)⟩√
⟨ψλ(k)|Pζ |ψλ(k)⟩

,

and the eigenstates for Γ are

|A⟩ =

1
0
0

 , |B⟩ =

0
1
0

 , |C⟩ =

0
0
1

 .

For the nonzero energies

E2,3 = ±
√
2(J2

1 + J2
2 + 2J1J2 cos(k)),

the corresponding eigenstates are

|ψ2,3(k)⟩ =


J1+J2 e−ik

J1+J2 eik

±
√

2(J2
1+J2

2+2J1 J2 cos(k))

J1+J2 eik

0

 .

It follows that

PB |ψ2,3(k)⟩=


0

±
√

2(J2
1+J2

2+2J1 J2 cos(k))

J1+J2 eik

0

 ,

and

⟨ψ2,3(k)|PB |ψ2,3(k)⟩ = 2,

so that

|ψ̃B
2,3(k)⟩ =


0

±
√

(J2
1+J2

2+2J1 J2 cos(k))

J1+J2 eik

0

 ,

and

∂k|ψ̃B
2,3(k)⟩ =



0

∓
{

J1 J2 sin(k)

(J1+J2 eik)
√

J2
1+J2

2+2 J1 J2 cos(k)

+
i J2 eik

√
J2
1+J2

2+2 J1 J2 cos(k)

(J1+J2 eik)2

}
0


.

Finally, straightforward calculation yields

ZB
2,3 =

i

2

∮
dk⟨ψ̃B

2,3(k)|∂kψ̃B
2,3(k)⟩

= − i

2

∮
dk

{
J1 J2 sin(k)

J2
1 + J2

2 + 2 J1 J2 cos(k)
+ i J2

eik

J1 + J2 eik

}
=

{
π, if J2 > J1
0, if J2 < J1

.

Appendix B: Detailed analytical calculation of the
edge states at J1 = 0

By inspecting Fig. 3 in the main text, it is clear that at
J1 = 0, the edge states correspond to energy E = ±J2.
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To analytically obtain the exact form of the edge states
at this special parameter value, we thus attempt to solve

H |ψ⟩ = ±J2 |ψ⟩ , (B1)

where Eq. (6) becomes (under J1 = 0),

H =

N−1∑
j=1

(J2 |A, j + 1⟩⟨B, j|+ J2 |B, j + 1⟩⟨C, j|) + h.c.,

(B2)

Using the same notation as that in Sec. II B, we first write

|ψ⟩ =
N∑
j=1

aj |A, j⟩+ bj |B, j⟩+ cj |C, j⟩, (B3)

By substituting Eq. (B2) and Eq. (B3) into Eq. (B1) with
E = J2,

a1 = 0,

J2 a2 = J2 b1,

J2 b2 = J2 c1,

J2 b1 = J2 a2,

J2 c1 + J2 a3 = J2 b2,

J2 b3 = J3 c2,

J2 b2 = J2 a3,

J2 c2 + J2 a4 = J2 b3,

...

J2 bj = J2 cj−1,

J2 bj−1 = J2 aj+1,

J2 cj−1 + J2 aj+1 = J2 bj ,

By solving these equations:

bj = aj+1

cj = bj+1 = aj+2

cj + aj+2 = bj+1

The last two equations imply cj = bj+1 = aj+2 = 0.
Consequently, the only nonzero elements are b1 = a2.
For E = −J2, similar calculation yields b1 = −a2 and

all other elements being zero. Plugging these results to
Eq. (B3), the left localized edge states are obtained as

|ψL,±⟩ = |B, 1⟩ ± |A, 2⟩.

By repeating the calculation above from cN going back-
ward, we obtain similar expressions for the right localized
edge states, i.e.,

|ψR,±⟩ = |B,N⟩ ± |C,N − 1⟩.
Appendix C: Wave function profiles of the edge

states in the presence of perturbations

In the main text, we have demonstrated the robust-
ness of the system’s edge states in the presence of time-
reversal symmetry preserving perturbations. For com-
pleteness, we present in this section the wave function
profiles corresponding to the surviving edge states un-
der the perturbations considered in the main text. Our
results are summarized in Figs. 7-11. Observe that in
all cases, the edge states that originate from the unper-
turbed scenario (whose main peaks are at |B, 1⟩ ± |A, 2⟩
or |B,N⟩± |C,N − 1⟩) remain present, thus demonstrat-
ing their robustness. One may notice that new edge state
structures seemingly emerge in some cases (see Fig. 9 and
Fig. 10). It is however worth emphasizing that the pres-
ence of such new edge states does not reflect a topological
phase transition induced by the respective perturbations.
In fact, these edge states are already present in the un-
perturbed case, which correspond to zero energy and thus
coincide with the middle bulk band. In the presence of
δ perturbation, these “newly formed” edge states remain
at the same energy as the middle bulk band as evidenced
in Fig. 10. On the other hand, in the presence of γ per-
turbation, such edge states are separated from the middle
bulk band, increasing their visibility (see Fig. 9).

(a.1) (a.2)

FIG. 7: Wave function profiles of the system’s edge
states in the presence of α perturbation (see main text)

at αo = 1 and N = 50 unit cells. Subplot (a.1) for
E = −2.99 and Subplot (a.2) for E = 2.99.
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