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ERGODICITY OF SOME STOCHASTIC FOKKER-PLANCK EQUATIONS WITH

ADDITIVE COMMON NOISE

FRANÇOIS DELARUE, RAPHAËL MAILLET, ETIENNE TANRÉ

ABSTRACT. In this paper we consider stochastic Fokker-Planck Partial Differential Equations (PDEs),

obtained as the mean-field limit (i.e., as the number of particles tends to 8) of weakly interacting par-

ticle systems subjected to both independent (or idiosyncratic) and common Brownian noises. We

provide sufficient conditions under which the deterministic counterpart of the Fokker-Planck equa-

tion, which corresponds to particle systems that are just subjected to independent noises, has several

invariant measures, but for which the stochastic version admits a unique invariant measure under

the presence of the additive common noise. The very difficulty comes from the fact that the common

noise is just of finite dimension while the state variable, which should be seen as the conditional mar-

ginal law of the system given the common noise, lives in a space of infinite dimension. In this context,

our result holds true if, in addition to standard confining properties, the mean field interaction term

forces the system to be attracted by its conditional mean given the common noise and the intensity of

the idiosyncratic noise is small.
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1. INTRODUCTION

This paper addresses the long-term behavior of solutions to a class of non-linear Stochastic

Partial Differential Equations (SPDEs) of the form

(1) dtmt “ ∇ ¨
ˆ
σ2 ` σ2

0

2
∇mt ´mtbp¨,mtq

˙
dt ´ σ0∇mt ¨ dB0

t , on r0,`8q ˆ R
d,

where B0 “ pB0
t qtě0 is a d-dimensional Brownian motion, called common noise. Above, the un-

known pmtqtě0 is regarded as a stochastic process with values in the space PpRdq of probability

measures on R
d. Accordingly, the coefficient b is a function from R

d ˆ P
`
R

d
˘

to R
d depending

on both space and measure arguments. The two parameters σ and σ0 are non-negative scalars:

the former is the intensity of the so-called idiosyncratic noise and the latter is the intensity of the

common noise.

Equation (1) is in fact intended to describe the flow of conditional marginal laws of the solution

to the conditional McKean-Vlasov equation:

(2) dXt “ b
`
Xt,LpXt|B0q

˘
dt` σdBt ` σ0∇mt ¨ dB0

t , t ě 0,

where B is another Brownian motion, independent of B0, and Lp¨|B0q stands for the conditional

law given the realization of the common noise. Formally, mt in (1) is expected to coincide with

LpXt|B0q in (2). The rigorous connection between (1) and (2) is addressed more carefully in the

core of the paper.

1.1. Deterministic Fokker-Planck equations. When σ0 “ 0, i.e., in absence of common noise,

Equation (1) boils down to a standard Fokker-Planck equation describing the evolution of the

marginal laws of the solutions to the standard McKean-Vlasov equation (2) obtained by replacing

LpXt|B0q by the law of Xt. In this setting, the long-time analysis of the solutions has been a

notoriously challenging problem for over twenty years, giving rise to numerous contributions,

many of them still recent. While the problem is of mathematical interest in its own right, it also

finds some application to calculus of variation since certain equations like (1) can be interpreted

as gradient flows on the space of probability measures, see the seminal works [1, 15, 37, 49, 50].

For instance, such a gradient structure occurs when bpx, µq “ ´∇V pxq ´ ∇W ˚ µpxq, for two

differentiable real-valued functions V and W on R
d, W being symmetric, where ˚ stands for the
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convolution operator. In this case, the potential lying above the dynamics writes

(3) µ P PpRdq ÞÑ
ż

Rd

V pxqµpdxq ` 1

2

ż

Rd

ż

Rd

W px ´ yqµpdxqµpdyq ` σ2

2

ż

Rd

ln
`dµ
dx

pxq
˘
µpdxq.

In fact, due to the mean field interaction (whether it derives from a potential or not), the sole

presence of the noise B in the dynamics (2) (with σ0 “ 0) does not suffice to guarantee the unique-

ness of an invariant measure (or equivalently of a stationary solution to (1)) under quite general

conditions on b. This is in contrast with the long run behavior of Stochastic Differential Equations

(SDEs) (or equivalently linear Fokker-Planck equations), for which mere confining properties of

the drift suffice to produce ergodicity (provided σ ą 0). In the mean field setting, some further

structural conditions are necessary. In the potential example (3), a standard condition is to de-

mand V and W to be (strongly) convex, which forces in fact a form of convexity of the potential

(3) on the space of probability measures. We refer for instance to the earlier works [7, 15, 45, 46],

which also include additional convergence results to the stationary regime. For a tiny list of vari-

ants, in which perturbations of the convex potential case are addressed, we refer to [6, 8, 10, 21, 25].

We refrain from detailing all the possible extensions of the previous cases under which the invari-

ant measure remains unique. Let us just say, for our purposes, that the above list of references

includes cases where the lack of convexity is compensated for by the presence of a strong enough

diffusion coefficient. This large noise regime is compared with our own setting in Remark 9 be-

low. At this point, we would especially like to stress that there are known explicit simple cases in

which uniqueness does not hold, which observation supports our previous claim: the presence

of a nonlinear mean field term may easily lead to the existence of multiple invariant measures,

even in situations where the mass stays confined under the dynamics (1). Specifically, it has been

proven in [35] (see also [19]) that, when V is only uniformly convex outside of a ball but admits

a double-well, W is quadratic (but non-zero) and the diffusion coefficient σ is sufficiently small,

there exist several stationary solutions to (1) when it derives from the potential (3) (and σ0 “ 0).

1.2. Common noise. Very basically, our primary objective in this article is to revisit the class of

examples addressed in [35] , but in presence of a common noise, i.e., σ0 ą 0. In this regard, it is

worth noting that, when bpx, µq “ ´∇V pxq ´ ∇W ˚ µpxq, with V being uniformly convex and W

being convex, the common noise does not change the picture recalled in the previous paragraph.

Indeed, the second author has shown in [44] that (1) has a unique invariant measure, which is

consistent with the results obtained earlier without common noise with the slight subtlety that

the invariant measure is then understood as a probability measure on PpRdq.

Of course, our goal is to go one step beyond and prove that the common noise can change

the picture positively, meaning that it can force uniqueness of the invariant measure even though

the deterministic analogue of (1) (i.e., with σ0 “ 0) has several stationary solutions. Actually,

this type of result, if it holds true, must be part of the very broad theory of ergodic Markov

processes, with the specific feature that the state space here is PpRdq. It is worth observing that,

from the same point of view, the deterministic and linear analogue of (2) (i.e., b only depends on

x and σ0 “ 0) should be regarded as a Fokker-Planck equation obtained by forcing a standard

ordinary differential equation by a Brownian motion of intensity σ. This is just to say that, in

the Euclidean setting, the same program is very well-understood and just consists in addressing

the ergodic properties of a non-degenerate SDE. For sure, the very difficulty in our setting comes
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from the fact that the unknown in (1) lives in a space of infinite dimension (once again, the space

of probability measures) while the noise (i.e., B0) is just finite-dimensional and thus completely

degenerate. This says that, at best, noise can be expected to restore uniqueness of the invariant

measure only in specific cases. And, precisely, this is our objective to identify a class of cases that

would become ergodic under the action of the common noise and that would include some of the

examples addressed in [35].

In fact, this question was already addressed by the second author in [44] when σ “ 0, leaving

open setting with σ ą 0. Apart from this, the idea of using the averaging properties of the

common noise has been used in several contexts, for instance in the analysis of existence and

uniqueness of equilibria to mean field games (see for instance [23, 29] for games with a finite

dimensional common noise and [22] for games with an infinite dimensional common noise). More

recently, the first author has just released an article, [24], in which the ergodic properties of (1) (or,

more precisely, (2)) are studied when b is general but the common noise is infinite dimensional

and the dimension d is 1. Part of the challenge then precisely lies in the construction of the noise,

which is a question different from the one addressed here. A similar problem was addressed in

the prior work [3], for another type of infinite dimensional common noise that may not preserve

the space of probability measures.

1.3. Our contribution. We here focus on drifts of the type

bpx, µq “ Gpxq ` F

ˆ
x´

ż

Rd

x µpdxq
˙
, x P R

d, µ P PpRdq,

where F and G are functions from R
d into itself. The function F is assumed to be strictly decreas-

ing, which occurs for instance if F “ ´∇W for a strictly convex function. More interestingly, G is

just assumed to be confining in a mild sense that is detailed in Assumption 1 below. In particular,

G is not required to be strictly decreasing and, when it derives from a potential V , V may not be

convex. Therefore, this framework allows us to choose G “ ´∇V for a non-convex potential V

and F “ ´∇W , for W pxq “ αx2 for some α ą 0, and thus contains the case treated by [35] (up to

an additional common noise), since bpx, µq rewrites ´∇V pxq ´ ∇W ˚ µpxq.

Our main contribution is to establish that, for a small diffusion coefficient σ and for an inter-

action force F that is sufficiently decreasing, the system has a unique invariant measure, which

attracts exponentially fast any other initial condition (with appropriate integrability properties).

Our strategy of proof is based on the key idea that the long run behavior of (2) should be dictated

by the long time dynamics of the conditional mean ErXt|B0s given the common noise. How-

ever, this intuition is not completely correct, as the distance between Xt and its conditional mean

ErXt|B0s does not tend to 0 in long time, at least when σ ą 0. In fact, some residual fluctuation

persists due to the presence of the idiosyncratic noise and this is one of our main achievement

here to explain how to handle this residual fluctuation in long time. This is precisely the point

where we need σ to be small and the interaction force F to be sufficiently decreasing. As for the

function G, it mainly plays a role in the long time analysis of the conditional mean ErXt|B0s it-

self, which is shown to share many similarities with the long time analysis of the (standard) SDE

driven by the drift G and the noise σ0B
0. In particular, we draw heavily on previous works on

coupling methods for long time analysis of SDEs, especially the approach developed in [26] on

couplings by reflection (inspired from [41]), which plays a key role in our study.
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Notice that our result complements the earlier one [44] dedicated to the case σ “ 0.

1.4. Further connections with the literature on mean field models. Stochastic PDEs like (1) and

related conditional McKean-Vlasov equations of type (2) were introduced in [20, 39]. Further,

they were studied in a series of works [42, 43, 32, 30, 33, 28] in connection with stochastic scalar

conservations laws, in which case σ0 is typically required to depend on the local value at point x of

dmt{dx. The more recent contribution [17] addresses uniqueness to (1) under weaker conditions

than in [39]. Equation (1) has also become very popular in mean field game theory, see for instance

the book [12]. A variant, including a reflection term, has been studied recently in [9]. As for (2),

we refer to [34] for a general existence and uniqueness result of weak solutions.

Last but not least, it is worth recalling that the connection between nonlinear Fokker-Planck

equations and McKean-Vlasov equations (without common noise) goes back to the pioneering

works of [38, 47, 31]. In this context, a key question concerns the particular approximation of the

solutions, usually referred to as propagation of chaos, see for instance [52, 48]. In connection with

the existence of stationary solutions to the Fokker-Planck equation (1), it is in general a difficult

question to wonder whether propagation of chaos holds uniformly in time or not. We feel better

not to give a list of references in this direction but we quote that the question appears for instance

in the earlier contribution [16]. Obviously, this would be very interesting to address the same

problem but in presence of a common noise for the model studied here.

1.5. Organisation of the paper. In Section 2, we list the assumptions and give the main state-

ments of the paper. We also address some examples and compare in particular our results with

those from [35] (when σ0 “ 0 and uniqueness does not hold). The proof of the main theorem

(Theorem 8) is split in two parts. A first step is to derive Theorem 8 from a key auxiliary esti-

mate (Proposition 7) on the contraction properties of the semigroup induced by the solution of

(1). This is done in Section 3. A second step, which is in fact the core of the paper, is to prove this

key estimate. We do so in Section 4, using coupling arguments. Auxiliary results are proven in

Appendix.

1.6. Notation. Throughout the paper, for a Polish space E, PpEq stands for the space of Borel

probability measures on E equipped with the topology of weak convergence and the correspond-

ing Borel σ-algebra (which is induced by the mappings m P PpEq ÞÑ mpAq for any Borel subset A

of E). Whenever there exists a distance d so that pE, dq is a metric space, we call PppEq, for any

p ą 0, the collection of elements µ P PppEq such that

Dx0 P E :

ż

E

dpx0, xqpµpdxq ă `8.

In fact, the integral above is finite or not, whatever the choice of x0. We then define for any p ě 1,

the p-Wasserstein distance on PppEq as

dEp pµ, νq :“ inf
πPΠpµ,νq

ˆż

EˆE

dpx, yqp πpdx, dyq
˙1{p

, µ, ν P P1pEq,

where Πpµ, νq stands for the set of all couplings of µ and ν (i.e., all the joint probability measures

on E ˆ E with µ and ν as first and second marginals).
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Also, for any measurable ϕ : E Ñ R and any probability measure m P PpEq, we define the

duality product x¨ ; ¨yE as

xm;ϕyE “
ż

E

ϕpxqmpdxq,

whenever the integral in the right-hand side does exit (for instance so is the case if ϕ is bounded

or ϕ is at most of linear growth and m P P1pEq and so forth...). When E “ R
d, we define

µ1pmq :“
ż

Rd

x mpdxq, m P P1pRdq;

µ2pmq :“
ż

Rd

|x|2 mpdxq, m P P2pRdq;

vpmq :“
ż

Rd

|x´ µ1pmq|2 mpdxq, m P P2pRdq;

which stand respectively for the expectation, the moment of order two and the variance of m. It

is important to pay attention to the fact that despite the similarities in the notation, the objects

µ1pmq P R
d and µ2pmq P R are of different dimensions.

When m is random, say is a measurable mapping from pΩ0,F
0,P0q into PpEq (or P1pEq), its

law P is an element of PpPpEqq (or PpP1pEqq), in the sense that, for any bounded measurable

function φ : PpEq Ñ R, E0rφpmqs “ xP ;φyPpEq (and similarly, when working on P1pEq), where

E0 is the expectation associated with P0. Repeatedly in this paper, we also consider continuous

stochastic processes pmtqtě0, typically constructed on pΩ0,F
0,F0,P0q, with values in the space

P1

`
R

d
˘

equipped with dR
d

1 (and thus also in PpRdq, equipped with the weak convergence topol-

ogy). When pmtqtě0 is Markovian, we define its semigroup pPtqtě0 by letting, for any function

φ : PpRdq Ñ R and any t ě 0,

Ptφ :
PpRdq Ñ R

m ÞÑ E0rφpmtq|m0 “ ms.
Moreover, for any twice differentiable function f : Rd Ñ R, ∇f , ∆f and ∇

2f respectively stand

for the gradient, Laplacian and Hessian matrix of f . For any differentiable function F : Rd Ñ R
d,

we denote by DF : Rd Ñ MdpRq its Jacobian matrix.

For any real squared matrix A P MdpRq, we denote the Euclidian norm of A by

|||A||| “
b

TrpAJAq,

with AJ and Tr respectively standing for the transpose matrix of A and the Trace operator on

MdpRq. Lastly, the Euclidean norm on R
d is denoted | ¨ | and the inner product ¨.

2. MAIN RESULT: UNIQUENESS RECOVERY THANKS TO COMMON NOISE

2.1. Stochastic Fokker-Planck PDE and Conditional McKean-Vlasov SDE. In this paper, we

focus on a mean field model with common noise in which the nonlinearity in the dynamics oc-

curs through the mean (i.e., the expectation). To make it clear, on a filtered probability space`
Ω0,F

0,F0,P0

˘
(satisfying the usual conditions) equipped with a d-dimensional F0-Brownian mo-

tion B0 and for F,G : Rd Ñ R
d two interaction and confinement forces, we are interested in the
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solutions of the following Stochastic Partial Differential Equation (SPDE):

(4) dtmt “ ∇ ¨
ˆ
σ2 ` σ2

0

2
∇mt ´mt pG ` F p¨ ´ µ1pmtqqq

˙
dt ´ σ0∇mt ¨ dB0

t , t ě 0,

which is understood the weak sense, i.e., the process pmtqtě0 satisfies for all t ě 0 andϕ P C8
c pRdq,

dxmt, ϕy “ xmt,Lmt
ϕy dt ` σ0xmt, p∇ϕqJy dB0

t ,

where for any probability measurem P P1pRdq, the operator Lm acts on a smooth function ϕ with

compact support in the following manner:

Lmϕ “ ´ pG` F p¨ ´ µ1pmqq ¨ ∇ϕ ` σ2
0 ` σ2

2
∆ϕ.

Equation (4) admits a Lagrangian representation in the form of conditional McKean-Vlasov equa-

tion. Throughout the article, this McKean-Vlasov equation is constructed on a product probability

space, obtained by tensorizing the filtered probability space pΩ0,F
0,F0,P0q (on which Equation

(4) is defined) with another filtered probability space pΩ1,F
1,F1,P1q. The product structure is

denoted

pΩ :“ Ω0 ˆ Ω1, F, F, Pq,
where pF,Pq is the completion of pF0 b F

1,P0 b P1q and F is the right continuous augmentation

of pF0
t b F1

t qtě0. In this paper we denote by E0, E1 and E the expectations on pΩ0,F
0,F0,P0q,

pΩ1,F
1,F1,P1q and pΩ,F,F,Pq respectively. Analogously, for any random variable X defined on

pΩ,F,F,Pq, we denote by L0pXq and L1pXq the conditional laws of the random variable X given

F1 and F0 respectively. Of course, LpXq stands for the law of X on the whole product space.

Next, the initial law of (4) may be random and then distributed according to a probability

measure P0 P PpP1pRdqq. The initial condition m0 is then defined as an F0
0-measurable random

variable with values in P1pRdq such that Lpm0q “ P0. We can now define on the whole prob-

ability space pΩ,F,F,Pq a random variable X0 such that L1pX0q “ m0 almost surely. Precisely,

by Lemma 2.4 in [14], for P0-a.e. ω0 P Ω0, X0pω0, ¨q is a random variable on pΩ1,F
1,P1q and the

conditional law of X0 given F0, L1 : Ω0 Q ω0 ÞÑ LpXpω0, ¨qq, defines a random variable from

pΩ0,F
0,P0q into PpRdq, which can be taken equal to m0 almost surely.

In addition to B0, we consider a d-dimensional F1-Brownian motion B supported by the space

pΩ1,F
1,P1q. The Lagrangian formulation of (4) then reads in the form of the following conditional

McKean-Vlasov equation, set on pΩ,F,F,Pq:

(5) dXt “ GpXtqdt ` F pXt ´ E1rXtsqdt ` σdBt ` σ0dB
0
t , t ě 0,

with X0 as initial condition.

2.2. Assumptions, existence and uniqueness of solutions. In the sequel, we make the following

assumptions on the coefficients F and G. We start with G:

Assumption 1. The drift G : Rd Ñ R
d is differentiable in R

d. Moreover,

(A1.1) G is confining in the sense that there exists a function κ : r0;`8q Ñ R such that

@x, y P R
d, pGpxq ´Gpyqq ¨ px´ yq ď ´σ2

0

2
κp|x´ y|q|x´ y|2,
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with

lim sup
rÑ`8

κprq ą 0 and

ż 1

0

rκprq´dr ă 8,

where κ´ “ maxp0,´κq.

(A1.2) G is Lipschitz-continuous on R
d, meaning that there exists a constant LG ą 0 such that

@x, y P R
d, |Gpxq ´Gpyq| ď LG|x´ y|.

(A1.3) G is differentiable and its Jacobian matrix DG is Lipschitz-continuous on R
d, meaning that there

exists a constant CG ą 0 such that for any x, y P R
d,

|||DGpxq ´DGpyq||| ď CG|x´ y|.

In order to state properly the assumption on F , we introduce the following definition:

Definition 1. For a pair pα,Cq P Rˆr0,`8q, we call Spα,C, Lq the collection of L-Lipschitz-continuous

and differentiable functionsH from R
d into itself that areα-decreasing and whose derivative isC Lipschitz-

continuous, i.e., for all px, yq P R
2d,

(i) px´ yq ¨ pHpxq ´Hpyqq ď ´α|x´ y|2;

(ii) |||DHpxq ´DHpyq||| ď C|x´ y|.

Given Definition 1, we make the following assumption on F :

Assumption 2. F : Rd Ñ R
d satisfies F p0q “ 0. Moreover, there exist αF ą 0 and CF ě 0 such that

F P SpαF , CF , CF q.

About Assumption 1. The following remarks about Assumption 1 are in order:

‚ Assumption 1 is quite intuitive and consistent with the ideas presented in [35]. Essentially,

this assumption guarantees that G is confining and behaves linearly at infinity. Also, it is

worth noting that our approach can accommodate a force that derives from a non-convex

potential, which, around the origin, behaves for example like x ÞÑ |x|4 ´ |x|2.

‚ When σ0 ą 0, there exists a canonical choice of κ, given by

κprq:“ inf

"
´ 2

σ2
0

px´ yq ¨ pGpxq ´Gpyqq
|x´ y|2 ; x, y P R

d s.t. |x´ y| “ r

*
, r ą 0.

Assumption 1 says that κ is necessarily positive outside of a ball. This implies in particular

that σ2
0κ

´{2 is bounded from below by some constant mG P R, which gives

(6) px´ yq ¨ pGpxq ´Gpyqq ď ´mG|x´ y|2, x, y P R
d.

This implies in particular that G P SpmG, CG, LGq.

When mG ą 0 we say that the drift is (strictly) decreasing. This case is easier to study

under similar conditions on F because the monotone structure of G ensures that two so-

lutions of the SDE (5) (with different initial conditions) get closer in large time. In this

context, uniqueness of the invariant measure of the solutions of Equation (4) is covered

in [44, Section 2], but it is fair to say that the common noise then plays little role because

the invariant measure is also unique when σ0 “ 0. Notice that in the specific case when G

derives from a potential, this potential is strictly convex under the condition mG ą 0.
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About Assumption 2. Assumption 2 is somewhat surprising, especially as we are asking below the

coefficient αF to be large (see the statement of Theorem 8). Intuitively, one might indeed expect

that uniqueness of the invariant measure becomes less likely if the interaction is strong. At least,

this is exactly what happens in absence of common noise, the extreme case being F ” 0 in which

the dynamics become a mere diffusion equation (the long time analysis of which is much easier to

study). However, the situation is different here, thanks to the peculiar structure of the dynamics

and to the presence of the common noise (σ0 ą 0). In brief, F has a contracting effect, which forces

the process to be attracted by its conditional expectation (given the common noise), with the latter

being a nearly solution of an ergodic SDE. Even though this picture is not exactly correct due to

some minor errors caused by the idiosyncratic noise, this is indeed a key step in our analysis to

quantify the accuracy of this approximation and to derive from it uniqueness of the invariant

measure. We refer to Section 3.1.

Throughout, we work under Assumptions 1 and 2. In this context, we claim

Proposition 2. Under Assumptions 1 and 2 and for an initial condition X0 satisfying Er|X0|s ă 8 (or

equivalently E0

ş
Rd |x|m0pdxq ă 8 for m0 :“ L0pX0q), the conditional McKean-Vlasov equation (5)

has a unique F-progressively measurable solution pXtqtě0, with continuous trajectories, such that, for all

T ą 0, Ersup0ďtďT |Xt|s ă 8.

Proof. The proof consists in a straightforward fixed point argument, using the Lipschitz properties

of the two coefficients F and G. We refer to [14, Chap. 2]. �

By the superposition principle for conditional McKean-Vlasov equations (see [40]), we deduce

that existence and uniqueness also hold true for the stochastic Fokker-Planck equation:

Proposition 3. Under Assumptions 1 and 2 and for an initial conditionm0 satisfyingE0

ş
Rd |x|m0pdxq ă

8, the stochastic Fokker-Planck equation (4) has a unique solution pmtqtě0 in the space of F0-progressively

measurable processes with values in P1pRdq satisfying E0rsup0ďtďT

ş
Rd |x|mtpdxqs ă 8.

Proof. Existence of a solution is a straightforward consequence of the existence part in the state-

ment of Proposition 2. This is Proposition 1.2 in [40]. Uniqueness is more difficult to obtain. We

invoke Theorem 1.3 in [40]. In brief, any solution prmtqtě0 (in the weak sense) to (4) induces a

weak solution to the McKean-Vlasov equation rX “ p rXtqtě0 to (5), weak in the sense that the

private (or idiosyncratic) noise, say rB, becomes part of the solution. It holds rmt “ Lp rXt|F0
T q.

In fact, by strong uniqueness to (5), a relevant form of Yamada-Watanabe theorem applies to the

current setting and implies that Lp rXt|F0
T q is necessarily equal to L0pXtq, with X “ pXtqtě0 being

the solution given by Proposition 2. �

2.3. Restoration of uniqueness. We now collect our main results about the long time behaviour

of the process pmtqtě0, solution of Equation (4). Before we do so, we first state the precise defini-

tion of an invariant measure for such a stochastic process, when seen as a process with values in

the space of probability measures:

Definition 4 (Invariant measure). We say that sP P P2pP1pRdqq is an invariant measure for the process

pmtqtě0 when the latter is regarded as taking values in P1pRdq, if the law of mt is independent of t, when
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m0 is distributed according to sP , i.e., for all continuous and bounded function φ P CbpP1pRdqq

E0rφpmtqs “ E0rφpm0qs “
ż

P1pRdq

φpmq sP pdmq, @t ą 0.

Of course, if P̄ is an invariant probability distribution, then the process pmtqtě0 with initial

condition P̄ , has the same law as the process pmt`T qtě0 for any T ą 0. This follows directly from

the fact that m0 andmT have the same law combined with the weak Markov property. Moreover,

it is worth observing that, under the condition P̄ P P2pP1pRdqq imposed in the statement, the

function m ÞÑ dR
d

1 pδ0,mq “
ş
Rd |x|mpdxq is square integrable. This constraint may seem rather

artificial. In fact, given the form of the dynamics in Equation (4), it is natural to require the

invariant measures to be supported by P1pRdq. Then, the aforementioned integrability condition

provides an additional growth property that makes easier the identification of those invariant

measures, see the proof of Proposition 5 right below.

Let us begin with the existence of an invariant measure P̄ :

Proposition 5. Under Assumptions 1 and 2, there exists at least one invariant measure P̄ for the pro-

cess defined by Equation (4). Moreover, under the condition α ą LG, any invariant measure belongs to

P2pP2pRdqq.

The proof of Proposition 5 makes use of the notion of derivatives on the space of measures.

Following [11] (see also [13, Chap. 5] and [14, Chap. 4]), we recall the following definition:

Definition 6. Let us define C2
bpP2pRdqq as the collection of continuous and bounded functions Φ :

P2pRdq Ñ R with the following properties (throughout the definition, P2pRdq is equipped with dR
d

2 ):

‚ There exists a unique jointly continuous function BmΦ : pm,xq P PpRdq ˆ R
d Ñ BmΦpm,xq P

R
d, at most of quadratic growth in x for any m, such that

lim
hÑ0

Φpm` hpm1 ´mqq ´ Φpmq
h

“
ż

Rd

BmΦpm, vqpm1 ´mqpdvq,

for all m,m1 P PpRdq and
ż

Rd

BmΦpm, vqmpdvq “ 0, m P PpRdq;

‚ For any m P P2pRdq, the mapping x ÞÑ BmΦpm,xq is differentiable, with the gradient being

denoted DmΦpm,xq; the mapping pm,xq ÞÑ DmΦpm,xq is jointly continuous in pm,xq and at

most of linear growth in x uniformly in m in bounded subsets of P2pRdq;

‚ For any x P R
d, every component of the R

d-valued function m ÞÑ DmΦ pm,xq satisfies the

same conditions as in the first bullet point, resulting in a mapping pm,x, yq P P2pRdq ˆ R
d ˆ

R
d ÞÑ D2

mΦpm,x, yq P R
dˆd, which is jointly continuous (in the three arguments) and at most of

quadratic growth in px, yq, uniformly in m in bounded subsets of P2pRdq;

‚ For any m P P2pRdq, the function x P R
d ÞÑ DmΦpm,xq is differentiable; the Jacobian, de-

noted pm,xq ÞÑ D2
xmΦpm,xq, is jointly continuous in pm,xq and at most of linear growth in x,

uniformly in m in bounded subsets of P2pRdq.

Proof of Proposition 5. Step 1. The proof of the existence of an invariant measure closely follows

the approach taken in Proposition 2 of [44], using the results of Section 1.2 of [40]. The key step
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therein is to control, uniformly in time, the second-order moments of the solutions to Equation

(4), which can be achieved with relative ease in our context. Details are left to the reader.

Step 2. We now address the second part of the statement (any invariant measure in P2pP1pRdqq
is in fact in P2pP2pRdqq). Let us thus consider an invariant measure P̄ P P2pP1pRdqq and callm0 an

F0-valued random variable with values in P1pRdq such that L0pm0q “ P̄ . We denote by pmtqtě0

the solution to Equation (4) with m0 as initial condition. We also introduce for any R ą 0, a

smooth function χd
R : Rd Ñ R

d that coincides with the identity on the ball BRdp0, Rq and that

is equal to 0 outside BRdp0, 2Rq. We can assume the Lipschitz constant of χd
R to be bounded

by 1. For any R ą 0, we denote by PR
0 the law of χd

R7m0 (where 7 is the pushforward opera-

tor) and construct pmR
t qtě0, the solution to Equation (4) with χd

R7m0 as initial condition. Letting

pPR
t qtě0 :“ pL0pmR

t qqtě0, we deduce from the truncation performed on the initial condition and

from Equation (4) that, for any R ą 0 and any t ě 0, PR
t pP2pRdqq “ 1. We obtain from the chain

rule proven in [13, Chap. 5] and [14, Chap. 4] (see [40] for the form that is retained below) that

for any function Φ P C2
bpP2pRdqq, for any t ě 0,

(7) xPR
t ´ PR

0 ; Φy “
ż t

0

xPR
s ;MΦyds,

where for any m P P2pRdq,

MΦpmq :“
ż

Rd

„
DmΦpm,xq ¨ pGpxq ` F px ´ µ1pmqq ` σ2 ` σ2

0

2
Tr

“
D2

xmΦpm,xq
‰
mpdxq

` σ2
0

2

ż

R2d

Tr
“
D2

mmΦ pm,x, yq
‰
mpdxqmpdyq.

Let us now consider Φpmq :“
ş
Rd φpx ´ µ1pmqqmpdxq, for a function φ : Rd Ñ R which we

assume to be bounded and smooth, with bounded derivatives of order 1 and 2. In particular, Φ is

bounded. Now, m ÞÑ Φpmq P C2
bpP2pRdqq and we can write, for any m P P2pRdq and x, y P R

d,

DmΦpm,xq “ ∇φpx ´ µ1pmqq ´
ż

Rd

∇φpy ´ µ1pmqqmpdyq,

D2
xmΦpm,xq “ ∇

2φpx ´ µ1pmqq,

D2
mmΦpm,x, yq “ ´∇

2φpx´ µ1pmqq ´ ∇
2φpy ´ µ1pmqq `

ż

Rd

∇
2φpz ´ µ1pmqqmpdzq.

Plugging this into Equation (7), we obtain
ż

P2pRdq

ΦpmqpPR
t ´ PR

0 qpdmq

“
ż t

0

„ ż

P2pRdq

ż

Rd

∇φpx ´ µ1pmqq ¨ pGpxq ` F px´ µ1pmqqqmpdxqPR
s pdmq

´
ż

P2pRdq

ˆż

Rd

∇φpy ´ µ1pmqqmpdyq
˙

¨
ˆż

Rd

pGpxq ` F px´ µ1pmqqqmpdxq
˙
PR
s pdmq

` 1

2

`
σ2 ` σ2

0

˘ ż

Rd

Tr
“
∇

2φpz ´ µ1pmqq
‰
mpdzq ´ 1

2
σ2
0

ż

Rd

Tr
“
∇

2φpz ´ µ1pmqq
‰
mpdzq


ds,
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which gives (by simplifying the last line)

(8)

ż

P2pRdq

ΦpmqpPR
t ´ PR

0 qpdmq

“
ż t

0

„ ż

P2pRdq

ż

Rd

∇φpx´ µ1pmqq ¨ pGpxq ` F px´ µ1pmqqqmpdxqPR
s pdmq

´
ż

P2pRdq

ˆż

Rd

∇φpy ´ µ1pmqqmpdyq
˙

¨
ˆż

Rd

pGpxq ` F px´ µ1pmqqqmpdxq
˙
PR
s pdmq

` 1

2
σ2

ż

Rd

Tr
“
∇

2φpz ´ µ1pmqq
‰
mpdzq


ds.

Step 3. We now want to let R Ñ 8. Let us begin with the term on the left-hand side
ż

PpRdq

ΦpmqpPR
t ´ PR

0 qpdmq “
ż

PpRdq

ΦpmqpPR
t ´ P̄ qpdmq `

ż

PpRdq

ΦpmqpP̄ ´ PR
0 qpdmq.

Using the Lipschitz-continuity of F andG, we can show that, for any T ě 0, there exists a constant

CT ě 0, such that, for any t P r0, T s,

(9) d
P1pRdq
2 pPR

t , P̄ q ď CT d
P1pRdq
2 pPR

0 , P̄ q.
Moreover, we can write

d
P1pRdq
2 pPR

0 , P̄ q2 ď
ż

PpRdq

ˆż

Rd

|χd
Rpxq ´ x|mpdxq

˙2

P̄ pdmq.

Since χd
R is equal to 0 in 0 and is 1-Lipschitz continuous and since P̄ P P2pP1pRdqq, the above

right-hand side tends to 0 as R tends to 8, that is

(10) lim
RÑ`8

d
P1pRdq
2 pPR

0 , P̄ q “ 0.

Equations (9) and (10) say that for all T ě 0,

(11) lim
RÑ`8

sup
0ďtďT

d
P1pRdq
2 pPR

t , P̄ q “ 0.

Back to (8), we observe that all the functions of m that are integrated with respect to P̄ therein are

continuous in m with respect to dR
d

1 . Moreover, they are all at most of linear growth with respect

to
ş
Rd |x|mpdxq. This makes it possible to let R tend to `8. We get

ż

P1pRdq

ż

Rd

∇φpx ´ µ1pmqq ¨ pGpxq ` F px ´ µ1pmqqqmpdxqP̄ pdmq

´
ż

P1pRdq

ˆż

Rd

∇φpy ´ µ1pmqqmpdyq
˙

¨
ˆż

Rd

pGpxq ` F px´ µ1pmqqqmpdxq
˙
P̄ pdmq

` 1

2
σ2

ż

P1pRdq

ż

Rd

Tr
“
∇

2φpz ´ µ1pmqq
‰
mpdzqP̄ pdmq “ 0.

Step 4. Now, we take φpxq in the form ϑp|x|q where ϑ is a smooth function from r0,`8q into

itself, that is equal to the identity on r0, As and that is equal to 3A{2 on r2A,`8q, for some A ą 0.

We assume ϑ1 to be non-negative and bounded by the identity and ϑ2 to take values in r0, 2s.
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Under this choice, ∇φpxq rewrites rϑ1p|x|q{|x|sx and Trr∇2φpxqs is bounded by a constant cd only

depending on the dimension d. Then, we can find a constant C, only depending on G (and whose

value is allowed to change from line to line) such that, for any m P P2pRdq,
ˇ̌
ˇ̌
ż

Rd

∇φpx ´ µ1pmqq ¨ Gpxqmpdxq
ˇ̌
ˇ̌

ď
ˇ̌
ˇ̌
ż

Rd

∇φpx ´ µ1pmqq ¨
“
Gpxq ´Gpµ1pmqq

‰
mpdxq

ˇ̌
ˇ̌ `

ˇ̌
ˇ̌
ż

Rd

∇φpx ´ µ1pmqq ¨Gpµ1pmqqmpdxq
ˇ̌
ˇ̌

ď LG

ż

Rd

ϑ1p|x´ µ1pmq|q|x´ µ1pmq|mpdxq ` C

ż

Rd

ϑ1p|x´ µ1pmq|q
`
1 ` |µ1pmq|

˘
mpdxq

ď LG

ż

Rd

ϑ1p|x´ µ1pmq|q|x´ µ1pmq|mpdxq ` C
`
1 ` dR

d

1 pδ0,mq2
˘
.

We insist on the fact that C is independent of ϑ. Now using the assumption on F (see Assumption

2), we obtain
ż

Rd

∇φpx ´ µ1pmqq ¨ F px´ µ1pmqqmpdxq ď ´α
ż

Rd

ϑ1p|x ´ µ1pmq|q|x ´ µ1pmq|mpdxq.

Rewriting the conclusion of the third step gives

pα ´ LGq
ż

P1pRdq

ż

Rd

ϑ1p|x´ µ1pmq|q|x ´ µ1pmq|mpdxqP̄ pdmq

ď cdσ
2 ` C

ˆ
1 `

ż

P1pRdq

dR
d

1 pδ0,mq2P̄ pdmq
˙
.

(12)

Now, we can choose ϑ1 along a non-decreasing sequence converging pointwise to the identity

function on r0,`8q. By monotone convergence, we obtain

pα ´ LGq
ż

P1pRdq

ż

Rd

|x´ µ1pmq|2mpdxqP̄ pdmq ď cdσ
2 ` C

ˆ
1 `

ż

P1pRdq

dR
d

1 pδ0,mq2P̄ pdmq
˙
,

which completes the proof. �

Uniqueness is much more challenging to establish. When the intensity of the idiosyncratic

noise σ is positive, this question has not been addressed yet. The following proposition is one

key step in this regard and demonstrates that, under certain assumptions, the initial condition is

forgotten in long time.

Proposition 7. For any αF ą maxpLG,mGq in Assumption 2, for any σ0 ą 0, there exists sσ ą 0, de-

pending on F,G, σ0 and d, such that for all σ ď sσ, for any 1-Lipschitz continuous function φ : P1pRdq Ñ
R (with P1pRdq being equipped with dR

d

1 ) and any m, rm P P2pRdq,

|Ptφpmq ´ Ptφprmq| ď Kpm, rmqe´ct, t ě 0,

for some c :“ cpG,F, σ, σ0q ą 0 and some Kpm, rmq, which is described next.

Indeed, given the choice of αF , there exist a constant cαF

1 ą 0, depending on G and F , and a constant

Cd, depending on d (and thus independent of φ, m and rm), such that

Kpm, rmq :“ Cdpµ2pmq1{2 ` µ2prmq1{2q exp
ˆ
cαF

1

cαF

´
vpmq1{2 ` vprmq1{2

¯˙
,
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where cαF
:“ αF ´ LG. We recall that µ1, µ2 and v are defined in Section 1.6.

Proposition 7 shows that we forget the initial condition at an exponential rate for any suffi-

ciently integrable initial conditions m and rm. This is a key result of the paper, the proof of which

is postponed to Section 4.

As a consequence of Proposition 7, we get uniqueness of the invariant measure and deduce

that the system converges exponentially fast toward the stationary regime, both facts being stated

in the main statement below.

Theorem 8. For anyαF ą maxpLG,mGq in Assumption 2, for any σ0 ą 0, there exists sσ ą 0, depending

on F,G, σ0 and d, such that for all σ ď sσ, there is a unique invariant measure sP P P2pP2pRdqq for the

process pmtqtě0, solution of Equation (4). More precisely, there exists a constant C ą 0, such that for any

probability measure m P PpRdq and any 1-Lipschitz continuous function φ : P1pRdq Ñ R, (with P1pRdq
being equipped with dR

d

1 ), we have
ˇ̌
ˇ̌
ˇPtφpmq ´

ż

PpRdq

Ptφprmq sP pdrmq
ˇ̌
ˇ̌
ˇ ď C

`
1 ` µ2pmq1{2

˘
exppλvpmq1{2qe´ct, t ě 0,

with λ :“ cαF

1 {cαF
ą 0, and for c, cαF

and cαF

1 as in the statement of Proposition 7.

Remark 9. Let us comment here on the choice of parameters in the above statement. First, it is important

to note that the type and strength of the interaction play a central role in our framework. The interaction,

in both its form and intensity (αF ě sα), forces the long-time behaviour of the entire process pmtqtě0 to be

dictated by its mean pµ1pmtqqtě0, which is the cornerstone of the proof. Asking the interaction to be strong,

as we require in the condition αF ě sα, may seem surprising at first sight. Indeed, this is fundamentally

different from the standard picture that exists for models without common noise, where strong interactions

are typically expected to give rise to several invariant measures. In our case, the presence of the common

noise, even of a possibly small intensity, induces a phase transition. For any positive value of σ0 and for

a sufficiently large interaction (independently of the value of σ0), we can indeed find σ ą 0 such that

uniqueness of the invariant measure is ensured in presence of a common noise of intensity σ0 but is lost

when the common noise is disabled. This makes a conceptual difference with the previous results obtained

on the subject in [36], where uniqueness is restored when the global contribution of the two noises is large

enough with respect to the strength of the interaction. In comparison, σ and σ0 have opposite roles to each

other in our approach.

2.4. Discussions and examples. In this section, we present two explicit examples in which com-

mon noise forces uniqueness of the invariant measure. The first example fits explicitly the frame-

work of this work and the second one may be seen as a variant of (4). At last, we also provide a

counter-example where uniqueness does not hold despite the presence of the common noise.

A prototype: dynamics driven by a confining potential and a linear interaction. Let us consider the case

Gpxq “ ´∇V pxq, x P R
d, for a differentiable function V : Rd Ñ R, and F pxq “ ´αx, x P R

d, for a

certain α ą 0. Then, (4) becomes

(13) dtmt “ σ2`σ2
0

2
∆mtdt` ∇ ¨

”
mt

´
∇V ` α p¨ ´ µ1pmtqq

¯ı
dt ´ σ0∇mt ¨ dB0

t , t ě 0.
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When σ0 “ 0, this equation reduces to

(14) Btmt “ σ2

2
∆mt ` ∇ ¨

”
mt

´
∇V ` α p¨ ´ µ1pmtqq

¯ı
.

When V is a double well potential, the latter equation may have several stationary solutions.

For instance, if σ “ 0 (in addition to the assumption σ0 “ 0), any critical point x0 of V induces

a stationary solution, concentrated at x0. In the standard example where d “ 1 and V pxq “
|x|4{4´ |x|2{2 (see for instance [19, 35]), those stationary solutions are the Dirac masses δ1, δ0 and

δ´1. Non-uniqueness persists when σ is strictly positive but small: with the same potential V

and for σ less than a certain threshold σ̄, there are three invariant measures, respectively centered

around 1, 0 and ´1, to the McKean-Vlasov SDE

dXt “ ´V 1pXtqdt ´ αpXt ´ E1rXtsqdt ` σdBt, t ě 0.

Lack of uniqueness can be explained as follows. There is a competition between the noise B

(weighted by the intensity factor σ) and the interaction term function px,mq ÞÑ ´αpx ´ µ1pmqq.

On the one hand, the process X is attracted by the minimizers of V and by its expectation. On

the other hand, it is subjected to the diffusive effect of the noise. Whenever the coefficient σ is too

small, the interaction term dominates. Any invariant measure has a small variance and must be

concentrated around a minimizer of V , hence forcing the multiplicity of the stationary solutions

to (14).

When σ0 ą 0 but σ “ 0 (and under conditions similar to Assumption 1), whenever α is

assumed large enough, the second author has shown in [44] that the process pmtqtě0 admits a

unique invariant measure P0 P PpPpRdqq, and thus established restoration of uniqueness in this

situation. In this particular case, the invariant measure is supported by Dirac masses:

sP0pdmq “
ż

Rd

δδapdmqm˚pdaq,

wherem˚ is solution of the stationary Fokker-Planck equation pσ2
0{2q∆m˚`∇ ¨ pm˚

∇V q “ 0. More-

over, as consequence of the contracting properties of F , it can be shown that

vpmtq Ñ 0,

when t Ñ `8, which implies that, asymptotically (in time), the solution X to (5) coincides with

its conditional expectation given the common noise, hence justifying the shape of the measure sP0.

In the case σ0 ą 0 and σ small but (strictly) positive, our result extends the analysis carried

out in [44]. However, the long-time behaviour of pvpmtqqtě0 is different and the latter does not

tend to 0 as t tends to 8. This difference is substantial and makes the proof significantly more

challenging in our analysis. The argument is explained in the next two sections. In short, one

shows that the long-time behavior of the conditional mean pµ1pmtqqtě0 coincides with that one of

the standard SDE dYt “ ´∇V pYtqdt ` σ0dB
0
t , t ě 0 up to an error that is small with σ and 1{α.

Although the fluctuation pXt ´ E1pXtq “ Xt ´ µ1pmtqqtě0 does not vanish in long time, which is

the main mathematical difficulty here, the regime 0 ă σ ! 1 shares many conceptual similarities

with the case σ “ 0. In particular, the long-time behavior of pmtqtě0 is mostly dictated by the

ergodic properties of the standard SDE obtained by putting F ” 0 and σ “ 0 in (5). This example

is typical of our study. When the value of σ is significantly large and α is relatively small, it is

straightforward to establish the uniqueness of the invariant measure using coupling arguments
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on the idiosyncratic noise, as in [25]. Still, it is fair to say that we do not have, at this stage, a good

understanding of the behaviour of the model between these two regimes.

A variant: dynamics driven by a quadratic potential and a nonlinear first order mean field term. In this

paragraph, we cook up a variant of the model covered by Theorem 8 that does not exactly fit the

form postulated in (4) but that can be studied in a similar manner. This example is built up as

a perturbation of an Ornstein-Uhlenbeck process. Precisely, we consider the stochastic Fokker-

Planck equation

(15) dtmt “ σ2 ` σ2
0

2
∆mtdt ` ∇ ¨

“
mt

`
ax´ fpµ1pmtq

˘‰
dt ´ σ0∇mt ¨ dB0

t , t ě 0,

whose probabilistic counterpart writes

dXt “ ´aXtdt` fpE1rXtsqdt ` σdBt ` σ0dB
0
t , t ě 0,

for some a ą 0 and f : Rd Ñ R
d. Equivalently, the conditional law pL1pXtqqtě0 of X given the

common noise pL1pXtqqt is a solution to (15).

Obviously, the mean field term fpE1rXtsq cannot be put in the form F pXt ´ E1rXtsq, from

which we see that this example is outside the scope of Theorem 8. That said, it is in fact not that

far from the framework addressed in this article and, in particular, it obeys phenomena similar to

those underpinning the proof of Theorem 8.

Actually, the long-time analysis of equation (15) is rather straightforward. When σ0 “ 0, any

invariant measure m is solution to

σ2

2
∆m ´ ∇ ¨

“
m
`
fpµ1pmqq ´ ax

˘‰
“ 0, x P R

d.

By integrating with respect to x, the previous equation leads to the condition

(16) fpµ1pmqq “ aµ1pmq,
which is in fact sufficient in the following sense: once µ1pmq has been found, the entire measure

m can be defined as the invariant measure of the Ornstein-Uhlenbeck dynamics dXt “ ´apXt ´
µ1pmqqdt ` σdBt, t ě 0. Therefore, Equation (16) says that there exist several invariant measures

as soon as f{a admits several fixed points in R
d.

In presence of a common noise (i.e., σ0 ą 0), the conditional mean pµ1pmtqqtě0 solves the SDE

(17) dµ1pmtq “ ´aµ1pmtqdt ` fpµ1pmtqqdt ` σ0dB
0
t , t ě 0,

and under appropriate confining conditions on the effective drift x ÞÑ ´ax ` fpxq (which may

be compatible with the fact that (16) has several fixed points), (17) admits a unique invariant

measure, say m˚ (on R
d), which implies that any two invariant measures on P1pRdq (in the sense

of Definition 4) must have the same marginal law by the projection m ÞÑ µ1pmq. As above,

the entire invariant measure (on P1pRdq) can be recovered by observing that dpXt ´ E1pXtqq “
´apXt ´ E1pXtqqdt ` σdBt, t ě 0. This shows that the invariant measure is

(18) sP pdmq “
ż

Rd

δNdpθ,rσ2{p2aqsIdqpdmqm˚pdθq,
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where Ndpθ, rσ2{p2aqsIdq is the d-dimensional Gaussian law with θ as mean and σ2{p2aqId as co-

variance (Id standing for the d-dimensional identity matrix). In particular, there is a unique in-

variant measure even though (16) has several fixed points.

The spirit of this new example is clear: similar to the prototype addressed in the previous

paragraph, its long-time analysis is in fact governed by the simpler Fokker-Planck equation (17)

for the sole conditional mean. Here the situation is even simpler because the residual fluctuation

pXt ´ E1pXtqqtě0 has a trivial behavior (whilst the analysis of the residual is non-trivial in the

prototype example).

Combining the two examples. For sure, the reader may wonder about a global framework that

would cover both the prototype and the variant examples. While this would be indeed possi-

ble to extend in such a way the current setting, we have decided not to go up to this level of

generality in order to keep the presentation and the notation at a reasonable level. In order to

guess what the more general form of (4) should be, one first needs to understand which of the

two coefficients F and G (in (4)) correspond respectively to x ÞÑ ´ax and m ÞÑ fpµ1pmqq in (15).

At first sight, one may be tempted to regard x ÞÑ ´ax as a specific example of G, but this is the

wrong choice. In fact, the correct answer is to write ´ax as ´apx´ µ1pmqq, which prompts us to

associate the coefficient a in this model with the coefficient α in the prototype example. Next, we

should see the remaining coefficient m ÞÑ ´aµ1pmq ` fpµ1pmqq as a new G, with the subtlety that,

in our global framework, G must be allowed to depend on both x and µ1pmq. In clear, the new

version of (4) should be

(19) dtmt “ ∇ ¨
ˆ
σ2 ` σ2

0

2
∇mt ´mt

“
G
`
µ1pmtq, ¨

˘
` F p¨ ´ µ1pmtqq

‰˙
dt ´ σ0∇mt ¨ dB0

t ,

for a function G : R
d ˆ R

d Ñ R
d. Back to the prototype example addressed in the previous

paragraph, this says that the long-time behavior of pmtqtě0 should now be compared with those

of the standard SDE dYt “ GpYt, Ytqdt`σ0dB
0
t , up to some fluctuation terms that one may expect

to control properly if F is sufficiently decreasing. In this context, what truly matters are the

confining properties of the doubled mapping px, xq ÞÑ Gpx, xq.

We strongly believe that Theorem 8 could be extended to this setting, with a similar analysis.

From a technical point of view, the gain would be limited: the difficulty would not come from the

variable µ1pmq in G but from the variable x (precisely because the strategy is to replace in the end

the argument Xt by its conditional expectation E1pXtq in (5)). This difficulty is already present

in the prototype example (13) and, in contrast, it is clear from the example (15) that the presence

of the variable µ1pmq in G does not raise any substantial difficulty. This explains how choice to

work on (4) (and not on (19)).

An example without uniqueness recovery. As highlighted earlier, the finite-dimensional nature of

the common noise constitutes a significant limitation to obtain ergodic properties on the process

pmtqtě0 (see in contrast the recent work [24] by the first author for a 1d case with an infinite

dimensional noise). In particular, this is the thrust of our work to identify one class of mean field

dynamics for which the common noise really helps in this matter. However, it is clear that there

is no chance to get uniqueness of the invariant measure for a generic class of stochastic Fokker-

Planck SPDEs forced by a simple noise like B0.
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A counter-example in dimension d “ 1 is

dtmt “ σpvpmtqq2 ` σ2
0

2
B2
xxmtdt ` Bxpxmtqdt ´ σ0BxmtdB

0
t ,

for some function σ : r0,`8q Ñ p0,`8q. Whenever σ0 “ 0 and the function σ2p¨q{4 admits

several fixed points, the stationary solutions to the above equation cannot be unique. In this case,

pmtqtě0 is indeed solution of

(20) Btmt “ σpvpmtqq2
2

B2
xx pmtq ` Bxpxmtq, t ě 0.

Then, similar to the stationary solutions found in the previous example, the stationary solutions

(equivalently, the invariant measures of (5)) are here solutions of

dm

dx
pxq “ exp

ˆ
´2

x2

σ2pvpmqq

˙
, x P R.

Then, one can show that, if the function x ÞÑ σ2pxq{4 admits several fixed points, then there are

several stationary solutions to (20).

When adding common noise, the situation does not get better. For instance, assuming that the

initial condition P0 “ δδ0 , one can show that for all t ą 0, P0-almost surely, mt is a (random)

Gaussian probability measure with parameters
$
’’’&
’’’%

µ1pmtq “ σ0

ż t

0

es´tdB0
s ,

vpmtq “
ż t

0

e2ps´tqσ2pvpmsqqds.

Then, it is not difficult to see that pµ1pmtqqtě0 is an ergodic process (it is in fact an Ornstein-

Uhlenbeck process with a negative mean-reverting parameter). As for the dynamics of the vari-

ance pvpmtqqtě0, we get

Btvpmtq “ ´2vpmtq ` 1

2
σ2pvpmtqq, t ě 0.

Obviously, the above equation has several stationary solutions (say σ˚) if the function x ÞÑ
σ2pxq{4 admits several fixed points. In the latter case, pmtqtě0 has several invariant measures,

whose form is similar to (18) except that σ therein is now replaced by any σ˚. In this specific ex-

ample, it is noteworthy that the common noise has no influence on the mean field term pvpmtqqtě0

(which is completely deterministic). Clearly, this is a consequence of the additive structure of the

noise, the effect of which is just to shift (or to translate) the measures pmtqtě0.

Conclusion. All these examples illustrate that the form of the mean field interaction in (4), based on

the sole (conditional) mean state is key in the derivation of Theorem 8. In particular, this structure

makes it possible to transmit the noise from the dynamics of the state variable pXtqtě0 in (5) to its

conditional mean pE1pXtqqtě0. As suggested in the discussion on the prototype example, the next

step is to prove that the long run behavior of pE1pXtqqtě0 is dictated by the ergodic properties of

the SDE dYt “ GpYtqdt ` σ0dB
0
t , at least if α is large and σ is small. This is the main line of the

proof that is presented in the next two sections.
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3. PROOF OF THEOREM 8

In this section, we explain how to deduce Theorem 8 from Proposition 7, but the proof of the

latter is postponed to Section 4.

Before moving on to the proof of Theorem 8, we need two preliminary estimates: the first

one addresses the conditional variance of the solution to (4), and the second one the conditional

exponential moments of the solution.

3.1. First preliminary estimate: conditional variance. Given a solution X to Equation (5), we

first focus on the conditional expectation given the common noise pE1rXtsqtě0:

Proposition 10. Let us consider a d-dimensional Brownian motion β0 defined on pΩ0,F
0,P0q and adapted

to the filtrationF
0. Let Assumptions 1 and 2 be in force with the additional constraint cαF

:“ αF ´LG ą 0.

Let us consider P0 P PpP1pRdqq and X0 such that L1pX0q “ m0 a.s, for some random measure m0

satisfying L0pm0q “ P0. Then, for X with dynamic given by
"

dXt “ GpXtqdt ` F pXt ´ E1rXtsqdt` σdBt ` σ0dβ
0
t

Xt|t“0 “ X0,

we have for all t ě 0,

(21) E1

“
|Xt ´ E1rXts|2

‰
ď E1

“
|X0 ´ E1rX0s|2

‰
e´2cαF

t ` dσ2

cαF

,

where the previous inequality holds P0 ´ a.s.

Remark 11. p1q Inequality (21) does not depend on the choice of the Brownian motion pβ0
t qtě0 in the

dynamics of X . Accordingly, it can be recast in terms of the solution (4) in the form

(22) vpmtq ď vpm0qe´2cαF
t ` dσ2

cαF

, t ě 0.

p2q The result can be interpreted as follows. When σ “ 0, the result is consistent with [44] and says

that the process pXtqtě0 is attracted by its conditional expectation in the long run. When σ ą 0, the result

provides a sharp estimate of the residual conditional variance.

p3q Back to Theorem 8, the challenge is precisely to prove that the long-time behaviour of X is dictated

by the long-time behaviour of E1rXs even though the residual term is not zero.

Proof of Proposition 10. Using the dynamics of the process X , one can write

dpXt ´ E1rXtsq “ pGpXtq ´ E1rGpXtqsqdt ` pF pXt ´ E1rXtsq ´ E1rF pXt ´ E1rXtsqsqdt ` σdBt

Then, applying Itô’s formula, it comes

d|Xt ´ E1rXts|2 “ 2pXt ´ E1rXtsq ¨ pGpXtq ´ E1rGpXtqsqdt
` 2pXt ´ E1rXtsq ¨ pF pXt ´ E1rXtsq ´ E1rF pXt ´ E1rXtsqsqdt
` 2σpXt ´ E1rXtsq ¨ dBt

` dσ2dt

Using the fact that G is Lipschitz continuous and taking expectation, we get that

d

dt
E1

“
|Xt ´ E1rXts|2

‰
ď 2LGE1

“
|Xt ´ E1rXts|2

‰
` 2E1rpXt ´ E1rXtsq ¨ F pXt ´ E1rXtsqs ` dσ2.
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Moreover, we can write

E1 rpXt ´ E1rXtsq ¨ F pXt ´ E1rXtsqs “ E1 rpXt ´ E1rXtsq ¨ pF pXt ´ E1rXtsq ´ F p0qqs
ď ´αF E1

“
|Xt ´ E1rXts|2

‰
,

where we recall that αF ą 0 is defined in Assumption 2. Then,

d

dt
E1r|Xt ´ E1rXts|2s ď ´2pαF ´ LGqE1r|Xt ´ E1rXts|2s ` dσ2.

Finally, we get the result using Grönwall’s Lemma, as soon as αF ą LG. �

3.2. Second preliminary estimate: conditional exponential moments. Let us state the following

lemma which allows us to control the exponential moments of the process pmtqtě0 under one

invariant measure sP (which will be in the end ‘the’ invariant measure):

Lemma 12. Under Assumptions 1 and 2, assuming that αF ą LG, there exists an invariant measure
sP P P2pP2pRdqq for the process pmtqtě0, such that

(23)

ż

PpRdq

exp
´
2c2vprmq1{2

¯
sP pdrmq ă `8,

where c2 :“ cαF

1 {cαF
.

Remark 13. The result presented in Lemma 12 aligns with the global picture we gave for the behavior of

the model. In particular, it is natural (and in fact well-expected) in the regime σ ! 1 (which corresponds

to the framework of Proposition 7). Indeed, we already know from [44] (see also Section 2.4) that, if σ “ 0,

the invariant measure sP 0 is supported by Dirac masses; therefore, the conclusion of Lemma 12 becomes

straightforward when replacing sP by sP 0 in the statement. The thrust of Lemma 12 is thus to extend the

result to positive values of σ. Although our proof relies on a direct computation, it is worth noticing that

any invariant measure sP (for σ ą 0) should satisfy

d
PpRdq
1 p sP , sP 0q ď Cσ2,

for some constant C independent of σ. In particular, any invariant sP is close to sP 0 when σ is small, hence

justifying our intuition that Lemma 12 is a perturbation of the regime σ “ 0.

Proof of Lemma 12. Consider a probability measure P0 P PpPpRdqq with P0pP2pRdqq “ 1 and the

measure valued stochastic process pmtqtě0 solving (4) with L0pm0q “ P0 as initial condition.

Then, letting Pt “ L0pmtq, @t ě 0, we can easily show with arguments similar to those used in

the proof of Proposition 2 in [44] that the sequence pQT qTě0 defined by

QT :“ 1

T

ż T

0

Ptdt

admits a converging subsequence, still denoted by pQT qTě0, that converges to an invariant mea-

sure sP . For any T ą 0,
ż

PpRdq

exp
´
2c2vprmq1{2

¯
QT pdrmq “ 1

T

ż T

0

ż

PpRdq

exp
´
2c2vprmq1{2

¯
Ptpdrmq

“ 1

T

ż T

0

E0

”
exp

´
2c2vpmtq1{2

¯ı
dt.
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Moreover, (22) gives
ż

PpRdq

exp
´
2c2vprmq1{2

¯
QT pdrmq ď 1

T

ż T

0

E0

„
exp

ˆ
2c2vpm0q1{2 ` 2c2σ?

cαF

˙
dt

ď E0

„
exp

ˆ
2c2vpm0q1{2 ` 2c2σ?

cαF

˙
,

which can be assumed to be finite by choosing an appropriate initial condition. Recall indeed that

the choice of P0 in the construction of the sequence pQT qTě0 is free. Therefore, assuming that

(24)

ż

PpRdq

exp
`
2c2vprmq1{2

˘
P0pdrmq ă `8,

and using lower-semi-continuity of the function P ÞÑ xexpp2c2vp¨q1{2q ; P yPpRdq, we get that

(25)

ż

PpRdq

exp
´
2c2vprmq1{2

¯
sP pdrmq ď lim inf

TÑ`8

ż

PpRdq

exp
´
2c2vprmq1{2

¯
QT pdrmq ă `8,

which is (23).

In order to prove that sP P P2pP2pRdqq, we use the same approach and get for any T ą 0,
ż

PpRdq

µ2prmqQT pdrmq “ 1

T

ż T

0

ż

PpRdq

µ2prmqPtpdrmqdt

“ 1

T

ż T

0

E0rµ2pmtqsdt.
(26)

Now, we claim that, under (24) and Assumptions 1 and 2,

sup
tě0

E0r µ2pmtqs ă `8.

Indeed, there exist two positive constants b1, b2 ą 0, such that for all px, yq P R
d,

px´ yq ¨ pGpxq ´Gpyqq ď ´b1|x´ y|2 ` b2.

Then, we get

d

dt
E0rµ2pmtqs ď ´ 2b1E0rµ2pmtqs ` 2b2 ` pσ2 ` σ2

0q

` 2|Gp0q|E0rµ2pmtqs1{2 ` 2CFE0

”
µ2pmtq1{2vpmtq1{2

ı
.

Using once again (22) and Jensen’s inequality to control the last term, we obtain

d

dt
E0rµ2pmtqs ď ´2b1E0rµ2pmtqs ` 2

ˆ
|Gp0q| ` CF vpm0q1{2 ` CFσ?

cαF

˙
E0 rµ2pmtqs1{2

` 2b2 ` dpσ2 ` σ2
0q

ď ´b1E0rµ2pmtqs ` b´1
1

ˆ
|Gp0q| ` CF vpm0q1{2 ` CFσ?

cαF

˙2

` 2b2 ` dpσ2 ` σ2
0q,
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and conclude using Grönwall’s Lemma that suptě0 E0r µ2pmtqs ă `8. Finally, using the same

lower-semi-continuity argument as in (25) and returning to (26), we get

(27)

ż

PpRdq

µ2prmq sP pdrmq ď lim
TÑ`8

ż

PpRdq

µ2prmqQT pdrmq ă `8.

The latter implies that sP P P2pP2pRdqq. �

3.3. Completion of the proof of Theorem 8. We are now ready for the proof of Theorem 8 which

is a straightforward combination of Proposition 7 and Lemma 12.

Proof of Theorem 8. We know from Proposition 7 that for any αF ě maxpLG,mGq and any σ0 ą 0,

there exist sσ ą 0 (depending on F,G, σ0 and d) such that for all σ ď sσ and for any 1-Lipschitz

continuous function φ : P1pRdq Ñ R and all m, rm P P2pRdq,

|Ptφpmq ´ Ptφprmq| ď Kpm, rmqe´ct, t ě 0,

for some c ą 0 independent of m and rm. Let us now consider an invariant measure sP P
P2pP2pRdqq, with a finite conditional exponential moments, whose existence is ensured by Lemma 12.

Then,

(28)

ˇ̌
ˇ̌
ˇPtφpmq ´

ż

PpRdq

Ptφprmq sP pdrmq
ˇ̌
ˇ̌
ˇ ď

ż

PpRdq

|Ptφpmq ´ Ptφprmq| sP pdrmq

ď e´ct

ż

PpRdq

Kpm, rmq sP pdrmq.

Now, coming back to Proposition 7 for the shape of Kpm, rmq, we obtain that
ż

PpRdq

Kpm, rmq sP pdrmq ď Cdµ2pmq1{2 exp
´
c2vpmq1{2

¯ż

PpRdq

exp
´
c2vpmq1{2

¯
sP pdrmq

` Cd exp
´
c2vprmq1{2

¯ ż

PpRdq

µ2prmq1{2 exp
´
c2vprmq1{2

¯
sP pdrmq,

with c2 :“ cαF

1 {cαF
.

Using Hölder inequality and leveraging on Lemma 12 we have
ż

PpRdq

Kpm, rmq sP pdrmq ď Cd

`
1 ` µ2pmq1{2

˘
exp

´
c2vpmq1{2

¯
.

Substituting in (28), we complete the proof. �

4. PROOF OF PROPOSITION 7

This section is dedicated to the proof of Proposition 7.

4.1. Ansatz. The strategy of proof of Proposition 7 relies on the auxiliary Proposition 10. This

latter result says that the residual conditional variance of X (solution to Equation (5)) is small

with σ. In turn, it prompts us to focus on the process E1rXs “ pE1rXtsqtě0. The latter has the

following dynamics:

dE1rXts “ E1rGpXtqsdt` E1rF pXt ´ E1rXtsqsdt` σ0dB
0
t , t ě 0.
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Whilst this is not a closed equation (in E1rXts), our approach is to write it as a perturbation of

a finite-dimensional stochastic differential equation. Heuristically, we have (thanks to Proposi-

tion 10) that on a large time scale

E1rF pXt ´ E1rXtsqs « σ2{cαF
,(29)

E1rGpXtqs “ GpE1rXtsq ` rE1rGpXtqs ´GpE1rXtsqs « GpE1rXtsq ` σ2{cαF
.(30)

Equations (29) and (30) are rather informal, and we refrain from giving here a rigorous meaning

to the symbol « in both of them. However, these two expansions suggest that the dynamics of

pE1rXtsqtě0 indeed resembles to the one of the diffusion process Y , constructed on pΩ0,F
0,P0q as

the solution of

(31) dYt “ GpYtq dt ` σ0dB
0
t , t ě 0 ; Y0 “ E1pX0q.

Here, it is worth emphasizing that, even obvious, (31) is not a McKean-Vlasov but a mere diffusion

equation. In particular, the long time analysis of (31) falls within a much wider literature, since the

study of the long time behaviour of diffusion processes has been an important topic of interest,

see [2, 4, 5] to name just a few. Below, we make use of coupling arguments, in the spirit of Eberle

[26], who stated contraction properties for the law of the solution of (31) by building on ideas

developed earlier in [41]. The next section gives some details on this approach and the contraction

results available in this framework.

4.2. Contraction for classical diffusion processes. Following [26], we introduce the following

quantities :

R0 :“ inftR ě 0 : κprq ě 0, @r ě Ru,
R1 :“ inf tR ě R0 : κprqR pR ´R0q ě 8, @r ě Ru ,

so that R0 ď R1. Thanks to Assumption 1, R0 and R1 are finite. Moreover, let

ϕprq :“ exp

ˆ
´1

4

ż r

0

sκpsq´ds

˙
, Φprq:“

ż r

0

ϕpsqds,

gprq :“ 1 ´
˜ż r^R1

0

Φpsqϕpsq´1ds

¸˜
2

ż R1

0

Φpsqϕpsq´1ds

¸´1

,

and

(32) fprq :“
ż r

0

ϕpsqgpsqds.

Then, we have that

‚ ϕ is non-increasing, ϕp0q “ 1, and ϕprq “ ϕ pR0q for any r ě R0;

‚ g is non-increasing, gp0q “ 1, and gprq “ 1{2 for any r ě R1;

‚ f 1 is bounded on r0,`8q;
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‚ f is concave, fp0q “ 0, f 1p0q “ 1, and

Φprq{2 ď fprq ď Φprq for any r ě 0.

The last display combined with the fact that for all r ě 0, Φprq{2 ě ϕpR0qr{2 and Φprq ď r,

implies

(33) κ1r ď fprq ď r,

with κ1 :“ ϕpR0q{2. This allows us to define the equivalent deformation of 1-Wasserstein distance

dR
d

f pµ, νq:“ inf
πPΠpµ,νq

ż
fp|x´ y|qπp dx, dyq,

for any two probability measures µ, ν on R
d, where the infimum is taken over all couplings π of

µ and ν. Last but not least, the function f we constructed satisfies

(34) f2prq ´ 1

4
rκprqf 1prq ď ´ c

2σ2
0

fprq for all r ą 0,

and for some c ą 0. Such concentration property for the function f is classical, and the proof of

inequality (34) can be found in [18, 25, 26]. Leveraging on the contraction property of f given by

Equation (34), we get the following result (as a direct consequence of [26]):

Theorem 14 (Corollary 2 in [26]). Under Assumption 1 and with σ0 ą 0, there exists a constant

c :“ cσ0
ą 0, such that for any pair pY, rY q of solutions to Equation (31) with different initial conditions,

we have

(35) dR
d

f

´
L1pYtq,L1prYtq

¯
ď dR

d

f

´
L1pY0q,L1prY0q

¯
e´ct, t ě 0.

Remark 15. Thanks to (33), we get that inequality (35) holds (up to some constant) when replacing dR
d

f

by the classical dR
d

1 Wasserstein distance.

The idea of the proof of Theorem 14 is to use the reflection coupling introduced in [41] and

widely used in the literature [18, 25, 26, 27]. The classical reflection coupling is constructed by

multiplying the noise by a symmetry matrix mapping instantaneously Yt ´ rYt on its opposite,

see [41, Section 3] for details. In this framework, the distance between the two processes Y and
rY evolves according to an Itô process with constant noise intensity. The hope is thus to benefit

from the presence of the noise to obtain further recurrent properties that prevent the processes

from staying away from one another. For sure, one cannot expect this intuition to hold true for

any type of drift; in order to guarantee a relevant form of recurrence, some further confining

properties are necessary.

When dealing with the stochastic differential equation (31), the condition lim suprÑ`8 κprq ą 0

required in Assumption 1 is key in the verification of the latter confining properties. In itself, this

is not an obvious result: one must indeed keep in mind that G is not strictly decreasing, meaning

that κmay be negative on some part of the space. Clearly, things become even more subtle in pres-

ence of the conditional McKean-Vlasov interaction. Still, one would like to settle down a similar

reflection argument for Equation (5), which raises preliminary questions of measurability. Briefly,

in order to preserve the form of the common noise, one must consider a reflection matrix that is

measurable with respect to the latter (and not to the idiosyncratic noise). The idea developed in
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the next subsection is to introduce a coupling pX, rXq of solutions to (5) in which the reflection is

achieved by reflecting with respect to E1rXts ´ E1r rXts. However, while reflecting with respect to

the conditional expectations may seem appropriate to our objective, it cannot suffice on its own

to get a proof of Proposition 7 that would be a mere copy and paste of the argument of [26]. The

difficulty that one meets when adapting [26] to (5) is clear: the processes that solve (5) are not

those that are used in the reflection. This is where Proposition 10 comes in and this is one of the

main innovation of our work: we use the fact that the distance between the solutions to (5) and

their conditional expectations (which are also the processes entering the reflection) is small with

σ. Mathematically, the difficulty is to revisit the whole machinery of [26] by using the fact that,

although it is not zero, the latter distance is small.

4.3. Proof of Proposition 7. To ease the reading of this subsection, we briefly outline the strategy

of proof:

Proof Outline.

‚ Step 1. We construct a coupling pX, rXq inspired by the reflection coupling introduced in

[41] (as explained in subsection 4.2) and adapted to the presence of a common noise.

‚ Steps 2, 3 & 4. We prove that this coupling allows the conditional expectations E1rXs
and E1r rXs to get closer in time, up to some residual error that depends on the distance

between the centred processes X ´ E1rXs and rX ´ E1r rXs. This is established thanks to

the confining property of G guaranteed by Assumption 1.

‚ Step 5. In parallel (the key point is to run the two arguments at the same time), we prove

the mirror result, namely we show that the centred processesX´E1rXs and rX´E1r rXs get

closer in time, up to some residual error that depends on the distance between the condi-

tional expectations E1rXs and E1r rXs. This is established thanks to the strictly contracting

properties of the interaction term F guaranteed by Assumption 2.

‚ Step 6. We combine together the results of Step 4 and Step 5 to conclude.

Proof. Step 1. Let us consider a bounded and dR
d

1 -Lipschitz continuous function φ : P1pRdq Ñ R.

In particular there exists }φ}lip ą 0 such that for any m, rm P P1pRdq,

|φpmq ´ φprmq| ď }φ}lipdR
d

1 pm, rmq.
Let us then fix m, rm P P2pRdq together with two independent random variables X0, rX0, defined

on pΩ1,F
1,P1q such that L1pX0q “ m and L1p rX0q “ rm. Then, we extendX0 and rX0 to the product

space pΩ,F,Pq in a natural manner.

Remark 16. It is important to notice here that, even if the initial conditions X0, rX0 are defined on the

product space pΩ,F,Pq, they are independent of F0.
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For a given δ ą 0, let us now introduce the following coupling of two solutions of the SDE (5)

with initial conditions X0 and rX0:
$
’’’’’&
’’’’’%

dXδ
t “ GpXδ

t qdt`F
`
Xδ

t ´ E1rXδ
t s
˘
dt ` σdBt ` σ0

!
πδpEδ

t qdB0
t ` λδpEδ

t qd rB0
t

)
,

d rXδ
t “ Gp rXδ

t qdt`F
´
rXδ
t ´ E1r rXδ

t s
¯
dt` σdBt

` σ0

!
πδpEδ

t q
´
Id ´ 2eδt

`
eδt
˘J

¯
dB0

t ` λδpEδ
t qd rB0

t

)
,

(36)

where

‚ the initial conditions are given by Xδ
0 “ X0 and rXδ

0 “ rX0;

‚ rB0 is a d-dimensional Brownian motion defined on pΩ0,F
0,P0q adapted to the filtration

F
0 and independent of B0;

‚ for all t ě 0, Eδ
t :“ E1rXδ

t s ´ E1r rXδ
t s, and

eδt :“
#
Eδ

t {|Eδ
t | if |Eδ

t | ‰ 0

0 otherwise;

‚ the function πδ is Lipschitz continuous on R
d with value in r0, 1s, such that for any x P R

d,

πδpxq “
#
0 if |x| ď δ{2
1 if |x| ě δ.

‚ the function λδ is Lipschitz-continuous and satisfies λ2δpxq “ 1 ´ π2
δ pxq, for all x P R

d.

The first thing to notice is that under the Lipschitz continuity assumptions on G and F , and the

integrability properties of the initial conditions, we have existence and uniqueness of a weak

solution of (36). Moreover, thanks to the choice of πδ and λδ , the pair pXδ, rXδq is a coupling of

pZ, rZq where for Z and rZ admits the same dynamic,

(37) dZt “ GpZtqdt` F pZt ´ E1rZtsqdt ` σdBt ` σ0dB
0
t ,

with initial condition Z0 “ X0 and rZ0 “ rX0. This is mainly due to Levy’s characterisation of the

Brownian motion which is applicable here as for all x P R
d, λ2δpxq ` π2

δ pxq “ 1. Details on the

coupling method are given in subsection 4.2. Below, we focus on the long-time behavior of

E0

“
E1

“
|Xδ

t ´ rXδ
t |
‰‰
,

for a given δ ą 0.

Step 2. Letting Aδ
t :“ Xδ

t ´ E1rXδ
t s and rAδ

t :“ rXδ
t ´ E1r rXδ

t s, we get that for all t ě 0,

|Xδ
t ´ rXδ

t | ď |E1rXδ
t s ´ E1r rXδ

t s| ` |Aδ
t ´ rAδ

t |.
The idea of the proof is to control both |E1rXδ

t s ´ E1r rXδ
t s| and |Aδ

t ´ rAδ
t | simultaneously. This

will allow us to prove that both terms converge in fact to 0 (in some sense). Let us begin with the

difference of the conditional expectations:

d
´
E1rXδ

t s ´ E1r rXδ
t s
¯

“E1rGpXδ
t q ´Gp rXδ

t qsdt` E1rF pAδ
t q ´ F p rAδ

t qsdt

`2σ0πδpEδ
t qeδt eδt ¨ dB0

t .
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Using Itô’s formula and recalling that Eδ
t “ E1rXδ

t s ´ E1r rXδ
t s and eδt ¨Eδ

t “ |Eδ
t |, we obtain

d

ˇ̌
ˇE1rXδ

t s ´ E1r rXδ
t s
ˇ̌
ˇ
2

“ 2
´
E1rXδ

t s ´ E1r rXδ
t s
¯

¨
´
E1rGpXδ

t qs ´ E1rGp rXδ
t qs

¯
dt

` 2
´
E1rXδ

t s ´ E1r rXδ
t s
¯

¨
´
E1rF pAδ

t qs ´ E1rF p rAδ
t qs

¯
dt

` 4σ0

ˇ̌
ˇE1rXδ

t s ´ E1r rXδ
t s
ˇ̌
ˇπδpEδ

t qeδt ¨ dB0
t

` 2σ2
0π

2
δ pEδ

t qdt.

This combined with the particular shape of the reflection, and noting that p
şt
0
eδs ¨ dB0

sqt is a 1-

dimensional Brownian motion tank’s to Levy’s characterisation allows us to write

(38)

d

ˇ̌
ˇE1rXδ

t s ´ E1r rXδ
t s
ˇ̌
ˇ “ eδt ¨

´
E1rGpXδ

t qs ´ E1rGp rXδ
t qs

¯
dt

` eδt ¨
´
E1rF pAδ

t qs ´ E1rF p rAδ
t qs

¯
dt

` 2σ0πδpEδ
t qeδt ¨ dB0

t , t ě 0.

Deriving Equation (38) is not straightforward and can be done using similar techniques as in [25].

The underlying concept is that the presence of πδ keeps the process Eδ from lingering near zero.

The complete proof of (38) can be found in Appendix A. We now recall (see Assumption 1) that κ

is a continuous function on p0,8q satisfying

(39) lim inf
rÑ8

κprq ą 0 and

ż 1

0

rκprq´dr ă 8.

Then, using Itô’s formula once again, we obtain

df
´ˇ̌
ˇE1rXδ

t s ´ E1r rXδ
t s
ˇ̌
ˇ
¯

“ f 1
´ˇ̌
ˇE1rXδ

t s ´ E1r rXδ
t s
ˇ̌
ˇ
¯
eδt ¨

´
E1rGpXδ

t qs ´ E1rGp rXδ
t qs

¯
dt

` f 1
´ˇ̌
ˇE1rXδ

t s ´ E1r rXδ
t s
ˇ̌
ˇ
¯
eδt ¨

´
E1rF pAδ

t qs ´ E1rF p rAδ
t qs

¯
dt

` 2σ0f
1
´ˇ̌
ˇE1rXδ

t s ´ E1r rXδ
t s
ˇ̌
ˇ
¯
πδpEδ

t qeδt ¨ dB0
t

` 2σ2
0f

2
´ˇ̌
ˇE1rXδ

t s ´ E1r rXδ
t s
ˇ̌
ˇ
¯
π2
δ pEδ

t qdt.

Then, we rewrite

(40)

df
´ˇ̌
ˇE1rXδ

t s ´ E1r rXδ
t s
ˇ̌
ˇ
¯

“ f 1
´ˇ̌
ˇE1rXδ

t s ´ E1r rXδ
t s
ˇ̌
ˇ
¯
eδt ¨

´
GpE1rXδ

t sq ´GpE1r rXδ
t sq

¯
dt

` 2σ2
0f

2
´ˇ̌
ˇE1rXδ

t s ´ E1r rXδ
t s
ˇ̌
ˇ
¯
π2
δ pEδ

t qdt

` 2σ0f
1
´ˇ̌
ˇE1rXδ

t s ´ E1r rXδ
t s
ˇ̌
ˇ
¯
πδpEδ

t qeδt ¨ dB0
t ` r1t dt,

where for all t ě 0, r1t :“ I1ptq ` II1ptq ` III1ptq, with
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(41)

I1ptq “ f 1
`ˇ̌
Eδ

t

ˇ̌˘
eδt ¨ E1

” ż 1

0

tDGpρXδ
t ` p1 ´ ρq rXδ

t q ´DGpρE1rXδ
t s ` p1 ´ ρqE1r rXδ

t squ dρ

pE1rXδ
t s ´ E1r rXδ

t sq
ı
;

II1ptq “ f 1
`ˇ̌
Eδ

t

ˇ̌˘
eδt ¨ E1

” ż 1

0

tDGpρXδ
t ` p1 ´ ρq rXδ

t q ´DGpρE1rXδ
t s ` p1 ´ ρqE1r rXδ

t squ dρ

pAδ
t ´ rAδ

t q
ı
;

III1ptq “ f 1
`ˇ̌
Eδ

t

ˇ̌˘
eδt ¨ E1

” ż 1

0

DF pρAδ
t ` p1 ´ ρq rAδ

t q dρ pAδ
t ´ rAδ

t q
ı
,

where we used the following two identities: E1rXδ
t s ´ E1r rXδ

t s ` Aδ
t ´ rAδ

t “ Xδ
t ´ rXδ

t and

E1rAδ
t s ´ E1r rAδ

t s “ 0.

Step 3. Recall (34):

f2prq ´ 1

4
rκprqf 1prq ď ´ c

2σ2
0

fprq for all r ą 0.

Combining the above equation with the fact that, from Assumption 1,

px´ yq ¨ pGpxq ´Gpyqq ď ´ 2

σ2
0

κp|x´ y|q|x´ y|2, x, y P R
d,

we obtain

(42)

f 1
´ˇ̌
ˇE1rXδ

t s ´ E1r rXδ
t s
ˇ̌
ˇ
¯
eδt ¨

´
GpE1rXδ

t sq ´GpE1r rXδ
t sq

¯

` 2σ2
0f

2
´ˇ̌
ˇE1rXδ

t s ´ E1r rXδ
t s
ˇ̌
ˇ
¯
π2
δ pEδ

t q

ď ´σ2
0

2
f 1
`ˇ̌
Eδ

t

ˇ̌˘
|Eδ

t |κ
`ˇ̌
Eδ

t

ˇ̌˘
` 2σ2

0f
2
`ˇ̌
Eδ

t

ˇ̌˘
π2
δ pEδ

t q

ď 2σ2
0

ˆ
´1

4
f 1
`ˇ̌
Eδ

t

ˇ̌˘
|Eδ

t |κ
`ˇ̌
Eδ

t

ˇ̌˘
` f2

`ˇ̌
Eδ

t

ˇ̌˘˙
π2
δ pEδ

t q ´ σ2
0

2
f 1
`ˇ̌
Eδ

t

ˇ̌˘
|Eδ

t |κ
`ˇ̌
Eδ

t

ˇ̌˘
λ2δpEδ

t q

ď ´cf
´ˇ̌
ˇE1rXδ

t s ´ E1r rXδ
t s
ˇ̌
ˇ
¯

` hpδq,

where

hpδq :“ σ2
0

2
f 1
`ˇ̌
Eδ

t

ˇ̌˘
|Eδ

t |κ
`ˇ̌
Eδ

t

ˇ̌˘
λ2δpEδ

t q.
Now, recalling that λδpxq “ 0 as soon as |x| ě δ, we obtain for δ P r0, 1s,

(43) |hpδq| ď σ2
0

2
}f 1}8δκ2,

where κ2 “ sup0ďrď1 κprq, from which we deduce that hpδq Ñ 0 with δ. Then, back to (40), we

can write

df
´ˇ̌
ˇE1rXδ

t s ´ E1r rXδ
t s
ˇ̌
ˇ
¯

ď ´ cf
´ˇ̌
ˇE1rXδ

t s ´ E1r rXδ
t s
ˇ̌
ˇ
¯
dt ` |r1t |dt` hpδqdt
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` 2σ0f
1
´ˇ̌
ˇE1rXδ

t s ´ E1r rXδ
t s
ˇ̌
ˇ
¯
πδpEδ

t qeδt ¨ dB0
t ,

and

d

dt
E0

”
f
´ˇ̌
ˇE1rXδ

t s ´ E1r rXδ
t s
ˇ̌
ˇ
¯ı

ď ´c E0

”
f
´ˇ̌
ˇE1rXδ

t s ´ E1r rXδ
t s
ˇ̌
ˇ
¯ı

` E0r|r1t |s ` E0r|hpδq|s.

Using Grönwall’s Lemma, we obtain

E0

”
f
´ˇ̌
ˇE1rXδ

t s ´ E1r rXδ
t s
ˇ̌
ˇ
¯ı

ď E0

”
f
´ˇ̌
ˇE1rXδ

0 s ´ E1r rXδ
0 s
ˇ̌
ˇ
¯ı
e´ct `

ż t

0

e´cpt´sq
E0r|r1s |sds

` hpδq
c
.

(44)

Step 4. It remains to control the three parts in the expansion of the residual term r1¨ , see (41).

For the two first ones, we use the Lipschitz continuity of DG with respect to the norm ||| ¨ ||| and

write

|I1ptq| ď CGE1

”
|Xδ

t ´ E1rXδ
t s|2 ` | rXδ

t ´ E1r rXδ
t s|2

ı1{2 ˇ̌
ˇE1rXδ

t s ´ E1r rXδ
t s
ˇ̌
ˇ ;

|II1ptq| ď CGE1

”
|Xδ

t ´ E1rXδ
t s|2 ` | rXδ

t ´ E1r rXδ
t s|2

ı1{2

E1

”
|Aδ

t ´ rAδ
t |2

ı1{2

.

Letting ηδt “ E1

”
|Xδ

t ´ E1rXδ
t s|2 ` | rXδ

t ´ E1r rXδ
t s|2

ı1{2

, for all t ě 0, and recalling from Proposi-

tion 10 that

ηδt ď ηδ0e
´cαF

t ` 2σc´1{2
αF

?
d,

we obtain

|I1ptq| ` |II1ptq|

ď CG

´
ηδ0e

´cαF
t ` 2σc´1{2

αF

?
d
¯ˆ

E1

”
|Aδ

t ´ rAδ
t |2

ı1{2

`
ˇ̌
ˇE1rXδ

t s ´ E1r rXδ
t s
ˇ̌
ˇ
˙
.

(45)

For the term III1ptq, we use the fact that E1rAδ
t s “ E1r rAδ

t s “ 0 and write

(46)
|III1ptq| “

ˇ̌
ˇ̌E1

„ż 1

0

tDF pρAδ
t ` p1 ´ ρq rAδ

t q ´DF p0qudρ ¨ pAδ
t ´ rAδ

t q
ˇ̌
ˇ̌

ďCF

´
ηδ0e

´cαF
t ` 2σc´1{2

αF

?
d
¯
E1

”
|Aδ

t ´ rAδ
t |2

ı1{2

,

where we used once again Proposition 10 together with the Lipschitz continuity of F to get the

last line. Then, combining (40), (45) and (46), we have

E0r|r1t |s ď E0 r|I1ptq| ` |II1ptq| ` |III1ptq|s

ď pCG ` CF q
´
ηδ0e

´cαF
t ` 2σc´1{2

αF

?
d
¯
E0

„
E1

”
|Aδ

t ´ rAδ
t |2

ı1{2

`
ˇ̌
ˇE1rXδ

t s ´ E1r rXδ
t s
ˇ̌
ˇ

.
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Here, we recall that ηδ0 is deterministic becausem and rm are deterministic, see Remark 16. Finally,

using inequalities (33) and (44), we obtain

(47)

κ1E0

“
|E1rXδ

t s ´ E1r rXδ
t s|

‰
ď e´ct

ˇ̌
ˇE1rXδ

0 s ´ E1r rXδ
0 s
ˇ̌
ˇ`hpδq

c

` Cb

ż t

0

e´cpt´sq
´
ηδ0e

´cαF
s ` 2σc´1{2

αF

?
d
¯
E0

„
E1

”
|Aδ

s ´ rAδ
s|2

ı1{2

` |E1rXδ
s s ´ E1r rXδ

s s|

ds,

where Cb :“ CG ` CF .

Step 5. We now focus on the (normed) difference process p|Aδ
t ´ rAδ

t |qtě0. Thanks to the proper-

ties of F , as stated in Assumption 2, we are here able to show that it decreases exponentially fast

to zero.

Recalling from Step 2 that Aδ
t “ Xδ

t ´ E1rXδ
t s for t ě 0, we have

dAδ
t “

`
GpXδ

t q ´ E1rGpXδ
t qs

˘
dt`

`
F pXδ

t ´ E1rXδ
t sqdt ´ E1rF pXδ

t ´ E1rXδ
t ss

˘
dt ` σdBt,

from which we obtain

d

dt
pAδ

t ´ rAδ
t q “

”
GpXδ

t q ´Gp rXδ
t q
ı

`
”
F pAδ

t q ´ F p rAδ
t q
ı

´
”
E1rGpXδ

t qs ´ E1rGp rXδ
t qs

ı
´
”
E1rF pAδ

t qs ´ E1rF p rAδ
t qs

ı
.

Then,

(48)

d

dt
|Aδ

t ´ rAδ
t |2 “ 2pAδ

t ´ rAδ
t q ¨ pGpXδ

t q ´Gp rXδ
t qq

` 2pAδ
t ´ rAδ

t q ¨ pF pAδ
t q ´ F p rAδ

t qq
´ 2pAδ

t ´ rAδ
t q ¨ pE1rGpXδ

t qs ´ E1rGp rXδ
t qsq

´ 2pAδ
t ´ rAδ

t q ¨ pE1rF pAδ
t qs ´ E1rF p rAδ

t qsq
We can immediately leverage on Assumption 2 to control the second term on the right hand side:

(49) 2pAδ
t ´ rAδ

t q ¨ pF pAδ
t q ´ F p rAδ

t qq ď ´2αF |Aδ
t ´ rAδ

t |2.
Let us now focus on the terms involving G. We have

pAδ
t ´ rAδ

t q ¨
´
GpXδ

t q ´Gp rXδ
t q ´ E1rGpXδ

t qs ` E1rGp rXδ
t qs

¯

“ pAδ
t ´ rAδ

t q ¨
„ˆż 1

0

!
DGpρXδ

t ` p1 ´ ρq rXδ
t q ´DGpρE1rXδ

t s ` p1 ´ ρqE1r rXδ
t sq

)
dρ

˙
pXδ

t ´ rXδ
t q


` pAδ
t ´ rAδ

t q ¨
„ˆż 1

0

DGpρE1rXδ
t s ` p1 ´ ρqE1r rXδ

t sqdρ
˙

pXδ
t ´ rXδ

t q


´ pAδ
t ´ rAδ

t q ¨ E1

„ˆż 1

0

!
DGpρXδ

t ` p1 ´ ρq rXδ
t q ´DGpρE1rXδ

t s ` p1 ´ ρqE1r rXδ
t sq

)
dρ

˙
pXδ

t ´ rXδ
t q


´ pAδ
t ´ rAδ

t q ¨
„ˆż 1

0

DGpρE1rXδ
t s ` p1 ´ ρqE1r rXδ

t sqdρ
˙

pE1rXδ
t s ´ E1r rXδ

t sq

.
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By combining the second and fourth term in the right hand side, we obtain

pAδ
t ´ rAδ

t q ¨
´
GpXδ

t q ´Gp rXδ
t qq ´ E1rGpXδ

t qs ` E1rGp rXδ
t qs

¯

“pAδ
t ´ rAδ

t q ¨
„ˆż 1

0

!
DGpρXδ

t ` p1 ´ ρq rXδ
t q ´DGpρE1rXδ

t s ` p1 ´ ρqE1r rXδ
t sq

)
dρ

˙
pXδ

t ´ rXδ
t q


`pAδ
t ´ rAδ

t q ¨
ˆż 1

0

DGpρE1rXδ
t s ` p1 ´ ρqE1r rXδ

t sqdρ
˙

pAδ
t ´ rAδ

t q

´pAδ
t ´ rAδ

t q ¨ E1

„ˆż 1

0

!
DGpρXδ

t ` p1 ´ ρq rXδ
t q ´DGpρE1rXδ

t s ` p1 ´ ρqE1r rXδ
t sq

)
dρ

˙
pXδ

t ´ rXδ
t q


“:A1ptq ` A2ptq ` A3ptq.
Then, if we perform the following decomposition of the first term on the right-hand side, we

obtain

(50) A1ptq “ AA1ptq ` AA2ptq,
with

AA1ptq :“ pAδ
t ´ rAδ

t q ¨
„ˆż 1

0

!
DGpρXδ

t ` p1 ´ ρq rXδ
t q ´DGpρE1rXδ

t s ` p1 ´ ρqE1r rXδ
t sq

)
dρ

˙

pE1rXδ
t s ´ E1r rXδ

t sq


AA2ptq :“ pAδ
t ´ rAδ

t q ¨
´ż 1

0

!
DGpρXδ

t ` p1 ´ ρq rXδ
t q

´DGpρE1rXδ
t s ` p1 ´ ρqE1r rXδ

t sq
)
dρ

¯
pAδ

t ´ rAδ
t q.

Then, combining the terms A2ptq and AA2ptq, we get

pAδ
t ´ rAδ

t q ¨
´
GpXδ

t q ´Gp rXδ
t q ´ E1rGpXδ

t qs ` E1rGp rXδ
t qs

¯

“ AA1ptq ` rA2ptq ` AA2ptqs ` A3ptq
“: AA1ptq ` II2ptq ` A3ptq,

(51)

where AA1ptq and A3ptq have been already defined and II2ptq is defined by

II2ptq :“ pAδ
t ´ rAδ

t q ¨
ˆż 1

0

DGpρXδ
t ` p1 ´ ρq rXδ

t qdρ
˙

pAδ
t ´ rAδ

t q.

We now control II2ptq as we handled Equation (49). We get

(52) II2ptq ď mG|Aδ
t ´ rAδ

t |2,
where we recall from (6) that mG P R stands for the upper bound of the function r ÞÑ r´σ2

0κprq{2s
introduced in Assumption 1. Indeed, as a consequence of 1, one can show that for any x, y P R

d,

y ¨
`
DGpxqy

˘
ď mG|y|2.
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Then, inserting (49), (51) and (52) into (48), we obtain

d

dt
|Aδ

t ´ rAδ
t |2

ď ´2pαF ´mGq|Aδ
t ´ rAδ

t |2 ` AA1ptq ` A3ptq ` 2pAδ
t ´ rAδ

t q ¨ pE1rF pAδ
t qs ´ E1rF p rAδ

t qsq.

By taking expectation under P1 and by using the fact that E1rAδ
t s “ E1r rAδ

t s “ 0, we get rid the last

two terms in the above right-hand side. We obtain

(53)
d

dt
E1

”
|Aδ

t ´ rAδ
t |2

ı
ď ´2pαF ´mGqE1

”
|Aδ

t ´ rAδ
t |2

ı
` 2E1 rAA1ptqs .

In order to control AA1ptq, we come back to (50) and use the fact that E1rXδ
t s ´E1r rXδ

t s is measur-

able with respect to the common noise. By Cauchy-Schwarz’ inequality, we obtain

E1 rAA1ptqs ď CGE1r|Aδ
t ´ rAδ

t |2s1{2ηδt |E1rXδ
t s ´ E1r rXδ

t s|,
where we recall that ηδt “ E1r|Aδ

t |2 ` | rAδ
t |2s1{2. Then, from Proposition 10, we get

E1 rAA1ptqs ď E1r|Aδ
t ´ rAδ

t |2s1{2
´
ηδ0e

´cαF
t ` σc´1{2

αF

?
d
¯

|E1rXδ
t s ´ E1r rXδ

t s|,

and (53) rewrites

(54)

d

dt
E1

”
|Aδ

t ´ rAδ
t |2

ı
ď ´ 2pαF ´mGqE1

”
|Aδ

t ´ rAδ
t |2

ı

` 2E1r|Aδ
t ´ rAδ

t |2s1{2
´
ηδ0e

´cαF
t ` σc´1{2

αF

?
d
¯

|E1rXδ
t s ´ E1r rXδ

t s|.

Then, we get

(55)

d

dt
E1

”
|Aδ

t ´ rAδ
t |2

ı1{2

ď ´ pαF ´mGqE1

”
|Aδ

t ´ rAδ
t |2

ı1{2

` CGpηδ0e´cαF
t ` σc´1{2

αF

?
dq|E1rXδ

t s ´ E1r rXδ
t s|,

see Appendix A.2 for details. Using Grönwall’s Lemma, we obtain

E1r|Aδ
t ´ rAδ

t |2s1{2 ď E1r|Aδ
0 ´ rAδ

0|2s1{2 exp p´pαF ´mGqtq

` CG

ż t

0

e´pαF ´mGqpt´sqpηδ0e´cαF
s ` σc´1{2

αF

?
dq|E1rXδ

s s ´ E1r rXδ
s s|ds.

Finally, taking again expectation E0,

(56)

E0

”
E1r|Aδ

t ´ rAδ
t |2s1{2

ı
ď expp´pαF ´mGqtqE1r|Aδ

0 ´ rAδ
0|2s1{2

` CG

ż t

0

e´pαF ´mGqpt´sqpηδ0e´cαF
s ` σc´1{2

αF

?
dqE0

”
|E1rXδ

s s ´ E1r rXδ
s s|

ı
ds.
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Step 6. Now, as (47) remains true replacing the rate c by rc ď c, we can assume without loss of

generality that αF ą mG ` c. We can then combine Equations (47) and (56) to obtain, for all t ě 0,

(57)

E0

„
E1

”
|Aδ

t ´ rAδ
t |2

ı1{2

` |E1rXδ
t s ´ E1r rXδ

t s|


ď
ˆ
E1

”
|Aδ

0 ´ rAδ
0|2

ı1{2

` |E1rXδ
0 s ´ E1r rXδ

0 s|
˙
e´ct ` hpδq

c

` cb3

ż t

0

e´cpt´sq
´
ηδ0e

´cαF
s ` 2σc´1{2

αF

?
d
¯
E0

„
E1

”
|Aδ

s ´ rAδ
s|2

ı1{2

` |E1rXδ
s s ´ E1r rXδ

s s|

ds,

for some constant cb3 ą 0 that depends on F and G.

With the notation Θδ
t :“ E1

”
|Aδ

t ´ rAδ
t |2

ı1{2

` |E1rXδ
t s ´ E1r rXδ

t s|, Equation (57) reads

E0rΘδ
t s ď Θδ

0e
´ct ` hpδq

c
` cb3

ż t

0

e´cpt´sq
´
ηδ0e

´cαF
s ` 2σc´1{2

αF

?
d
¯
E0

“
Θδ

s

‰
ds.

Then, using Grönwall Lemma, we obtain

(58)

ectE0

“
Θδ

t

‰
ď
ˆ
Θ0 ` hpδq

c

˙
exp

˜
cb3
cαF

η0 ` cb3σ
?
d

?
cαF

t

¸

` hpδq
ż t

0

ecs exp

˜
cb3
cαF

η0 ` cb3σ
?
d

?
cαF

pt´ sq
¸
ds.

We emphasize here that we write Θ0 and η0 without reference to δ because these quantities are

predetermined and independent of δ. Now, let us notice that creating the couplage we defined

two Brownian motions adapted to the filtration F0:

βδ
t “

ż t

0

πδpEδ
s qpId ´ 2eδspeδsqJqdB0

s `
ż t

0

λδpEδ
sqd rB0

s

rβδ
t “

ż t

0

πδpEδ
s qdB0

s `
ż t

0

λδpEδ
s qd rB0

s .

Setting mδ
t “ L1pXδ

t q et rmδ
t “ L1p rXδ

t q, we get

dtm
δ
t “ ∇ ¨

ˆ
σ2 ` σ2

0

2
∇mδ

t ´mδ
t

`
G ` F p¨ ´ µ1pmδ

t qq
˘˙

dt ´ σ0∇m
δ
t ¨ dβδ

t ,

dt rmδ
t “ ∇ ¨

ˆ
σ2 ` σ2

0

2
∇rmδ

t ´ rmδ
t

`
G ` F p¨ ´ µ1prmδ

t qq
˘˙

dt ´ σ0∇rmδ
t ¨ drβδ

t .

Then, one has Ptφpmq “ E0

“
φpmδ

t q|mδ
0 “ m

‰
and Ptφprmq “ E0

“
φprmδ

t q|rmδ
0 “ rm

‰
. Then, we

obtain that for any δ ą 0,

(59)
|Ptφpmq ´ Ptφprmq| ď }φ}lipE0

”
E1

”ˇ̌
ˇXδ

t ´ rXδ
t

ˇ̌
ˇ
ıı

ď }φ}lipE0rΘδ
t s
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Plugging the estimate given by Equation (58) into Equation (59) gives

|Ptφpmq ´ Ptφprmq| ď}φ}lip
ˆ
Θ0 ` hpδq

c

˙
exp

˜
cb3
cαF

η0 `
˜
cb3σ

?
d

?
cαF

´ c

¸
t

¸

` }φ}liphpδq
ż t

0

e´cpt´sq exp

˜
cb3
cαF

η0 ` cb3σ
?
d

?
cαF

pt ´ sq
¸
ds.

The latter being true for all δ ą 0, we can consider the limit δ Ñ 0 to finally obtain

|Ptφpmq ´ Ptφprmq| ď }φ}lipΘ0 exp

˜
cb3
cαF

η0 ` cb3σ
?
d

?
cαF

t´ ct

¸
.

Then, for σ and α satisfying c :“ σcb3c
´1{2
αF

´ c ă 0, we get the expected exponential rate of

convergence. Moreover, writing

Θ0 exp

ˆ
cb3
cαF

η0

˙
“
ˆ
E1

”
|A0 ´ rA0|2

ı1{2

` |E1rX0s ´ E1r rX0s|
˙
exp

ˆ
cb3
cαF

η0

˙

ďC2

´
µ2pmq1{2 ` µ2prmq1{2

¯
exp

ˆ
cb3
cαF

pvpmq1{2 ` vprmq1{2q
˙
,

for a new constant positive C2, we complete the proof of Proposition 7. �
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APPENDIX A.

A.1. Proof of Equation (38).

Proof. Using Itô’s formula, and recalling that Eδ “ Xδ ´ rXδ, we get that for any δ ą 0,

d|E1rXδ
t s ´ E1r rXδ

t s|2 “ 2pE1rXδ
t s ´ E1r rXδ

t sq ¨
´
E1rGpXδ

t qs ´ E1rGp rXδ
t qs

¯
dt

` 2pE1rXδ
t s ´ E1r rXδ

t sq ¨
´
E1rF pXδ

t ´ E1rXδ
t sqs ´ E1rGpF p rXδ

t ´ E1r rXδ
t sqqs

¯
dt

` 4σ0πδpEδ
t qppE1rXδ

t s ´ E1r rXδ
t sq ¨ eδt qeδt ¨ dB0

t

` 4σ2
0π

2
δ pEδ

t qdt.
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For any ε ą 0, let us introduce ψε : r0,`8s P r ÞÑ pr ` εq1{2. Since this function is twice

continuously differentiable, we can write

dψε

´
|E1rXδ

t s ´ E1r rXδ
t s|2

¯
“ 2ψ1

εp|Eδ
t |2qEδ

t ¨
´
E1rGpXδ

t qs ´ E1rGp rXδ
t qs

¯
dt

` 2ψ1
εp|Eδ

t |2qEδ
t ¨

´
E1rF pXδ

t ´ E1rXδ
t qs ´ E1rF p rXδ

t ´ E1r rXδ
t qs

¯
dt

` 4σ0ψ
1
εp|Eδ

t |2qπδpEδ
t qpEδ

t ¨ eδt qeδt ¨ dB0
t(60)

` 4σ2
0ψ

1
εp|Eδ

t |2qπ2
δ pEδ

t qdt
` 8σ2

0ψ
2
εp|Eδ

t |2q|Eδ
t |2πδpEδ

t qdt.
We now want to take the limit ε Ñ 0. Using dominated convergence theorem and stochas-

tic dominated convergence theorem as stated in [51, Theorem 2.12], combined with the bound

4rψ1
εpr2q ď 1, we can deal with the first two lines and get that for all t ě 0,

(61) lim
εÑ0

ż t

0

2ψ1
εp|Eδ

s |2qEδ
s ¨

´
E1rGpXδ

s qs ´ E1rGp rXδ
s qs

¯
ds “

ż t

0

eδs ¨
´
E1rGpXδ

s qs ´ E1rGp rXδ
s qs

¯
ds,

(62)

lim
εÑ0

ż t

0

2ψ1
εp|Eδ

s |2qEδ
s ¨

´
E1rF pXδ

t ´ E1rXδ
t sqs ´ E1rF p rXδ

t ´ E1r rXδ
t sqs

¯
ds

“
ż t

0

eδs ¨
´
E1rF pXδ

t ´ E1rXδ
t sqs ´ E1rF p rXδ

t ´ E1r rXδ
t sqs

¯
ds,

and

(63) lim
εÑ0

ż t

0

4σ0ψ
1
εp|Eδ

s |2qπδpEδ
s qpEδ

s ¨ eδsqeδs ¨ dB0
s “

ż t

0

2σ0πδpEδ
sqeδs ¨ dB0

s ,

almost surely. For the last two terms in Equation (60), let us remark that for all r ě 0,

(64) ψ1
εprq ` 2ψ2prq “ 1

2pr ` εq1{2
´ r

2pr ` εq3{2
Ñ 0,

when ε tends to 0. In order to we need to properly take the limit ε Ñ 0 in Equation (60), we need

to take advantage of the presence of the function πδ for δ ą 0. In Indeed, we have
ˇ̌
4σ2

0ψ
1
εp|Eδ

t |2qπ2
δ pEδ

t q ` 8σ2
0ψ

2
εp|Eδ

t |2q|Eδ
t |2πδpEδ

t q
ˇ̌

ď
ˇ̌
π2
δ pEδ

t qσ2
0

`
4ψ1

εp|Eδ
t |2q ` 8ψ2

εp|Eδ
t |2q|Eδ

t |2
˘ˇ̌
.

Moreover, we know that ψ1
εpr2q ` 2ψ2

εpr2qr2 ď r´3, for all r ą 0 and ε ď 1. Using the pres-

ence of πδ , we have that the integrand is null near 0. Then, we can once again apply dominated

convergence theorem and obtain

(65) lim
εÑ0

ż t

0

4
 
σ2
0ψ

1
εp|Eδ

s |2qπδpEδ
sq2 ` 8σ2

0ψ
2
ε p|Eδ

s |2q|Eδ
s |2ψδpEδ

s q
(
ds “ 0.

Finally, combining Equations (61), (62) (63) and (65), we get the expected result. �

A.2. Proof of Equation (55).

Proof. To prove Equation, let us introduce the following technical Lemma:
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Lemma 17. For any positive and differentiable function u : r0,`8q Ñ r0,`8q such that

d

dt
uptq ď 2kptq

a
uptq,

for some function k : r0,`8q Ñ R, we have

d

dt

a
uptq ď kptq.

Proof of Lemma 17. We consider for any ε ą 0 the function ψε : r0,`8q Q r ÞÑ pr ` εq1{2. The

function ψε being differentiable with positive derivative, we get

d

dt
ψε puptqq ď 2kptq

a
uptqψ1

ε puptqq .

Using the fact that 2rψ1
εpr2q “ rpr2 ` εq´1{2 ď 1, we use dominated convergence theorem to

conclude the proof. �

Such a lemma is classical and applying it to Equation (54) concludes the proof of Equation

(55). �
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