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Abstract

We show that almost all π1-injective proper maps between two non-compact surfaces, where
surfaces are possibly of infinite type, can be properly homotoped to finite-sheeted covering
maps.

1 Introduction

All manifolds will be assumed to be second countable and Hausdorff. A surface (resp. bordered
surface) is a connected, orientable 2-dimensional manifold with an empty (resp. a non-empty)
boundary. We say a connected 2-manifold with or without boundary is of finite type if its funda-
mental group is finitely generated; otherwise, we say it is of infinite type.

In 1927, Nielsen [21] proved that any π1-injective map between two compact surfaces is homotopic
to a covering map. In dimension three, achieving an analog classification of π1-injective proper
maps is also possible, subject to various constraints. For example, Waldhausen [29, Theorem 6.1.]
proved that if f : N → M is π1-injective map between two connected, closed, orientable, irreducible
3-manifolds, where N is non-simply-connected and M is Haken, then f homotopic to a covering
map. Brown and Tucker [1, Theorem 4.2] showed that if f : N → M is a π1-injective proper map
between two connected, non-compact, orientable, irreducible, end-irreducible, boundaryless
3-manifolds such that π1(N) is not isomorphic to the fundamental group of any compact surface,
then f is properly homotopic to a finite-sheeted covering map.

In this note, we prove that most π1-injective proper maps between non-compact surfaces become
finite-sheeted covering maps through proper homotopy. Our first theorem considers all surfaces
except the plane C and the punctured plane C∗, where C∗ := C \ {0}. The next two theorems
consider these two excluded surfaces separately.

Theorem 1.1 Let Σ′,Σ be two non-compact oriented surfaces such that Σ′ is neither the plane
nor the punctured plane. Suppose f : Σ′ → Σ is a π1-injective proper map. Then f is properly
homotopic to a d-sheeted covering map p : Σ′ → Σ for some positive integer d. Thus, deg(f ) =
±d( ̸= 0). Moreover, Σ′ is of infinite type if and only if Σ is of infinite type.

Theorem 1.2 Suppose f is a π1-injective proper map from C∗ to a non-compact oriented surface
Σ. Let n := deg(f ). Then, we have the following.
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(i) If n = 0, then there exists a π1-injective, proper embedding ι : S1 × [0,∞) ↪→ Σ, along with a
non-zero integer d, such that after a proper homotopy, f can be described by the proper map
S1 × R ∋ (z, t) 7−→ ι

(
zd, |t|

)
∈ Σ. Thus, Σ has an isolated planar end, and given any compact

subset K of Σ, there exists a proper map g properly homotopic to f such that im(g) ⊆ Σ \ K.

(ii) If n ̸= 0, then Σ = C∗ and f is properly homotopic to the covering C∗ ∋ z 7−→ zn ∈ C∗ if
n > 0, and to the covering C∗ ∋ z 7−→ z−n ∈ C∗ if n < 0.

Theorem 1.3 Suppose f is a proper map from C to a non-compact oriented surface Σ. Let
n := deg(f ). Then, we have the following.

(i) If n = 0, then for every compact subset K of Σ, there exists a proper map g properly
homotopic to f such that im(g) ⊆ Σ \ K.

(ii) If n ̸= 0, then Σ = C, and f is properly homotopic to the branched covering C ∋ z 7−→ zn ∈ C
if n > 0, and to the branched covering C ∋ z 7−→ z−n ∈ C if n < 0.

1.4 Idea of the proof

It might be possible to prove Theorem 1.1 by modifying the approach used by Brown and Tucker
[1, Theorem 4.2] as every non-compact surface admits exhaustion by essential compact bordered
sub-surfaces. However, we will choose a different method to establish Theorem 1.1. In fact, we
will employ the strong topological rigidity theorem [3, Theorem 1], which states that if a homotopy
equivalence between two non-compact surfaces is a proper map, then it is properly homotopic
to a homeomorphism, provided that the surfaces are neither the plane nor the punctured plane.
It is not difficult to see that the strong topological rigidity, along with the map lifting lemma of
covering space theory, directly implies that the map f in Theorem 1.1 is homotopic to a covering
map. However, to prove that this covering map can be realized as finite-sheeted and that this
homotopy can be realized as proper homotopy requires an argument based on the non-zero
degree of the lifting map. See Theorem 3.4 for a proof.

The proofs of the remaining two theorems require modifying the surgery techniques on a proper
map between non-compact surfaces mentioned in Theorem 3.6 and Theorem 3.10. The necessity
of these techniques can be described as follows: In order to prove Theorem 1.3(i), one may use
Theorem 2.2.2 to properly homotope f so that im(f ) is contained in the complement of a disk in
Σ. However, Theorem 2.2.2 does not indicate, given any compact subset K of Σ, whether f can
be properly homotoped so that im(f ) is contained in Σ \ K. Here, we need to use a variation of
Theorem 3.6; see Theorem 3.8 for proof. Now, let’s consider the strategy for proving Theorem
1.3(ii). Since the domain of a non-zero degree map always contains ’more loops than its co-domain’
(see Theorem 3.9), it’s easy to see that Σ = C. At this point, by applying Theorem 2.2.2, we can at
most expect to obtain a disk D such that f−1(D) is a pairwise-disjoint union of disks D1, . . . ,Dn,
each mapped homeomorphically onto D. Now, if n = 1, then by first applying Cerf-Palais’ disk
theorem and then the Alexander trick, we can conclude the proof. However, when n ≥ 2, we can’t
conclude in this manner. This is where we need to utilize those surgery techniques to transform
f−1(D) into a single disk D′, such that f |∂D′ → ∂D is an n-sheeted covering. See Theorem 3.15 for
proof.

To prove Theorem 1.2(i), one must apply these surgery techniques to a one-manifold A that
decomposes Σ into bordered sub-surfaces, with each complementary component being either a
one-holed torus, a pair of pants, or a punctured disk. Therefore, after a proper homotopy, we
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may assume f sends the whole C∗ into a punctured disk D∗, which appears as a complementary
component of this decomposition. This is where we are using the fact that any two non-trivial
circles on C∗ co-bound an annulus. If eι is the isolated planar end of Σ determined by D∗, then
Ends(f ) sends both elements of Ends(C∗) to eι. Now, the same analogy that we used to prove
Theorem 1.3(i) can be applied here to show that for every compact subset K of Σ, f can be properly
homotoped such that im(f ) becomes disjoint from K. See Theorem 3.20 for proof. On the other
hand, unlike Theorem 1.3(ii), we can use the advantage of the non-triviality of the fundamental
group of C∗ to prove Theorem 1.2(ii). Since any two subgroups of Z of index n are the same, to
prove Theorem 1.2(ii), all we need to show is that f is properly homotopic to a covering map,
and any homeomorphism of C∗ is properly homotopic to either the identity or the complex
conjugation. The former fact can be proved using the same analogy that we employed in proving
Theorem 1.1, while the latter follows from a result by Epstein [4, Theorem 5.7.]. See Theorem 3.24
for proof.

2 Preliminaries

2.1 Proper maps

Let X and Y be topological spaces. A map from X to Y is called a proper map if the inverse image
of each compact subset of Y is a compact subset of X. A sequence {xn} in X is said to diverge to
infinity if, for every compact set K ⊆ X, there are at most finitely many values of n for which
xn ∈ K. If X is second countable Hausdorff, then a map f : X → Y is proper if and only if f takes
sequences diverging to infinity in X to sequences diverging to infinity in Y [19, Propositions 4.92.
and 4.93.(b)]. A proper map between manifolds is a closed map. More generally, a proper map
from a space to a compactly generated Hausdorff space is a closed map [19, Theorem 4.95] [25].

If a homotopy H : X × [0, 1] → Y is a proper map, then we call H a proper homotopy. Two
proper maps from X to Y are said to be properly homotopic if there is a proper homotopy between
them. It is possible that a homotopy H : X × [0, 1] → Y through proper maps may fail to be a
proper homotopy. For example, the homotopy H : C × [0, 1] ∋ (z, t) 7−→ tz2 − z ∈ C (the pre-
image of 0 under H contains the pair (n, 1/n) for each positive integer n). However, a homotopy
through homeomorphisms of a manifold is proper homotopy. More generally, if X is a locally
compact Hausdorff space and H : X × [0, 1] → X is a homotopy through homeomorphisms, then
X × [0, 1] ∋ (x, t) 7−→

(
H(x, t), t

)
∈ X × [0, 1] is a homeomorphism [2, Theorem 1.3], and thus H is a

proper map.

2.2 The degree of a proper map

Let M1 and M2 be two connected, oriented, topological n-manifolds. Denote the preferred generator
of the n-th singular cohomology with compact support Hn

c (Mj, ∂Mj;Z) ∼= Z compatible with the
orientation of Mj by [Mj] for each j = 1, 2. If f : (M1, ∂M1) → (M2, ∂M2) is a proper map, then the
degree of f is the unique integer deg(f ) that satisfies Hn

c (f )
(
[M2]

)
= deg(f ) · [M1]. If manifolds are

compact, then the notion of compactly supported cohomological degree agrees with the notion
of the usual degree defined by singular cohomology. Note that if f , g : (M1, ∂M1) → (M2, ∂M2) are
proper maps such that there is a proper homotopy H : M1×[0, 1] → M2 with H

(
∂M1×[0, 1]

)
⊆ ∂M2

from f to g, then deg(f ) = deg(g). Moreover, the degree is multiplicative, i.e., the degree of the
composition of two proper maps is the product of their degrees.
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In the following two theorems, when we mention a disk D in a smooth n-manifold X, we mean
that D is the image of {z ∈ Rn : |z| ≤ 1} under a smooth embedding {z ∈ Rn : |z| ≤ 2} ↪→ X. The
first one is a useful tool to calculate the degree, and the second one geometrically realizes the
(algebraic) notion of the degree.

Theorem 2.2.1 [5, Lemma 2.1b.] Let f : M → N be a proper map between two connected, oriented,
smooth manifolds of the same dimension such that f−1(∂N) = ∂M. Suppose there exists a disk D
in int(N) with the property that f−1(D) is the pairwise disjoint union of disks D1, ...,Dk in int(M) (k
must be a non-negative integer as f is proper) such that f maps each f−1(Di) homeomorphically
onto D. For each i, let εi be +1 or −1 according as the homeomorphism f |f−1(Di) → D is orientation-
preserving or orientation-reversing. Then deg(f ) =

∑k
i=1 εi. In particular, if f−1(D) = ∅, then

deg(f ) = 0.

Theorem 2.2.2 [16, 17] [5, Theorems 3.1 and 4.1] Let f : M → N be a proper map between
two connected, oriented, smooth manifolds of the same dimension such that f−1(∂N) ⊆ ∂M.
Let ℓ := | deg(f )|. Then there is a proper map g : M → N with g(∂M) ⊆ ∂N and a homotopy
H : M × [0, 1] → N with the following properties:

• There exists a compact subset K ⊆ int(M) such that H(x, t) = f (x) for all (x, t) ∈ (M \K)× [0, 1].
In particular, H is a proper homotopy relative to ∂M.

• There exists a disk D ⊆ int(N) such that g−1(D) is the pairwise disjoint union of disks
D1, ...,Dℓ in int(M) and g maps each g−1(Di) homeomorphically onto D.

Therefore, if the degree of g, which is the same as the degree of f , is positive (resp. negative),
then g|g−1(Di) → D is an orientation-preserving (resp. orientation-reserving) homeomorphism for
each i = 1, ..., ℓ. In particular, if ℓ = 0, then f can be properly homotoped to a non-surjective map,
relative to the complement of a compact subset of int(M).

The following theorem is a well-known fact whose proof in the particular case when manifolds
are boundaryless can be found in [3, Lemma 3.6.4.1].

Theorem 2.2.3 Let f : (M, ∂M) → (N, ∂N) be a proper map between two connected, oriented,
smooth manifolds of the same dimension. If deg(f ) ̸= 0, then f is surjective.

2.3 Ends of spaces

Let X be a connected topological manifold. Then there is a nested sequence K1 ⊆ K2 ⊆ · · · of
compact, connected subsets of X such that ∪iKi = X, Ki ⊆ int(Ki+1) for each i, ∩i(X \ Ki) = ∅, and
the closure of each component of any X \ Ki is non-compact [12, Exercise 3.3.4]. We refer to such a
nested sequence as an efficient exhaustion by compacta of X.

Let Ends(X) be the set of all sequences (V1,V2, ...), where Vi is a component of X \ Ki and V1 ⊇
V2 ⊇ · · · . Consider X† := X ∪ Ends(X) with the topology generated by the basis consisting of all
open subsets of X, and all sets V†

i , where V†
i := Vi ∪ {(V ′

1,V
′
2, ...) ∈ Ends(X)|V ′

i = Vi}. Then X† is
a separable, compact, and metrizable space and X is an open dense subset of X†. That is, X† is
a compactification of X, often referred to as the Freudenthal compactification of X. The subspace
Ends(X) of X† is a totally disconnected space. Thus, Ends(X) is a closed subset of the Cantor set.
Note that the space Ends(X) is independent of the choice of efficient exhaustion of X by compacta.
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Now, let Y be another connected topological manifold. Recall that every proper map f : X → Y
induces a map Ends(f ) : Ends(X) → Ends(Y) that can be used to extend f : X → Y to a map
f † : X† → Y† between the Freudenthal compactifications. This induced map between the spaces of
ends can be defined as follows:

Let f : X → Y be a proper map. Choose efficient exhaustions by compacta {Ki} and {Li} of X
and Y , respectively. Consider an end e = (V1,V2, ...) of X, where Vi is a component of X \ Ki.
Notice that each entry Vi of (V1,V2, ...) determines all entries of the lower index; hence, every
subsequence of entries of an end determines that end. By properness, for each i, there is a ji such
that f

(
X \ Kji

)
⊆ Y \Li. Without loss of generality, we may assume j1 < j2 < · · · . By connectedness,

f sends Vji into a component, say Wi, of Y \ Li. Let e′ := (W1,W2, ...), and Ends(f )(e) := e′. Now,
define f † : X† → Y† as f †|X := f and f †|Ends(X) := Ends(f ).

The map f † : X† → Y† thus defined is continuous [12, Proposition 3.3.12 (a)]. Also, one can show
that the induced map of the identity is the identity, and the induced map of a composition of two
proper maps is the composition of their induced maps. Moreover, if two proper maps f0, f1 : X → Y
are properly homotopic, then Ends(f0) = Ends(f1) [12, Proposition 3.3.12 (b)].

2.4 Goldman’s inductive procedure

For integers g, b, p ≥ 0, denote the compact, connected, orientable 2-manifold of genus g with b
boundary components by Sg,b. Let Sg,b,p be the 2-manifold after removing p points from int(Sg,b).
We will call S0,0, S0,2, S0,3, S1,1, S1,2, and S0,1,1 a disk, an annulus, a pair of pants, a one-holed torus,
a two-holed torus, and a punctured disk, respectively. For brevity, Sg,0 will be denoted as Sg.

Now, let Σ be a non-compact surface. Goldman’s inductive procedure [10, Section 2.6.] tells that
there is an efficient exhaustion S1 ⊆ S2 ⊆ · · · by compacta of Σ with the following properties:

• Each Si is a smoothly embedded compact bordered sub-surface of Σ.

• For each i, the closure of each component of Σ \ Si intersects Si in a single component of ∂Si.

• S1 is a disk, and Si \ int(Si−1) is either a pair of pants or an annulus or a two-holed torus for
each i ≥ 2.

Consider such an efficient exhaustion by compacta of Σ, and let e := (V1,V2, ...) ∈ Ends(Σ) be an
end, where Vi is a component of X \ Si. We say e is a planar end if Vi is embeddable in R2 for some
positive integer i. An end is said to be non-planar if it is not planar. Notice that the set of all planar
ends of Σ under the subspace topology is an open subset of Ends(Σ). Define the genus of Σ as
g(Σ) := sup g(S), where S is a compact bordered subsurface of Σ.

3 Proofs of the main theorems

3.1 Proof of Theorem 1.1

It is known [11, Page 8] that if f : M → N is a proper map between two connected, oriented,
boundaryless, smooth n-manifolds of degree d ̸= 0, then ∥N∥ · d ≤ ∥M∥, where ∥ · ∥ denotes the
Gromov simplicial volume. Also, recall that ∥Sg∥ = max {0,−2χ(Sg)} [11, Page 9] [9, Corollary 7.5].
Thus, if f : Sg → Sh is a map of non-zero degree, then g ≥ h (every map from the sphere to the torus
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is null-homotopic). However, the analog argument doesn’t say the genus of the domain is higher
than the genus of the co-domain when surfaces are of the infinite type because the simplicial
volume of an infinite type surface is infinite [14, Proof of Proposition 4.2]. The following lemma
states that the genus of the domain of a non-zero degree map is at least the genus of its co-domain,
even if the surfaces have a finite genus but are of infinite type.

Lemma 3.1 Let f : Σ′ → Σ be a proper map of non-zero degree between non-compact oriented
surfaces. Then g(Σ′) ≥ g(Σ).

Proof. If g(Σ′) = ∞, then we are done. So assume g(Σ′) < ∞. If possible, suppose g(Σ) > g(Σ′).
Let h1, h2, ... be a collection of pairwise-disjoint smoothly embedded copies of the one-holed torus
in Σ such that Σ \ ∪ihi is a planar surface. For i ≥ g(Σ′) + 2, identifying each hi to a point in ∂hi

gives a quotient map q : Σ → Σ from Σ to a non-compact surface Σ. Orient Σ. Notice that q is
proper and deg(q) = ±1 by Theorem 2.2.1. Moreover, g

(
Σ
)
= g(Σ′) + 1. Thus, qf : Σ′ → Σ is

a proper map of a non-zero degree between two finite genus non-compact surfaces. Consider
the orientations on Σ′† and Σ

† induced from Σ′ and Σ. By Theorem 2.2.2 and Theorem 2.2.1, the
degree of (qf )† : Σ′† → Σ

† is the same as the degree of qf : Σ′ → Σ. Thus, (qf )† is a map of non-zero
degree from the Σ′† = Sg(Σ′) to Σ

†
= Sg(Σ′)+1, a contradiction.

The following lemma states that when a map of non-zero degree exists between two oriented
manifolds, the domain has more ends than the co-domain.

Lemma 3.2 Let f : (M, ∂M) → (N, ∂N) be a proper map between two connected, oriented, smooth
manifolds of the same dimension. If deg(f ) ̸= 0, then Ends(f ) is surjective.

Proof. Fix and efficient exhaustion {Li} by compacta of N. Suppose Ends(f ) is not surjective. Then
f † : M† → N† is not surjective. Since M† is compact and N† is Hausdorff, the image of f † is closed.
Thus, there exists a basic open set Wi ∪

{(
W ′

1,W
′
2, ...

)
∈ Ends(N) | W ′

i = Wi
}
⊆ N† \ im(f †), where

Wi is a component of N \ Li. But (f †)−1(Wi) = f−1(Wi) ̸= ∅ by Theorem 2.2.3, a contradiction.

Let N be a connected topological n-manifold, and p : Ñ → N a covering. By invariance of domain
and covering space theory, Ñ is a connected topological n-manifold such that p sends ∂Ñ onto
∂N and int (Ñ) onto int(N). If N is orientable, then Ñ is also orientable because p is a local
homeomorphism [7, Lemma 125.17. (a)]. If an orientation for N is given, we always consider that
orientation of Ñ for which p becomes orientation-preserving. The following lemma, whose proof
is drawn upon ideas from [5, Theorem 3.1.], tells that if the degree of either the lifting or the map
doesn’t vanish, then the corresponding covering is finite-sheeted.

Lemma 3.3 Let f : M → N be a proper map between two connected, oriented, topological
manifolds of the same dimension n such that f (∂M) ⊆ ∂N, and let p : Ñ → N be the covering
corresponding to the subgroup im π1(f ) of π1(N). Suppose f̃ : M → Ñ is a lift of f . Then, f̃ is a
proper map and f̃ (∂M) ⊆ ∂Ñ. Moreover, if either deg(f ) ̸= 0 or deg(̃f ) ̸= 0, then p is a proper map.

To understand the various unlabeled maps and ι present in the four commutative diagrams of
the proof of Lemma 3.3, let’s first recall the definition of singular cohomology with compact
support. Consider a pair A ⊆ X of topological space, and let n be a non-negative integer. Recall
that the n-th singular cohomology with compact support Hn

c (X,A;Z) is equal to the direct limit
lim−→Hn

(
X,A ∪ (X \ K);Z

)
, where K is a compact subset of X and various maps to define this direct

system are inclusion induced maps. Hence, for a compact subset K of X, the definition of direct
limit yields an obvious map Hn

(
X,A ∪ (X \ K);Z

)
→ Hn

c (X,A;Z).
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Proof of Lemma 3.3. Note that p ◦ f̃ = f implies f̃ (∂M) ⊆ ∂Ñ. Moreover, f̃ is proper because f is
proper.

Now, let either deg(f ) ̸= 0 or deg(̃f ) ̸= 0. We need to show that p is a proper map. On the contrary,
suppose p is not proper, i.e., p−1(x) is infinite for some x ∈ int(N). Define C := f−1(x) ⊆ int(M). So,
the compact set f̃ (C) is contained in the discrete space p−1(x), i.e., we can write f̃ (C) = {x̃1, ..., x̃k}
for points x̃1, ..., x̃k ∈ p−1(x) ⊂ Ñ. Since p−1(x) is infinite, we have an x̃ ∈ p−1(x) \ {x̃1, ..., x̃k}. Thus,
f̃ (M) ⊆ Ñ \ x̃.

Since Ñ is orientable, Hn
(

Ñ, Ñ \ ỹ
)
→ Hn

c

(
Ñ, ∂Ñ

)
is an isomorphism for every y ∈ int(Ñ). Now,

the following commutative diagram shows that deg(̃f ) = 0.

Hn
c

(
Ñ, ∂Ñ

)
Hn

c (M, ∂M)

Hn
(

Ñ, Ñ \ x̃
)

Hn(M,M) = 0

f̃ ∗

f̃ ∗

∼=

With the contradiction method, we conclude that if deg(̃f ) ̸= 0, then p is a proper map.

Now, to show that deg(f ) = 0, let’s consider the outermost part of the following commutative
diagram. Notice that it is sufficient to prove that the composition of the two blue arrows is zero,
thereby implying deg(f ) = 0.

Hn
c (N, ∂N) Hn

c (M, ∂M)

Hn(N,N \ x) Hn(M,M \ C)

Hn
(

Ñ, Ñ \ p−1(x)
)

Hn
(

Ñ,
(

Ñ \ p−1(x)
)⋃

{x̃1, . . . , x̃k}
)⊕

⊕k
ℓ=1Hn

(
Ñ, Ñ \ x̃ℓ

)

f ∗

∼=
f ∗

p∗

ι

f̃ ∗
f̃ ∗

The following commutative diagram

Hn
(

Ñ,
(

Ñ \ p−1(x)
)⋃

{x̃1, . . . , x̃k}
)

Hn(M,M \ C)

Hn(M,M) = 0

f̃ ∗

f̃ ∗

tells that Hn
(

Ñ,
(

Ñ \ p−1(x)
)⋃

{x̃1, . . . , x̃k}
)

Hn(M,M \ C) Hn
c (M, ∂M)

f̃ ∗ ι is zero map.

Also, for each ℓ = 1, ..., k, if we consider the following commutative diagram,

Hn
(

Ñ, Ñ \ x̃ℓ
)

Hn
(
M,M \ C

)

Hn
c

(
Ñ, ∂Ñ

)
Hn

c (M, ∂M)

Hn
(

Ñ, Ñ \ x̃
)

Hn(M,M) = 0

∼=

f̃ ∗

ι

f̃ ∗

∼=

f̃ ∗

7



then ⊕k
ℓ=1Hn

(
Ñ, Ñ \ x̃ℓ

)
Hn(M,M \ C) Hn

c (M, ∂M)
f ∗ ι is zero map. With the contradic-

tion method, we conclude that if deg(f ) ̸= 0, then p is a proper map.

Now we are ready to give a proof of Theorem 1.1.

Theorem 3.4 (Theorem 1.1) Let Σ′,Σ be two non-compact oriented surfaces such that Σ′ is
neither the plane nor the punctured plane. Suppose f : Σ′ → Σ is a π1-injective proper map. Then
f is properly homotopic to a d-sheeted covering map p : Σ′ → Σ for some positive integer d. Thus,
deg(f ) = ±d( ̸= 0). Moreover, Σ′ is of infinite type if and only if Σ is of infinite type.

Proof. Let p : Σ̃ → Σ be the covering corresponding to the subgroup im π1(f ) of π1(Σ), and let
f̃ : Σ′ → Σ̃ be a lift of f with respect to p, i.e., p ◦ f̃ = f . Thus, im π1(p) = im π1(f ), and hence
π1(̃f ) : π1(Σ′) → π1(Σ̃) is an isomorphism because a covering map induces injection between
fundamental groups. Note that if a non-compact surface has an infinite cyclic (resp. trivial)
fundamental group, then it is homeomorphic to the punctured plane (resp. plane) [3, Theorem
3.1.9]. Also, the properness of f implies the properness of f̃ by Lemma 3.3. Since non-compact
surfaces are K(π, 1) CW-complexes, by Whitehead theorem f̃ is a homotopy equivalence. Thus,
by [3, Theorem 1], f̃ is properly homotopic to a homeomorphism, which implies deg(̃f ) = ±1.
Therefore, using Lemma 3.3, we may assume that p is a d-sheeted covering for some positive
integer d and Σ̃ is orientable. Fix an orientation of Σ̃. By Theorem 2.2.1, deg(p) = ±d. Since
deg(f ) = deg(pf̃ ) = (±d) · deg(̃f ) = (±d) · (±1), we can conclude that deg(f ) = ±d( ̸= 0), and f is
properly homotopic to the d-sheeted covering map p.

Now, we need to show that Σ′ is of infinite type if and only if Σ is of infinite type. At first, suppose
Σ is of finite type. Therefore, π1(Σ) is a finitely generated free group and im π1(p) is a finite index
subgroup of π1(Σ). By the Nielsen-Schreier index formula, π1(Σ̃) is finitely generated. Since π1(f )
is an isomorphism, π1(Σ′) is finitely generated. So, Σ′ is of finite type. Next, suppose Σ is of
infinite type. If Σ is an infinite genus surface, then Lemma 3.1 tells that Σ′ is an infinite type
surface. On the other hand, if Σ has a finite genus, then Ends(Σ) must be infinite, and thus by
Lemma 3.2, we can tell that Σ′ is of infinite type.

3.2 Proof of Theorem 1.3

The remainder of this note is based on surgery on a proper map between non-compact surfaces. We will
first recall a few terminologies and theorems.

Let S be a connected, orientable two-dimensional manifold with or without boundary. A circle on
S is the image of an embedding of S1 into S. We say a circle C on S is a trivial circle if C bounds an
embedded disk in S. A circle on S will be called primitive if it is not trivial. Note that if the image
of an embedding f : S1 ↪→ S is a primitive circle on S, then [f ] ∈ π1(S) is a primitive element [4,
Theorems 1.7 and 4.2]. A pairwise disjoint collection A = {Cα} of smoothly embedded circles
on S is called a locally finite curve system (in short, LFCS) on S if for each compact subset K of Σ,
Cα ∩ K = ∅ for all but finitely many α. The theorem below tells that the transversal pre-image of
an LFCS is again an LFCS.

Theorem 3.5 (Approximation and transversality in proper category) [3, §3.2] Let f : Σ′ → Σ

be a proper map between non-compact surfaces, and let A be an LFCS on Σ. Then f can be
properly homotoped so that it becomes smooth as well as transverse to A . Thus, after such a
proper homotopy, for each component C of A , either f−1(C) is empty or a pairwise disjoint finite
collection of smoothly embedded circles on Σ′; in particular, f−1(A ) is an LFCS on Σ′.
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Let Σ be a non-compact surface. Suppose A is an LFCS on Σ and {Σn} is an at most countable
collection of bordered sub-surfaces of Σ. We say A decomposes Σ into bordered sub-surfaces, where
complementary components are {Σn} if each Σn is a closed subset of Σ, int(Σn) ∩ int(Σm) = ∅ if
n ̸= m, ∪nΣn = Σ, and ∪n ∂Σn = ∪A . For example, if Σ ̸= R2, then there is an LFCS C on Σ

such that C decomposes Σ into bordered sub-surfaces, and a complementary component of this
decomposition is either a two-hold torus, a pair of pants, or a punctured disk. This follows from
Goldman’s inductive procedure [3, Theorem 3.1.5]. We call an LFCS A on Σ a preferred LFCS if it
satisfies either of the following:

(i) A is a finite collection of primitive circles on Σ.

(ii) A decomposes Σ into bordered sub-surfaces, and a complementary component of this
decomposition is either a two-holed torus, a pair of pants, an annulus, or a punctured disk.

Now, we state our first theorem on surgery on a proper map.

Theorem 3.6 (Disk removal) [3, Theorem 3.3.5] Let f : Σ′ → Σ be a smooth proper map between
two non-compact surfaces, where Σ′ ̸= R2 ̸= Σ. Suppose A is a preferred LFCS on Σ such that f
is transverse to A . Then, f can be properly homotoped to remove all trivial components of the
LFCS f−1(A ) such that each primitive component of f−1(A ) has an open neighborhood on which
this proper homotopy is constant.

Remark 3.7 The only usage of the hypothesis Σ′ ̸= R2 to prove Theorem 3.6 is to discard the
possibility that there exist infinitely many components C′

1, C′
2, ... of f−1(A ) bounding the disks

D′
1,D′

2, ..., respectively such that C′
n is contained in the interior of D′

n+1 for each n. Thus, if A

has only finitely many components, then the same conclusion of Theorem 3.6 holds even if we
consider R2 as the domain of f . However, note that the hypothesis Σ ̸= R2 can never be dropped
because to send every disk in Σ′ bounded by a component of f−1(A ) into a circle Cδ ⊂ Σ \ ∪A

using homotopy long exact sequence, Cδ must be a primitive circle parallel to a component of A .

At this point, we are ready to prove the easy part of Theorem 1.3.

Theorem 3.8 (Theorem 1.3(i)) Let f be a proper map from C to a non-compact oriented surface Σ.
Suppose deg(f ) = 0. Then, for every compact subset K of Σ, there exists a proper map g properly
homotopic to f such that im(g) ⊆ Σ \ K.

Proof. First, assume Σ = R2. By Theorem 2.2.2, properly homotope f so that the image of f
misses a point a ∈ R2. Since any translation map of R2 is properly homotopic to the identity
map of R2, we may assume a = 0. Thus, there exists r > 0 such that |f | ≥ r because proper
maps between manifolds are closed maps. Consider a compact subset K of R2. Let n be a positive
integer such that K ⊆ {z ∈ R2 : |z| ≤ nr}. Since 1 + nt ≥ 1 for every t ∈ [0, 1], the map
R2 × [0, 1] ∋ (z, t) 7−→ (1 + nt) · f (z) ∈ R2 is a proper homotopy from f to g := (n + 1)f . Certainly,
im(g) ∩ K = ∅. So, we are done when Σ = R2.

Now, suppose Σ ̸= R2. Let K be a compact subset of Σ. Using Goldman’s inductive procedure,
find a compact bordered subsurface S of Σ such that K ⊆ int(S) and each component of ∂S is
a primitive circle on Σ. By Theorem 3.5, we may assume f is smooth as well as transverse to
∂S. Therefore, f−1(∂S) is a pairwise disjoint finite collection of smoothly embedded circles on R2.
Since f−1(∂S) has finitely many components, each of which bounds a disk in R2, by considering a
procedure similar to that given in proof of Theorem 3.6, we can properly homotope f to a proper
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map g : R2 → Σ so that g−1(∂S) = ∅ (see Remark 3.7). Using continuity of g, either im(g) ⊂ S
or im(g) ⊆ Σ \ S. Since g is proper, the former can’t happen, i.e., im(g) ⊆ Σ \ S, and hence
im(g) ∩ K = ∅.

Notice that, unlike the first part, in the second part of the above proof, we haven’t utilized the
geometric realization of the fact that deg(f ) = 0. This is because if f is a proper map from R2 to a
non-compact oriented surface Σ of non-zero degree, then Σ must be R2, by Theorem 3.9 below.
Note that Theorem 3.9 appears as a corollary [5, Corollary 3.4.] of a theorem [5, Theorem 3.1.]
by Epstein, which states that the absolute degree is the same as the (algebraic) degree up to sign
when manifolds are orientable. Epstein credits Olum [22] for the proof of [5, Corollary 3.4.]. Since
[5, Corollary 3.4.] comes without proof and follows from a general theory, we will give a proof of
Theorem 3.9 using Lemma 3.3.

Theorem 3.9 Let f : M → N be a proper map between two connected, oriented, topological mani-
folds of the same dimension such that f (∂M) ⊆ ∂N. If deg(f ) ̸= 0, then the index [π1(N) : im π1(f )]
divides deg(f ). In particular, if deg(f ) = ±1, then π1(f ) is surjective.

Proof. Let p : Ñ → N be the covering corresponding to the subgroup im π1(f ) of π1(N). Thus,
im π1(p) = im π1(f ). Consider a lift f̃ : M → Ñ of f with respect to the covering p, i.e., f = p ◦ f̃ .
By Lemma 3.3, Ñ is a connected, orientable manifold such that dim Ñ = dim N, p(∂Ñ) = ∂N, and
f̃ (∂M) ⊆ ∂Ñ. Furthermore, Lemma 3.3 tells that p and f̃ both are proper maps because deg(f ) ̸= 0.
Therefore, p is a d-sheeted covering map for some positive integer d. By covering space theory,
d = [π1(N) : im π1(p)] = [π1(N) : im π1(f )]. Fix an orientation for Ñ. Then, deg(p) = ±d. Therefore,
deg(f ) = deg(p ◦ f̃ ) = deg(p) deg(̃f ), i.e., [π1(N) : im π1(f )] divides deg(f ).

Another surgery technique is required to prove the remaining portion of Theorem 1.3.

Theorem 3.10 (Level-preserving homotopy from degree-one map to homeomorphism) [3, The-
orem 3.4.3] Let f : Σ′ → Σ be a smooth proper map between two non-compact surfaces, where
Σ′ ̸= R2 ̸= Σ. Suppose A is a preferred LFCS on Σ such that f is transverse to A . If f is a homotopy
equivalence, then f can be properly homotoped to remove all trivial components of the f−1(A ) as
well as to map each primitive component of f−1(A ) homeomorphically onto a component of A .
Moreover, after this proper homotopy, if C′

p and C are components of f−1(A ) and A , respectively,
such that f |C′

p → C is a homeomorphism, then C′
p (resp. C) has two one-sided tubular neighbor-

hoods U ′ and V ′ (resp. U and V) with some identifications (U ′, C′
p) ≡ (C′

p × [1, 2], C′
p × 2) ≡ (V ′, C′

p)(
resp. (U , C) ≡ (C × [1, 2], C × 2) ≡ (V, C)

)
such that the following hold:

(i) U ′ ∪ V ′ is a (two-sided) tubular neighborhood of C′
p;

(ii) f |U ′ → U and f |V ′ → V are homeomorphisms described by C′
p × [1, 2] ∋ (z, t) 7−→

(
f (z), t

)
∈

C × [1, 2].

Remark 3.11 Instead of assuming that f is a homotopy equivalence in Theorem 3.10, if we assume
that for a primitive component C′

p of f−1(A ), there exists a component C of A such that f (C′
p) ⊂ C

and the restriction f |C′
p → C has degree n ̸= 0, then f can be properly homotoped so that f |C′

p → C
becomes an n-sheeted covering map. Moreover, after this proper homotopy, f maps each small
enough one-sided tubular neighborhood C′

p × [1, 2], C′
p × 2 ≡ C′

p of C′
p (on either side of C′

p) onto a
small enough one-sided tubular neighborhood C × [1, 2], C × 2 ≡ C of C in the following manner:
C′

p × [1, 2] ∋ (z, t) 7−→
(
f (z), t

)
∈ C × [1, 2].
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Remark 3.12 Instead of assuming that f is a homotopy equivalence in Theorem 3.10, if we assume
that f is π1-injective, then f can be properly homotoped to remove all trivial components from
f−1(A ) as well as to send each component C′

p of f−1(A ) onto a component C of A such that the
restriction f |C′

p → C is a covering map. Moreover, after this proper homotopy, f maps each small
enough one-sided tubular neighborhood C′

p × [1, 2], C′
p × 2 ≡ C′

p of C′
p (on either side of C′

p) onto a
small enough one-sided tubular neighborhood C × [1, 2], C × 2 ≡ C of C in the following manner:
C′

p × [1, 2] ∋ (z, t) 7−→
(
f (z), t

)
∈ C × [1, 2].

To prove Theorem 1.3(ii), we also need the following lemmas, whose proofs are straightforward.

Lemma 3.13 If θ : S1 × [0, 1] → S1 × [0, 1] is a map which sends S1 ×{0, 1} into S1 × 0, then φ can
be homotoped rel. S1 × {0, 1} to send S1 × [0, 1] into S1 × 0.

Lemma 3.14 Let φ : S1× [1, 3] → S1× [1, 2] be a map such that φ(S1× r) ⊆ S1× r for 1 ≤ r ≤ 2 and
φ
(
S1 × [2, 3]

)
⊆ S1 × 2. Then φ can be homotoped rel. S1 × {1, 3} to satisfy φ−1(S1 × 2) = S1 × 3.

Theorem 3.15 (Theorem 1.3(ii)) Let f be a proper map from C to a non-compact oriented surface
Σ. Suppose n := deg(f ) is non-zero. Then, Σ = C, and f is properly homotopic to the branched
covering C ∋ z 7−→ zn ∈ C if n > 0, and to the branched covering C ∋ z 7−→ z−n ∈ C if n < 0.

Proof. By Theorem 3.9, Σ = C. At first, suppose n > 0. Let A be the collection of all circles in
C centered at 0 with integer radii. Then A is an LFCS on C. By Theorem 3.5, we may assume
f is a smooth proper map of degree n > 0 as well as transverse to A . Therefore, f−1(A ) is an
LFCS by Theorem 3.5. Now, Theorem 2.2.2 gives a proper map g properly homotopic to f with the
following properties: the map g equals f outside a compact subset K of the form {z ∈ C : |z| ≤ r}
for some r > 0, and there exists a disk D in C such that g−1(D) is the union of pairwise disjoint
disks D1, ...,Dn in C such that g|Dj → D is an orientation-preserving homeomorphism for each
j = 1, ..., n. Without loss of generality, we may assume K contains ∪n

j=1Dj. Consider the bordered
surfaces S′ := C\∪n

j=1int(Dk) and S := C\int(D). Notice that g(S′) ⊆ S and g sends each component
of ∂S′ = g−1(∂S) homeomorphically onto ∂S. Denote the restriction map g|S′ → S by gres. Since
A is an LFCS, there exists a component C of A such that C ∩

(
f (K) ∪ g(K)

)
= ∅ and the interior

of C (in C) contains D. Since f = g on C \ K, we can say that f−1(C) = g−1(C) = g−1
res(C) doesn’t

intersect with K, gres is smooth outside the compact subset K′ := S′ ∩ K of S′, and gres is transverse
to C. In particular, each component of g−1

res(C) is either a trivial circle or primitive circle on S′ lying
in S′ \ K′ = C \ K = {z ∈ C : |z| > r}.

Now, we aim to properly homotope gres : S′ → S to a proper map g̃res : S′ → S such that C′ :=
g̃res

−1(C) is a single circle in int(S′) and g̃res|C′ → C is an n-sheeted covering map, but here we want
every proper homotopy to be relative to ∂S′. So, here are the steps.

At first, applying Theorem 2.2.2 on gres, and then using Theorem 2.2.1, we can tell deg (gres) =

deg(g), i.e., in particular, deg (gres) ̸= 0. Recall that a proper homotopy relative to the boundary
doesn’t change the degree. Therefore, gres remains surjective after any proper homotopy rel. ∂S′;
see Theorem 2.2.3.

Since C is a primitive circle on S, using a trick similar to the one given in the proof of Theorem 3.6,
after a proper homotopy H1, we may assume each component of the non-empty set g−1

res(C) is a
primitive circle on S′. Note that the homotopy that appears in the proof of Theorem 3.6 is, in fact,
relative to the complement of every small enough neighborhood of the union of all disks bounded
by trivial circles. Thus, we may assume H1 is relative to ∂S′.
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Therefore, for some positive integer m, we can write g−1
res(C) = C′

1⊔· · ·⊔C′
m (see Figure 1 for labeling

of these circles), where each C′
i is a primitive circle on S′. Thus g−1

res(C) decomposes S′ into a copy
of S0,n+1, (m − 1)-copies A′

1, ...,A′
m−1 of S0,2 (see Figure 1 for labeling of these annuli), and a copy

of S0,1,1. Similarly, C decomposes S into a copy of S0,2 and a copy of S0,1,1.

Fig. 1: The description of gres : S′ → S after removing trivial components from g−1
res(C).

Restricting gres on those copies, we get a map ξ : S0,n+1 → S0,2 such that ξ|∂Dj → ∂D is an
orientation-preserving homeomorphism for each j = 1, ..., n and ξ sends the other boundary
component ∂S0,n+1 \ ∪n

j=1∂Dj into C. The naturality of the homology long exact sequence and [13,
Exercise 31 of Section 3.3] give the following commutative diagram

H2
(
S0,n+1, ∂S0,n+1

) ∼= Z
n+1
⊕ Z ∼= H1

(
∂S0,n+1

)

H2
(
S0,2, ∂S0,2

) ∼= Z
2
⊕Z ∼= H1

(
∂S0,2

)× deg(ξ)

17−→
n+1
⊕ 1

n+1
⊕ 17−→n⊕ℓ

17−→
2
⊕1

where ℓ := deg
(
ξ|∂S0,n+1 \ ∪n

j=1∂Dj → C
)

. The commutativity of the diagram tells deg(ξ) = n and

ℓ = n. Since any two components of g−1
res(C) co-bound an annulus in S′ and any two homotopic

maps S1 → S1 have the same degree, deg
(
gres|C′

i → C
)
= ±n for each i = 1, ...,m (the minus sign

comes because two boundary components of an oriented annulus are oppositely oriented). Thus,
using a trick similar to the one mentioned in the proof of Theorem 3.10, together with Remark 3.11,
after a proper homotopy H2, we may assume that gres|C′

i → C is an n-sheeted covering map for
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each i = 1, ...,m. Since the homotopy mentioned in the proof of Theorem 3.10 is relative to the
complement of a small neighborhood of g−1

res(C) = C′
1 ⊔ · · · ⊔ C′

m, one can ensure that H2 is relative
to ∂S′.

Now, we remove the components C′
2, ..., C′

m from g−1
res(C). First, consider the annulus A′

1. By
continuity, gres(A′

1) will be one of two sides of C in S, i.e., the compact set gres(A′
1) is contained in a

one-sided tubular neighborhood of C in S. Notice that if S′′ is a compact bordered subsurface of S′

such that S′′ ∩ ∂S′ = ∅, then a homotopy of gres|S′′ rel. ∂S′′ can be extended to a proper homotopy
of gres rel. S′ \ int

(
S′′) (

⊃ ∂S′). Thus, after a homotopy of gres|A′
1 rel. ∂A′

1 (see Lemma 3.13), we
may assume gres

(
A′

1
)
= C. Applying this argument to each of A′

2, ...,A′
m−1, after a homotopy of

gres|A′
1 ∪ · · · ∪ A′

m−1 rel. ∂
(
A′

1 ∪ · · · ∪ A′
m−1

)
, we may assume gres

(
A′

1 ∪ · · · ∪ A′
m−1

)
= C. Further,

the part 2. of Theorem 3.10 tells that there exists a one-sided tubular neighborhood C′
m × [1, 2] ≡

V ′ ⊂ S0,1,1 of C′
m ≡ C′

m × 2 and a one-sided tubular neighborhood C × [1, 2] ≡ V of C ≡ C × 2 such
that gres (z, r) = gres(z) × r for all (z, r) ∈ C′

m × [1, 2]. Applying Lemma 3.14, after a homotopy of
gres|

(
A′

1 ∪ · · · ∪ A′
m−1

)
∪V ′ rel. C′

1 ⊔
(
C′

m × 1
)
, we have g−1

res(C) = C′
1 and gres|C′

1 → C is an n-sheeted
covering map.

Since every proper homotopy of gres has been done rel. ∂S′, pasting g|g−1(D) → D with all those
proper homotopies, we can say that g : C → C can be properly homotoped so that g|g−1(C) → C
becomes an orientation-preserving n-sheeted covering map from a (single) circle onto a circle.
Since an n-sheeted orientation-preserving covering S1 → S1 is of the form S1 ∋ z 7−→ h(zn) ∈ S1 for
some orientation-preserving self-homomorphism h : S1 → S1, by an application of Theorem 3.1,
after a proper homotopy, we may assume g|g−1(S1) = S1 ∋ z 7−→ zn ∈ S1. Now, applying
Proposition 3.16 and Proposition 3.17, we can conclude that g, and consequently f as well, is
properly homotopic to C ∋ z 7−→ zn ∈ C. This completes the proof of the case when deg(f ) = n > 0.

Now, assume deg(f ) = n < 0. Since the complex conjugation is an orientation-reversing self-
homeomorphism of C, the map f : C ∋ z 7−→ f (z) ∈ C is orientation-preserving of degree −n.
Thus, f is properly homotopic to C ∋ z 7−→ z−n ∈ C by the previous case. Therefore, f is properly
homotopic to C ∋ z 7−→ z−n ∈ C.

The famous Annulus Theorem says that if two orientation-preserving locally flat embeddings
φ and ψ of the closed unit ball Bn := {x ∈ Rn : |x| ≤ 1} into Rn satisfies φ(Bn) ⊂ ψ

(
int(Bn)

)
, then

ψ(Bn)\φ
(
int(Bn)

)
is homeomorphic to Sn−1×[0, 1]. The annulus theorem was proved in dimension

two by Radó [27], in dimension three by Moise [20, Theorem 1], in dimension four by Quinn
[26, Page 506], and in dimensions at least five by Kirby [18, Page 576]. It is well known that the
annulus theorem establishes the following theorem, which is the main tool for showing that the
connected sum operation of topological n-manifolds is independent of the choice of embeddings
of the n-balls. The analog of Theorem 3.1 for smooth manifolds is called the Cerf-Palais’ disk
theorem [23, Theorem 5.5.] [24, Theorem B].

Theorem 3.1 [8, Proof of Theorem 4.12.] [7, Theorem 153.10.] [2, Theorem 1.3] Let M be an
oriented, connected n-dimensional topological manifold without boundary. If φ,ψ : Bn ↪→ M are
two locally flat orientation-preserving embeddings of the closed unit balls into M, then there
exists a homotopy H : M × [0, 1] → M through homeomorphisms such that H(−, 0) = idM and
H(−, 1) ◦ φ = ψ. In particular, H is a proper homotopy.

In the proof of Theorem 1.3(ii), we have also used the following well-known facts, for which proof
will be provided by modifying the proof of the Alexander trick [6, Lemma 2.1].
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Proposition 3.16 Let f : B2 → B2 be a map such that f−1(S1) = S1. Then f can be homotoped rel.
S1 to a map g : B2 → B2 such that g(0) = 0 and g(z) = |z| · f

(
z
|z|

)
if z ̸= 0.

Proof. Consider H : B2 × [0, 1] → B2 defined as follows

H(z, t) :=


(1 − t) · f

(
z

1−t

)
if 0 ≤ |z| < 1 − t,

|z| · f
(

z
|z|

)
if 1 − t ≤ |z| ≤ 1 and (z, t) ̸= (0, 1),

0 if (z, t) = (0, 1).

Define g := H(−, 1).

Proposition 3.17 Let B2
∗ := {z ∈ C : 0 < |z| ≤ 1}. Suppose f : B2

∗ → B2
∗ be a proper map such that

f−1(S1) = S1. Then f can be properly homotoped rel. S1 to a proper map g : B2
∗ → B2

∗ such that
g(z) = |z| · f

(
z
|z|

)
for each z ∈ B2

∗.

Proof. Define H : B2
∗ × [0, 1] → B2

∗ by

H(z, t) :=

(1 − t) · f
(

z
1−t

)
if 0 < |z| ≤ 1 − t,

|z| · f
(

z
|z|

)
if 1 − t < |z| ≤ 1.

Define g := H(−, 1). Now, we prove H is a proper map. So let {(zn, tn)} is a sequence in B2
∗ × [0, 1]

with zn → 0. We need to show that H(zn, tn) → 0. Define N1 := {n ∈ N : 1 − tn < |zn|} and N2 :=
{n ∈ N : |zn| ≤ 1 − tn}. Then N = N1 ∪ N2. Therefore, it is enough to show {H(zn, tn) : n ∈ Nk} → 0
whenever Nk is infinite for each k = 1, 2. If N1 is infinite, then {H(zn, tn) : n ∈ Nk} → 0 by the
definition of H.

Next, assume N2 is infinite. To prove {H(zn, tn) : n ∈ N2} → 0, pick any ε > 0, and let N2ε := {n ∈
N2 : 1 − tn < ε}. By the definition, |H(zn, tn)| ≤ (1 − tn) < ε for all n ∈ N2ε. Moreover, if N2 \ N2ε

is infinite, then {zn/(1 − tn) : n ∈ N2 \ N2ε} → 0, which implies
{

f
(
zn/(1 − tn)

)
: n ∈ N2 \ N2ε

}
→ 0

(as f is proper), and thus |H(zn, tn)| ≤
∣∣f (zn/(1 − tn)

)∣∣ < ε for all but finitely many n ∈ N2 \ N2ε.
Therefore, |H(zn, tn)| < ε for all but finitely many n ∈ N2. So, we are done.

3.3 Proof of Theorem 1.2

Now, we will prove Theorem 1.2. At first, a couple of observations. Let Σ be a non-compact
surface. We call a bordered subsurface S of Σ essential if the inclusion-induced map π1(S) → π1(Σ)
is injective. Note that an end e = (V1,V2, ...) of Σ is an isolated planar end if and only if there
exists an integer n0 such that Vn is a punctured disk for all n ≥ n0. Thus, a non-compact surface Σ

has an isolated planar end if and only if Σ contains an essential punctured disk.

Lemma 3.18 Let f be a π1-injective proper map from C∗ to a non-compact oriented surface Σ.
Suppose deg(f ) = 0. Then Σ contains an essential punctured disk D∗ such that f can be properly
homotoped so that f (C∗) ⊆ D∗.

Proof. Notice that Σ ̸= R2 because π1(f ) is injective. So, there exists an LFCS A on Σ such that A

decomposes Σ into bordered sub-surfaces, and a complementary component of this decomposition
is homeomorphic to either S1,1, S0,3, or S0,1,1. By Theorem 3.5, we may assume f is smooth as well
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as transverse to A . Therefore, f−1(A ) is an LFCS on C∗ by Theorem 3.5. Since each component
of A is a primitive circle on Σ, and f is π1-injective, by Remark 3.12, after a proper homotopy,
we may further assume that each component of f−1(A ), if any, is a primitive circle on C∗, and
f maps for every component of f−1(A ) onto a component of A by a covering map. Moreover,
any two primitive circles on C∗ co-bound an annulus in C∗, but no two distinct components of A

co-bound an annulus in Σ together imply either f−1(A ) = ∅ or there exists a component C of A

such that f−1(A ) = f−1(C) ̸= ∅.

At first, suppose f−1(A ) = ∅. Then f (C∗), being non-compact, must be contained in a punctured
disk D∗ that appears as a complementary component of the decomposition of Σ by A . Hence, the
proof for this case is complete.

From now onwards we will assume f−1(A ) = f−1(C) ̸= ∅. If f−1(C) has more than one component,
then we want to properly homotope f so that f−1(C) becomes a single circle and f |f−1(C) → C is
a covering map. The main tool for all those proper homotopies is the observation that if S′ is a
compact bordered subsurface of C∗, then a homotopy of f |S′ rel. ∂S′ can be extended to a proper
homotopy of f .

Notice that any two distinct components of f−1(C), being primitive circles on C∗, co-bound an
annulus in C∗. So, let A′ be an annulus co-bounded by two components of f−1(C). The continuity
of f tells that in the decomposition of Σ by A , f (A′) lies within one of the two complementary
components that share C as a common boundary. Thus, we can always find a compact bordered
subsurface S of Σ such that f |A′ → S. Since f |A′ → S is π1-injective and f |∂A′ → C is a local
homeomorphism, after a homotopy of f |A′ → S rel. ∂A′, we may assume f (A′) ⊆ C [29, Lemma
1.4.3]. Let A′

out denote the union of all annuli co-bounded by two components of f−1(C). Then,
after a homotopy of f |A′

out → Σ rel. ∂A′
out, we may assume f

(
A′

out
)
⊆ C. Denote the boundary

components of A′
out by C′ and C′′. Now, Remark 3.12 tells that there exists a one-sided tubular

neighborhood C′ × [1, 2] ≡ V ′ of C′ ≡ C′ × 2 and a one-sided tubular neighborhood C × [1, 2] ≡ V
of C ≡ C × 2 such that f (z, r) = f (z) × r for all (z, r) ∈ C′ × [1, 2]. Applying Lemma 3.14, after a
homotopy of f |A′

out ∪ V ′ rel. C′′ ⊔
(
C′ × 1

)
, we can assume that f−1(C) = C′′ and f |C′′ → C is an

n-sheeted covering map.

At this point, two cases arise depending on whether Σ is equal to C∗ or not. Let’s begin by
assuming Σ ̸= C∗. Thus, if S1 and S2 are two distinct, complementary components of the
decomposition of Σ by A such that S1 is a punctured disk and ∂S1 ∩ ∂S2 ̸= ∅, then S2 must be
compact. Since f is proper, f (C∗) is non-compact. Now, upon considering the decomposition of Σ
by A , we can tell that f (C∗) is contained in one of the two complementary components that share
C as a common boundary. Hence, there exists a punctured disk D∗ appears as a complementary
component of the decomposition of Σ by A such that ∂D∗ = C and f (C∗) ⊆ D∗.

Next, assume Σ = C∗, and let D(1)
∗ and D(2)

∗ be the punctured disks appear as complementary
components of the decomposition of C∗ by C. Note that in this case, f (C∗) cannot be equal to C∗;
otherwise, applying Proposition 3.17 on each f |f−1

(
D(1)
∗

)
→ D(1)

∗ and f |f−1
(

D(2)
∗

)
→ D(2)

∗ , would

yield deg(f ) = ±n ̸= 0. So, f (C∗) must contained in one of D(1)
∗ or D(2)

∗ . So, we are done.

Notice that, except in the last paragraph of the previous proof, we haven’t utilized the fact that
deg(f ) = 0. This is because of the following proposition.

Proposition 3.19 Let f be a π1-injective proper map from C∗ to a non-compact oriented surface Σ

such that deg(f ) ̸= 0. Then Σ must be to C∗.

15



Proof. Since π1(f ) is injective, Σ ̸= R2. Now, note that the fundamental group of a non-compact
surface other than the plane and the punctured plane is a free group of rank at least two.
Thus, if Σ ̸= C∗, then the index [π1(Σ) : im π1(f )] must be finite by Theorem 3.9. Thus, by
the Nielsen–Schreier index formula, im π1(f ) is a free group of rank at least 2, a contradiction.

Now, we are ready to prove the first part of Theorem 1.2.

Theorem 3.20 (Theorem 1.2(i)) Let f be a π1-injective proper map from S1 × R to a non-compact
oriented surface Σ. Suppose deg(f ) = 0. Then there exists a π1-injective, proper embedding
ι : S1 × [0,∞) ↪→ Σ, along with a non-zero integer d, such that after a proper homotopy, f can be
described by the proper map S1 × R ∋ (z, t) 7−→ ι

(
zd, |t|

)
∈ Σ. Thus, Σ has an isolated planar end,

and given any compact subset K of Σ, there exists a proper map g properly homotopic to f such
that im(g) ⊆ Σ \ K.

Proof. Notice that Σ ̸= R2 because f is π1-injective. By Lemma 3.18, we may assume that
f (S1 × R) ⊆ D∗ for some essential punctured disk D∗ ⊂ Σ. Let e be the (isolated planar) end of
Σ determined by D∗. Consider a locally-finite, pairwise-disjoint collection A := {Ci : i = 1, 2, ..}
of smoothly embedded primitive circles on Σ such that each Ci is contained in int(D∗). Observe
that if a proper map g is properly homotopic to f , then g−1(A ) ̸= ∅ because Ends(g) = Ends(f )
sends both elements of Ends(S1 × R) to e. By Theorem 3.5, we may assume f is smooth as well
as transverse to A . Since each component of A is a primitive circle on Σ, and f is π1-injective,
by Remark 3.12, after a proper homotopy, we may further assume that each component of the
non-empty LFCS f−1(A ) is a primitive circle on S1 ×R and f maps for every component of f−1(A )
onto a component of A by a covering map. Thus, there exists a positive integer n0 such that
f−1(Cn0) ̸= ∅ and f sends every component of f−1(Cn0) onto Cn0 by a covering map. Now, by an
argument similar to what is given in the proof of Lemma 3.18, after a proper homotopy, we may
assume that C′

n0
:= f−1(Cn0) is a single circle and f |C′

n0
→ Cn0 is a finite-sheeted covering. Let D∗ be

the essential punctured disk contained in D∗ such that ∂D∗ = Cn0 . Notice that f (S1 × R) = D∗.

Now, choose r ̸= 0 so that S1 × r doesn’t intersect C′
n0

. Since S1 × r co-bounds an annulus
with each of the circles S1 × 0 and C′

n0
, the isotopy extension theorem [6, Proposition 1.11] [15,

Theorem 1.3.] gives two homotopies H1,H2 : (S1 ×R)× [0, 1] → S1 ×R through homeomorphisms
such that H1(C′

n0
, 1) = S1 × r and H1(S1 × r, 1) = S1 × 0. By [2, Theorem 1.3], H1 and H2 are

proper homotopies. Thus, there exists a homeomorphism of S1 × R properly homotopic to the
identity, which sends C′

n0
onto S1 × 0. Therefore, after a proper homotopy, we may assume that

f (S1 × R) = D∗ and f |S1 × 0 → ∂D∗ = Cn0 is a finite-sheeted covering. Now, by the classification
of finite-sheeted covering maps of the circle and together with an application of Proposition 3.17
on each of f |S1 × (−∞, 0] → D∗ and f |S1 × [0,∞) → D∗, we can conclude that there exists a
π1-injective, proper embedding ι : S1 × [0,∞) ↪→ Σ with im(ι) = D∗ such that after a proper
homotopy, f can be described by the proper map S1 × R ∋ (z, t) 7−→ ι

(
zd, |t|

)
∈ Σ for some

non-zero integer d. Moreover, by an argument similar to that given in the first part of the proof of
Theorem 3.8, we can conclude that given any compact subset K of Σ, there exists a proper map g
properly homotopic to f such that im(g) ⊆ Σ \ K.

An argument similar to the one given in the proof of Theorem 3.20 provides the following:

Proposition 3.21 Let f : S1 × R → S1 × R be a π1-injective proper map of degree 0. Then f is
properly homotopic to S1 × R ∋ (z, t) 7−→

(
zd, |t|

)
∈ S1 × R for some integer d ̸= 0.
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Now, we are ready to prove the second part of Theorem 1.2. For that, we need the following
lemma.

Lemma 3.22 Let φ : C∗ → C∗ be a proper map of non-zero degree. If φ is a homotopy equivalence,
then it is properly homotopic to a homeomorphism.

Remark 3.23 The non-zero degree assumption in Lemma 3.22 can’t be dropped. For example,
f : S1 × R ∋ (z, t) 7−→

(
z, |t|

)
∈ S1 × R is a self-homotopy equivalence of C∗ which is not properly

homotopic to any homeomorphism of C∗ because deg(f ) = 0.

Proof. Pick a smoothly embedded primitive circle C on C∗. Thus, there are punctured disks D(1)
∗

and D(2)
∗ such that C∗ = D(1)

∗ ∪ D(2)
∗ and C = D(1)

∗ ∩ D(2)
∗ . By Theorem 3.5, after a proper homotopy,

we may assume φ is smooth as well as transverse to C. Now, Theorem 2.2.3 tells that φ remains
surjective even after a proper homotopy. Therefore, φ−1(C) is a non-empty, pairwise-disjoint, finite
collection of smoothly embedded circles on C∗. Further, after a proper homotopy, similar to what
we have done in the proof of Theorem 3.15, we may assume C′ := φ−1(C) is a primitive circle
on C∗ and φ|C′ → C is a homeomorphism. This is possible as φ is a homotopy equivalence. Let
D(1)′
∗ and D(2)′

∗ be the punctured disks such that C∗ = D(1)′
∗ ∪ D(2)′

∗ and C′ = D(1)′
∗ ∩ D(2)′

∗ . Since φ is
surjective, possibly after re-indexing, we may assume φ−1

(
D(j)
∗

)
= D(j)′

∗ for j = 1, 2. Finally, to

conclude apply Proposition 3.17 on φ|D(j)′
∗ → D(j)

∗ for j = 1, 2.

Theorem 3.24 (Theorem 1.2(ii)) Let f be a π1-injective proper map from C∗ to a non-compact
oriented surface Σ. Suppose n := deg(f ) is non-zero. Then, Σ = C∗ and f is properly homotopic to
the covering C∗ ∋ z 7−→ zn ∈ C∗ if n > 0, and to the covering C∗ ∋ z 7−→ z−n ∈ C∗ if n < 0

Proof. By Proposition 3.19, Σ = C∗. Let p : Σ̃ → C∗ be the covering corresponding the subgroup
im π1(f ) of π1(C∗), and let f̃ : C∗ → Σ̃ be a lift of f w.r.t. p, i.e., p ◦ f̃ = f . Thus, im π1(p) = im π1(f ),
and hence π1(̃f ) is an isomorphism because a covering map induces injection between fundamental
groups. In particular, the fundamental group of Σ̃ is infinite cyclic. Hence, Σ̃ = C∗. The properness
of f implies the properness of f̃ by Lemma 3.3. Since non-compact surfaces are K(π, 1) CW-
complexes, by Whitehead theorem f̃ is a homotopy equivalence. By Lemma 3.3, we may assume p
is a d-sheeted covering for some positive integer d and Σ̃ is orientable. Fix an orientation of Σ̃.
By Theorem 2.2.1, deg(p) = ±d. Now, deg(̃f ) ̸= 0 because 0 ̸= n = deg(f ) = deg(pf̃ ) = (±d) · deg(̃f ).
Thus, f̃ : C∗ → C∗ is a homotopy equivalence and deg(̃f ) ̸= 0. So f̃ is properly homotopic to a
homeomorphism by Lemma 3.22, i.e., deg(̃f ) = ±1. Hence, n = ±d, and f is properly homotopic
to a d-sheeted covering.

At first, suppose n > 0. By the previous paragraph, without loss of generality, we may assume
f is an n-sheeted covering map. Now, covering space theory [13, Proposition 1.37.] gives a self-
homeomorphism h of C∗ such that f (z) = h(zn) for all z ∈ C∗. Certainly, h is orientation-preserving.
By Proposition 3.25 below, we may assume f (1) = 1 = h(1). Now, [4, Theorem 5.7.] tells that there
exists a level-preserving homeomorphism H : C∗ × [0, 1] → C∗ × [0, 1] which agrees with h on
C∗ × 0 and with IdC∗ on C∗ × 1. The projection C∗ × [0, 1] → C∗ is proper implies h is properly
homotopic to IdC∗ . So we are done when deg(f ) = n > 0.

Now, assume deg(f ) = n < 0. Since the complex conjugation is an orientation-reversing self-
homeomorphism of C, the map f : C∗ ∋ z 7−→ f (z) ∈ C∗ is orientation-preserving of degree −n.
Thus, f is properly homotopic to C∗ ∋ z 7−→ z−n ∈ C∗ by the previous case. Therefore, f is properly
homotopic to C∗ ∋ z 7−→ z−n ∈ C∗.
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It is known that every connected, boundaryless manifold M is homogeneous, i.e., for any two
points x and y of M, there exists a homeomorphism h of M sending x to y. Moreover, one can also
show that the homeomorphism h can be chosen so that it is homotopic to the identity map of M
[28, Lemma 6.4]. In case M is non-compact, Theorem 3.1 tells us that the homeomorphism h can
be chosen so that it becomes properly homotopic to the identity of M.

Proposition 3.25 Let M be an orientable, connected topological manifold without boundary. If x
and y are two points of M, then there exists a self-homeomorphism φ : M → M properly homotopic
to the identity of M such that φ(x) = y.
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