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ABSTRACT

Endothelial cells form the linchpin of vascular and lymphatic systems, creating intricate networks that are pivotal for angiogenesis,
controlling vessel permeability, and maintaining tissue homeostasis. Despite their critical roles, there is no rigorous mathematical
framework to represent the connectivity structure of endothelial networks. Here, we develop a pioneering mathematical
formalism called π-graphs to model the multi-type junction connectivity of endothelial networks. We define π-graphs as abstract
objects consisting of endothelial cells and their junction sets, and introduce the key notion of π-isomorphism that captures
when two π-graphs have the same connectivity structure. We prove several propositions relating the π-graph representation to
traditional graph-theoretic representations, showing that π-isomorphism implies isomorphism of the corresponding unnested
endothelial graphs, but not vice versa. We also introduce a temporal dimension to the π-graph formalism and explore the
evolution of topological invariants in spatial embeddings of π-graphs. Finally, we outline a topological framework to represent
the spatial embedding of π-graphs into geometric spaces. The π-graph formalism provides a novel tool for quantitative analysis
of endothelial network connectivity and its relation to function, with the potential to yield new insights into vascular physiology
and pathophysiology.

1 Introduction
The endothelium, a monolayer of endothelial cells lining the blood and lymphatic vessels, plays a central role in vascular
homeostasis1. Far from a passive conduit for blood flow, the endothelium actively regulates vascular permeability, blood
coagulation, angiogenesis, and inflammatory responses. These functions arise from the ability of endothelial cells to form
complex networks with specialized cell-cell junctions. Adherens junctions and tight junctions are ubiquitous structures that
mechanically and chemically couple endothelial cells, while gap junctions mediate the passage of ions and small signaling
molecules between cells. More recently discovered structures, such as nectin junctions, also contribute to endothelial
connectivity. Collectively, endothelial cell-cell junctions enable the coordination of endothelial responses across vascular
networks.

Endothelial network integrity is critical for vascular health, as disruption of interendothelial junctions and resulting increases
in vascular permeability are key events in atherosclerosis, ischemia-reperfusion injury, sepsis, and other disease states2–4.
Aberrant endothelial connectivity also enables the pathological angiogenesis seen in cancer and eye diseases5. Quantitative
analysis of endothelial network structure therefore has the potential to yield new biomarkers and therapeutic strategies for
vascular dysfunction6–10.

Network representations have become an invaluable tool for understanding the structure and function of complex biological
systems. Prominent examples include neuron maps11, metabolic system representations12, cell-cell communication models13, 14,
and protein-protein interaction networks15. In these contexts, network models have revealed fundamental organizing principles
such as small-world topology, modularity, and centrality. A unifying mathematical language for biological networks has
emerged from graph theory, which captures connectivity patterns between large numbers of interacting elements at a high
fidelity.

However, standard graphs are not sufficient to capture the rich junction architecture connecting endothelial cells into
vascular networks. A single edge between two cells cannot represent the multiple junction types that may exist between
them16. Instead, endothelial network connectivity is inherently a multi-relation structure. Furthermore, the concept of the line
graph, which can represent multi-edges, does not naturally capture the distinct types of endothelial junctions and their set-like
organization around cells. As a result, a more sophisticated mathematical representation is needed.

Here we develop a mathematical formalism called π-graphs to meet this need. π-graphs are abstract structures that faithfully
represent the multi-junction connectivity of endothelial networks using an intuitive set-based language. We define π-graphs and
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their morphisms, and prove several results linking π-graphs to their underlying unnested endothelial graphs. We also describe a
framework based on topological realization to represent the spatial embedding of endothelial networks. Our work provides an
expressive, tractable, and generalizable framework to quantitatively interrogate endothelial networks.

2 Models and Methods
2.1 Basic Definitions
We begin by formally defining the notion of an endothelial π-graph. Let E be a finite set, whose elements we call endothelial
cells (ECs). We consider four types of intercellular junctions that can connect ECs:

1. Adherens junctions (AJs): Cell-cell adhesion structures that mechanically link adjacent ECs via homophilic interactions
between transmembrane VE-cadherin proteins17.

2. Tight junctions (TJs): Multiprotein complexes composed of claudins, occludins, and adaptor proteins that form a seal
between adjacent ECs to regulate paracellular permeability18.

3. Gap junctions (GJs): Intercellular channels formed by connexin proteins that allow direct exchange of ions and small
molecules (<1 kDa) between the cytoplasm of adjacent ECs19.

4. Nectin junctions (NJs): Adhesive structures formed by heterophilic interactions between nectin proteins that are distinct
from but colocalize with AJs and help initiate cell-cell contacts20.

We represent each of these junction types as a distinct symmetric binary relation on the set E :

Definition 1 Let ∼AJ ,∼T J ,∼GJ ,∼NJ be symmetric binary relations on E representing adherens junctions, tight junctions, gap
junctions, and nectin junctions respectively. The set of all junction relations is denoted JE :=∼AJ ,∼T J ,∼GJ ,∼NJ .

The relations in JE jointly determine the connectivity of the endothelial network. To capture the set of junctions incident
at each EC, we introduce the notion of π-incidence:

Definition 2 A π-incidence on E is a function π : E → P(JE ) satisfying:

1. (Junction Consistency) For all x ∈ E and ∼∈ JE ,

∼∈ π(x) ⇐⇒ ∃y ∈ E s.t. x ∼ y

2. (Nondegeneracy) For all x ∈ E , π(x) ̸= /0

The Junction Consistency condition states that a cell x is π-incident to a junction relation ∼ if and only if x is connected
by ∼ to some other cell. The Nondegeneracy condition requires that each cell participates in at least one junction. Note that
distinct elements x,y ∈ E may share multiple junction relations, i.e. |π(x)∩π(y)|> 1. This multi-relational structure is a key
feature of endothelial networks that motivates the π-graph formalism.

With these ingredients, we can now define the central object of study:

Definition 3 An endothelial π-graph is a tuple G = (E ,π) where E is a finite set of ECs and π is a π-incidence on E . The set
of all π-graphs is denoted ϖ .

Thus, a π-graph G ∈ ϖ encodes the network connectivity of an endothelial monolayer as a set E of ECs and a π-incidence
reflecting the junction architecture connecting the ECs. Figure 1 illustrates a simple example.

2.2 Elementary Properties
π-graphs satisfy a number of basic properties that reflect natural features of endothelial networks. We highlight a few key
properties here.

First, the local junction architecture around an EC is encoded by its π-incidence:

Proposition 1 Let G = (E ,π) be a π-graph. For any x ∈ E , the set π(x) uniquely determines the set of all ECs sharing a
junction with x, i.e.

y ∈ E : ∃ ∼∈ π(x) s.t. x ∼ y =
⋃

∼∈π(x)

[x]∼\ x

where [x]∼ denotes the equivalence class of x under the relation ∼.
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Figure 1. Example of an endothelial π-graph G = (E ,π). (A) Schematic of an EC monolayer with ECs (labeled x1, . . . ,x5)
connected by adherens junctions (red), tight junctions (blue), and gap junctions (green). (B) The π-graph representation of the
monolayer, with π-incidence displayed as junction sets associated to each cell. For instance, π(x1) =∼AJ ,∼T J .

Proof 1 Let y ∈ E with y ̸= x. If y shares a junction with x, then there exists ∼∈ π(x) such that x ∼ y. By definition of
equivalence class, this implies y ∈ [x]∼ \x.

Conversely, suppose y ∈ [x]∼\ x for some ∼∈ π(x). By definition of equivalence class, we have x ∼ y, so x and y share a
junction. Therefore

y ∈ E : ∃ ∼∈ π(x) s.t. x ∼ y =
⋃

∼∈π(x)

[x]∼ \x

as desired.

This property allows us to recover the local "junction neighborhood" of a cell from its π-incidence alone. In biological
terms, the junction neighborhood reflects the set of all cells that can directly communicate with or mechanically influence a
given cell.

Next, we consider the global connectivity of π-graphs. Define a path of length n from x to y in G as a sequence of cells
x = x0,x1, . . . ,xn = y such that for each 0 ≤ i < n, there exists ∼∈ π(xi)∩π(xi+1) with xi ∼ xi+1. We say G is connected if
there exists a path between any two cells:

Proposition 2 A π-graph G = (E ,π) is connected if and only if for all x,y ∈ E , there exists a path from x to y.

Connectivity of the π-graph captures the ability of ECs to communicate across the endothelial monolayer via a combination
of junction types. This communication may take the form of mechanical forces transmitted via AJs, chemical and electrical
signals propagated by GJs, or regulation of paracellular transport through the coordination of TJs and NJs. In this sense,
π-graph connectivity abstractly reflects integrated endothelial function.

Finally, we define an operation called π-union that models the merging of two π-graphs over a common subset of ECs:

Definition 4 Let G1 = (E1,π1) and G2 = (E2,π2) be π-graphs with E1 ∩E2 ̸= /0. The π-union of G1 and G2 is the π-graph
G1 ⊔π G2 = (E1 ∪E2,π1∪2) where for x ∈ E1 ∪E2,

π1∪2(x) =


π1(x) if x ∈ E1 \E2

π2(x) if x ∈ E2 \E1

π1(x)∪π2(x) if x ∈ E1 ∩E2

Intuitively, the π-union glues together two π-graphs along their common ECs and unions the π-incidences of the common
ECs (Figure 2). This models the formation of a larger endothelial tissue by merging two smaller tissues with some overlapping
cells. The notation ⊔π was chosen to suggest a modified disjoint union operation that preserves the common elements and their
π-incidences.

The π-union provides a natural way to build up complex π-graphs from simpler building blocks, and to decompose π-graphs
into components. One can show that π-union is associative and commutative up to π-isomorphism (defined in the next section),
giving the set of π-graphs the algebraic structure of a commutative monoid.
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Figure 2. Schematic illustration of π-union. (A) Two π-graphs G1 and G2 with overlapping ECs x3,x4 (purple). (B) The
π-union G1 ⊔π G2 merges the graphs along the common cells. The π-incidence of each common cell unions those from G1 and
G2 (purple sets).

Having established the basic definition and properties of π-graphs, we turn next to the notion of π-graph isomorphism to
characterize when two π-graphs have the same connectivity structure.

3 Results
3.1 π-graph Isomorphisms
A fundamental question in the construction of such π-graphs is when two π-graphs have the same connectivity structure. To
formalize this notion, we introduce the concept of π-graph isomorphism:

Definition 5 Let G1 = (E1,π1) and G2 = (E2,π2) be π-graphs. A π-graph isomorphism from G1 to G2 is a bijective function
ϕ : E1 → E2 such that for all x ∈ E1 and ∼∈ JE1 ,

∼∈ π1(x) ⇐⇒ ϕ(∼) ∈ π2(ϕ(x))

where ϕ(∼) := (ϕ(a),ϕ(b)) : a ∼ b.
If such an isomorphism exists, we say G1 and G2 are π-isomorphic and write G1 ∼=π G2. The set of all π-isomorphisms

from G1 to G2 is denoted Isoπ(G1,G2).

Intuitively, a π-isomorphism is a bijection between the EC sets of two π-graphs that preserves the π-incidence structure.
The condition ∼∈ π1(x) ⇐⇒ ϕ(∼) ∈ π2(ϕ(x)) ensures that if two ECs are connected by a junction in G1, then their images
under ϕ are connected by the same type of junction in G2, and vice versa.

Figure 3 illustrates an example of π-isomorphic graphs, with the dashed arrows indicating the bijection ϕ that preserves the
color-coded π-incidence structure.

The following proposition establishes basic properties of π-isomorphisms:

Proposition 3 Let ϖ be the class of π-graphs.

1. For any G ∈ ϖ , the identity function idE : E → E is a π-isomorphism from G to itself.

2. For any π-isomorphism ϕ : G1 → G2, the inverse function ϕ−1 : E2 → E1 is a π-isomorphism from G2 to G1.

3. For any π-isomorphisms ϕ : G1 → G2 and ψ : G2 → G3, the composition ψ ◦ϕ : E1 → E3 is a π-isomorphism from G1 to G3.

Therefore, π-isomorphism defines an equivalence relation on ϖ .

Proof 2 (1) For any x ∈ E and ∼∈ JE , we have ∼∈ π(x) ⇐⇒ idE (∼) ∈ π(idE (x)) since idE (∼) =∼ and idE (x) = x. Thus
idE is a π-isomorphism.
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Figure 3. Example of π-isomorphic graphs G1 and G2. The bijection ϕ : E1 → E2 (dashed arrows) preserves the π-incidence
structure, i.e. xi ∼ x j in G1 if and only if ϕ(xi)∼ ϕ(x j) in G2 for each junction type ∼. The coloring of the graph edges and
corresponding junction type is consistent with Figure 1.

(2) Let ϕ : (E1,π1)→ (E2,π2) be a π-isomorphism. For any y ∈ E2 and ∼∈ JE2 , we have

∼∈ π2(y) ⇐⇒ ϕ
−1(∼) ∈ π1(ϕ

−1(y))

⇐⇒ (ϕ−1(a),ϕ−1(b)) : a ∼ b ∈ π1(ϕ
−1(y))

since ϕ is a bijection. Thus ϕ−1 is a π-isomorphism.
(3) Let ϕ : (E1,π1)→ (E2,π2) and ψ : (E2,π2)→ (E3,π3) be π-isomorphisms. For any x ∈ E1 and ∼∈ JE1 , we have

∼∈ π1(x) ⇐⇒ ϕ(∼) ∈ π2(ϕ(x))

⇐⇒ ψ(ϕ(∼)) ∈ π3(ψ(ϕ(x)))

⇐⇒ (ψ ◦ϕ)(∼) ∈ π3((ψ ◦ϕ)(x))

Thus ψ ◦ϕ is a π-isomorphism.
Properties (1)-(3) are the reflexive, symmetric, and transitive properties of an equivalence relation21, respectively. Therefore,

π-isomorphism is an equivalence relation on the class of π-graphs.

This proposition justifies the notation G1 ∼=π G2 for π-isomorphic graphs, and allows us to partition the class of π-graphs
into equivalence classes [G]π = H ∈ ϖ : H ∼= πG represented by a distinguished element G ∈ ϖ .

3.2 Relationship to Standard Graph Isomorphism
We explore the relationship between π-isomorphism and the standard notion of graph isomorphism. To make this relationship
precise, we introduce an "unnested" representation of an endothelial π-graph.

Given a π-graph G = (E ,π), define the unnested endothelial junction graph (or simply unnested graph) of G as UG =
(E ,

⋃
x∈E π(x)). In other words, UG is the graph whose vertices are the ECs of G and whose edges represent the individual

junctions, without the π-incidence structure. Figure 4 illustrates this construction.
We can now relate π-isomorphisms of π-graphs to standard graph isomorphisms of their unnested graphs:

Proposition 4 Let G1 = (E1,π1) and G2 = (E2,π2) be π-graphs with unnested graphs UG1 = (E1,R1) and UG2 = (E2,R2),
respectively. If ϕ : E1 → E2 is a π-isomorphism from G1 to G2, then ϕ is a graph isomorphism from UG1 to UG2 .

Proof 3 Let x,y ∈ E1. We must show that (x,y) ∈ R1 if and only if (ϕ(x),ϕ(y)) ∈ R2. Suppose (x,y) ∈ R1. By definition
of unnested graph, there exists ∼∈ π1(x) such that x ∼ y. Since ϕ is a π-isomorphism, this implies ϕ(∼) ∈ π2(ϕ(x)) and
ϕ(x)∼ ϕ(y). Therefore (ϕ(x),ϕ(y)) ∈ R2. The converse follows by a symmetric argument.

This proposition shows that π-isomorphism is a stronger condition than unnested graph isomorphism, i.e. π-isomorphic
π-graphs necessarily have isomorphic unnested graphs. However, the converse is not true in general:
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Figure 4. Unnested graph construction. (A) π-graph G with ECs x1, . . . ,x5 connected by multiple junction types (colored
edges). (B) The unnested graph UG retains the EC vertices but replaces the π-incidences with individual junction edges.
Distinct junction types between two ECs yield multiple edges (e.g. the AJ and GJ between x1 and x2).

Proposition 5 There exist π-graphs G1 and G2 such that UG1 and UG2 are isomorphic as graphs but G1 ̸∼=π G2.

Proof 4 We construct a counterexample. Let E = x1,x2,x3 and consider the following π-graphs:

G1 = (E ,π1) where π1(x1) =∼AJ ,π1(x2) =∼AJ ,∼GJ ,π1(x3) =∼GJ

G2 = (E ,π2) where π2(x1) =∼AJ ,∼GJ ,π2(x2) =∼GJ ,π2(x3) =∼AJ

and junction relations given by: x1 ∼AJ x2, x2 ∼AJ x1, x2 ∼GJ x3, x3 ∼GJ x2, x1 ∼AJ x3. The unnested graphs are:

UG1 = (E ,(x1,x2),(x2,x1),(x2,x3),(x3,x2))

UG2 = (E ,(x1,x2),(x2,x1),(x1,x3),(x3,x1))

which are isomorphic via the bijection ϕ : E → E defined by ϕ(x1) = x1,ϕ(x2) = x3,ϕ(x3) = x2. However, G1 ̸∼=π G2 since
there is no bijection ψ : E → E that preserves the π-incidence structure, i.e. ∼∈ π1(x) ⇐⇒ ψ(∼) ∈ π2(ψ(x)) for all x ∈ E
and ∼∈ JE . Intuitively, this is because the distribution of AJ and GJ among the ECs differs between G1 and G2, even though
they have the same total number of junctions.

This proposition highlights a key feature of the π-graph formalism: it captures connectivity information beyond what is
represented by the unnested graph. The additional information is precisely the π-incidence structure that encodes which subsets
of ECs are connected by each junction type.

Despite this negative result, there are some conditions under which π-isomorphism and unnested graph isomorphism
coincide:

Proposition 6 Let G1 = (E1,π1) and G2 = (E2,π2) be π-graphs satisfying the following conditions:

1. ∀x,y ∈ Ei, |πi(x)∩πi(y)| ≤ 1 (i = 1,2).

2. ∀x ∈ Ei, ∀ ∼,≈∈ πi(x) with ≁=≈, [x]∼∩ [x]≈= x (i = 1,2).

If ϕ : E1 → E2 is an unnested graph isomorphism (i.e. a graph isomorphism from UG1 to UG2 ), then ϕ is also a π-isomorphism
from G1 to G2.

Proof 5 Assume the hypotheses and let ϕ : E1 → E2 be an unnested graph isomorphism. We must show that ϕ preserves the
π-incidence structure, i.e. for all x ∈ E1 and ∼∈ JE1 ,

∼∈ π1(x) ⇐⇒ ϕ(∼) ∈ π2(ϕ(x))
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( =⇒ ) Suppose ∼∈ π1(x). By definition of π1, there exists y ∈ E1 with y ̸= x such that x ∼ y. Since ϕ is an unnested graph
isomorphism, this implies (ϕ(x),ϕ(y)) ∈ R2, i.e. there exists ≈∈ π2(ϕ(x)) such that ϕ(x)≈ ϕ(y). We claim that ≈= ϕ(∼).

Suppose for contradiction that ≉= ϕ(∼). Then by condition (2), [ϕ(x)]≈∩ [ϕ(x)]ϕ(∼) = ϕ(x). But ϕ(y) ∈ [ϕ(x)]≈ by
definition of ≈, and ϕ(y) ∈ [ϕ(x)]ϕ(∼) since y ∈ [x]∼ and ϕ is a graph isomorphism. This contradicts [ϕ(x)]≈∩ [ϕ(x)]ϕ(∼) =
ϕ(x). Therefore ≈= ϕ(∼), so ϕ(∼) ∈ π2(ϕ(x)).

( ⇐= ) Conversely, suppose ϕ(∼)∈ π2(ϕ(x)). By definition of π2, there exists z∈ E2 with z ̸= ϕ(x) such that ϕ(x)∼ z. Since
ϕ is a bijection, z = ϕ(y) for some y ∈ E1 with y ̸= x. Moreover, since ϕ is an unnested graph isomorphism, (ϕ(x),ϕ(y)) ∈ R2
implies (x,y) ∈ R1, i.e. there exists ≈∈ π1(x) such that x ≈ y.

We claim that ≈=∼. Suppose for contradiction that ≉=∼. By condition (1), |π1(x)∩ π1(y)| ≤ 1, so ≈ is the unique
junction relation between x and y in G1. But by the forward direction of the proof, ≈∈ π1(x) implies ϕ(≈) ∈ π2(ϕ(x)), and
ϕ(≈) ̸= ϕ(∼) since ≉=∼ and ϕ is injective. This contradicts condition (1) for G2, since ϕ(∼),ϕ(≈) ∈ π2(ϕ(x))∩π2(ϕ(y)).
Therefore ≈=∼, so ∼∈ π1(x).

The conditions in this proposition have a natural biological interpretation. Condition (1) states that any two ECs share at
most one type of junction. Condition (2) states that distinct junction relations on a common EC connect that EC to disjoint sets
of ECs. In other words, the conditions preclude having multiple redundant junctions between ECs and ensure that each junction
relation represents a unique connectivity pattern.

Under these biologically plausible assumptions16, the π-graph and unnested graph representations are equivalent up to
isomorphism. This suggests that for endothelial networks satisfying the assumptions, one can work with the simpler unnested
graph representation without losing connectivity information. However, the π-graph representation is still valuable for encoding
the multiplicity of junction types and explicitly representing the junction architecture around each EC.

3.3 Spatial Representation
We now introduce a framework to represent the spatial embedding and geometry of π-graphs, extending the abstract connectivity
structure to incorporate biologically relevant spatial information. Our approach is based on the theory of topological graphs and
their embeddings into geometric spaces.

3.4 Topological π-graphs
We begin by defining a topological π-graph, which endows an abstract π-graph with a topology inherited from its vertex and
edge sets.

Definition 6 A topological π-graph is a tuple G = (G,TE ,TJ ) where:

1. G = (E ,π) is an abstract π-graph.

2. TE is a topology on the vertex set E .

3. TJ is a topology on the set of junctions JG :=
⋃

x ∈ E π(x).

4. (Continuity) The π-incidence π : E → P(JG) is continuous with respect to TE and the subspace topology on P(JG)
induced by TJ .

Intuitively, a topological π-graph equips the vertex and edge sets of an abstract π-graph with topologies that are compatible
with the π-incidence structure, in the sense that the π-incidence map is continuous. This allows us to treat π-graphs as geometric
objects and study their topological properties.

A natural choice for the vertex topology TE is the discrete topology, which captures the intuition that ECs are distinct,
separated objects. For the junction topology TJ , there are several biologically motivated options, such as the discrete topology
(treating junctions as distinct objects), the Euclidean topology (embedding junctions into Euclidean space), or a more general
geometric topology (e.g. representing junctions as simplicial complexes). The choice of junction topology depends on the
specific geometric properties one wishes to model.

Figure 5 illustrates an example of a topological π-graph with discrete vertex topology and Euclidean junction topology.

3.5 Spatial Embeddings of π-graphs
We now turn to the problem of embedding topological π-graphs into geometric spaces in a way that respects the π-incidence
structure and junction geometry. We focus on embeddings into Euclidean space Rd , but the framework can be generalized to
other spaces (e.g. manifolds) as needed.

Definition 7 Let G = (G,TE ,TJ ) be a topological π-graph and d ≥ 1. A spatial embedding of G into Rd is a pair of
continuous maps (ϕE ,ϕJ ) where:
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Figure 5. Example of a topological π-graph. (A) Abstract π-graph with vertices x1, . . . ,x5 and junctions represented by
colored edges. (B) Topological π-graph embedding into R2. Vertices are embedded as discrete points (black dots) and
junctions are embedded as line segments connecting vertices (colored lines). The π-incidence is represented by the adjacency
of vertex points and junction segments.

1. ϕE : (E ,TE )→ Rd embeds the vertices.

2. ϕJ : (JG,TJ )→ K (Rd) embeds the junctions, where K (Rd) is the hyperspace of nonempty compact subsets of Rd with
the Vietoris topology.

3. (Incidence Compatibility) For all x ∈ E and j ∈ JG,

j ∈ π(x) ⇐⇒ ϕE (x) ∈ ϕJ ( j)

Most crucially, vertices are embedded as points in Rd via the continuous map ϕE , junctions are embedded as nonempty
compact subsets of Rd via the continuous map ϕJ . The compactness requirement ensures that junctions are bounded and
closed, which are natural geometric constraints. The hyperspace K (Rd) is equipped with the Vietoris topology, which provides
a notion of convergence for sequences of compact sets, and the Incidence Compatibility condition ensures that the spatial
embedding respects the π-incidence structure, i.e. a vertex x is incident to a junction j in the π-graph if and only if the
embedded vertex point ϕE (x) lies in the embedded junction region ϕJ ( j).

Figure 6 illustrates spatial embedding for a simple π-graph.
The definition of spatial embedding provides a general framework to represent the geometry of π-graphs. By choosing

appropriate vertex and junction topologies and embedding maps, one can model a variety of biologically relevant scenarios,
such as:

• ECs as point particles and junctions as line segments or polygonal chains representing the physical connections between
cells.

• ECs as extended spatial regions (e.g. polygons or ellipsoids) and junctions as overlap regions between cells.

• ECs as point particles and junctions as probability distributions over Rd representing the likelihood of a junction occurring
at each point in space.

In each case, the embedding maps ϕE and ϕJ can be tailored to capture the desired geometric properties, such as continuity,
smoothness, or distance constraints.

3.6 Topological Invariants
An important aspect of spatial embeddings is their behavior under continuous deformations22, which capture the idea of elastic
transformations that preserve intrinsic structure. This leads to the notion of topological invariants, which are properties of
spatial embeddings that are preserved by continuous deformations.
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Figure 6. Example of spatial embedding. (A) Topological π-graph with discrete vertex topology and Euclidean junction
topology. (B) Spatial embedding into R2. Vertices are embedded as points and junctions are embedded as line segments (AJ and
GJ) or circular disks (TJ and NJ). Incidence compatibility is depicted by vertex points lying in their incident junction regions.

Definition 8 Let G be a topological π-graph and let (ϕE ,ϕJ ) and (ψE ,ψJ ) be spatial embeddings of G into Rd . A
continuous deformation from (ϕE ,ϕJ ) to (ψE ,ψJ ) is a pair of continuous maps (HE ,HJ ) where:

1. HE : E × [0,1]→ Rd is a homotopy from ϕE to ψE , i.e. HE (x,0) = ϕE (x) and HE (x,1) = ψE (x) for all x ∈ E .

2. HJ : JG × [0,1]→ K (Rd) is a homotopy from ϕJ to ψJ , i.e. HJ ( j,0) = ϕJ ( j) and HJ ( j,1) = ψJ ( j) for all j ∈ JG.

3. (Incidence Compatibility) For all x ∈ E , j ∈ JG, and t ∈ [0,1],

j ∈ π(x) ⇐⇒ HE (x, t) ∈ HJ ( j, t)

If such a deformation exists, we say (ϕE ,ϕJ ) and (ψE ,ψJ ) are topologically equivalent embeddings.

Intuitively, a continuous deformation is a continuous path in the space of spatial embeddings that preserves the incidence
compatibility condition at each point along the path. Topological equivalence of embeddings is then the equivalence relation
generated by the existence of a continuous deformation.

A topological invariant of a spatial embedding is a property that is preserved by topological equivalence. Figure 7 illustrates
some examples of topological invariants for simple π-graph embeddings.

The study of topological invariants provides a powerful tool to classify and compare the intrinsic structure of spatial
embeddings, independent of the specific geometry. By computing invariants for different endothelial networks and comparing
them across conditions, one can gain insight into the topological organization of the endothelium and how it relates to function.

3.7 Temporal Dynamics of π-graphs
To capture the dynamic nature of endothelial networks, we extend the π-graph formalism by introducing a temporal dimension.
Let T ⊆ R be a time interval of interest. We define a temporal π-graph as a tuple G = (G,τ) where:

1. G = (E ,π) is an abstract π-graph.

2. τ : T → ϖ is a continuous function that assigns a π-graph τ(t) = (Et ,πt) to each time point t ∈ T .

Intuitively, a temporal π-graph represents the evolution of an endothelial network over time, with the topology of the
network encoded by the time-varying π-incidence function πt . We require that the vertex set Et and junction set JEt vary
continuously with time to ensure well-defined dynamics.

The temporal π-graph formalism enables us to study the dynamics of endothelial network connectivity, such as the formation
and dissolution of junctions, the migration of ECs, and the remodeling of network topology. By considering the time-dependent
properties of π-graphs, we can develop more realistic models of angiogenesis, vascular permeability, and other dynamic
processes in the endothelium (Figure 8).
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Figure 7. Examples of topological invariants. (A) Two topologically equivalent embeddings with the same connected
component, cycle, and intersection pattern. (B) Two embeddings that are not topologically equivalent, differing by the presence
of a cycle (left) versus a void (right).

Figure 8. Schematic illustration of a temporal π-graph evolving over time. The network topology, encoded by the
π-incidence, changes continuously as junctions form, dissolve, and remodel.

3.8 Evolution of Topological Invariants
The spatial embedding framework introduced in Section 3.6 naturally extends to temporal π-graphs. We define a spatiotemporal
embedding of a temporal π-graph G = (G,τ) into Rd as a pair of continuous maps (ΦE ,ΦJ ) where:

1. ΦE : E ×T → Rd embeds the vertices.

2. ΦJ : JG ×T → K (Rd) embeds the junctions, where JG :=
⋃

t∈T JEt is the set of all junctions across time.

The spatiotemporal embedding maps vertices and junctions into Rd continuously over time, respecting the π-incidence
structure at each time point.

With this framework in place, we can study the evolution of topological invariants of endothelial networks. For instance, we
can track the number of connected components, cycles, or higher-dimensional holes as the network evolves under physiological
or pathological conditions (Figure 9). The persistence of these invariants over time provides insight into the robustness and
adaptability of the network topology.
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Figure 9. Evolution of topological invariants of an endothelial network embedded in R3. The Betti numbers β0, β1, and β2,
which count the number of connected components, cycles, and voids respectively, change over time as the network remodels.

To quantify the evolution of topological invariants, we can employ techniques from persistent homology, which provide a
multiscale description of the topology of a spatial embedding and its change over time. Persistent homology computes the birth
and death times of topological features as a filtration parameter (such as a distance threshold or time) varies, yielding a barcode
or persistence diagram that summarizes the topological structure of the embedding across scales.

By applying persistent homology to spatiotemporal embeddings of π-graphs, we can track the emergence, persistence,
and disappearance of topological features in evolving endothelial networks. This provides a powerful tool to compare the
topological dynamics of different networks, detect critical transitions or bifurcations, and identify topological biomarkers of
vascular dysfunction.

4 Discussion
In this paper, we have introduced a novel mathematical framework called π-graphs to represent the complex multi-scale
connectivity structure of endothelial networks. π-graphs capture the essence of endothelial connectivity by abstracting the
detailed physiology of intercellular junctions into a concise, mathematically tractable formalism based on set theory, topology,
and graph theory.

The key ingredients of the π-graph framework are:

• A finite set E of endothelial cells (ECs).
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• A collection JE =∼AJ ,∼T J ,∼GJ ,∼NJ of symmetric binary relations on E representing different types of intercellular
junctions.

• A π-incidence map π : E → P(JE ) assigning to each EC the set of junctions it participates in, subject to basic
consistency and nondegeneracy conditions.

The π-incidence map is the heart of the formalism, encoding the local junction architecture around each EC in a manner
that is both biologically expressive and mathematically elegant. In contrast to standard graph representations, π-graphs natively
capture the multiplicity of junction types and their combinatorial arrangement around ECs.

We have developed the basic theory of π-graphs, including notions of π-graph isomorphism, π-graph union, and π-graph
connectivity, that highlight the rich mathematical structure of the formalism. In particular, we have shown that π-graph
isomorphism is a strictly stronger notion than isomorphism of the underlying "unnested" EC graphs obtained by forgetting the
π-incidence structure (Proposition 2). This underscores the importance of the π-incidence in capturing the full complexity of
endothelial connectivity.

At the same time, we have established conditions under which π-graph isomorphism and EC graph isomorphism coincide
(Proposition 3), namely when any two ECs share at most one type of junction and different junction types link ECs to disjoint
sets of neighbors. These conditions have a natural biological interpretation and suggest that in certain regimes, one can work
with the simpler EC graph representation without losing essential connectivity information.

To further ground the π-graph formalism in biological reality, we have introduced a spatial representation framework that
allows embedding π-graphs into Euclidean space in a geometry-preserving manner. The key idea is to represent ECs as points
or regions in space and junctions as lines, surfaces, or more general compact subsets, constrained by an incidence compatibility
condition that ensures the geometric embedding respects the π-incidence structure.

The spatial embedding framework is highly flexible and can accommodate a variety of biologically relevant geometric
features, such as the size and shape of ECs, the thickness and tortuosity of junctions, and the density of junctions per unit
volume. Mathematically, the framework draws on concepts from topological graph theory and the theory of abstract cell
complexes, providing a rigorous foundation for studying the interplay between the combinatorial connectivity and geometric
arrangement of endothelial networks.

A central theme that emerges from the spatial embedding framework is the importance of topological invariants - properties
of embedded π-graphs that are preserved by continuous deformations of the embedding. Examples of key topological
invariants include the number of connected components, the number and type of cycles, and the homology groups that capture
higher-dimensional "holes" in the embedding.

The study of topological invariants provides a powerful tool to classify and compare endothelial networks across different
biological contexts, independent of the precise geometric details. For instance, one could use topological invariants to quantify
the degree of network remodeling during angiogenesis, or to characterize the topological defects that arise in pathological
conditions such as vascular leakage or tumor angiogenesis.

The introduction of a temporal dimension to the π-graph formalism and the study of evolving topological invariants open
up new avenues to investigate the dynamics of endothelial networks. By representing the time-varying connectivity and
spatial embedding of endothelial networks, temporal π-graphs provide a natural framework to model angiogenesis, vascular
remodeling, and other dynamic processes in the endothelium.

The application of persistent homology to track the evolution of topological invariants offers a principled way to quantify
the multiscale topology of endothelial networks and its change over time. Persistent homology can detect the birth, persistence,
and death of topological features such as connected components, cycles, and higher-dimensional holes, which may reflect the
formation, stability, and regression of vascular structures. By comparing the persistence diagrams or barcodes of different
endothelial networks, we can gain insight into the topological basis of vascular function and dysfunction.

From a broader perspective, the temporal π-graph formalism and evolving topological invariants contribute to the growing
field of dynamical systems and network evolution. Endothelial networks provide a rich biological context to study the coupling
between network topology, geometry, and dynamics, and to explore the emergence of complex behavior from simple local rules.
The π-graph framework also has potential applications to other biological systems that exhibit time-varying connectivity, such
as neural networks, cellular signaling pathways, and ecological communities.

To fully realize the potential of the temporal π-graph formalism, several challenges and opportunities for future work
remain. Some key directions include:

• Developing efficient algorithms to compute and update π-graphs and their topological invariants from time-series data,
such as live-cell imaging of endothelial junctions.

• Integrating temporal π-graphs with models of endothelial cell mechanics, migration, and signaling to predict the dynamics
of network remodeling and its feedback on cell behavior.
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• Investigating the role of junction plasticity, EC heterogeneity, and microenvironmental cues in shaping the temporal
topology of endothelial networks.

• Applying the temporal π-graph framework to study the topological basis of vascular patterning, anastomosis, and pruning
during development and disease.

• Comparing the topological dynamics of endothelial networks across different tissues, species, and experimental conditions
to identify conserved and divergent features.

• Constructing temporal π-graphs from experimental data, such as imaging of junction protein localization or freeze-fracture
electron microscopy, to bridge the gap between molecular and tissue-scale dynamics.

The temporal π-graph formalism and evolving topological invariants in particular provide a powerful lens to study the
dynamics of endothelial networks across scales. By integrating tools from algebraic topology, dynamical systems, and network
science, this framework can drive new discoveries and applications in vascular biology and beyond. As the field of mathematical
biology continues to grow, we anticipate that temporal π-graphs will find broader utility in modeling and analyzing the structure,
function, and dynamics of complex biological systems.

As the explosion of experimental data on endothelial network structure continues, the π-graph formalism can provide a
unifying mathematical language to organize, analyze, and interpret this data in a principled way. At the same time, the study of
π-graphs as mathematical objects in their own right may inspire new theoretical questions and constructions that enrich the
broader field of applied topology and network science.

In conclusion, the π-graph framework introduced here represents an exciting new direction in the systems biology of the
endothelium that can bridge the gap between molecular-level mechanisms and tissue-level function. By providing a rigorous
mathematical foundation for studying the connectivity, geometry, and topology of endothelial networks, π-graphs have the
potential to catalyze new discoveries and advances in vascular biology and beyond. As such, we believe the π-graph formalism
will be a valuable addition to the rapidly growing toolkit of mathematical methods in biology and medicine.
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