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REMARK ON THE SCATTERING THEORY OF THE NONLINEAR SCHRÖDINGER

EQUATION ON THE CYLINDERS

XING CHENG∗ AND JIQIANG ZHENG∗∗

ABSTRACT. In this article, we consider the nonlinear Schrödinger equation on the cylinder Rd
× T. In the

long range case, we show there is no linear scattering state of the nonlinear Schrödinger equation on R
d
×T.

In the short range case, we show the decay and scattering of solutions of the nonlinear Schrödinger equation

on R
d
×T for small data.
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1. INTRODUCTION

In this article, we consider the defocusing nonlinear Schrödinger equation (NLS) posed on the cylinder

Rd ×T for d ≥ 1:

(1.1) i∂tu +∆Rd×Tu = ∣u∣p−1u,
where u(t, y, x) ∶ R ×Rd ×T → C is an unknown function, and 1 < p < 1 + 4

d
when d ≥ 1.

Equation (1.1) has the following conserved quantities:

mass: M(u(t)) = ∫
Rd
y×Tx

∣u(t, y, x)∣2 dydx,

energy: E(u(t)) = ∫
Rd
y×Tx

(1
2
∣∇u(t, y, x)∣2 + 1

p + 1 ∣u(t, y, x)∣
p+1

dy)dx.
The equation (1.1) in lower dimensions describes wave propagation in nonlinear and dispersive media. It

also figures in the time-dependent Landau-Ginzburg model of phase transitions.

In the last two decades, there are a lot works on the well-posedness and scattering of defocusing NLS

on Rd × T. On one hand, when considering the well-posedness of the Cauchy problem (1.1), intuitively,

it is determined by the local geometry of the manifold Rd × T. The manifold is locally Rd+1, so the well-

posedness is the same as the Euclidean case, that is when 1 < p ≤ 1 + 4

d−1 the global well-posedness is

expected. Just as the Euclidean case, we say the equation is energy-subcritical when 1 < p < 1 + 4

d−1 ,

d ≥ 1 and energy-critical when p = 1 + 4

d−1 , d ≥ 2. On the other hand, when considering the scattering

of (1.1), scattering is expected to be determined by the asymptotic volume growth of a ball with radius

r in the manifold Rd × T when r → ∞. From the heuristic that linear solutions with frequency ∼ N
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initially localized around the origin will disperse at time t in the ball of radius ∼ Nt, scattering is ex-

pected to be determined by the asymptotic volume growth of balls with respect to their radius. Since

infz∈Rd×T VolRd×T(B(z, r)) ∼ rd, as r → ∞, the linear solution is expected to decay at a rate ∼ t− d
2 and

based on the scattering theory on Rd, the solution of (1.1) is expected to scatter for p ≥ 1 + 4

d
. Moreover,

scattering in the small data case is expected for 1 + 2

d
< p < 1 + 4

d
when d ≥ 1.

Therefore, regarding heuristic on the well-posedness and scattering, the solution of (1.1) globally exists

and scatters in the range 1 + 4

d
≤ p ≤ 1 + 4

d−1 . For 1 + 2

d
< p < 1 + 4

d
when d ≥ 1, scattering is expected as

in the Euclidean space case for small data. This heuristic has been justified in [2–4, 9–11]. In this paper,

we are interested in the scattering theory of (1.1) when 1 < p < 1 + 4

d
. It is believed that in the long range

case when 1 < p < 1+ 2

d
, the solutions to (1.1) do not scatter. And it is also expected that in the short range

case when 1+ 2

d
< p < 1+ 4

d
, the solutions to (1.1) scatter for small data. Therefore, we will give a rigorous

proof of these facts.

In the following, we present the main result of this paper.

Theorem 1.1. Let 1 < p < 1 + 4

d
and d ≥ 1. Then, the following statements hold true:

● If 1 < p ≤min{2,1 + 2

d
}, then, the solutions to (1.1) do not scatter in L2

y,x(Rd ×T).
● If 1+ 2

d
< p < 1+ 4

d
, then the solution to (1.1) scatters in H1 for small data in Σ, where Σ is defined

by

Σ ∶= {f ∈ H2

y,x ∶ ∥f∥Σ ∶= ∥⟨y⟩2f∥L2
y,x

+ ∥⟨y⟩∇f∥L2
y,x
+ ∥f∥H2

y,x
< ∞} .

The argument of the proof of the non-scattering part is based on the argument of W. A. Strauss [8] for the

nonlinear Schrödinger equation on the Euclidean space, which relys on the dispersive estimate of eit∆Rd×T .

The proof of small data scattering is based on the commutator method introduced by H. P. McKean and J.

Shatah [5]. To show small data scattering, we can reduce the scattering to the decay estimates

∥u(t, y, x)∥L∞y H1
x(Rd×T) ≤ Ct− d

2 .(1.2)

Then by introducing a vector field (∣J(t)∣su) (t, y, x) which is roughly (ts (−∆y) s2 e−it∆xu) (t, y, x), it

suffices to prove

∥u(t, y, x)∥L∞y H1
x
≤ Ct−s ∥∣J(t)∣su(t, y, x)∥θL2

yH
1
x
∥u(t)∥1−θL2

yH
1
x
.(1.3)

Moreover, ∣J(t)∣su(t) satisfies

(i∂t +∆y) ∣J(t)∣su(t) = ∣J(t)∣se−it∆x (∣u(t)∣p−1u(t)) .
First, we find that the L

2p
y H1

x decay estimate, roughly

∥u(t, y, x)∥
L
2p
y H1

x
≤ Ct

− d
2
(1− 1

p
) ∥∣J(t)∣su(t, y, x)∥L∞t L2

yH
1
x
,(1.4)

where s = d
2
(1 − 1

p
), is enough for scattering. Since s < 2 for p < 1 + 4

d
, each term in the equation of

∣J(t)∣su can be estimated easily in our case. Second, to establish (1.4), we transform it to the corresponding

estimate of the inverse of ∣J(t)∣s, which can be reduced to the Lp estimate of resolvent.
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1.1. Notation and Preliminaries. We will use the notation T = R/(2πZ) is torus. In the following, we

will frequently use some space-time norm, we now give the definition of it.

For any time interval I ⊆ R, u(t, y, x) ∶ I ×Rd ×T → C, define the space-time norm

∥u∥Lq
tL

r
yL

2
x(I×Rd×T) =

XXXXXXXXXXXX
∥(∫

T

∣u(t, y, x)∣2 dx) 1

2∥
Lr
y(Rd)

XXXXXXXXXXXXLq
t (I)

,

∥u∥H1
y,x(Rd×T) = ∥⟨∇x⟩u∥L2

y,x(Rd×T) + ∥⟨∇y⟩u∥L2
y,x(Rd×T) .

We will frequently use the partial Fourier transform: For f(y, x) ∶ Rd ×T → C,

(Fyf) (ξ, x) = 1

(2π)d2 ∫Rd
e−iy⋅ξf(y, x)dy.

We denote a± to be any quantity of the form a ± ǫ for any ǫ > 0.

2. NONEXISTENCE OF THE LINEAR SCATTERING STATE IN THE LONG RANGE CASE

In the section, we discuss the long time behaviour of (1.1) in the long range case for 1 < p < 1+ 2

d
when

d ≥ 2 and 1 < p ≤ 2 when d = 1. We will show the only asymptotically free solution to (1.1) is identically

zero.

Theorem 2.1. If u is a solution of (1.1), then for any h ∈ L2
y,x(Rd ×T),

∥u(t) − eit∆Rd×Th∥
L2
y,x(Rd×T) ↛ 0, as t→∞.

Before giving the proof, we prove an auxiliary lemma.

Lemma 2.2. There is a positive constant c0 such that for t large enough, we have

t
d(p−1)

2 ∫
Rd×T
∣(eit∆Rd×Th) (y, x)∣p+1 dydx ≥ c0.

Proof. By Hölder’s inequality, we have

(∫∣y∣≤Kt
∫
T

∣(eit∆Rd×Th) (y, x)∣2 dydx)
p+1
2

≤ (Kt)d(p−1)2 ∥eit∆Rd×Th∥p+1
L
p+1
y L2

x(Rd×T)
≲ (Kt)d(p−1)2 ∥eit∆Rd×Th∥p+1

L
p+1
y,x (Rd×T) .
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On the other hand, we have

∫∣y∣≤Kt
∫
T

∣(eit∆Rd×Th) (y, x)∣2 dydx
=∫∣y∣≤Kt

∫
T

∣ 1

(4πit)d2 ∫Rd
e

i∣y−ỹ∣2
4t h (ỹ, x) dỹ∣

2

dydx

=∫∣y∣≤Kt
∫
T

1

(4πt)d ∫ ∫R2d
e

i(ỹ2−˜̃y2)+2iy(ỹ−˜̃y)
4t h ( ˜̃y, x)h (ỹ, x) dỹd˜̃ydxdy

= 1

(2π)d ∫∣ξ∣≤K
2

∫
T
∫ ∫

R2d
e

i(ỹ2−˜̃y2)
4t

+i(ỹ−˜̃y)ξh (ỹ, x)h (˜̃y, x)dỹd˜̃ydxdξ
t→∞→ 1

(2π)d ∫∣ξ∣≤K
2

∫
T

(Fyh) (ξ, x)(Fyh) (ξ, x)dξdx = 1

(2π)d ∫∣ξ∣≤K
2

∫
T

∣(Fyh) (ξ, x)∣2 dξdx.
�

Now, we turn to prove Theorem 2.1.

Proof of Theorem 2.1. Suppose by contradiction that

∥u(t) − eit∆Rd×Th∥
L2
y,x

→ 0, as t→∞,(2.1)

for some h ∈ L2
y,x.

By the unitary of the operator eit∆Rd×T in L2
y,x, we see

d

dt
I∫

Rd×T
(e−it∆Rd×Tu) (t, y, x) ⋅ h(y, x)dydx

=I∫
Rd×T

e−it∆Rd×T (i∣u∣p−1u) (t, y, x) ⋅ h(y, x)dydx
=I∫

Rd×T
(i∣u∣p−1u) (t, y, x)(eit∆Rd×Th) (t, y, x)dydx.

By

I∫
Rd×T
(e−iT∆

Rd×Tu)(T, y, x) ⋅ h(y, x)dydx
=I∫

Rd×T
h(y, x)h(y, x) dydx + I∫

Rd×T
((e−iT∆

Rd×Tu)(T, y, x) − h(y, x))h(y, x)dydx
→0, as T →∞,

we have

∫
T

0

I∫
Rd×T

i∣u∣p−1u ⋅ eit∆Rd×Thdydxdt(2.2)

has a limit as T →∞. On the other hand, we have

∣I∫
Rd×T
(i∣u∣p−1u − i ∣eit∆Rd×Th∣p−1 eit∆Rd×Th) eit∆Rd×Thdydx∣

≲ (∥u∥L2
y,x
+ ∥h∥L2

y,x
)p−1 ∥h∥2−p

L2
y,x
∥eit∆Rd×Th∥p−1

L∞y,x
∥u(t) − eit∆Rd×Th∥

L2
y,x

,
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where we need the assumption p ≤ 2. The above inequality together with (2.1), Lemma 2.2, and

∥eit∆Rd×Th∥
L∞y,x(R×T) ≲ ∥eit∆Rd×Th∥

L∞y H1
x

≲ ∣t∣− d
2 ∥h∥L1

yH
1
x
,

yields

I∫
Rd×T

i∣u∣p−1u ⋅ eit∆Rd×Thdydx ≥ c0

2
t−

d(p−1)
2 .(2.3)

This implies the left side of (2.3) is not integrable for p ≤ 1+ 2

d
, we have a contradiction to (2.2). Thus, we

complete the proof of Theorem 2.1. �

3. SMALL DATA SCATTERING IN THE SHORT RANGE CASE

In the section, we study the long time behaviour of (1.1) in the short range case for 1 + 2

d
< p < 1 + 4

d

when d ≥ 1.

We consider

{i∂tu +∆Rd×Tu = ∣u∣p−1u,
u(h, y, x) = u0(y, x),(3.1)

where u ∶ [h,∞) ×Rd ×T→ C, h > 0, y ∈ Rd, x ∈ T.

Theorem 3.1. For d ≥ 1, 1 + 2

d
< p < 1 + 4

d
, if ∥u0∥Σ is sufficiently small, then the solution to (3.1) globally

exists. Moreover, for any γ < d
2
(1 − 1

p
), we have the decay estimate

∥u(t, y, x)∥
L
2p
y H1

x(Rd×T) ≤ Ct−γ,(3.2)

and as a consequence, there exists u+ ∈ H1 such that

lim
t→∞ ∥u(t) − eit∆Rd×Tu+∥H1

= 0.
First, we recall the basic resolvent estimate, which is extended to the Schrödinger operator with inverse

square potentials, see [6, 7].

Lemma 3.2 (Resolvent estimate). The following weighted resolvent estimate holds for λ > 0:

∥(λ −∆Rd)−1 f∥
Lr(Rd) ≤ Cλ

1

2
(d−2−d( 1

r
+1− 1

q
))∥f∥Lq(Rd),(3.3)

where 1 ≤ q ≤ r ≤∞.

Define the commutator operator: for any s ∈ (0,2),
∣J(t)∣su(t, y, x) =M(t) (−t2∆Rd) s2 M(−t)e−it∆Tu(t, y, x),

where M(t) = e i∣y∣2
4t . Moreover, we can see that ∣J(t)∣su(t, y, x) satisfies

(i∂t +∆Rd) ∣J(t)∣su(t, y, x) = ∣J(t)∣se−it∆T (∣u(t, y, x)∣p−1u(t, y, x)) .
Let s = (d

2
(1 − 1

p
))+. By Strichartz estimate, we have

∥∣J(t)∣su∥L∞t L2
yH

1
x
≤ C ∥∣J(h)∣su(h)∥L2

yH
1
x
+C ∥∣J(t)∣s (∣u∣p−1u)∥

L
q′
1

t L
r′
1

y H1
x

,(3.4)
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where (q1, r1) is a admissible pair, with

q1 ∈ ( 2

d(p − 1) − 2 ,∞) .(3.5)

In order to apply continuity method, we have to bound ∥∣J(t)∣s (∣u∣p−1u)∥
L
q′
1

t L
r′
1

y H1
x

by ∥∣J(t)∣su∥L∞t L2
yH

1
x
.

We will first present some properties of the commutator operator, especially “Sobolev embedding theo-

rem”.

Lemma 3.3. For u ∈Hs
y , s = (d

2
(1 − 1

p
))+, there exists some 0 < η < 1 such that

∥u∥L2p
y
≤ C ∥(−∆Rd) s2u∥

L2
y

+C ∥(−∆Rd) s2u∥1−η
L2
y

∥u∥η
L2
y
.(3.6)

Proof. We only need to prove

∥(−∆y)− s
2u∥

L2p
≤ C∥u∥L2 +C∥u∥1−η

L2 ∥(−∆y)− s
2u∥η

L2
.(3.7)

For u ∈Hs
y , we have

(−∆y)− s
2u = c(s)−1∫ ∞

0

λ− s
2 (λ −∆y)−1udλ,(3.8)

converges strongly in L2p, where c(s) ∶= ∫ ∞0 t− s
2 (1 + τ)−1 dτ . In fact, (3.3) and Sobolev inequality imply

∫
∞

1

∥λ− s
2 (λ −∆y)−1 u∥L2p

dλ ≲ ∫
∞

1

λ− s
2
−1∥u∥L2p

y
dλ ≲ ∥u∥Hs

y
,

and

∫
1

0

∥λ− s
2 (λ −∆y)−1 u∥L2p

dλ ≲ ∥u∥Lα ∫
1

0

λ
− s

2
+ 1

2
(d−2−d( 1

2p
+1− 1

α
))
dλ ≲ ∥u∥Hs

y
,

for 1

α
> 1

2p
+

s
d
. Thus, (3.9) holds in L2p

y .

By (3.3), we obtain

∥∫ ∞
1

λ− s
2 (λ −∆y)−1udλ∥

L2p

≲ ∥u∥L2 ∫
∞

1

λ
− s

2
+ 1

2
(d−2−d( 1

2p
+ 1

2
))
dλ ≲ ∥u∥L2 ,(3.9)

where we have used s = (d
2
(1 − 1

p
))+.

By Hölder’s inequality, we have

∥∫ 1

0

λ− s
2 (λ −∆y)−1udλ∥

L2p

≤ ∥∫ 1

0

λ− s
2 (λ −∆y)−1udλ∥1−η

Lµ

∥∫ 1

0

λ− s
2 (λ −∆y)−1udλ∥η

L2

,(3.10)

where 1

2
−

1

γ
= s

d
, µ > γ, 1−η

µ
+

η

2
= 1

2p
. By (3.3), we have

∥∫ 1

0

λ− s
2 (λ −∆y)−1udλ∥

Lµ

≲ ∥u∥L2 ∫
1

0

λ
− s

2
+ 1

2
(d−2−d( 1

µ
+ 1

2
))
dλ ≲ ∥u∥L2 .(3.11)

Again by (3.3), we obtain

∥∫ 1

0

λ− s
2 (λ −∆y)−1udλ∥

L2

≲∥∫ ∞
0

λ− s
2 (λ −∆y)−1udλ∥

L2

+ ∥u∥L2 ∫
∞

1

λ− s
2
−1
dλ(3.12)

≲ ∥(−∆y)− s
2u∥

L2
+ ∥u∥L2 .

Combining (3.9), (3.10), (3.11), and (3.12), we get (3.7).

�
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As a direct consequence of Lemma 3.3, we easily obtain the following lemma.

Lemma 3.4. Taking s = (d
2
(1 − 1

p
))+, there exists some 0 < η < 1 such that for s0 = (d2 (1 − 1

p
))−, we have

∥u(t, y, x)∥L2p
y H1

x
≤ Ct−s0 (∥∣J(t)∣su∥L2

yH
1
x
+ ∥∣J(t)∣su∥1−η

L2
yH

1
x
∥u∥η

L2
yH

1
x
) .

Now we turn to the estimate of the nonlinear term.

Lemma 3.5. There exists 0 < θ < 1 such that

∥∣J(t)∣s (∣u(t)∣p−1u(t))∥
L
q′
1

t L
r′
1

y H1
x

(3.13)

≤ C (∥∣J(t)∣su(t)∥L∞t L2
yH

1
x
+ ∥u∥L∞t L2

yH
1
x
)(∥∣J(t)∣su∥θL∞t L2

yH
1
x
+ ∥∣J(t)∣su∥θη

L∞t L2
yH

1
x
∥u∥(1−η)θ

L∞t L2
yH

1
x
)p−1

+C(h)(∥∣J(t)∣su∥θL∞t L2
yH

1
x
+ ∥∣J(t)∣su∥ηθ

L∞t L2
yH

1
x
∥u∥(1−η)θ

L∞t L2
yH

1
x
)p .

Proof. Let r̃1 = 2r1
r1+2 , we have

∥∣J(t)∣s (∣u∣p−1u)∥
L
q′
1

t L
r′
1

y H1
x

≤ ∥(−∆) s2M(−t) (∣u∣p−1u)∥
L
q′
1

t L
r′
1

y H1
x

+ ∥∣u∣p−1u∥
L
q′
1

t L
r′
1

y H1
x

≤ ∥(−∆) s2 (M(−t)u)∥
L∞t L2

yH
1
x

∥∣u∣p−1∥
L
q′
1

t L
r̃′
1

y H1
x

+ ∥∥u∥p
L
r′
1
p

y H1
x

∥
L
q′
1

t

≤ C (∥∣J(t)∣su∥L∞t L2
yH

1
x
+ ∥u∥L∞t L2

yH
1
x
) ∥∣u∣p−1∥

L
q′
1

t L
r̃′
1

y H1
x

+ ∥∥u∥p
L
r′
1
p

y H1
x

∥
L
q′
1

t

.

First, we consider ∥∥u∥p
L
r′
1
p

y H1
x

∥
L
q′
1

t

. By Hölder’s inequality and Lemma 3.4, we have

∥u∥
L
r′
1
p

y H1
x

≤ ∥u∥θ
L
2p
y H1

x

∥u∥1−θL2
yH

1
x
≲ t
−d( 1

2
− 1

r′
1
p
)+ǫ (∥∣J(t)∣su∥θL2

yH
1
x
+ ∥∣J(t)∣su∥θ(1−η)

L2
yH

1
x
∥u∥θη

L2
yH

1
x
) ∥u∥1−θL2

yH
1
x
,

where ǫ is sufficiently small. Since (q1, r1) is an admissible pair, we have r1 = 2dq1
dq1−4 , then

∥∥u∥p
L
r′
1
p

y H1
x

∥
L
q′
1

t

(3.14)

≲(∫ ∞
h

t
ǫq′

1
p−dq′

1
p(1

2
−

1
2
+ 2

dq1
p
)
dt)

1

q′
1 (∥∣J(t)∣su∥θL∞t L2

yH
1
x
+ ∥∣J(t)∣su∥(1−η)θ

L∞t L2
yH

1
x
∥u∥ηθ

L∞t L2
yH

1
x
)p

≤C(h)(∥∣J(t)∣su∥θL∞t L2
yH

1
x
+ ∥∣J(t)∣su∥(1−η)θ

L∞t L2
yH

1
x
∥u∥ηθ

L∞t L2
yH

1
x
)p ,
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where we have used (3.5). Second, we now turn to the estimate of ∥∣u∣p−1∥
L
q′
1

t L
r̃′
1

y H1
x

. Similar arguments as

the above estimates give

∥∣u∣p−1∥
L
q′
1

t L
r̃′
1

y H1
x

(3.15)

≲(∫ ∞
h

t
ǫ(p−1)q′

1
−d( 1

2
− 1

r′
1
(p−1))(p−1)q′1

dt)
1

q′
1 (∥∣J(t)∣su∥θL∞t L2

yH
1
x
+ ∥∣J(t)∣su∥(1−η)θ

L∞t L2
yH

1
x
∥u∥ηθ

L∞t L2
yH

1
x
)p−1

≤C(h)(∥∣J(t)∣su∥θL∞t L2
yH

1
x
+ ∥∣J(t)∣su∥(1−η)θ

L∞t L2
yH

1
x
∥u∥ηθ

L∞t L2
yH

1
x
)p−1 ,

where again we have used (3.5). Combining the estimates together, we obtain (3.13).

�

Proof of Theorem 3.1. By (3.4) and Lemma 3.5, we have

∥∣J(t)∣su∥L∞t L2
yH

1
x

≤ C (∥∣J(t)∣su∥L∞t L2
yH

1
x
+ ∥u∥L∞t L2

yH
1
x
)(∥∣J(t)∣su∥θL∞t L2

yH
1
x
+ ∥∣J(t)∣su∥θ(1−η)

L∞t L2
yH

1
x
∥u∥ηθ

L∞t L2
yH

1
x
)p−1

+C(h)(∥∣J(t)∣su∥θL∞t L2
yH

1
x
+ ∥∣J(t)∣su∥θ(1−η)

L∞t L2
yH

1
x
∥u∥ηθ

L∞t L2
yH

1
x
)p +C∥u0∥Σ +C(h) ∥∣J(t)∣su∥L∞t L2

yH
1
x
.

Since lim
h→∞C(h) = 0, by standard continuity argument, we have for h large enough and ∥u0∥Σ small enough

that

∥∣J(t)∣su∥L∞t L2
yH

1
x
≤ C.(3.16)

We then have the decay estimate (3.2) by Lemma 3.4.

Finally, we give the proof of scattering as a consequence of (3.2). From Duhamel’s principle, it suffices

to prove

∥∫ ∞
h

e−is∆Rd×T (∣u∣p−1u) (s)ds∥
H1

≤ C.
By Strichartz estimate, we have

∥∫ ∞
h

e−is∆Rd×T (∣u∣p−1u) (s)ds∥
H1

y,x

≲ ∥∣u∣p−1u∥
L
q′
1

t L
r′
1

y H1
x

+ ∥(−∆y) 12 (∣u∣p−1u)∥
L
q′
1

t L
r′
1

y L2
x

≲ ∥∣u∣p−1u∥
L
q′
1

t L
r′
1

y H1
x

+ ∥u∥L∞t H1
yL

2
x
∥∣u∣p−1∥

L
q′
1

t L
r̃′
1

y H1
x

,

where r̃1 = 2r1
r1+2 . The argument of the proof of Lemma 3.5 implies

∥∣u∣p−1u∥
L
q′
1

t L
r′
1

y H1
x

+ ∥∣u∣p−1∥
L
q′
1

t L
r̃′
1

y H1
x

≤ C.
We then define

u+ = e−ih∆Rd×Tu0 − i∫
∞

h
e−iτ∆Rd×T (∣u∣p−1u) (τ)dτ,

and

∥e−it∆Rd×Tu(t) − u+∥H1
→ 0, as t→∞,

which yields the scattering.

�
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