REMARK ON THE SCATTERING THEORY OF THE NONLINEAR SCHRÖDINGER EQUATION ON THE CYLINDERS

XING CHENG* AND JIQIANG ZHENG**

ABSTRACT. In this article, we consider the nonlinear Schrödinger equation on the cylinder $\mathbb{R}^d \times \mathbb{T}$. In the long range case, we show there is no linear scattering state of the nonlinear Schrödinger equation on $\mathbb{R}^d \times \mathbb{T}$. In the short range case, we show the decay and scattering of solutions of the nonlinear Schrödinger equation on $\mathbb{R}^d \times \mathbb{T}$ for small data.

Keywords: Nonlinear Schrödinger equation, scattering, cylinder

Mathematics Subject Classification (2020) Primary: 35Q55; Secondary: 35B40, 35P25

1. INTRODUCTION

In this article, we consider the defocusing nonlinear Schrödinger equation (NLS) posed on the cylinder $\mathbb{R}^d \times \mathbb{T}$ for $d \ge 1$:

(1.1)
$$i\partial_t u + \Delta_{\mathbb{R}^d \times \mathbb{T}} u = |u|^{p-1} u,$$

where $u(t, y, x) : \mathbb{R} \times \mathbb{R}^d \times \mathbb{T} \to \mathbb{C}$ is an unknown function, and $1 when <math>d \ge 1$. Equation (1.1) has the following conserved quantities:

mass:
$$\mathcal{M}(u(t)) = \int_{\mathbb{R}^d_y \times \mathbb{T}_x} |u(t, y, x)|^2 \,\mathrm{d}y \,\mathrm{d}x,$$

energy: $\mathcal{E}(u(t)) = \int_{\mathbb{R}^d_y \times \mathbb{T}_x} \left(\frac{1}{2} |\nabla u(t, y, x)|^2 + \frac{1}{p+1} |u(t, y, x)|^{p+1} \,\mathrm{d}y\right) \mathrm{d}x$

The equation (1.1) in lower dimensions describes wave propagation in nonlinear and dispersive media. It also figures in the time-dependent Landau-Ginzburg model of phase transitions.

In the last two decades, there are a lot works on the well-posedness and scattering of defocusing NLS on $\mathbb{R}^d \times \mathbb{T}$. On one hand, when considering the well-posedness of the Cauchy problem (1.1), intuitively, it is determined by the local geometry of the manifold $\mathbb{R}^d \times \mathbb{T}$. The manifold is locally \mathbb{R}^{d+1} , so the wellposedness is the same as the Euclidean case, that is when 1 the global well-posedness isexpected. Just as the Euclidean case, we say the equation is energy-subcritical when <math>1 , $<math>d \ge 1$ and energy-critical when $p = 1 + \frac{4}{d-1}$, $d \ge 2$. On the other hand, when considering the scattering of (1.1), scattering is expected to be determined by the asymptotic volume growth of a ball with radius r in the manifold $\mathbb{R}^d \times \mathbb{T}$ when $r \to \infty$. From the heuristic that linear solutions with frequency $\sim N$

^{*} School of Mathematics, Hohai University, Nanjing 210098, Jiangsu, China. chengx@hhu.edu.cn.

^{**} Institute of Applied Physics and Computational Mathematics and National Key Laboratory of Computational Physics, Beijing 100088, China. zheng_jiqiang@iapcm.ac.cn.

^{*} X. Cheng has been partially supported by the NSF of Jiangsu (Grant No. BK20221497).

^{**} J. Zheng was supported by National key R&D program of China 2021YFA1002500, NSFC Grant 12271051 and Beijing Natural Science Foundation 1222019.

initially localized around the origin will disperse at time t in the ball of radius ~ Nt, scattering is expected to be determined by the asymptotic volume growth of balls with respect to their radius. Since $\inf_{z \in \mathbb{R}^d \times \mathbb{T}} \operatorname{Vol}_{\mathbb{R}^d \times \mathbb{T}}(B(z, r)) \sim r^d$, as $r \to \infty$, the linear solution is expected to decay at a rate $\sim t^{-\frac{d}{2}}$ and based on the scattering theory on \mathbb{R}^d , the solution of (1.1) is expected to scatter for $p \ge 1 + \frac{4}{d}$. Moreover, scattering in the small data case is expected for $1 + \frac{2}{d} when <math>d \ge 1$.

Therefore, regarding heuristic on the well-posedness and scattering, the solution of (1.1) globally exists and scatters in the range $1 + \frac{4}{d} \le p \le 1 + \frac{4}{d-1}$. For $1 + \frac{2}{d} when <math>d \ge 1$, scattering is expected as in the Euclidean space case for small data. This heuristic has been justified in [2–4, 9–11]. In this paper, we are interested in the scattering theory of (1.1) when 1 . It is believed that in the long rangecase when $1 , the solutions to (1.1) do not scatter. And it is also expected that in the short range case when <math>1 + \frac{2}{d} , the solutions to (1.1) scatter for small data. Therefore, we will give a rigorous$ proof of these facts.

In the following, we present the main result of this paper.

Theorem 1.1. Let $1 and <math>d \ge 1$. Then, the following statements hold true:

- If 1 2</sup>/_d}, then, the solutions to (1.1) do not scatter in L²_{y,x} (ℝ^d × T).
 If 1 + ²/_d 4</sup>/_d, then the solution to (1.1) scatters in H¹ for small data in Σ, where Σ is defined

$$\Sigma \coloneqq \left\{ f \in H^2_{y,x} : \|f\|_{\Sigma} \coloneqq \left\| \langle y \rangle^2 f \right\|_{L^2_{y,x}} + \|\langle y \rangle \nabla f\|_{L^2_{y,x}} + \|f\|_{H^2_{y,x}} < \infty \right\}.$$

The argument of the proof of the non-scattering part is based on the argument of W. A. Strauss [8] for the nonlinear Schrödinger equation on the Euclidean space, which relys on the dispersive estimate of $e^{it\Delta_{\mathbb{R}^d\times\mathbb{T}}}$. The proof of small data scattering is based on the commutator method introduced by H. P. McKean and J. Shatah [5]. To show small data scattering, we can reduce the scattering to the decay estimates

(1.2)
$$\|u(t,y,x)\|_{L^{\infty}_{u}H^{1}_{x}(\mathbb{R}^{d}\times\mathbb{T})} \leq Ct^{-\frac{a}{2}}.$$

Then by introducing a vector field $(|J(t)|^{s}u)(t,y,x)$ which is roughly $(t^{s}(-\Delta_{y})^{\frac{s}{2}}e^{-it\Delta_{x}}u)(t,y,x)$, it suffices to prove

(1.3)
$$\|u(t,y,x)\|_{L_y^{\infty}H_x^1} \leq Ct^{-s} \, \||J(t)|^s u(t,y,x)\|_{L_y^2H_x^1}^{\theta} \, \|u(t)\|_{L_y^2H_x^1}^{1-\theta}.$$

Moreover, $|J(t)|^{s}u(t)$ satisfies

$$(i\partial_t + \Delta_y)|J(t)|^s u(t) = |J(t)|^s e^{-it\Delta_x} \left(|u(t)|^{p-1}u(t)\right)$$

First, we find that the $L_y^{2p} H_x^1$ decay estimate, roughly

(1.4)
$$\|u(t,y,x)\|_{L_y^{2p}H_x^1} \le Ct^{-\frac{d}{2}\left(1-\frac{1}{p}\right)} \||J(t)|^s u(t,y,x)\|_{L_t^\infty L_y^2 H_x^1}$$

where $s = \frac{d}{2} \left(1 - \frac{1}{p} \right)$, is enough for scattering. Since s < 2 for $p < 1 + \frac{4}{d}$, each term in the equation of $|J(t)|^{s}u$ can be estimated easily in our case. Second, to establish (1.4), we transform it to the corresponding estimate of the inverse of $|J(t)|^s$, which can be reduced to the L^p estimate of resolvent.

1.1. Notation and Preliminaries. We will use the notation $\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z})$ is torus. In the following, we will frequently use some space-time norm, we now give the definition of it.

For any time interval $I \subseteq \mathbb{R}$, $u(t, y, x) : I \times \mathbb{R}^d \times \mathbb{T} \to \mathbb{C}$, define the space-time norm

$$\|u\|_{L^{q}_{t}L^{r}_{y}L^{2}_{x}(I\times\mathbb{R}^{d}\times\mathbb{T})} = \left\| \left\| \left(\int_{\mathbb{T}} |u(t,y,x)|^{2} \,\mathrm{d}x \right)^{\frac{1}{2}} \right\|_{L^{r}_{y}(\mathbb{R}^{d})} \right\|_{L^{q}_{t}(I)}, \\ \|u\|_{H^{1}_{y,x}(\mathbb{R}^{d}\times\mathbb{T})} = \| \langle \nabla_{x} \rangle u \|_{L^{2}_{y,x}(\mathbb{R}^{d}\times\mathbb{T})} + \| \langle \nabla_{y} \rangle u \|_{L^{2}_{y,x}(\mathbb{R}^{d}\times\mathbb{T})}.$$

We will frequently use the partial Fourier transform: For $f(y, x) : \mathbb{R}^d \times \mathbb{T} \to \mathbb{C}$,

$$\left(\mathcal{F}_{y}f\right)\left(\xi,x\right) = \frac{1}{\left(2\pi\right)^{\frac{d}{2}}} \int_{\mathbb{R}^{d}} e^{-iy\cdot\xi} f(y,x) \,\mathrm{d}y.$$

We denote a^{\pm} to be any quantity of the form $a \pm \epsilon$ for any $\epsilon > 0$.

2. NONEXISTENCE OF THE LINEAR SCATTERING STATE IN THE LONG RANGE CASE

In the section, we discuss the long time behaviour of (1.1) in the long range case for $1 when <math>d \ge 2$ and 1 when <math>d = 1. We will show the only asymptotically free solution to (1.1) is identically zero.

Theorem 2.1. If u is a solution of (1.1), then for any $h \in L^2_{y,x}(\mathbb{R}^d \times \mathbb{T})$,

$$\|u(t) - e^{it\Delta_{\mathbb{R}^d \times \mathbb{T}}}h\|_{L^2_{y,x}(\mathbb{R}^d \times \mathbb{T})} \not\to 0, \text{ as } t \to \infty.$$

Before giving the proof, we prove an auxiliary lemma.

Lemma 2.2. There is a positive constant c_0 such that for t large enough, we have

$$t^{\frac{d(p-1)}{2}} \int_{\mathbb{R}^d \times \mathbb{T}} \left| \left(e^{it\Delta_{\mathbb{R}^d \times \mathbb{T}}} h \right) (y, x) \right|^{p+1} \mathrm{d}y \mathrm{d}x \ge c_0.$$

Proof. By Hölder's inequality, we have

$$\left(\int_{|y|\leq Kt} \int_{\mathbb{T}} \left| \left(e^{it\Delta_{\mathbb{R}^{d}\times\mathbb{T}}}h \right) (y,x) \right|^{2} \mathrm{d}y \mathrm{d}x \right)^{\frac{p+1}{2}} \\ \leq (Kt)^{\frac{d(p-1)}{2}} \left\| e^{it\Delta_{\mathbb{R}^{d}\times\mathbb{T}}}h \right\|_{L_{y}^{p+1}L_{x}^{2}(\mathbb{R}^{d}\times\mathbb{T})}^{p+1} \\ \lesssim (Kt)^{\frac{d(p-1)}{2}} \left\| e^{it\Delta_{\mathbb{R}^{d}\times\mathbb{T}}}h \right\|_{L_{y,x}^{p+1}(\mathbb{R}^{d}\times\mathbb{T})}^{p+1}.$$

On the other hand, we have

$$\begin{split} &\int_{|y|\leq Kt} \int_{\mathbb{T}} \left| \left(e^{it\Delta_{\mathbb{R}^d\times\mathbb{T}}} h \right) (y,x) \right|^2 \, \mathrm{d}y \mathrm{d}x \\ &= \int_{|y|\leq Kt} \int_{\mathbb{T}} \left| \frac{1}{(4\pi it)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{\frac{i|y-\tilde{y}|^2}{4t}} h\left(\tilde{y},x\right) \, \mathrm{d}\tilde{y} \right|^2 \, \mathrm{d}y \mathrm{d}x \\ &= \int_{|y|\leq Kt} \int_{\mathbb{T}} \frac{1}{(4\pi t)^d} \int \int_{\mathbb{R}^{2d}} e^{\frac{i(\tilde{y}^2-\tilde{y}^2)+2iy(\tilde{y}-\tilde{y})}{4t}} h\left(\tilde{y},x\right) h\left(\tilde{y},x\right) \, \mathrm{d}\tilde{y} \mathrm{d}\tilde{\tilde{y}} \mathrm{d}x \mathrm{d}y \\ &= \frac{1}{(2\pi)^d} \int_{|\xi|\leq \frac{K}{2}} \int_{\mathbb{T}} \int \int_{\mathbb{R}^{2d}} e^{\frac{i(\tilde{y}^2-\tilde{y}^2)}{4t}+i(\tilde{y}-\tilde{y})\xi} h\left(\tilde{y},x\right) h\left(\tilde{y},x\right) \mathrm{d}\tilde{y} \mathrm{d}\tilde{\tilde{y}} \mathrm{d}x \mathrm{d}\xi \\ \overset{t\to\infty}{\to} \frac{1}{(2\pi)^d} \int_{|\xi|\leq \frac{K}{2}} \int_{\mathbb{T}} (\mathcal{F}_y h) \left(\xi,x\right) \overline{(\mathcal{F}_y h)\left(\xi,x\right)} \, \mathrm{d}\xi \mathrm{d}x = \frac{1}{(2\pi)^d} \int_{|\xi|\leq \frac{K}{2}} \int_{\mathbb{T}} \left| (\mathcal{F}_y h)\left(\xi,x\right) \right|^2 \, \mathrm{d}\xi \mathrm{d}x. \end{split}$$

Now, we turn to prove Theorem 2.1.

Proof of Theorem 2.1. Suppose by contradiction that

(2.1)
$$\|u(t) - e^{it\Delta_{\mathbb{R}^d \times \mathbb{T}}}h\|_{L^2_{y,x}} \to 0, \text{ as } t \to \infty,$$

for some $h \in L^2_{y,x}$. By the unitary of the operator $e^{it\Delta_{\mathbb{R}^d \times \mathbb{T}}}$ in $L^2_{y,x}$, we see

$$\frac{d}{dt}\Im \int_{\mathbb{R}^{d}\times\mathbb{T}} \left(e^{-it\Delta_{\mathbb{R}^{d}\times\mathbb{T}}}u\right)(t,y,x)\cdot\overline{h(y,x)}\,\mathrm{d}y\mathrm{d}x$$

$$=\Im \int_{\mathbb{R}^{d}\times\mathbb{T}} e^{-it\Delta_{\mathbb{R}^{d}\times\mathbb{T}}}\left(i|u|^{p-1}u\right)(t,y,x)\cdot\overline{h(y,x)}\,\mathrm{d}y\mathrm{d}x$$

$$=\Im \int_{\mathbb{R}^{d}\times\mathbb{T}}\left(i|u|^{p-1}u\right)(t,y,x)\overline{\left(e^{it\Delta_{\mathbb{R}^{d}\times\mathbb{T}}}h\right)(t,y,x)}\,\mathrm{d}y\mathrm{d}x$$

By

$$\begin{split} \Im & \int_{\mathbb{R}^{d} \times \mathbb{T}} (e^{-iT\Delta_{\mathbb{R}^{d} \times \mathbb{T}}} u)(T, y, x) \cdot \overline{h(y, x)} \, \mathrm{d}y \mathrm{d}x \\ = \Im & \int_{\mathbb{R}^{d} \times \mathbb{T}} h(y, x) \overline{h(y, x)} \, \mathrm{d}y \mathrm{d}x + \Im \int_{\mathbb{R}^{d} \times \mathbb{T}} \left((e^{-iT\Delta_{\mathbb{R}^{d} \times \mathbb{T}}} u)(T, y, x) - h(y, x) \right) \overline{h(y, x)} \, \mathrm{d}y \mathrm{d}x \\ \to 0, \text{ as } T \to \infty, \end{split}$$

we have

(2.2)
$$\int_0^T \Im \int_{\mathbb{R}^d \times \mathbb{T}} i|u|^{p-1} u \cdot \overline{e^{it\Delta_{\mathbb{R}^d \times \mathbb{T}}h}} \, \mathrm{d}y \mathrm{d}x \mathrm{d}t$$

has a limit as $T \to \infty$. On the other hand, we have

$$\begin{aligned} \left| \Im \int_{\mathbb{R}^{d} \times \mathbb{T}} \left(i |u|^{p-1} u - i \left| e^{it\Delta_{\mathbb{R}^{d} \times \mathbb{T}}} h \right|^{p-1} e^{it\Delta_{\mathbb{R}^{d} \times \mathbb{T}}} h \right) \overline{e^{it\Delta_{\mathbb{R}^{d} \times \mathbb{T}}}} h \, \mathrm{d}y \, \mathrm{d}x \end{aligned} \\ \lesssim \left(\left\| u \right\|_{L^{2}_{y,x}} + \left\| h \right\|_{L^{2}_{y,x}} \right)^{p-1} \left\| h \right\|_{L^{2}_{y,x}}^{2-p} \left\| e^{it\Delta_{\mathbb{R}^{d} \times \mathbb{T}}} h \right\|_{L^{\infty}_{y,x}}^{p-1} \left\| u(t) - e^{it\Delta_{\mathbb{R}^{d} \times \mathbb{T}}} h \right\|_{L^{2}_{y,x}}^{2-p} \end{aligned}$$

$$\left\|e^{it\Delta_{\mathbb{R}^d\times\mathbb{T}}}h\right\|_{L^{\infty}_{y,x}(\mathbb{R}\times\mathbb{T})}\lesssim \left\|e^{it\Delta_{\mathbb{R}^d\times\mathbb{T}}}h\right\|_{L^{\infty}_{y}H^1_x}\lesssim |t|^{-\frac{d}{2}}\|h\|_{L^1_yH^1_x},$$

yields

(2.3)
$$\Im \int_{\mathbb{R}^d \times \mathbb{T}} i |u|^{p-1} u \cdot \overline{e^{it\Delta_{\mathbb{R}^d \times \mathbb{T}}h}} \, \mathrm{d}y \mathrm{d}x \ge \frac{c_0}{2} t^{-\frac{d(p-1)}{2}}.$$

This implies the left side of (2.3) is not integrable for $p \le 1 + \frac{2}{d}$, we have a contradiction to (2.2). Thus, we complete the proof of Theorem 2.1.

3. SMALL DATA SCATTERING IN THE SHORT RANGE CASE

In the section, we study the long time behaviour of (1.1) in the short range case for $1 + \frac{2}{d} when <math>d \ge 1$.

We consider

(3.1)
$$\begin{cases} i\partial_t u + \Delta_{\mathbb{R}^d \times \mathbb{T}} u = |u|^{p-1}u, \\ u(h, y, x) = u_0(y, x), \end{cases}$$

where $u: [h, \infty) \times \mathbb{R}^d \times \mathbb{T} \to \mathbb{C}, h > 0, y \in \mathbb{R}^d, x \in \mathbb{T}.$

Theorem 3.1. For $d \ge 1$, $1 + \frac{2}{d} , if <math>||u_0||_{\Sigma}$ is sufficiently small, then the solution to (3.1) globally exists. Moreover, for any $\gamma < \frac{d}{2} \left(1 - \frac{1}{p}\right)$, we have the decay estimate

$$\|u(t,y,x)\|_{L^{2p}_y H^1_x(\mathbb{R}^d \times \mathbb{T})} \le Ct^{-\gamma}$$

and as a consequence, there exists $u_+ \in H^1$ such that

$$\lim_{t \to \infty} \left\| u(t) - e^{it\Delta_{\mathbb{R}^d \times \mathbb{T}}} u_+ \right\|_{H^1} = 0.$$

First, we recall the basic resolvent estimate, which is extended to the Schrödinger operator with inverse square potentials, see [6,7].

Lemma 3.2 (Resolvent estimate). *The following weighted resolvent estimate holds for* $\lambda > 0$:

(3.3)
$$\| (\lambda - \Delta_{\mathbb{R}^d})^{-1} f \|_{L^r(\mathbb{R}^d)} \le C \lambda^{\frac{1}{2} \left(d - 2 - d \left(\frac{1}{r} + 1 - \frac{1}{q} \right) \right)} \| f \|_{L^q(\mathbb{R}^d)},$$

where $1 \le q \le r \le \infty$.

Define the commutator operator: for any $s \in (0, 2)$,

$$|J(t)|^{s}u(t,y,x) = M(t)\left(-t^{2}\Delta_{\mathbb{R}^{d}}\right)^{\frac{s}{2}}M(-t)e^{-it\Delta_{\mathbb{T}}}u(t,y,x)$$

where $M(t) = e^{\frac{i|y|^2}{4t}}$. Moreover, we can see that $|J(t)|^s u(t, y, x)$ satisfies

$$(i\partial_t + \Delta_{\mathbb{R}^d}) |J(t)|^s u(t, y, x) = |J(t)|^s e^{-it\Delta_{\mathbb{T}}} \left(|u(t, y, x)|^{p-1} u(t, y, x) \right).$$

Let $s = \left(\frac{d}{2}\left(1 - \frac{1}{p}\right)\right)^{+}$. By Strichartz estimate, we have (3.4) $||J(t)|^{s}u||_{L_{t}^{\infty}L_{y}^{2}H_{x}^{1}} \leq C |||J(h)|^{s}u(h)||_{L_{y}^{2}H_{x}^{1}} + C |||J(t)|^{s} (|u|^{p-1}u)||_{L_{t}^{q_{1}'}L_{y}^{r_{1}'}H_{x}^{1}},$ where (q_1, r_1) is a admissible pair, with

(3.5)
$$q_1 \in \left(\frac{2}{d(p-1)-2}, \infty\right)$$

In order to apply continuity method, we have to bound $|||J(t)|^s (|u|^{p-1}u)||_{L_t^{q'_1}L_y^{q'_1}H_x^1}$ by $|||J(t)|^s u||_{L_t^{\infty}L_y^2H_x^1}$. We will first present some properties of the commutator operator, especially "Sobolev embedding theorem".

Lemma 3.3. For $u \in H_y^s$, $s = \left(\frac{d}{2}\left(1 - \frac{1}{p}\right)\right)^+$, there exists some $0 < \eta < 1$ such that (3.6) $\|u\|_{L_y^{2p}} \le C \left\|\left(-\Delta_{\mathbb{R}^d}\right)^{\frac{s}{2}}u\right\|_{L_y^2} + C \left\|\left(-\Delta_{\mathbb{R}^d}\right)^{\frac{s}{2}}u\right\|_{L_y^2}^{1-\eta} \|u\|_{L_y^2}^{\eta}.$

Proof. We only need to prove

(3.7)
$$\| (-\Delta_y)^{-\frac{s}{2}} u \|_{L^{2p}} \le C \| u \|_{L^2} + C \| u \|_{L^2}^{1-\eta} \| (-\Delta_y)^{-\frac{s}{2}} u \|_{L^2}^{\eta} .$$

For $u \in H_y^s$, we have

(3.8)
$$(-\Delta_y)^{-\frac{s}{2}}u = c(s)^{-1} \int_0^\infty \lambda^{-\frac{s}{2}} (\lambda - \Delta_y)^{-1} u \,\mathrm{d}\lambda$$

converges strongly in L^{2p} , where $c(s) \coloneqq \int_0^\infty t^{-\frac{s}{2}} (1+\tau)^{-1} d\tau$. In fact, (3.3) and Sobolev inequality imply

$$\int_{1}^{\infty} \left\| \lambda^{-\frac{s}{2}} \left(\lambda - \Delta_{y} \right)^{-1} u \right\|_{L^{2p}} \mathrm{d}\lambda \lesssim \int_{1}^{\infty} \lambda^{-\frac{s}{2}-1} \|u\|_{L^{2p}_{y}} \mathrm{d}\lambda \lesssim \|u\|_{H^{s}_{y}},$$

and

$$\int_{0}^{1} \left\| \lambda^{-\frac{s}{2}} \left(\lambda - \Delta_{y} \right)^{-1} u \right\|_{L^{2p}} \mathrm{d}\lambda \lesssim \| u \|_{L^{\alpha}} \int_{0}^{1} \lambda^{-\frac{s}{2} + \frac{1}{2} \left(d - 2 - d \left(\frac{1}{2p} + 1 - \frac{1}{\alpha} \right) \right)} \mathrm{d}\lambda \lesssim \| u \|_{H^{s}_{y}},$$
Thus, (2.0) holds in L^{2p}

for $\frac{1}{\alpha} > \frac{1}{2p} + \frac{s}{d}$. Thus, (3.9) holds in L_y^{2p} . By (3.3), we obtain

(3.9)
$$\left\|\int_{1}^{\infty} \lambda^{-\frac{s}{2}} (\lambda - \Delta_{y})^{-1} u \,\mathrm{d}\lambda\right\|_{L^{2p}} \lesssim \|u\|_{L^{2}} \int_{1}^{\infty} \lambda^{-\frac{s}{2} + \frac{1}{2} \left(d - 2 - d\left(\frac{1}{2p} + \frac{1}{2}\right)\right)} \,\mathrm{d}\lambda \lesssim \|u\|_{L^{2}},$$

where we have used $s = \left(\frac{d}{2}\left(1 - \frac{1}{p}\right)\right)^+$.

By Hölder's inequality, we have

$$(3.10) \qquad \left\| \int_{0}^{1} \lambda^{-\frac{s}{2}} (\lambda - \Delta_{y})^{-1} u \, \mathrm{d}\lambda \right\|_{L^{2p}} \leq \left\| \int_{0}^{1} \lambda^{-\frac{s}{2}} (\lambda - \Delta_{y})^{-1} u \, \mathrm{d}\lambda \right\|_{L^{\mu}}^{1-\eta} \left\| \int_{0}^{1} \lambda^{-\frac{s}{2}} (\lambda - \Delta_{y})^{-1} u \, \mathrm{d}\lambda \right\|_{L^{2}}^{\eta},$$

where
$$\frac{1}{2} - \frac{1}{\gamma} = \frac{s}{d}, \ \mu > \gamma, \ \frac{1-\eta}{\mu} + \frac{\eta}{2} = \frac{1}{2p}.$$
 By (3.3), we have
(3.11)
$$\left\| \int_{0}^{1} \lambda^{-\frac{s}{2}} (\lambda - \Delta_{y})^{-1} u \, \mathrm{d}\lambda \right\|_{L^{\mu}} \lesssim \|u\|_{L^{2}} \int_{0}^{1} \lambda^{-\frac{s}{2} + \frac{1}{2} \left(d - 2 - d \left(\frac{1}{\mu} + \frac{1}{2} \right) \right)} \, \mathrm{d}\lambda \lesssim \|u\|_{L^{2}}.$$

Again by (3.3), we obtain

(3.12)
$$\left\| \int_0^1 \lambda^{-\frac{s}{2}} (\lambda - \Delta_y)^{-1} u \, \mathrm{d}\lambda \right\|_{L^2} \lesssim \left\| \int_0^\infty \lambda^{-\frac{s}{2}} (\lambda - \Delta_y)^{-1} u \, \mathrm{d}\lambda \right\|_{L^2} + \|u\|_{L^2} \int_1^\infty \lambda^{-\frac{s}{2}-1} \, \mathrm{d}\lambda \\ \lesssim \left\| (-\Delta_y)^{-\frac{s}{2}} u \right\|_{L^2} + \|u\|_{L^2}.$$

Combining (3.9), (3.10), (3.11), and (3.12), we get (3.7).

As a direct consequence of Lemma 3.3, we easily obtain the following lemma.

Lemma 3.4. Taking
$$s = \left(\frac{d}{2}\left(1-\frac{1}{p}\right)\right)^+$$
, there exists some $0 < \eta < 1$ such that for $s_0 = \left(\frac{d}{2}\left(1-\frac{1}{p}\right)\right)^-$, we have $\|u(t,y,x)\|_{L_y^{2p}H_x^1} \le Ct^{-s_0}\left(\||J(t)|^s u\|_{L_y^2H_x^1}^2 + \||J(t)|^s u\|_{L_y^2H_x^1}^{1-\eta} \|u\|_{L_y^2H_x^1}^\eta\right).$

Now we turn to the estimate of the nonlinear term.

Lemma 3.5. There exists $0 < \theta < 1$ such that

$$(3.13) \quad \left\| |J(t)|^{s} \left(|u(t)|^{p-1} u(t) \right) \right\|_{L_{t}^{q_{1}'} L_{y}^{r_{1}'} H_{x}^{1}} \\ \leq C \left(\left\| |J(t)|^{s} u(t) \right\|_{L_{t}^{\infty} L_{y}^{2} H_{x}^{1}} + \left\| u \right\|_{L_{t}^{\infty} L_{y}^{2} H_{x}^{1}} \right) \left(\left\| |J(t)|^{s} u \right\|_{L_{t}^{\infty} L_{y}^{2} H_{x}^{1}}^{\theta} + \left\| |J(t)|^{s} u \right\|_{L_{t}^{\infty} L_{y}^{2} H_{x}^{1}}^{\theta} + \left\| |J(t)|^{s} u \right\|_{L_{t}^{\infty} L_{y}^{2} H_{x}^{1}}^{\theta} + C(h) \left(\left\| |J(t)|^{s} u \right\|_{L_{t}^{\infty} L_{y}^{2} H_{x}^{1}}^{\theta} + \left\| |J(t)|^{s} u \right\|_{L_{t}^{\infty} L_{y}^{2} H_{x}^{1}}^{\theta} + \left\| |J(t)|^{s} u \right\|_{L_{t}^{\infty} L_{y}^{2} H_{x}^{1}}^{\theta} \right)^{p}.$$

Proof. Let $\tilde{r}_1 = \frac{2r_1}{r_1+2}$, we have

$$\begin{split} & \left\| |J(t)|^{s} \left(|u|^{p-1}u \right) \right\|_{L_{t}^{q_{1}'}L_{y}^{r_{1}'}H_{x}^{1}} \\ & \leq \left\| (-\Delta)^{\frac{s}{2}}M(-t) \left(|u|^{p-1}u \right) \right\|_{L_{t}^{q_{1}'}L_{y}^{r_{1}'}H_{x}^{1}} + \left\| |u|^{p-1}u \right\|_{L_{t}^{q_{1}'}L_{y}^{r_{1}'}H_{x}^{1}} \\ & \leq \left\| (-\Delta)^{\frac{s}{2}} (M(-t)u) \right\|_{L_{t}^{\infty}L_{y}^{2}H_{x}^{1}} \left\| |u|^{p-1} \right\|_{L_{t}^{q_{1}'}L_{y}^{\tilde{r}_{1}'}H_{x}^{1}} + \left\| \left\| u \right\|_{L_{y}^{r_{1}'}P_{x}^{1}}^{p} \right\|_{L_{t}^{q_{1}'}} \\ & \leq C \left(\left\| |J(t)|^{s}u \right\|_{L_{t}^{\infty}L_{y}^{2}H_{x}^{1}} + \left\| u \right\|_{L_{t}^{\infty}L_{y}^{2}H_{x}^{1}} \right) \left\| |u|^{p-1} \right\|_{L_{t}^{q_{1}'}L_{y}^{\tilde{r}_{1}'}H_{x}^{1}} + \left\| \left\| u \right\|_{L_{y}^{r_{1}'}P_{x}^{1}}^{p} \right\|_{L_{t}^{q_{1}'}}. \end{split}$$

First, we consider $\left\| \|u\|_{L_{y}^{r_{1}'^{p}}H_{x}^{1}}^{p} \right\|_{L_{t}^{q_{1}'}}$. By Hölder's inequality and Lemma 3.4, we have

$$\|u\|_{L_{y}^{r_{1}'p}H_{x}^{1}} \leq \|u\|_{L_{y}^{2p}H_{x}^{1}}^{\theta} \|u\|_{L_{y}^{2}H_{x}^{1}}^{1-\theta} \leq t^{-d\left(\frac{1}{2}-\frac{1}{r_{1}'p}\right)+\epsilon} \left(\||J(t)|^{s}u\|_{L_{y}^{2}H_{x}^{1}}^{\theta} + \||J(t)|^{s}u\|_{L_{y}^{2}H_{x}^{1}}^{\theta(1-\eta)} \|u\|_{L_{y}^{2}H_{x}^{1}}^{\theta\eta}\right) \|u\|_{L_{y}^{2}H_{x}^{1}}^{1-\theta}$$

where ϵ is sufficiently small. Since (q_1, r_1) is an admissible pair, we have $r_1 = \frac{2dq_1}{dq_1-4}$, then

$$(3.14) \qquad \left\| \|u\|_{L_{y}^{r_{1}'p}H_{x}^{1}}^{p} \right\|_{L_{t}^{q_{1}'}} \\ \lesssim \left(\int_{h}^{\infty} t^{\epsilon q_{1}'p - dq_{1}'p \left(\frac{1}{2} - \frac{1}{2} + \frac{2}{dq_{1}}\right)} dt \right)^{\frac{1}{q_{1}'}} \left(\||J(t)|^{s} u\|_{L_{t}^{\infty}L_{y}^{2}H_{x}^{1}}^{\theta} + \||J(t)|^{s} u\|_{L_{t}^{\infty}L_{y}^{2}H_{x}^{1}}^{(1-\eta)\theta} \|u\|_{L_{t}^{\infty}L_{y}^{2}H_{x}^{1}}^{\eta\theta} \right)^{p} \\ \leq C(h) \left(\||J(t)|^{s} u\|_{L_{t}^{\infty}L_{y}^{2}H_{x}^{1}}^{\theta} + \||J(t)|^{s} u\|_{L_{t}^{\infty}L_{y}^{2}H_{x}^{1}}^{(1-\eta)\theta} \|u\|_{L_{t}^{\infty}L_{y}^{2}H_{x}^{1}}^{\eta\theta} \right)^{p},$$

where we have used (3.5). Second, we now turn to the estimate of $||u|^{p-1}||_{L_t^{q'_1}L_y^{\tilde{r}'_1}H_x^1}$. Similar arguments as the above estimates give

$$(3.15) \||u|^{p-1}\|_{L_t^{q'_1}L_y^{\tilde{r}'_1}H_x^1} \\ \lesssim \left(\int_h^\infty t^{\epsilon(p-1)q'_1-d\left(\frac{1}{2}-\frac{1}{r'_1(p-1)}\right)(p-1)q'_1} dt\right)^{\frac{1}{q'_1}} \left(\||J(t)|^s u\|_{L_t^\infty L_y^2 H_x^1}^{\theta} + \||J(t)|^s u\|_{L_t^\infty L_y^2 H_x^1}^{(1-\eta)\theta} \|u\|_{L_t^\infty L_y^2 H_x^1}^{\eta\theta}\right)^{p-1} \\ \le C(h) \left(\||J(t)|^s u\|_{L_t^\infty L_y^2 H_x^1}^{\theta} + \||J(t)|^s u\|_{L_t^\infty L_y^2 H_x^1}^{(1-\eta)\theta} \|u\|_{L_t^\infty L_y^2 H_x^1}^{\eta\theta}\right)^{p-1},$$

where again we have used (3.5). Combining the estimates together, we obtain (3.13).

Proof of Theorem 3.1. By (3.4) and Lemma 3.5, we have

$$\begin{split} \||J(t)|^{s}u\|_{L_{t}^{\infty}L_{y}^{2}H_{x}^{1}} \\ &\leq C\left(\||J(t)|^{s}u\|_{L_{t}^{\infty}L_{y}^{2}H_{x}^{1}} + \|u\|_{L_{t}^{\infty}L_{y}^{2}H_{x}^{1}}\right)\left(\||J(t)|^{s}u\|_{L_{t}^{\infty}L_{y}^{2}H_{x}^{1}}^{\theta} + \||J(t)|^{s}u\|_{L_{t}^{\infty}L_{y}^{2}H_{x}^{1}}^{\theta(1-\eta)} \|u\|_{L_{t}^{\infty}L_{y}^{2}H_{x}^{1}}^{\eta} \|u\|_{L_{t}^{\infty}L_{y}^{2}H_{x}^{1}}^{\eta\theta}\right)^{p-1} \\ &+ C(h)\left(\||J(t)|^{s}u\|_{L_{t}^{\infty}L_{y}^{2}H_{x}^{1}}^{\theta} + \||J(t)|^{s}u\|_{L_{t}^{\infty}L_{y}^{2}H_{x}^{1}}^{\theta(1-\eta)} \|u\|_{L_{t}^{\infty}L_{y}^{2}H_{x}^{1}}^{\eta\theta}\right)^{p} + C\|u_{0}\|_{\Sigma} + C(h)\left\||J(t)|^{s}u\|_{L_{t}^{\infty}L_{y}^{2}H_{x}^{1}}^{\eta}. \end{split}$$

Since $\lim_{h\to\infty} C(h) = 0$, by standard continuity argument, we have for h large enough and $||u_0||_{\Sigma}$ small enough that

(3.16)
$$|||J(t)|^{s}u||_{L_{t}^{\infty}L_{y}^{2}H_{x}^{1}} \leq C$$

We then have the decay estimate (3.2) by Lemma 3.4.

Finally, we give the proof of scattering as a consequence of (3.2). From Duhamel's principle, it suffices to prove

$$\left\|\int_{h}^{\infty} e^{-is\Delta_{\mathbb{R}^{d}\times\mathbb{T}}}\left(|u|^{p-1}u\right)(s)\,\mathrm{d}s\right\|_{H^{1}} \le C.$$

By Strichartz estimate, we have

$$\begin{split} \left\| \int_{h}^{\infty} e^{-is\Delta_{\mathbb{R}^{d}\times\mathbb{T}}} \left(|u|^{p-1}u \right) (s) \,\mathrm{d}s \right\|_{H^{1}_{y,x}} &\lesssim \left\| |u|^{p-1}u \right\|_{L^{q'_{1}}_{t}L^{r'_{1}}_{y}H^{1}_{x}} + \left\| (-\Delta_{y})^{\frac{1}{2}} \left(|u|^{p-1}u \right) \right\|_{L^{q'_{1}}_{t}L^{r'_{1}}_{y}L^{2}_{x}} \\ &\lesssim \left\| |u|^{p-1}u \right\|_{L^{q'_{1}}_{t}L^{r'_{1}}_{y}H^{1}_{x}} + \left\| u \right\|_{L^{\infty}_{t}H^{1}_{y}L^{2}_{x}} \left\| |u|^{p-1} \right\|_{L^{q'_{1}}_{t}L^{r'_{1}}_{y}H^{1}_{x}}, \end{split}$$

where $\tilde{r}_1 = \frac{2r_1}{r_1+2}$. The argument of the proof of Lemma 3.5 implies

$$\left\| |u|^{p-1}u \right\|_{L_t^{q_1'}L_y^{r_1'}H_x^1} + \left\| |u|^{p-1} \right\|_{L_t^{q_1'}L_y^{\tilde{r}_1'}H_x^1} \le C.$$

We then define

$$u_{+} = e^{-ih\Delta_{\mathbb{R}^{d}\times\mathbb{T}}} u_{0} - i \int_{h}^{\infty} e^{-i\tau\Delta_{\mathbb{R}^{d}\times\mathbb{T}}} \left(|u|^{p-1} u \right) (\tau) \, \mathrm{d}\tau,$$

and

$$\left\|e^{-it\Delta_{\mathbb{R}^d\times\mathbb{T}}}u(t)-u_+\right\|_{H^1}\to 0, \text{ as } t\to\infty,$$

which yields the scattering.

REFERENCES

- [1] N. Burq, V. Georgiev, N. Tzvetkov and N. Visciglia, H^1 Scattering for Mass-Subcritical NLS with Short-Range Nonlinearity and Initial Data in Σ , Ann. Henri Poincaré, 24 (2023), 1355-1376.
- [2] X. Cheng, Z. Guo, K. Yang, and L. Zhao, *On scattering for the cubic defocusing nonlinear Schrödinger equation on the waveguide* $\mathbb{R}^2 \times \mathbb{T}$, Rev. Mat. Iberoam. **36** (2020), no. 4, 985-1011.
- [3] X. Cheng, Z. Guo, and Z. Zhao, On scattering for the defocusing quintic nonlinear Schrödinger equation on the twodimensional cylinder, SIAM J. Math. Anal. **52** (2020), no. 5, 4185-4237.
- [4] Z. Hani, B. Pausader, N. Tzvetkov, and N. Visciglia, Modified scattering for the cubic Schrödinger equation on product spaces and applications, Forum of Mathematics, PI. (2015), Vol. 3, 1-63.
- [5] H. P. McKean and J. Shatah, The nonlinear Schrödinger equation and the nonlinear heat equation reduction to linear form, Comm. Pure Appl. Math. 44 (1991), no. 8-9, 1067-1080.
- [6] C. Miao, X. Su, and J. Zheng, The W^{s,p}-boundedness of stationary wave operators for the Schrödinger operator with inverse-square potential, Trans. Amer. Math. Soc. 376 (2023), no. 3, 1739-1797.
- [7] H. Mizutani, J. Zhang, and J. Zheng, Uniform resolvent estimates for Schrödinger operator with an inverse-square potential, J. Funct. Anal. 278 (2020), no. 4, 108350, 29 pp.
- [8] W. A. Strauss, *Nonlinear scattering theory*, Scattering theory in mathematical physics, edited by J. A. Lavita and J-P. Marchand (Reidel, Dordrecht, Holland, 1974), 53-78.
- [9] H. Takaoka and N. Tzvetkov, On 2D nonlinear Schrödinger equations with data on $\mathbb{R} \times \mathbb{T}$, J. Funct. Anal. 182(2001), 427-442.
- [10] N. Tzvetkov and N. Visciglia, *Well-posedness and scattering for NLS on* $\mathbb{R}^d \times \mathbb{T}$ *in the energy space*, Rev. Mat. Iberoam. **32** (2016), no. 4, 1163-1188.
- [11] Z. Zhao, On scattering for the defocusing nonlinear Schrödinger equation on waveguide $\mathbb{R}^m \times \mathbb{T}$ (when m = 2, 3), J. Differential Equations 275 (2021), 598-637.