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Abstract—The integration of high-precision cellular localiza-
tion and machine learning (ML) is considered a cornerstone tech-
nique in future cellular navigation systems, offering unparalleled
accuracy and functionality. This study focuses on localization
based on uplink channel measurements in a fifth-generation
(5G) new radio (NR) system. An attention-aided ML-based
single-snapshot localization pipeline is presented, which consists
of several cascaded blocks, namely a signal processing block,
an attention-aided block, and an uncertainty estimation block.
Specifically, the signal processing block generates an impulse
response beam matrix for all beams. The attention-aided block
trains on the channel impulse responses using an attention-
aided network, which captures the correlation between impulse
responses for different beams. The uncertainty estimation block
predicts the probability density function of the UE position,
thereby also indicating the confidence level of the localization
result. Two representative uncertainty estimation techniques,
the negative log-likelihood and the regression-by-classification
techniques, are applied and compared. Furthermore, for dynamic
measurements with multiple snapshots available, we combine the
proposed pipeline with a Kalman filter to enhance localization
accuracy. To evaluate our approach, we extract channel impulse
responses for different beams from a commercial base station.
The outdoor measurement campaign covers Line-of-Sight (LoS),
Non Line-of-Sight (NLoS), and a mix of LoS and NLoS scenarios.
The results show that sub-meter localization accuracy can be
achieved.

Index Terms—5G New Radio, Sounding Reference Signal, self-
attention, uncertainty estimation, radio-based positioning

I. INTRODUCTION

RADIO-based positioning is envisioned to pave the way
for numerous sophisticated yet practical applications,

including vehicle navigation, intelligent traffic management,
and autonomous driving [1]–[7]. In contemporary 5G systems,
there is a pronounced demand for precise localization ca-
pabilities. Currently, most localization-aware applications are

This work has been funded by Ericsson AB, the Swedish Foundation for
Strategic Research, and partly by the Horizon Europe Framework Programme
under the Marie Skłodowska-Curie grant agreement No. 101059091.

facilitated by Global Navigation Satellite Systems (GNSS).
However, the effectiveness of these systems is limited by many
factors, such as shadowing, multipath propagation, and clock
drifts between the GNSS transmitter and receiver [8]. Con-
sequently, there is an increasing need to investigate cellular-
based technologies and seamlessly integrate those techniques
into existing localization systems.

Existing cellular-based localization methods can be broadly
classified into two categories, namely conventional signal
processing methods [7], [9]–[15], and machine learning (ML)
based methods [16]–[24]. Conventional signal processing
methods, such as Time of Arrival (ToA), Angle of Arrival
(AoA), and Time Difference of Arrival (TDoA), require the
estimation of essential channel parameters, such as signal
propagation time between UE and base stations (BS). In the
next step, the location of the user equipment (UE) can be
estimated using these parameters. Although some of these
methods have reached maturity, they can be constrained by
calibration needs and algorithmic complexities [7]. On the
other hand, ML methods present a promising solution but
require access to data for training and a radio environment
with enough unique features that can be learned. To im-
plement an ML-based localization approach, the initial step
involves obtaining various channel fingerprints, such as the
raw transfer function [21], [22], received signal strength [16],
angle-delay spectrum [17], [20], [23] and/or covariance matrix
[18], [19]. These fingerprints then serve as input for the ML
algorithms. It should be noted that an effective method of
combining several different fingerprints has the potential to
significantly increase the localization accuracy, see [18], [19].
ML-based localization algorithms can also be divided into
two categories, namely classical ML approaches such as K-
nearest neighbors (KNN) [19], Gaussian process regression
[16], adaptive boosting [18], and deep learning based ap-
proaches, such as fully connected neural networks (FCNN)
[22], [23], convolutional neural network [16], [18], [24], [25],
and attention-aided networks [21]. In particular, the attention-
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aided approach holds significant promise, as its embedded
attention mechanism enables ML algorithms to recognize rela-
tionships between different input feature vectors, irrespective
of their actual spatial or temporal separation among those
vectors. This mechanism is also the core of widely used
transformer techniques, producing fruitful results in various
domains such as language translations, image recognition, and
speech recognition [26]. Another crucial aspect for localization
is uncertainty prediction, which is particularly important in
life-critical tasks such as autonomous driving. This research
problem has been initially tackled by previous works [19],
[27], which provide not only the estimated location coordinates
but also the corresponding variances using the negative log-
likelihood (NLL) loss function.

However, to the best of our knowledge, there are still
notable research gaps. Primarily, the application of attention-
aided localization algorithms in 5G new radio (NR) systems
represents a novel, yet unexplored, area. Secondly, the NLL
uncertainty estimation technique assumes a Gaussian distri-
bution for the estimation error of the UE position. However,
such an assumption often diverges from reality. Consequently,
it becomes crucial to explore further uncertainty estimation
methods capable of estimating distributions other than Gaus-
sian. To address the issues stated above, we propose a novel
localization pipeline and evaluate it using data from a com-
mercial 5G NR base station. Very few studies in the literature
have been conducted on commercial grade 5G NR systems.
Our research contributions are listed as follows1:

• We apply attention-aided neural networks as the backbone
to perform localization, we also demonstrate the advan-
tages of this network in terms of localization accuracy.

• We apply a novel regression-by-classification method
that can predict the uncertainty of localization estimates.
Compared with the NLL approach, this approach provides
better uncertainty estimation since it is not bounded by
the assumption of Gaussianity.

• We further enhance localization accuracy by applying
a Kalman filter to exploit temporal correlation between
multiple channel snapshots, which smoothes the esti-
mated trajectory.

• Finally, we verify the novel ML-powered pipeline with
real measurement data obtained using a commercial 5G
NR test setup, covering both Line-of-Sight (LoS) and
non-Line-of-Sight (NLoS) scenarios. The results show
that our approach achieves submeter-level localization
accuracy.

The remainder of this paper is organized as follows. Section
II introduces the signal model and discusses the selected
fingerprints. In Section III, we elaborate on the localization
algorithms. Section IV illustrates the measurement campaign

1Initial outdoor UE localization results have been presented in the con-
ference paper [28]. In the current study, we utilize a higher subchannel
resolution of the UL SRS channel estimates and a high-accuracy GNSS
receiver. Furthermore, we apply an improved localization pipeline.

and Section V presents the results. Finally, conclusive remarks
are included in Section VI.

II. SYSTEM MODEL AND DATASET GENERATION

We consider a commercial 5G NR system in a single-user
massive MIMO scenario, where the BS processes uplink (UL)
Sounding Reference Signal (SRS) data. The system utilizes
orthogonal frequency division multiplexing (OFDM) with F
subcarriers, and the SRS data is a time series of uplink (UL)
measurements in the beam domain. With this approach, we
essentially capture the angular delay spectrum of the radio
channel, an approach that has been shown to be advantageous
for accurate localization based on ML [20], [29]. The BS is
equipped with MBS antenna ports, half of which is vertically
polarized and the other half horizontally polarized, while the
UE is equipped with MUE antenna ports. We suppose that the
number of multipath components is P , and denote τp,t as the
time delay between UE and BS w.r.t. the p-th path at time t,
and αp,m,t indicates the complex coefficient of each multipath
component. The BS utilizes all vertical-polarized antennas to
formulate NV beams, the response of the i-th beam w.r.t. the
p-th path is βV,i(ϕp, θp, f), where f denotes frequency, and ϕp

and θp represent the azimuth and elevation arrival angles for
the p-th multipath, respectively. Similarly, another NH set of
beams uses all horizontal polarized antennas, and the response
of the i-th beam is βH,i(ϕp, θp, f). For the m-th UE port, the
propagation channel model for each beam at time index t can
be formulated as

hV,i,m,t(f) =

P∑
p=1

βV,i(ϕp, θp, f)αp,m,t exp{−j2πf τp,t}

hH,i,m,t(f) =

P∑
p=1

βH,i(ϕp, θp, f)αp,m,t exp{−j2πf τp,t}.

(1)
By collecting all hV,i,m,t(f) and hH,i,m,t(f) for the F
subcarriers, we can formulate two beam space matrices of
the channel transfer function (CTF), HV,m,t ∈ CNV ×F

and HH,m,t ∈ CNH×F at time t, which correspond to
the vertical and horizontal polarized antenna groups, re-
spectively. We further define matrix Ht ∈ CN×F =[
HT

H,1,t,H
T
V,1,t, ...,H

T
H,MUE,t

,HT
V,MUE,t

]T
that combines chan-

nel matrices of all UE antenna ports. Specifically, N =
MUE (NH+NV). This matrix depends strongly on the UE posi-
tion, therefore they can be selected as raw channel fingerprints
to perform ML-based localization.

III. THE ML-BASED LOCALIZATION APPROACH

The ML-based localization pipeline, as described in Fig. 1,
consists of five sequential blocks. First, the raw CTF Ht is fed
into a data cleaning block to evaluate the validity of the input
data. After this, valid CTFs are forwarded to a digital signal
processing block to generate an impulse response beam matrix
Gt ∈ CN×F . The amplitudes in this matrix then serve as input
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Fig. 1: The ML-based localization pipeline for the 5G NR system.

to a deep neural network, which incorporates a self-attention
mechanism at its core. The network’s final layer outputs an
estimated probability density function (PDF) representing the
location, thereby facilitating uncertainty estimation. To further
enhance localization accuracy, a filter may be applied after
the final layer of the pipeline, provided that information from
multiple snapshots is available.

A. The attention mechanism

1) Fundamental basics of the attention operation: An ex-
ample of the attention block is illustrated in Fig. 2, which takes
a matrix X = [x1, ...,xF ] ∈ RN×F as the input, generating
the output matrix Z = [z1, ..., zF ] ∈ RN×F . Initially, X
are multiplied by three matrices 2, namely, the query matrix
Wq ∈ RN×N , the key matrix Wk ∈ RN×N and the value
matrix Wv ∈ RN ′×N . The multiplication operations yield
three matrices Q,K,V ∈ RN×N , specifically,

Q = WqX, K = WkX, V = WvX. (2)

The elements of these three matrices act as hyperparameters
that can be fine-tuned during the training process. The second
step is to calculate the pairwise correlations between all

2The Wv matrix may not necessarily have the same size as Wq and Wk ,
in this work N ′ = N for simplicity.
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Fig. 2: An illustration of basic attention mechanism to generate zj
and same mechanism can be applied to generate Z.

columns of matrices Q and K, resulting in a new matrix
A ∈ RF×F , specifically,

A =
1√
N

QTK. (3)

We then apply the softmax operation to normalize A and
obtain another matrix Ã ∈ RF×F . Each element Ãi,j is
positive and the sum of all the elements in each column is
equal to 1. Specifically, Ãi,j is calculated as

Ãi,j =
expAi,j∑
k expAi,k

. (4)

Finally, the output matrix Z is calculated as

Z = VÃ, (5)

where each column of Z represents a weighted sum, and the
weights are determined by the corresponding column in Ã.

In addition to the fundamental attention operation, we
further introduce the multi-head attention mechanism that
can improve model capabilities. This mechanism employs
a total of P attention heads, each associated with sets of
query matrices (W1

q , ...,W
P
q ), key matrices (W1

k, ...,W
P
k ),

and value matrices (W1
v, ...,W

P
v ). The multi-head attention

mechanism operates in P steps. In the initial step, the matrices
W1

q ,W
1
k,W

1
v are applied to the input matrix X following

equations (2)-(5), resulting in the output Z1 ∈ RN×F . This
process is then repeated P − 1 times, generating additional
output matrices Z2, ...,ZP ∈ RN×F . Finally, we concatenate
all output matrices obtained from each step, formulating a
matrix Ztl ∈ RN×PF . The final output matrix Z′ ∈ RN×F

can then be expressed as

Z′ = ZtlWO, (6)



4

where WO ∈ RPF×F is another hyperparameter matrix.
2) Positioning encoding: It is important to note that the

attention mechanism neglects the inherent sequence order of
the input vectors in X. Consequently, when employing such
a mechanism, particularly for tasks dependent on the order
of vector arrangement, it is imperative to apply a positioning
encoding technique to incorporate and preserve this sequential
information. The idea of positioning encoding is to add
another fixed matrix Xk ∈ RN×F to X [26], a standardized
positioning encoding matrix Xk is

Xk(x, y) = sin
( x

10000y/N

)
, for odd y;

Xk(x, y) = cos
( x

10000(y−1)/N

)
, for even y.

(7)

3) Residual mechanism, Layer normalization and position-
wise FCNN : After collecting the matrix Z′, we add the
input matrix X to Z′ to obtain the matrix Z̃ ∈ RN×F . We
apply the residual mechanism since it preserves the original
information of the input matrix. The matrix Z̃ is then fed to
a layer normalization block, which first vectorizes Z̃ into a
vector z̃ ∈ RNF . Subsequently, each element z̃i in z̃ is scaled
to derive a new vector ẑ ∈ RNF as in [26], specifically,

ẑi = γ
z̃i − µ

σ
+ β, (8)

where µ and σ2 represent the mean and variance of vector
z̃. The parameters γ and β denote the amplitude scaling and
the bias, respectively. By default, γ = 1 and β = 0, although
these parameters can be adjusted as learning hyperparameters.
We then reformulate ẑ into a matrix Ẑ ∈ RN×F . To enhance
the capacity to capture nonlinear relationships, we feed the
output matrix Ẑ into a pointwise FCNN to get Ẑ′ ∈ RN×F

[26], specifically,

Ẑ′ = W2 fRelu(W1 Ẑ+B1) +B2, (9)

where fRelu(.) represents the rectifier activation function, and
W1,W2,B1,B2 are hyperparameter matrices, and the bias
matrices B1,B2 are optional. After collecting Ẑ′, we apply
the same residual mechanism and layer normalization to derive
Z̆ ∈ RN×F . Finally, Z̆ is vectorized and fed into another
FCNN. Such an operation can also help to match the vector
sizes for possible subsequent blocks.

B. Data cleaning and signal processing

The collection of UL SRS channel measurements in a
commercial 5G NR BS builds limitations when retrieving data-
intense structures such as SRS channel measurement samples.
The vast amounts of SRS data generated at milliseconds
level are normally enclosed within the baseband entity of a
BS and primarily intended for internal processing, whereas
external access to these data may be compromised by hardware
and software restrictions. To mitigate these challenges, it is
essential to equip our pipeline with the ability to discern
the validity of the input data. Accordingly, we introduce a

data-cleaning block to pre-process the measurement data. Its
primary objective is to determine whether the raw transfer
function is valid or invalid. A raw transfer function is labeled
invalid if it satisfies any of the following criteria:

• Insufficient CSI in the beam or frequency domain: the
number of non-zero elements in Ht is lower than a given
threshold.

• Update failure: the values of all subcarriers or all beams
remain the same.

After filtering out all invalid data, the next step is to process
the raw CTF to generate impulse response beam matrices. To
suppress the side lobes, we apply Hann windowing across all
rows of the matrix Ht to obtain matrix Ĥt ∈ CN×F . The
F -length Hann window in the frequency domain is given by

w[f ] = sin2
(
πf

F

)
, f = 0, . . . , F − 1. (10)

After the windowing operation, the impulse response beam
matrix Gt is produced by performing the inverse discrete
Fourier transform along each row of Ĥt. Given the potential
difficulty in achieving a stable phase for Gt, here we opt to
use its amplitude |Gt| as the training fingerprint, although this
means throwing away potentially useful information.

C. Single-snapshot localization

As illustrated in Fig. 1, the architecture comprises multiple
attention-aided blocks, followed by an output layer that has
three alternatives corresponding to three loss functions, namely
the Mean Square Error (MSE), Negative Log-Likelihood
(NLL), and Regression-by-classification loss functions. We use
pi = [px,i, py,i]

T to represent the 2-D ground truth of the
moving UE at the i-th position. Notably our approach can be
readily adapted for 3-D localization.

1) Alternative 1: MSE loss function: This approach directly
estimates the UE locations by setting a 2-D regression head
at the output layer of the last attention block. Let fMSE(.)
denote the overall function and vector θ2 all hyperparameters,
p̂i = [p̂x,i, p̂y,i]

T the estimated i-th UE locations generated
by fMSE(θ2, |Gt|), the loss Ψ1 can be expressed as

Ψ1 =
1

Ntr

∑
i∈Ω′

tr

||p− p̂||2F , (11)

where Ω′
tr and Ntr denote the training set and the number of

training samples, respectively, and ||.||F denotes the Frobenius
matrix norm.

2) Alternative 2: NLL loss function: Unlike the first ap-
proach, this method employs the NLL criterion, which models
the estimated UE position as a multivariate Gaussian dis-
tribution defined by its mean p̆ = [p̆xi

, p̆yi
]T and variance

σ̆2
i = [σ̆2

xi
, σ̆2

yi
]T . Consequently, a 4-dimensional regression

head is required at the output layer. Similar to [19], the NLL
loss Ψ2 is expressed as
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Ψ2 =
1

2Ntr

∑
i∈Ω′

tr

( log σ̆2
xi
σ̆2
yi

2
+
(pxi

− p̆xi
)2

2σ̆2
xi

+
(pyi

− p̆yi
)2

2σ̆2
yi

)
.

(12)
3) Alternative 3: Regression-by-Classification (RbC): The

core of this approach [30], [31] lies in converting a regression
task to a classification task. This is achieved by first defining
a feasible range for the target parameter and then dividing
this range into discrete bins. For the localization task, the
lower and upper bounds of the UE x-coordinates are denoted
as Blw,x and Bup,x, respectively. Similarly, Blw,y and Bup,y

represent the bounds for the y-coordinates. To accomplish
this discretization, we divide the x-coordinate range into Lx

equally sized bins. The y-coordinate range is divided into Ly

bins in a similar fashion. For each bin, we denote l̄x,k and
l̄y,k as the lower endpoint values of the k-th interval for the
x- and y-coordinates, respectively.

Unlike the NLL method, RbC does not inherently model
the output probability as a Gaussian distribution. Instead, it
estimates the probability and bias values of each bin for both
the x- and y-coordinates. The bias value can be used to reduce
the quantization error. To this end, in total 4 vectors are
generated: the probability vectors qx ∈ RLx and qy ∈ RLy ,
as well as the deviation vectors dx ∈ RLx and dy ∈ RLy . It
is crucial to apply a softmax operation as shown in (4) when
generating qx and qy to ensure that the elements within each
vector sum to 1. One special case for deviation vectors is
when all Lx elements in dx have the same value, and the
same for dy . In other words, a uniform shift is applied to the
probability density function, which also aids in the reduction
of the output vector dimensions. We denote qx,k and dx,k as
the k-th elements of qx and dx, similarly for qy,k and dy,k.
Inspired by [30], the η-norm loss Ψη

3 is formulated as

Ψη
3 =

1

2Ntr

∑
i∈Ω′

tr

(
||

Lx∑
k=1

qx,k,i l̄x,k,i − px,k,i + dx,k,i||η

+ ||
Ly∑
j=1

qy,j,i l̄y,j,i − py,j,i + dy,j,i||η + γ1||dx||+ γ2||dy||
)
.

(13)

Here, η is usually chosen as η = 1 or η = 2, which
corresponds to the Taxicab and Euclidean norms, respectively.
Two penalty terms, γ1||dx|| and γ2||dy||, are added to the cost
function. The estimated coordinate p̂RbC

i = [p̂RbC
x,i , p̂

RbC
y,i ] ∈ R2

is then given by

p̂RbC
x,i =

∑
k

qx,k,i l̄x,k,i + dx,k,i,

p̂RbC
y,i =

∑
k

qy,k,i l̄y,k,i + dy,k,i. (14)

4) Comparison between different uncertainty estimates:
Our previous work [19] used the NLL score in the test data set
to assess the effectiveness of uncertainty estimation. However,
applying the same criterion to evaluate the RbC method
presents challenges because of the non-Gaussian nature of

its output. To address this challenge, another criterion named
Area Under the Sparsification Error (AUSE) [32] is used.
Sparsification is a way to assess the quality of uncertainty
estimates. It works by progressively discarding fractions of
the predictions that the model is most uncertain about and
verifying whether this corresponds to a proportional decrease
in the remaining average endpoint error. To calculate AUSE,
the first step is to compute the discrete entropy uH based
on the predicted probability. In the following discussion, we
illustrate this process using the predicted qx,i vector for the x-
coordinate as an example, noting that the result can be readily
extended to the y-coordinate. The entropy uH,x,i for qx,i is
given by [31]

uH,x,i(qx) = −
Lx∑
k=1

qx,k,i log qx,k,i. (15)

To enable a fair comparison between the NLL and RbC meth-
ods, we need to discretize the predicted Gaussian distributions
determined by p̆ and σ̆2

i . To this end, the x-axis is segmented
into Lx bins. As detailed in [33], the value for the k-th bin of
the discretized function, denoted p̆x,k, is calculated as

p̆dsx,k =

1
σ̆k

exp(− (p̆x,k−l̄k)
2

2σ̆2
k

)∑
j

1
σ̆j

exp(− (p̆x,j−l̄j)2

2σ̆2
j

)
. (16)

We now organize the discrete entropies for the Nts testing
samples calculated from (15) in descending order to form the
vector uH,x ∈ RLx . Similarly, we calculate the absolute errors
between the estimated values p̂Ws

x,i and the ground truth px for
all testing samples, arranging these errors in descending order
to create the vector ξx ∈ RLx . Let ξmax be the maximum
absolute error. We scale all elements in uH,x by a factor such
that the first element of the resulting vector ûH,x equals ξmax.

Next, we define a sparsification function s(φ), which is
calculated by removing the initial φ-fraction of samples from
ûH,x and averaging the remaining data, with φ ranging from
0 to 1. A similar process is applied to ξx, which yields the
oracle function g(φ). Finally, AUSE is calculated as

AUSE =

∫ 1

0

|s(φ)− g(φ)|dφ, (17)

which represents the area between the sparsification and the
oracle curves. We refer to Fig. 8 as an example, where AUSE
equals the area of the shaded region, a smaller area indicating
a better uncertainty estimator.

D. Kalman-Filter-based trajectory smoothing

To further improve the localization accuracy, we exploit the
temporal correlation between successive positions by applying
a Kalman filter as a straightforward method for trajectory
smoothing. For more detailed information see [34]. We define
a vector ξt ∈ R4 = [px,t, vx,t, py,t, vy,t]

T to represent the UE
position and velocity at time t, where vx,t and vy,t denote the
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speed in the x and y-directions, respectively. The state-space
model for the UE is given by

ξt = Fξt−1 + λt, (18)

where F ∈ R4×4 denotes the state-transition matrix, while
λt ∈ R4 the additive noise. Specifically,

F =


1 0 ∆t 0
0 1 0 ∆t

0 0 1 0
0 0 0 1

 , (19)

where ∆t denotes the time differences between snapshots. We
then define Ξt ∈ R4×4 as the covariance matrix of ξt. The
relationship between Ξt and Ξt−1 can be written as

Ξt = FΞt−1F
T +Λ, (20)

where Λ ∈ R4×4 is the covariance matrix of the noise
vector λt. We further denote p̆t ∈ R2 = [p̆t,x, p̆t,y] as the
predicted UE position and express the observation model as

p̆t = Φtξt + ζ, (21)

where ζ ∈ R2 represents observation noise and Φt =[
1 0 0 0
0 1 0 0

]
. Given the error signal et = p̂t − p̆t, the state

vector ξ+t is updated as

ξ+t = ξt + Γtet. (22)

In (22), Γt represents the Kalman gain matrix, which balances
the predictions from the state-space model and the ML-based
pipeline, specifically,

Γt = ΞtΦ
T
t

[
ΦtΞtΦ

T
t +R

]−1

, (23)

where R is the covariance matrix of ζ. After computing Γt,
the covariance matrix Ξt is updated using

Ξ+
t = (I− ΓtΦt)Ξt, (24)

where I denotes the identity matrix. By applying the process
outlined by (18)-(24), we can significantly mitigate the impact
of prediction outliers, as will be further illustrated in Section
V.

IV. OUTDOOR 5G NR MEASUREMENT CAMPAIGN

To evaluate our localization pipeline, an outdoor vehicular
measurement campaign was conducted at a parking lot outside
of the Ericsson office in Lund, Sweden. Photos of the test
vehicle, the BS antenna, the UE as well as the measurement
areas are presented in Fig. 4.

A. Introduction to the measurement campaign

During the measurement campaign, the test vehicle car-
ried a GNSS receiver, and a commercial UE, see Fig. 4(a).
Centimeter-level ground truth positioning accuracy was
achieved using a Swift Duro high-performance GNSS receiver
with Real Time Kinematics (RTK) technology, GNSS multi-
band and multi-constellation support. To ensure that the UE re-
mained in connected state, it simultaneously downloaded data
at a 750 Mbit/s rate enabling continuous SRS UL transmission.
The UL SRS pilot signals were received and processed by a
commercial Ericsson 5G BS operating in mid-band at 3.85
GHz center frequency. The BS was compliant to the 5G
NR 3GPP standard 38.104 Rel15 [35] and equipped with a
TDD antenna integrated radio with 64 transmitters/receivers
(TX/RX) consisting of 32 dual-polarized antennas covering a
120 degree sector. As for digital beam forming, 64 TX/RX
formulate 64 beams in DL/UL respectively. As illustrated
in Fig. 3, the SRS channel estimates are reported for 273
PRBs over a 100 MHz bandwidth. Each channel snapshot
contains the 273 PRBs for all 64 beams. The PRBs are
grouped and averaged in pairs, resulting in 137 Physical
Resource Blocks Sub Groups (PRSG). Down sampling was
done so that every third PRSG was further used generating
46 PRSGs in total. The UE was equipped with 4 antenna
ports, i.e. 4 UE layers, sounding SRS pilots. Due to the
capacity of our data-streaming system, the BS recorded the
channel responses of 2 UE antenna ports which formulate
two channel transfer function matrices H1,H2 ∈ CN×F . We
define a matrix H′ ∈ C2N×F to collect those two matrices,
specifically, H′ = [H1,H2] (N = 64, F = 46). As illustrated
in Fig. 4, our measurement campaign comprises three distinct
scenarios: LoS, NLoS, and a mixed scenario. In all scenarios,
the velocity of the vehicle is approximately 15 km/h. The
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PRB 3-4 5-6 7-8       272-273      266-267
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PRSG 1 4645

H8 8x H8 8x H8 8xH8 8x

H8 8x H8 8x

I64
Q64

H8 8
Q1

I1

Q64

1

64

65

128

UE TX 1/3

46451

FLATTEN

FLATTEN

UE TX 2/4I64

Fig. 3: SRS data collection and CTF generation.
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III

III

GPS
UE

BS

B

A

D
C

(a) GPS and UE (b) Measurement Scenario (c) Measurement van

Fig. 4: The 5G NR base station was equipped with an antenna integrated radio with 64 transmitters and receivers, placed on top of a 20 m
high building. In this measurement campaign, a vehicle moves along three pre-defined routes: I A route on a 10 meter-high garage for LOS
measurements. II: A ground-level route for NLoS measurements below the building of the BS. III: A ground-level route for combined LoS
and NLoS measurements.

trajectory for each of the three measurement scenarios consists
of 5 laps. In the LoS scenario, the test vehicle drove at an
open parking lot, while in the NLoS scenario, the vehicle
was driving next to a tall building that obstructed the LoS
path. As for the mixed scenario, NLoS conditions occurred
when the LoS was blocked by the water tower. For all three
measurements, the BS station recorded channel snapshots with
20 ms periodicity, resulting in T1 = 22000, T2 = 24603 and
T3 = 27087 channel snapshots. We formulate three tensors
ALoS ∈ CT1×2N×F , ANLoS ∈ CT2×2N×F , Amix ∈ CT3×2N×F

to collect all snapshots. Those three tensors are normalized by
multiplying each with a scalar so that their Euclidean norms
equals TiMN , where i = 1, 2, 3.

B. Measured propagation channel characteristics

We choose four UE positions (positions A-D, see Fig. 4 (b))
from the three measurement scenarios and show representative
CIRs in Fig. 6 (a)-(d). To be specific, Fig. 6 (a) illustrates a
typical LoS scenario where a dominant LoS path can be seen
from both the CIR and the beam patterns. Few beams exhibit
dominant power levels, while others remain comparatively
weaker. Although few NLoS-paths can still be observed, their
strengths are much weaker compared to the direct path. This
is because the UE is located in an open parking lot, where
the reflected signals from other buildings are relatively weak.
From the beam power pattern, one can observe the signal
strength variations of different BS antenna polarizations and
UE transmission layers as well. In contrast, Fig. 6 (b) displays
NLoS channel characteristics where the BS captures several
reflected paths and there is no path with a dominant power.
Thus, the signal strength in Fig. 6 (b) is lower compared to
the case in Fig. 6 (a). Fig. 6 (c) and Fig. 6 (d) present the
measured channels in a mixed scenario, where more local
scatters surround the UE. The distance between UE position
C and the BS is greater than that of UE position A, resulting

TABLE I: Overview of our ML-based single snapshot localization
pipeline

Item Network Structures or Parameters
Input Features Amplitude of CIRs for all beams

Network Output Estimated position labels or probabilities
Intermediate block 1 Residual 2-Heads Self-attention Network
Intermediate block 2 Residual Position-wise FCNNs
Intermediate block 3 3 cascaded ordinary FCNNs

Time Complexity NF 2

in a decrease in the strength of the received LoS signal.
Nevertheless, the BS is capable of detecting stronger reflective
paths in addition to the LoS path, attributed to reflections from
surrounding buildings. Similarly, in Fig. 6 (d), a rich number
of multipath components can be observed in both the CIR and
the beam pattern, despite the LoS path being obstructed.

V. RESULTS AND DISCUSSION

In this section, we evaluate our ML-based localization
pipeline using the measurements. We initially compare the
single-snapshot localization performance for different ML
algorithms under different scenarios. Then, we demonstrate
the performance gain achieved by smoothing multiple position
estimates with a Kalman filter.

A. Single snapshot localization

Our approach starts with assessing the validity of the input
channel snapshot, as outlined in Section. III. B. The first
criterion, related to the CTF matrix Ξ, employs a cut threshold
set at 3500 out of 5888 (128×46) available physical resource
elements, approximately 60%, so that the channel information
is sufficient. After discarding snapshots with insufficient data,
we generate the amplitude of impulse response beam matrix
|Gt| and feed it to the attention-aided localization block. This
block, with detailed parameters in Table. I, comprises three
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Fig. 6: CIR and relative power of all 128 beams of four locations (a) LoS at point A, (b) NLoS at point B, (c) LoS at point C, (d) NLoS
at point D. Beam diagrams are arranged as follows: row 0− 3 and row 4− 7 represent the 32 horizontal and 32 vertical-polarized beams
respectively for UE layer 1; row 8− 11 and row 12− 15 represent the co-polarized beams for UE layer 2. Beam index is 8 ∗ (i− 1) + j,
where i and j denote the row and column index respectively. We select the first 4 strongest beam and plot the relative amplitude of CIR.

cascaded sub-blocks. Initially, positioning encoding is applied
to |Gt| using (7). Subsequently, a layer normalization proce-
dure follows according to (8). The normalized matrix is then
input into a simple 2-head self-attention block with a single
self-attention layer, generating matrix Z′ via (2-6). After the
Add & Norm operation, the output is transferred to the second
sub-block, consisting of two position-wise Fully Connected
Neural Networks (FCNNs) with sizes W1 ∈ 46 × 128 and
W2 ∈ 128 × 46. Following this, the output matrix of the
second sub-block is vectorized to yield a vector of length 5888.
This vector is fed into the last FCNN sub-block, with sizes as
given in Table II. We compare the localization performance
when using three different loss functions and in three typical
scenarios. As illustrated, the output matrix of the second inter-
mediate block is first vectorized and fed to the input layer of
the third sub-block, which consists of 2-3 FCNNs depending
on the choice of loss functions. When the loss function RbC
is used, its corresponding network delivers the probability of

all Lx and Ly bins. In scenario I, Lx = Ly = 200 while in the
other two scenarios Lx = Ly = 100. The deviation vectors dx

and dy are set as: dx = δx1,dy = δy1, where 1 denotes the
all-ones vector, δx and δy denote the deviation value of the x-
and y-axis, respectively. Accordingly, the output dimension L̃
equals Lx + Ly + 2. The penalty term γ1 and γ2 are set as:
γ1 = γ2 = 1. In addition, the Euclidean norm loss function is
utilized, i.e. η = 2.

Fig. 7 compares the positioning accuracy of our single-
snapshot localization pipeline using three loss functions in
three scenarios under different training densities. As shown,
the RbC method outperforms the other two methods in all
three scenarios and under both high and low training densities.
Compared to the other two methods, RbC learns better the
non-Gaussian probability distribution of the UE position, while
the performance of the NLL method is constrained by its
underlying Gaussian assumption, and the MSE method does
not estimate uncertainty. The performance of these three meth-
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Fig. 7: Positioning errors of different training densities in the three
scenarios: (a) LoS, (b) NLoS, (c) Mixed.

ods differ less in the LoS scenario and high training density,
because the estimated UE position has less uncertainty in this
situation. However, in other scenarios or lower training density,
the uncertainty of the estimated UE position increases due to
reduced SNR or training samples. Consequently, an accurate
uncertainty estimation is more essential, and thus the RbC
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Fig. 8: Sparsification curves of NLL and RbC methods under high
training density (4 laps as training data) and across three scenarios:
(a) LoS, (b) NLoS, (c) Mixed.

method performs much better. At both high and low training
densities, our pipeline performs best in LoS scenarios, the
mixed scenario ranks 2nd, while the localization performance
in the NLoS scenario is the worst. We postulate that in the
LoS scenario, the much higher SNR contributes to very good
positioning accuracy.

To further compare the uncertainty estimation quality of
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TABLE II: Structures and parameter settings of the third FCNN sub-
block using three different loss functions.

Items
Loss F. MSE NLL RbC

Input layer size 5888× 1 5888× 1 5888× 1
Hidden layer 1 5888× 128 5888× 128 5888× 128

Hidden layer 2 128× 32 128× 32 128× L̃
Hidden layer 3 32× 2 32× 4 N/A

Batch size 64 64 64
Lr: LoS (4 laps) 0.0006 0.0006 0.0006

Lr: NLoS (4 laps) 0.0006 0.0006 0.0006
Lr: Mixed (4 laps) 0.0006 0.0006 0.0006
Lr: LoS (2 laps) 0.0002 0.0002 0.0002

Lr: NLoS (2 laps) 0.0001 0.0001 0.0001
Lr: Mixed (2 laps) 0.0002 0.0002 0.0002

Learning Epoch 100 100 100
Cost function (11) (12) (13)

TABLE III: AUSE values of two uncertainty estimation algorithms
under different training densities across three channel scenarios.

NLL-x RbC-x NLL-y RbC-y
LoS (4 laps) 0.480 0.179 0.351 0.163

NLoS (4 laps) 0.579 0.427 0.704 0.548
Mixed (4 laps) 1.428 0.616 1.543 0.325
LoS (2 laps) 1.951 0.968 2.023 1.181

NLoS (2 laps) 3.816 1.868 3.407 2.475
Mixed (2 laps) 4.682 0.809 3.540 1.138

the NLL and RbC methods, we demonstrate the sparsification
and oracle curves of the probability density functions of the
estimated UE-x and y coordinates under high training density
in Fig. 8. Specifically for the NLL method, we discretize the
predicted Gaussian functions to achieve the same number of
discrete bins as the RbC method, according to (16). The AUSE
values for all training densities are calculated according to (17)
and are displayed in Table III. To reduce the effect of outliers,
the starting point of the sparsification and oracle curves equals
99% of the positioning error. As depicted in Fig. 8, the
discrepancies between the sparsification (entropy) and oracle
curves are significantly reduced in all three scenarios when
the RbC method is used. This improvement is reflected in the
improved AUSE values presented in Table III. These findings
underscore the quality of the uncertainty estimation achieved
with our approach.

B. Smoothing the trajectory by Kalman filtering

Next, we investigate the performance when using a Kalman
filter for smoothing within our pipeline. To clearly visualize
the effect of the Kalman filter, we apply a low training density,
using two laps for training and one lap for testing. First, the
validity of each channel CSI is assessed by the data cleaning
block. All test channel samples classified as valid are then
utilized for evaluation. Similarly to Section V.B, we apply an
attention-aided block as the backbone and the output layer
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Fig. 9: Comparison between the raw (the left) and Kalman-filtered
trajectory (a) LoS, (b) NLoS, (c) Mixed.

utilizes the RbC uncertainty estimation. For simplicity, the
matrix Λ in (20) and the matrix R in (23) are set as

Λ = ϵ21 I, R = ϵ22 I, (25)

where ϵ1 and ϵ2 denote the standard deviation, which indicates
the state and observation noise levels, respectively. Their exact
values for the three scenarios are listed in Table IV. Fig. 8
shows the predicted UE trajectories both with (right) and with-
out (left) the Kalman filter for the three scenarios. The MSE
between the predicted trajectories and their ground truths is
shown in Table. IV. As expected, the results demonstrate a sig-
nificant improvement with the inclusion of the Kalman filter:
the trajectories become considerably smoother, and outliers are
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TABLE IV: Parameter settings and performance evaluation when
applying the Kalman Filtering

ϵ1 ϵ2 RMSE (m), before filter RMSE (m)
LoS 0.05 1.2 0.99 0.92

NLoS 0.05 1.2 2.00 1.75
Mixed 0.05 1.2 1.01 0.82

mitigated to a large extent. Consequently, there is a substantial
enhancement in localization accuracy, particularly evident in
NLoS and mixed propagation scenarios. This improvement
can be attributed to the ability of the Kalman filter to utilize
relationships between different snapshots, which effectively
balances the newly predicted UE position with previous posi-
tional states, leading to more accurate localization.

VI. CONCLUSIONS

In this paper, machine learning is applied to a 5G NR cellu-
lar system for UE localization. A novel ML-based localization
pipeline is presented, which utilizes attention-aided techniques
to estimate UE positions by employing impulse response beam
matrices as channel fingerprints. In addition, we implement
two uncertainty estimation techniques, namely the NLL and
RbC methods, to estimate the probability density function
of the UE position error and compare their performances.
Finally, a Kalman filter is applied to smooth consecutive
position estimates. To evaluate our pipeline, an outdoor cel-
lular 5G measurement campaign was conducted at 3.85 GHz
with a 100 MHz bandwidth, covering both LoS and NLoS
scenarios, achieving submeter-level localization accuracy. The
measurement results indicate several key findings: 1) The
attention-aided block shows promising potential to deliver
high-precision localization accuracy. 2) The RbC uncertainty
method outperforms the traditional NLL method, particularly
with low training density or in more complex channel propa-
gation scenarios. This advantage likely stems from the fact that
the RbC method is not constrained by a Gaussian assumption
on position errors. 3) Applying a Kalman filter to smooth
consecutive position estimates significantly reduces position
outliers, thereby enhancing localization accuracy.
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