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FROM LOCAL TO GLOBAL ORDER: A THEORY OF NEURAL

SYNAPTIC BALANCE

PIERRE BALDI AND ALIREZA RAHMANSETAYESH

Abstract. We develop a general theory of neural synaptic balance and how it can emerge
or be enforced in neural networks. For a given additive cost function R (regularizer), a
neuron is said to be in balance if the total cost of its input weights is equal to the total
cost of its output weights. The basic example is provided by feedforward networks of ReLU
units trained with L2 regularizers, which exhibit balance after proper training. The theory
explains this phenomenon and extends it in several directions. The first direction is the
extension to bilinear and other activation functions. The second direction is the extension
to more general regularizers, including all Lp (p > 0) regularizers. The third direction is
the extension to non-layered architectures, recurrent architectures, convolutional architec-
tures, as well as architectures with mixed activation functions. Gradient descent on the
error function alone does not converge in general to a balanced state where every neuron
is in balance, even when starting from a balanced state. However, gradient descent on the
regularized error function must converge to a balanced state, and thus network balance can
be used to assess learning progress. The theory is based on two local neuronal operations:
scaling which is commutative, and balancing which is not commutative. Finally, and most
importantly, given any initial set of weights, when local balancing operations are applied to
each neuron in a stochastic manner, global order always emerges through the convergence of
the stochastic balancing algorithm to the same unique set of balanced weights. The reason
for this convergence is the existence of an underlying strictly convex optimization problem
where the relevant variables are constrained to a linear, only architecture-dependent, man-
ifold. The theory is corroborated through various simulations carried out on benchmark
data sets. Scaling and balancing operations are entirely local and thus physically plausible
in biological and neuromorphic networks.

Keywords: neural networks; deep learning; activation functions; regularization; scaling;
neural balance.
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1. Introduction

One of the most common complaints against neural networks is that they provide at best
“black-box” solutions to problems. In particular, when large neural networks are trained on
complex tasks, they produce large arrays of synaptic weights that have no clear structure
and are difficult to interpret. Thus finding any kind of structure in the weights of large
neural networks is of great interest. Here we study a particular kind of structure we call
neural synaptic balance and the conditions under which it emerges. Neural synaptic balance
is different from the biological notion of balance between excitation and inhibition [12, 10,
13, 17, 23]. We use the term to refer to any systematic relationship between the input and
output synaptic weights of individual neurons or layers of neurons. Here we consider the case
where the cost of the input weights is equal to the cost of the output weights, where the cost
is defined by some regularizer. One of the most basic examples of such a relationship is when
the sum of the squares of the input weights of a neuron is equal to the sum of the squares of
its output weights.
Basic Example: The basic example where this happens is with a neuron with a ReLU acti-
vation function inside a network trained to minimize an error function with L2 regularization.
If we multiply the incoming weights of the neuron by some λ > 0 and divide the outgoing
weights of the neuron by the same λ, it is easy to see that this double scaling operation
does not affect in any way the contribution of the neuron to the rest of the network. Thus,
any component of the error function that depends only on the input-output function of the
network is unchanged. However, the value of the L2 regularizer changes with λ and we can
ask what is the value of λ that minimizes the corresponding contribution given by:

∑

i∈IN

(λwi)
2 +

∑

i∈OUT

(wi/λ)
2 = λ2A+

1

λ2
B (1.1)

where IN and OUT denote the set of incoming and outgoing weights respectively, A =
∑

i∈IN w2
i , and B =

∑

i∈OUT w2
i . The product of the two terms on the right-hand side of

Equation 1.1 is equal to AB and does not depend on λ. Thus, the minimum is achieved when
these two terms are equal, which yields: (λ∗)4 = B/A for the optimal λ∗. The corresponding
new set of weights, vi = λ∗wi for the input weights and vi = wi/λ

∗ for the outgoing weights,
must be balanced:

∑

i∈IN v2i =
∑

i∈OUT v2i . This is because the optimal scaling factor for
these rescaled weights must be λ∗ = 1. Furthermore, if an entire network of ReLU neurons is
properly trained using a standard error function with an L2 regularizer, at the end of training
one observes a remarkable phenomenon: for each ReLU neuron, the norm of the incoming
synaptic weights is approximately equal to the norm of the outgoing synaptic weights, i.e.
every neuron is balanced.

There have been isolated previous studies of this kind of synaptic balance [9, 25] under
special conditions. For instance, in [9], it is shown that if a deep network is initialized in a
balanced state with respect to the sum of squares metric, and if training progresses with an
infinitesimal learning rate, then balance is preserved throughout training. Here, we take a
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different approach aimed at uncovering the generality of neuronal balance phenomena, the
learning conditions under which they occur, as well as new local balancing algorithms and
their convergence properties. We explain and study neural synaptic balance in its generality
in terms of activation functions, regularizers, network architectures, and training stages. In
particular, we systematically answer questions such as: Why does balance occur? Does it
occur only with ReLU neurons? Does it occur only with L2 regularizers? Does it occur only
in fully connected feedforward architectures (as opposed to, for instance, locally connected,
convolutional, or recurrent architectures)? Does it occur only at the end of training? In
the process of answering these questions, we introduce local scaling and balancing operations
for individual neurons or entire neural layers. Furthermore, we show that when these local
operations are applied stochastically, a global balanced state always emerges, and this state
is unique and depends only on the initial weights, but not on the order in which the neurons
are balanced.

2. Homogeneous and BiLU Activation Functions

In this section, we generalize the basic example of the introduction from the standpoint of
the activation functions. In particular, we consider homogeneous activation functions (defined
below). The importance of homogeneity has been previously identified in somewhat different
contexts [19]. Intuitively, homogeneity is a form of linearity with respect to weight scaling
and thus it is useful to motivate the concept of homogeneous activation functions by looking
at other notions of linearity for activation functions. This will also be useful for Section 6
where even more general classes of activation functions are considered.

2.1. Additive Activation Functions.

Definition 2.1. A neuronal activation function f : R → R is additively linear if and only if
f(x+ y) = f(x) = (f(y) for any real numbers x and y.

Proposition 2.2. The class of additively linear activation functions is exactly equal to the
class of linear activation functions, i.e., activation functions of the form f(x) = ax.

Proof. Obviously linear activation functions are additively linear. Conversely, if f is addi-
tively linear, the following three properties are true:
(1) One must have: f(nx) = nf(x) and f(x/n) = f(x)/n for any x ∈ R and any n ∈ N. As
a result, f(n/m) = nf(1)/m for any integers n and m (m 6= 0).
(2) Furthermore, f(0 + 0) = f(0) + f(0) which implies: f(0) = 0.
(3) And thus f(x− x) = f(x) + f(−x) = 0, which in turn implies that f(−x) = −f(x).
From these properties, it is easy to see that f must be continuous, with f(x) = xf(1), and
thus f must be linear. �

2.2. Multiplicative Activation Functions.

Definition 2.3. A neuronal activation function f : R → R is multiplicative if and only if
f(xy) = f(x)(f(y) for any real numbers x and y.

Proposition 2.4. The class of continuous multiplicative activation functions is exactly equal
to the class of functions comprising the functions: f(x) = 0 for every x, f(x) = 1 for every
x, and all the even and odd functions satisfying f(x) = xc for x ≥ 0, where c is any constant
in R.
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Proof. It is easy to check the functions described in the proposition are multiplicative. Con-
versely, assume f is multiplicative. For both x = 0 and x = 1, we must have f(x) = f(xx) =
f(x)f(x) and thus f(0) is either 0 or 1, and similarly for f(1). If f(1) = 0, then for any x
we must have f(x) = 0 because: f(x) = f(1x) = f(1)f(x) = 0. Likewise, if f(0) = 1, then
for any x we must have f(x) = 1 because: 1 = f(0) = f(0x) = f(0)f(x) = f(x). Thus, in
the rest of the proof, we can assume that f(0) = 0 and f(1) = 1. By induction, it is easy
to see that for any x ≥ 0 we must have: f(xn) = f(x)n and f(x1/n) = (f(x))1/n for any
integer (positive or negative). As a result, for any x ∈ R and any integers n and m we must

have: f(xn/m) = f(x)n/m. By continuity this implies that for any x ≥ 0 and any r ∈ R, we
must have: f(xr) = f(x)r. Now there is some constant c such that: f(e) = ec. And thus,
for any x > 0, f(x) = f(elog x) = [f(e)]log x = ec log x = xc. To address negative values of
x, note that we must have f [(−1)(−1 = f(1) = 1f(−1)2. Thus, f(−1) is either equal to 1
or to -1. Since for any x > 0 we have f(−x) = f(−1)f(x), we see that if f(−1) = 1 the
function must be even (f(−x) = f(x) = xc), and if f(−1) = −1 the function must be odd
(f(−x) = −f(x)). �

We will return to multiplicative activation function in a later section.

2.3. Linearly Scalable Activation Functions.

Definition 2.5. A neuronal activation function f : R → R is linearly scalable if and only if
f(λx) = λf(x) for every λ ∈ R.

Proposition 2.6. The class of linearly scalable activation functions is exactly equal to the
class of linear activation functions, i.e., activation functions of the form f(x) = ax.

Proof. Obviously, linear activation functions are linearly scalable. For the converse, if f is
linearly multiplicative we must have f(λx) = λf(x) = xf(λ) for any x and any λ. By taking
λ = 1, we get f(x) = f(1)x and thus f is linear. �

Thus the concepts of linearly additive or linearly scalable activation function are of limited
interest since both of them are equivalent to the concept of linear activation function. A
more interesting class is obtained if we consider linearly scalable activation functions, where
the scaling factor λ is constrained to be positive (λ > 0), also called homogeneous functions.

2.4. Homogeneous Activation Functions.

Definition 2.7. (Homogeneous) A neuronal activation function f : R → R is homogeneous
if and only if: f(λx) = λf(x) for every λ ∈ R with λ > 0.

Remark 2.8. Note that if f is homogeneous, f(λ0) = λf(0) = f(0) for any λ > 0 and thus
f(0) = 0. Thus it makes no difference in the definition of homogeneous if we set λ ≥ 0 instead
of λ > 0).

Remark 2.9. Clearly, linear activation functions are homogeneous. However, there exists also
homogeneous functions that are non-linear, such as ReLU or leaky ReLU activation functions.

We now provide a full characterization of the class of homogeneous activation functions.

2.5. BiLU Activation Functions. We first define a new class of activation functions, cor-
responding to bilinear units (BiLU), consisting of two half-lines meeting at the origin. This
class contains all the linear functions, as well as the ReLU and leaky ReLU functions, and
many other functions.
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Definition 2.10. (BiLU) A neuronal activation function f : R → R is bilinear (BiLU) if
and only if f(x) = ax when x < 0, and f(x) = bx when x ≥ 0, for some fixed parameters a
and b in R.

These include linear units (a = b), ReLU units (a = 0, b = 1), leaky ReLU (a = ǫ; b = 1)
units, and symmetric linear units (a = −b), all of which can also be viewed as special
cases of piece-wise linear units [27], with a single hinge. One advantage of ReLU and more
generally BiLU neurons, which is very important during backpropagation learning, is that
their derivative is very simple and can only take one of two values (a or b).

Proposition 2.11. A neuronal activation function f : R → R is homogeneous if and only if
it is a BiLU activation function.

Proof. Every function in BiLU is clearly homogeneous. Conversely, any homogeneous func-
tion f must satisfy: (1) f(0x) = 0f(x) = f(0) = 0; (2)f(x) = f(1x) = f(1)x for any positive
x; and (3) f(x) = f(−u) = f(−1)u = −f(−1)x for any negative x. Thus f is in BiLU with
a = −f(−1) and b = f(1). �

In Appendix A, we provide a simple proof that networks of BiLU neurons, even with a
single hidden layer, have universal approximation properties. In the next two sections, we
introduce two fundamental neuronal operations, scaling and balancing, that can be applied
to the incoming and outgoing synaptic weights of neurons with BiLU activation functions.

3. Scaling

Definition 3.1. (Scaling) For any BiLU neuron i in network and any λ > 0, we let Sλ(i)
denote the synaptic scaling operation by which the incoming connection weights of neuron i
are multiplied by λ and the outgoing connection weights of neuron i are divided by λ.

Note that because of the homogeneous property the scaling operation does not change how
neuron i affects the rest of the network. In particular, the input-output function of the overall
network remains unchanged after scaling neuron i bt any λ > 0. Note also that scaling always
preserves the sign of the synaptic weights to which it is applied, and the scaling operation
can never convert a non-zero synaptic weight into a zero synaptic weight, or vice versa.

As usual, the bias is treated here as an additional synaptic weight emanating from a unit
clamped to the value one. Thus scaling is applied to the bias.

Proposition 3.2. (Commutativity of Scaling) Scaling operations applied to any pair of BiLU
neurons i and j in a neural network commute: Sλ(i)Sµ(j) = Sµ(j)Sλ(i), in the sense that the
resulting network weights are the same, regardless of the order in which the scaling operations
are applied. Furthermore, for any BiLU neuron i: Sλ(i)Sµ(i) = Sµ(i)Sλ(i) = Sλµ(i).

This is obvious. As a result, any set I of BiLU neurons in a network can be scaled simul-
taneously or in any sequential order while leading to the same final configuration of synaptic
weights. If we denote by 1, 2, . . . , n the neurons in I, we can for instance write:

∏

i∈I Sλi
(i) =

∏

σ(i)∈I Sλσ(i)
(σ(i)) for any permutation σ of the neurons. Likewise, we can collapse oper-

ations applied to the same neuron. For instance, we can write: S5(1)S2(2)S3(1)S4(2) =
S15(1)S8(2) = S8(2)S15(1)

Definition 3.3. (Coordinated Scaling) For any set I of BiLU neurons in a network and any
λ > 0, we let Sλ(I) denote the synaptic scaling operation by which all the neurons in I are
scaled by the same λ.
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4. Balancing

Definition 4.1. (Balancing) Given a BiLU neuron in a network, the balancing operation
B(i) is a particular scaling operation B(i) = Sλ∗(i), where the scaling factor λ∗ is chosen to
optimize a particular cost function, or regularizer, asociated with the incoming and outgoing
weights of neuron i.

For now, we can imagine that this cost function is the usual L2 (least squares) regularizer,
but in the next section, we will consider more general classes of regularizers and study the
corresponding optimization process. For the L2 regularizer, as shown in the next section,
this optimization process results in a unique value of λ∗ such that sum of the squares of
the incoming weights is equal to the sum of the squares of the outgoing weights, hence the
term “balance”. Note that obviously B(B(i)) = B(i) and that, as a special case of scaling
operation, the balancing operation does not change how neuron i contributes to the rest of
the network, and thus it leaves the overall input-output function of the network unchanged.

Unlike scaling operations, balancing operations in general do not commute as balancing
operations (they still commute as scaling operations). Thus, in general, B(i)B(j) 6= B(j)B(i).
This is because if neuron i is connected to neuron j, balancing i will change the connection
between i and j, and, in turn, this will change the value of the optimal scaling constant for
neuron j and vice versa. However, if there are no non-zero connections between neuron i and
neuron j then the balancing operations commute since each balancing operation will modify
a different, non-overlapping, set of weights.

Definition 4.2. (Disjoint neurons) Two neurons i and j in a neural network are said to be
disjoint if there are no non-zero connections between i and j.

Thus in this case B(i)B(j) = Sλ∗(i)Sµ∗(j) = Sµ∗(j)Sλ∗(i) = B(j)B(i). This can be
extended to disjoint sets of neurons.

Definition 4.3. (Disjoint Set of Neurons) A set I of neurons is said to be disjoint if for any
pair i and j of neurons in I there are no non-zero connections between i and j.

For example, in a layered feedforward network, all the neurons in a layer form a disjoint
set, as long as there are no intra-layer connections or, more precisely, no non-zero intra-layer
connections. All the neurons in a disjoint set can be balanced in any order resulting in the
same final set of synaptic weights. Thus we have:

Proposition 4.4. If we index by 1, 2, . . . , n the neurons in a disjoint set I of BiLU neurons
in a network, we have:

∏

i∈I B(i) =
∏

i∈I Sλ∗

i
(i) =

∏

σ(i)∈I Sλ∗

σ(i)
(σ(i)) =

∏

σ(i)∈I B(σ(i)) for

any permutation σ of the neurons.

Finally, we can define the coordinated balancing of any set I of BiLU neurons (disjoint or
not disjoint).

Definition 4.5. (Coordinated Balancing) Given any set I of BiLU neurons (disjoint or
not disjoint) in a network, the coordinated balacing of these neurons, written as Bλ∗(I),
corresponds to coordinated scaling all the neurons in I by the same factor λ∗, Where λ∗

minimizes the cost functions of all the weights, incoming and outgoing, associated with all
the neurons in I.

Remark 4.6. While balancing corresponds to a full optimization of the scaling operation, it
is also possible to carry a partial optimization of the scaling operation by choosing a scaling
factor that reduces the corresponding contribution to the regularizer without minimizing it.
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5. General Framework and Single Neuron Balance

In this section, we generalize the kinds of regularizer to which the notion of neuronal
synaptic balance can be applied, beyond the usual L2 regularizer and derive the corresponding
balance equations. Thus we consider a network (feedforward or recurrent) where the hidden
units are BiLU units. The visible units can be partitioned into input units and output units.
For any hidden unit i, if we multiply all its incoming weights IN(i) by some λ > 0 and all
its outgoing weights OUT (i) by 1/λ the overall function computed by the network remains
unchanged due to the BiLU homogeneity property. In particular, if there is an error function
that depends uniquely on the input-output function being computed, this error remains
unchanged by the introduction of the multiplier λ. However, if there is also a regularizer R
for the weights, its value is affected by λ and one can ask what is the optimal value of λ
with respect to the regularizer, and what are the properties of the resulting weights. This
approach can be applied to any regularizer. For most practical purposes, we can assume that
the regularizer is continuous in the weights (hence in λ) and lower-bounded. Without any
loss of generality, we can assume that it is lower-bounded by zero. If we want the minimum
value to be achieved by some λ > 0, we need to add some mild condition that prevents the
minimal value to be approached as λ → 0), or as λ → +∞. For instance, it is enough if there
is an interval [a, b] with 0 < a < b where R achieves a minimal value Rmin and R ≥ Rmin in
the intervals (0, a] and [b,+∞). Additional (mild) conditions must be imposed if one wants
the optimal value of λ to be unique, or computable in closed form (see Theorems below).
Finally, we want to be able to apply the balancing approach

Thus, we consider overall regularized error functions, where the regularizer is very general,
as long as it has an additive form with respect to the individual weights:

E(W ) = E(W ) +R(W ) with R(W ) =
∑

w

gw(w) (5.1)

where W denotes all the weights in the network and E(W ) is typically the negative log-
likelihood (LMS error in regression tasks, or cross-entropy error in classification tasks). We
assume that the gw are continuous, and lower-bounded by 0. To ensure the existence and
uniqueness of minimum during the balancing of any neuron, We will assume that each function
gw depends only on the magnitude |w| of the corresponding weight, and that gw is mono-
tonically increasing from 0 to +∞ (gw(0) = 0 and limx→+∞ gw(x) = +∞). Clearly, L2, L1

and more generally all Lp regularizers are special cases where, for p > 0, Lp regularization is
defined by: R(W ) =

∑

w |w|p.
When indicated, we may require also that the functions gw be continuously differentiable,

except perhaps at the origin in order to be able to differentiate the regularizer with respect
to the λ’s and derive closed form conditions for the corresponding optima. This is satisfied
by all forms of Lp regularization, for p > 0.

Remark 5.1. Often one introduces scalar multiplicative hyperparameters to balance the effect
of E and R, for instance in the form: E = E+βR. These cases are included in the framework
above: multipliers like β can easily be absorbed into the functions gw above.

Theorem 5.2. (General Balance Equation). Consider a neural network with BiLU activation
functions in all the hidden units and overall error function of the form:

E = E(W ) +R(W ) with R(W ) =
∑

w

gw(w) (5.2)
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where each function gw(w) is continuous, depends on the magnitude |w| alone, and grows
monotonically from gw(0) = 0 to gw(+∞) = +∞. For any setting of the weights W and any
hidden unit i in the network and any λ > 0 we can multiply the incoming weights of i by λ
and the outgoing weights of i by 1/λ without changing the overall error E. Furthermore, there
exists a unique value λ∗ where the corresponding weights v (v = λ∗w for incoming weights,
v = w/λ∗ for the outgoing weights) achieve the balance equation:

∑

v∈IN(i)

gw(v) =
∑

w∈OUT (i)

gw(v) (5.3)

Proof. Under the assumptions of the theorem, E is unchanged under the rescaling of the
incoming and outgoing weights of unit i due to the homogeneity property of BiLUs. Without
any loss of generality, let us assume that at the beginning:

∑

w∈IN(i) gw(w) <
∑

w∈OUT (i) gw(w).

As we increase λ from 1 to +∞, by the assumptions on the functions gw, the term
∑

w∈IN(i) gw(λw)

increases continuously from its initial value to +∞, whereas the term
∑

w∈OUT (i) gw)w/λ)

decreases continuously from its initial value to 0. Thus, there is a unique value λ∗ where the
balance is realized. If at the beginning

∑

w∈IN(i) gw(w) >
∑

w∈OUT (i) gw(w), then the same

argument is applied by decreasing λ from 1 to 0. �

Remark 5.3. For simplicity, here and in other sections, we state the results in terms of a
network of BiLU units. However, the same principles can be applied to networks where
only a subset of neurons are in the BiLU class, simply by applying scaling and balancing
operations to only those neurons. Furthermore, not all BiLU neurons need to have the same
BiLU activation functios. For instance, the results still hold for a mixed network containing
both ReLU and linear units.

Remark 5.4. In the setting of Theorem 5.2, the balance equations do not necessarily minimize
the corresponding regularization term. This is addressed in the next theorem.

Remark 5.5. Finally, zero weights (w = 0) can be ignored entirely as they play no role in
scaling or balancing. Furthermore, if all the incoming or outgoing weights of a hidden unit
were to be zero, it could be removed entirely from the network

Theorem 5.6. (Balance and Regularizer Minimization) We now consider the same setting
as in Theorem 5.2, but in addition we assume that the functions gw are continuously differ-
entiable, except perhaps at the origin. Then, for any neuron, there exists at least one optimal
value λ∗ that minimizes R(W ). Any optimal value must be a solution of the consistency
equation:

λ2
∑

w∈IN(i)

wg′w(λw) =
∑

w∈OUT (i)

wg′w(w/λ) (5.4)

Once the weights are rebalanced accordingly, the new weights must satisfy the generalized
balance equation:

∑

w∈IN(i)

wg′(w) =
∑

w∈OUT (i)

wg′(w) (5.5)

In particular, if gw(w) = |w|p for all the incoming and outgoing weights of neuron i, then the
optimal value λ∗ is unique and equal to:
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λ∗ =
(

∑

w∈OUT (i) |w|
p

∑

w∈IN(i) |w|
p

)1/2p
=

( ||OUT (i)||p
||IN(i)||p

)1/2
(5.6)

The decrease ∆R ≥ 0 in the value of the Lp regularizer R =
∑

w |w|p is given by:

∆R =

(

(

∑

w∈IN(i)

|w|p
)1/2

−
(

∑

w∈OUT (i)

|w|p
)1/2

)2

(5.7)

After balancing neuron i, its new weights satisfy the generalized Lp balance equation:

∑

w∈IN(i)

|w|p =
∑

w∈OUT (i)

|w|p (5.8)

Proof. Due to the additivity of the regularizer, the only component of the regularizer that
depends on λ has the form:

R(λ) =
∑

w∈IN(i)

gw(λw) +
∑

w∈OUT (i)

gw(w/λ) (5.9)

Because of the properties of the functions gw, Rλ is continously differentiable and strictly
bounded below by 0. So it must have a minimum, as a function of λ where its derivative is
zero. Its derivative with respect to λ has the form:

R′(λ) =
∑

w∈IN(i)

wg′w(λw) +
∑

w∈OUT (i)

(−w/λ2)g′w(w/λ) (5.10)

Setting the derivative to zero, gives:

λ2
∑

w∈IN(i)

wg′w(λw) =
∑

w∈OUT (i)

wg′w(w/λ) (5.11)

Assuming that the left-hand side is non-zero, which is generally the case, the optimal value
for λ must satisfy:

λ =
(

∑

w∈OUT (i)wg
′
w(w/λ)

∑

w∈IN(i) wg
′
w(λw)

)1/2
(5.12)

If the regularizing function is the same for all the incoming and outgoing weights (gw = g),
then the optimal value λ must satisfy:

λ =
(

∑

w∈OUT (i)wg
′(w/λ)

∑

w∈IN(i) wg
′(λw)

)1/2
(5.13)

In particular, if g(w) = |w|p then g(w) is differentiable except possibly at 0 and g′(w) =
s(w)p|w|p−1, where s(w) denotes the sign of the weight w. Substituting in Equation 5.13,
the optimal rescaling λ must satisfy:

λ∗ =
(

∑

w∈OUT (i)ws(w)|w|
p−1

∑

w∈IN(i)w|ws(w)|
p−1

)1/2p
=

(

∑

w∈OUT (i) |w|
p

∑

w∈IN(i) |w|
p

)1/2p
=

( ||OUT (i)||p
||IN(i)||p

)1/2
(5.14)

At the optimum, no further balancing is possible, and thus λ∗ = 1. Equation 5.11 yields
immediately the generalized balance equation to be satisfied at the optimum:
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∑

w∈IN(i)

wg′(w) =
∑

w∈OUT (i)

wg′(w) (5.15)

In the case of LP regularization, it is easy to check by applying Equation 5.15, or by direct
calculation that:

∑

w∈IN(i)

|λ∗w|p =
∑

w∈OUT (i)

|w/λ∗|p (5.16)

which is the generalized balance equation. Thus after balancing neuron, the weights of neuron
i satisfy the Lp balance (Equation 5.8). The change in the value of the regularizer is given
by:

∆R =
∑

w∈IN(i)

|w|p +
∑

w∈OUT (i)

|w|p −
∑

w∈IN(i)

|λ∗w|p −
∑

w∈OUT (i)

|w/λ∗|p (5.17)

By substituting λ∗ by its explicit value given by Equation 5.14 and collecting terms gives
Equation 5.7. �

Remark 5.7. The monotonicity of the functions gw is not needed to prove the first part of
Theorem 5.6. It is only needed to prove uniqueness of λ∗ in the Lp cases.

Remark 5.8. Note that the same approach applies to the case where there are multiple
additive regularizers. For instance with both L2 and L1 regularization, in this case the
function f has the form: gw(w) = αw2 + β|w|. Generalized balance still applies. It also
applies to the case where different regularizers are applied in different disconnected portions
of the network.

Remark 5.9. The balancing of a single BiLU neuron has little to do with the number of
connections. It applies equally to fully connected neurons, or to sparsely connected neurons.

6. Scaling and Balancing Beyond BiLU Activation Functions

So far we have generalized ReLU activation functions to BiLU activation functions in
the context of scaling and balancing operations with positive scaling factors. While in the
following sections we will continue to work with BiLU activation functions, in this section
we show that the scaling and balancing operations can be extended even further to other
activation functions. The section can be skipped if one prefers to progress towards the main
results on stochastic balancing.

Given a neuron with activation function f(x), during scaling instead of multiplying and
dividing by λ > 0, we could multiply the incoming weights by a function g(λ) and divide the
outgoing weights by a function h(λ), as long as the activation function f satisfies:

f(g(λ)x) = h(λ)f(x) (6.1)

for every x ∈ R to ensure that the contribution of the neuron to the rest of the network
remains unchanged. Note that if the activation function f satisfies Equation 6.1, so does
the activation function −f . In Equation 6.1, λ does not have to be positive–we will simply
assume that λ belongs to some open (potentially infinite) interval (a, b). Furthermore, the
functions g and h cannot be zero for λ ∈ (a, b) since they are used for scaling. It is reasonable
to assume that the functions g and h are continuous, and thus they must have a constant
sign as λ varies over (a, b).
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Now, taking x = 0 gives f(0) = h(λ)f(0) for every λ ∈ (a, b), and thus either f(0) = 0 or
h(λ) = 1 for every λ ∈ (a, b). The latter is not interesting and thus we can assume that the
activation function f satisfies f(0) = 0. Taking x = 1 gives f(g(λ)) = h(λ)f(1) for every λ
in (a, b). For simplicity, let us assume that f(x) = 1. Then, we have: f(g(λ)) = h(λ) for
every λ. Substituting in Equation 6.1 yields:

f(g(λ)x) = f(g(λ))f(x) (6.2)

for every x ∈ R and every λ ∈ (a, b). This relation is essentially the same as the relation that
defines multiplicative activation functions over the corresponding domain (see Proposition
2.4), and thus we can identify a key family of solutions using power functions. Note that we
can define a new parameter µ = g(λ), where µ ranges also over some positive or negative
interval I over which: f(µx) = f(µ)f(x).

6.1. Bi-Power Units (BiPU). Let us assume that λ > 0, g(λ) = λ and h(λ) = λc for some
c ∈ R. Then the activation function must satisfy the equation:

f(λx) = λcf(x) (6.3)

for any x ∈ R and any λ > 0. Note that if f(x) = xc we get a multiplicative activation
function. More generally, these functions are characterized by the following proposition.

Proposition 6.1. The set of activation functions f satisfying f(λx) = λcf(x) for any x ∈ R

and any λ > 0 consist of the functions of the form:

f(x) =

{

Cxc if x ≥ 0

Dxc if x < 0.
(6.4)

where c ∈ R, C = f(1) ∈ R, and D = f(−1) ∈ R. We call these bi-power units (BiPU).
If, in addition, we want f to be continuous at 0, we must have either c > 0, or c = 0 with
C = D.

Given the general shape, these activations functions can be called BiPU (Bi-Power-Units).
Note that in the general case where c > 0, C and D do not need to be equal. In particular,
one of them can be equal to zero, and the other one can be different from zero giving rise to
“rectified power units” (Figure 1).

Linear Leaky ReLU BiPU (D=0,C=1,c=2) BiPU (D=1,C=1,c=2)

Figure 1
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Proof. By taking x = 1, we get f(λ) = f(1)λc for any λ > 0. Let f(1) = C. Then we
see that for any x > 0 we must have: f(x) = Cxc. In addition, for every λ > 0 we must
have: f(λ0) = f(0) = λcf(0). So if c = 0, then f(x) = C = f(1) for x ≥ 0. If c 6= 0,
then f(0) = 0. In this case, if we want the activation function to be continuous, then we see
that we must have c ≥ 0. So in summary for x > 0 we must have f(x) = f(1)xc = Cxc.
For the function to be right continuous at 0, we must have either f(0) = f(1) = C with
c = 0 or f(0) = 0 with c > 0. We can now look at negative values of x. By the same
reasoning, we have f(λ(−1)) = f(−λ) = λcf(−1) for any λ > 0. Thus for any x < 0 we
must have: f(x) = f(−1)|x|c = D|x|c where D = f(−1). Thus, if f is continuous, there are
two possibilities. If c = 0, then we must have C = f(1) = D(f − 1)− and thus f(x) = C
everywhere. If c 6= 0, then continuity requires that c > 0. In this case f(x) = Cxc for x ≥ 0
with C = f(1), and f(x) = Dxc for x < 0 with f(−1) = D. In all cases, it is easy to
check directly that the resulting functions satisfy the functional equation given by Equation
6.3. �

6.2. Scaling BiPU Neurons. A BiPU neuron can be scaled by multiplying its incoming
weight by λ > 0 and dividing its outgoing weights by 1/λc. This will not change the role of
the corresponding unit in the network, and thus it will not change the input-output function
of the network.

6.3. Balancing BiPU Neurons. As in the case of BiLU neurons, we balance a multi-
plicative neuron by asking what is the optimal scaling factor λ that optimizes a particular
regularizer. For simplicity, here we assume that the regularizer is in the Lp class. Then we
are interested in the value of λ > 0 that minimizes the function:

λp
∑

w∈IN

|w|p +
1

λpc

∑

w∈OUT

|w|p (6.5)

A simple calculation shows that the optimal value of λ is given by:

λ∗ =
(c

∑

OUT |w|p
∑

IN |w|p

)1/p(c+1)
(6.6)

Thus after balancing the weights, the neuron must satisfy the balance equation:

c
∑

OUT

|w|p =
∑

IN

|w|p (6.7)

in the new weights w.
So far, we have focused on balancing individual neurons. In the next two sections, we look

at balancing across all the units of a network. We first look at what happens to network
balance when a network is trained by gradient descent and then at what happens to network
balance when individual neurons are balanced iteratively in a regular or stochastic manner.

7. Network Balance: Gradient Descent

A natural question is whether gradient descent (or stochastic gradient descent) applied to
a network of BiLU neurons, with or without a regularizer, converges to a balanced state of
the network, where all the BiLU neurons are balanced. So we first consider the case where
there is no regularizer (E = E). The results in [9] may suggest that gradient descent may
converge to a balanced state. In particular, they write that for any neuron i:
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d

dt

(

∑

w∈IN(i)

w2 −
∑

w∈OUT (i)

w2
)

= 0 (7.1)

Thus the gradient flow exactly preserves the difference between the L2 cost of the incoming
and outgoing weights or, in other words, the derivative of the L2 balance deficit is zero. Thus
if one were to start from a balanced state and use an infinitesimally small learning rate one
ought to stay in a balanced state at all times.

However, it must be noted that this result was derived for the L2 metric only, and thus
would not cover other Lp forms of balance. Furthermore, it requires an infinitesimally small
learning rate. In practice, when any standard learning rate is applied, we find that gradient
descent does not converge to a balanced state (Figure 1). However, things are different when
a regularizer term is included in the error functions as described in the following theorem.

Theorem 7.1. Gradient descent in a network of BiLU units with error function E = E +R
where R has the properties described in Theorem 5.6 (including all Lp) must converge to a
balanced state, where every BiLU neuron is balanced.

Proof. By contradiction, suppose that gradient descent converges to a state that is unbalanced
and where the gradient with respect to all the weights is zero. Then there is at least one
unbalanced neuron in the network. We can then multiply the incoming weights of such a
neuron by λ and the outgoing weights by 1/λ as in the previous section without changing the
value of E. Since the neuron is not in balance, we can move λ infinitesimally so as to reduce
R, and hence E . But this contradicts the fact that the gradient is zero. �

Remark 7.2. In practice, in the case of stochastic gradient descent applied to E +R, at the
end of learning the algorithm may hover around a balanced state. If the state reached by the
stochastic gradient descent procedure is not approximately balanced, then learning ought to
continue. In other words, the degree of balance could be used to monitor whether learning
has converged or not. Balance is a necessary, but not sufficient, condition for being at the
optimum.

Remark 7.3. If early stopping is being used to control overfitting, there is no reason for
the stopping state to be balanced. However, the balancing algorithms described in the next
section could be used to balance this state.

8. Network Balance: Stochastic or Deterministic Balancing Algorithms

In this section, we look at balancing algorithms where, starting from an initial weight
configuration W , the BiLU neurons of a network are balanced iteratively according to some
deterministic or stochastic schedule that periodically visits all the neurons. We can also
include algorithms where neurons are partitioned into groups (e.g. neuronal layers) and
neurons in each group are balanced together.

8.1. Basic Stochastic Balancing. The most interesting algorithm is when the BiLU neu-
rons of a network are iteratively balanced in a purely stochastic manner. This algorithm is
particularly attractive from the standpoint of physically implemented neural networks be-
cause the balancing algorithm is local and the updates occur randomly without the need for
any kind of central coordination. As we shall see in the following section, the random local
operations remarkably lead to a unique form of global order. The proof for the stochastic
case extends immediately to the deterministic case, where the BiLU neurons are updated in
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a deterministic fashion, for instance by repeatedly cycling through them according to some
fixed order.

8.2. Subset Balancing (Independent or Tied). It is also possible to partition the BiLU
neurons into non-overlapping subsets of neurons, and then balance each subset, especially
when the neurons in each subset are disjoint of each other. In this case, one can balance all
the neurons in a given subset, and repeat this subset-balancing operation subset-by-subset,
again in a deterministic or stochastic manner. Because the BiLU neurons in each subset are
disjoint, it does not matter whether the neurons in a given subset are updated synchronously
or sequentially (and in which order). Since the neurons are balanced independently of each
other, this can be called independent subset balancing. For example, in a layered feedforward
network with no lateral connections, each layer corresponds to a subset of disjoint neurons.
The incoming and outgoing connections of each neuron are distinct from the incoming and
outgoing connections of any other neuron in the layer, and thus the balancing operation of
any neuron in the layer does not interfere with the balancing operation of any other neuron
in the same layer. So this corresponds to independent layer balancing,

As a side note, balancing a layer h, may disrupt the balance of layer h + 1. However,
balancing layer h and h+2 (or any other layer further apart) can be done without interference
of the balancing processes. This suggests also an alternating balancing scheme, where one
alternatively balances all the odd-numbered layers, and all the evenly-numbered layers.

Yet another variation is when the neurons in a disjoint subset are tied to each other in the
sense that they must all share the same scaling factor λ. In this case, balancing the subset
requires finding the optimal λ for the entire subset, as opposed to finding the optimal λ for
each neuron in the subset. Since the neurons are balanced in a coordinated or tied fashion,
this can be called coordinated or tied subset balancing. For example, tied layer balancing
must use the same λ for all the neurons in a given layer. It is easy to see that this approach
leads to layer synaptic balance which has the form (for an Lp regularizer):

∑

i

∑

w∈IN(i)

|w|p =
∑

i

∑

w∈OUT (i)

|w|p (8.1)

where i runs over all the neurons in the layer. This does not necessarily imply that each
neuron in the layer is individually balanced. Thus neuronal balance for every neuron in a
layer implies layer balance, but the converse is not true. Independent layer balancing will lead
to layer balance. Coordinated layer balancing will lead to layer balance, but not necessarily
to neuronal balance of each neuron in the layer. Layer-wise balancing, independent or tied,
can be applied to all the layers and in deterministic (e.g. sequential) or stochastic manner.
Again the proof given in the next section for the basic stochastic algorithm can easily be
applied to these cases (see also Appendix B).

8.3. Remarks about Weight Sharing and Convolutional Neural Networks. Suppose
that two connections share the same weight so that we must have: wij = wkl at all times. In
general, when the balancing algorithm is applied to neuron i or j, the weight wij will change
and the same change must be applied to wkl. The latter may disrupt the balance of neuron
k or l. Furthermore, this may not lead to a decrease in the overall value of the regularizer R.

The case of convolutional networks is somewhat special, since all the incoming weights
of the neurons sharing the same convolutional kernel are shared. However, in general, the
outgoing weights are not shared. Furthermore, certain operations like max-pooling are not
homogeneous. So if one trains a CNN with E alone, or even with E+R, one should not expect
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any kind of balance to emerge in the convolution units. However, all the other BiLU units in
the network should become balanced by the same argument used for gradient descent above.
The balancing algorithm applied to individual neurons, or the independent layer balancing
algorithm, will not balance individual neurons sharing the same convolution kernel. The only
balancing algorithm that could lead to some convolution layer balance, but not to individual
neuronal balance, is the coordinated layer balancing, where the same λ is used for all the
neurons in the same convolution layer, provided that their activation functions are BiLU
functions.

We can now study the convergence properties of balancing algorithms.

9. Convergence of Balancing Algorithms

We now consider the basic stochastic balancing algorithm, where BiLU neurons are iter-
atively and stochastically balanced. It is essential to note that balancing a neuron j may
break the balance of another neuron i to which j is connected. Thus convergence of iterated
balancing is not obvious. There are three key questions to be addressed for the basic sto-
chastic algorithm, as well as all the other balancing variations. First, does the value of the
regularizer converges to a finite value? Second, do the weights themselves converge to fixed
finite values representing a balanced state for the entire network? And third, if the weights
converge, do they always converge to the same values, irrespective of the order in which the
units are being balanced? In other words, given an initial state W for the network, is there
a unique corresponding balanced state, with the same input-output functionalities?

9.1. Notation and Key Questions. For simplicity, we use a continuous time notation.
After a certain time t each neuron has been balanced a certain number of times. While the
balancing operations are not commutative as balancing operations, they are commutative as
scaling operations. Thus we can reorder the scaling operations and group them neuron by
neuron so that, for instance, neuron i has been scaled by the sequence of scaling operations:

Sλ∗

1
(i)Sλ∗

2
(i) . . . Sλ∗

nit
(i) = SΛi(t)(i) (9.1)

where nit corresponds to the count of the last update of neuron i prior to time t, and:

Λi(t) =
∏

1≤n≤nit

λ∗
n(i) (9.2)

For the input and output units, we can consider that their balancing coefficients λ∗ are always
equal to 1 (at all times) and therefore Λi(t) = 1 for any visible unit i.

Thus, we first want to know if R converges. Second, we want to know if the weights
converge. This question can be split into two sub-questions: (1) Do the balancing factors
λ∗
n(i) converge to a limit as time goes to infinity. Even if the λ∗

n(i)’s converge to a limit, this
does not imply that the weights of the network converge to a limit. After a time t, the weight
wij(t) between neuron j and neuron i has the value wijΛi(t)/Λj(t), where wij = wij(0) is
the value of the weight at the start of the stochastic balancing algorithm. Thus: (2) Do the
quantities Λi(t) converge to finite values, different from 0? And third, if the weights converge
to finite values different from 0, are these values unique or not, i.e. do they depend on the
details of the stochastic updates or not? These questions are answered by the following main
theorem..
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9.2. Convergence of the Basic Stochastic Balancing Algorithm to a Unique Opti-
mum.

Theorem 9.1. (Convergence of Stochastic Balancing) Consider a network of BiLU neurons
with an error function E(W ) = E(W ) + R(W ) where R satisfies the conditions of Theorem
5.2 including all Lp (p > 0). Let W denote the initial weights. When the neuronal stochastic
balancing algorithm is applied throughout the network so that every neuron is visited from
time to time, then E(W ) remains unchanged but R(W ) must converge to some finite value
that is less or equal to the initial value, strictly less if the initial weights are not balanced. In
addition, for every neuron i, λ∗

i (t) → 1 and Λi(t) → Λi as t → ∞, where Λi is finite and
Λi > 0 for every i. As a result, the weights themselves must converge to a limit W ′ which is
globally balanced, with E(W ) = E(W ′) and R(W ) ≥ R(W ′), and with equality if only if W is
already balanced. Finally, W ′ is unique as it corresponds to the solution of a strictly convex
optimization problem in the variables Lij = log(Λi/Λj) with linear constraints of the form
∑

π Lij = 0 along any path π joining an input unit to an output unit and along any directed
cycle (for recurrent networks). Stochastic balancing projects to stochastic trajectories in the
linear manifold that run from the origin to the unique optimal configuration.

Proof. Each individual balancing operation leaves E(W ) unchanged because the BiLU neu-
rons are homogeneous. Furthermore, each balancing operation reduces the regularization
error R(W ), or leaves it unchanged. Since the regularizer is lower-bounded by zero, the value
of the regularizer must approach a limit as the stochastic updates are being applied.

For the second question, when neuron i is balanced at some step, we know that the regu-
larizer R decreases by:

∆R =

(

(

∑

w∈IN(i)

|w|p
)1/2

−
(

∑

w∈OUT (i)

|w|p
)1/2

)2

(9.3)

If the convergence were to occur in a finite number of steps, then the coefficients λ∗
i (t) must

become equal and constant to 1 and the result is obvious. So we can focus on the case where
the convergence does not occur in a finite number of steps (indeed this is the main scenario,
as we shall see at the end of the proof). Since ∆R → 0, we must have:

∑

w∈IN(i)

|w|p →
∑

w∈OUT (i)

|w|p (9.4)

But from the expression for λ∗ (Equation 5.14), this implies that for every i, λ∗
n(i) → 1

as time increases (n → ∞). This alone is not sufficient to prove that Λi(t) converges for
every i as t → ∞. However, it is easy to see that Λi(t) cannot contain a sub-sequence that
approaches 0 or ∞ (Figure 2). Furthermore, not only ∆R converges to 0, but the series
∑

∆R is convergent. This shows that, for every i, ∆i(t) must converge to a finite, non-zero
value ∆i. Therefore all the weights must converge to fixed values given by wij(0)Λi/Λj .

Finally, we prove that given an initial set of weights W , the final balanced state is unique
and independent of the order of the balancing operations. The coefficients Λi corresponding
to a globally balanced state must be solutions of the following optimization problem:

min
Λ

R(Λ) =
∑

ij

|
Λi

Λj
wij |

p (9.5)

under the simple constraints: Λi > 0 for all the BiLU hidden units, and Λi = 1 for all
the visible (input and output) units. In this form, the problem is not convex. Introducing
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1(t)=1 2(t) 3(t) 4(t) 5(t)=1

2(t)/ 1(t) 3(t)/ 2(t) 4(t)/ 3(t) 5(t)/ 4(t)

Input Unit Output Unit

Figure 2. A path with three hidden BiLU units connecting one input unit to one
output unit. During the application of the stochastic balancing algorithm, at time
t each unit i has a cumulative scaling factor Λi(t), and each directed edge from
unit j to unit i has a scaling factor Mij(t) = Λi(t)/Λj(t). The λi(t) must remain
within a finite closed interval away from 0 and infinity. To see this, imagine for
instance that there is a subsequence of Λ3(t) that approaches 0. Then there must
be a corresponding subsequence of Λ4(t) that approaches 0, or else the contribution
of the weight w43Λ4(t)/Λ3(t) to the regularizer would go to infinity. But then, as
we reach the output layer, the contribution of the last weight w54Λ5(t)/Λ4(t) to the
regularizer goes to infinity because Λ5(t) is fixed to 1 and cannot compensate for
the small values of Λ4(t). And similarly, if there is a subsequence of Λ3(t) going to
infinity, we obtain a contradiction by propagating its effect towards the input layer.

Λ1 Λ2
Λ3 Λ4 Λ5Λ2/Λ1

Λ3/Λ2 Λ4/Λ3
Λ5/Λ4

Input Unit Output Unit

Figure 3. A path with five units. After the stochastic balancing algorithm has con-
verged, each unit i has a scaling factor Λi, and each directed edge from unit j to unit
i has a scaling factor Mij = Λi/Λj. The products of the Mij ’s along the path is given

by: Λ2

Λ1

Λ3

Λ2

Λ4

Λ3

Λ5

Λ4
= Λ5

Λ1
. Accordingly, if we sum the variables Lij = logMij along the

directed path, we get L21 + L32 + L43 + L54 = logΛ5 − log Λ1. In particular, if unit
1 is an input unit and unit 5 is an output unit, we must have Λ1 = Λ5 = 1 and thus:
L21 +L32 +L43 +L54 = 0. Likewise, in the case of a directed cycle where unit 1 and
unit 5 are the same, we must have: L21 + L32 + L43 + L54 + L15 = 0.

new variables Mj = 1/Λj is not sufficient to render the problem convex. Using variables
Mij = Λi/Λj is better, but still problematic for 0 < p ≤ 1. However, let us instead introduce
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Λ1

Λ6

Λ2 Λ3 Λ4

Λ7

Λ5

Λ2/Λ1

Λ3/Λ2 Λ4/Λ3

Λ7/Λ4

Λ6/Λ5

Λ7/Λ6

Figure 4. Two hidden units (1 and 7) connected by two different directed paths 1-2-
3-4-7 and 1-5-6-7 in a BiLU network. Each unit i has a scaling factor Λi, and each
directed edge from unit j to unit i has a scaling factor Mij = Λi/Λj. The products

of the Mij ’s along each path is equal to: Λ2

Λ1

Λ3

Λ2

Λ4

Λ3

Λ7

Λ4
= Λ5

Λ1

Λ6

Λ5

Λ7

Λ6
= Λ7

Λ1
. Therefore the

variables Lij = logMij must satisfy the linear equation: L21 + L32 + L43 + L74 =
L51 + L65 + L76 =logΛ7 − log Λ1.

the new variables Lij = log(Λi/Λj). These are well defined since we know that Λi/Λj > 0.
The objective now becomes:

minR(L) =
∑

ij

|eLijwij |
p =

∑

ij

epLij |wij |
p (9.6)

This objective is strictly convex in the variables Lij , as a sum of strictly convex functions
(exponentials). However, to show that it is a convex optimization problem we need to study
the constraints on the variables Lij. In particular, from the set of Λi’s it is easy to construct
a unique set of Lij. However what about the converse?

Definition 9.2. A set of real numbers Lij, one per connection of a given neural architecture,
is self-consistent if and only if there is a unique corresponding set of numbers Λi > 0 (one per
unit) such that: Λi = 1 for all visible units and Lij = log Λi/Λj for every directed connection
from a unit j to a unit i.

Remark 9.3. This definition depends on the graph of connections, but not on the original
values of the synaptic weights. Every balanced state is associated with a self-consistent set
of Lij, but not every self-consistent set of Lij is associated with a balanced state.

Proposition 9.4. A set Lij associated with a neural architecture is self-consistent if and
only if

∑

π Lij = 0 where π is any directed path connecting an input unit to an output unit
or any directed cycle (for recurrent networks).

Remark 9.5. Thus the constraints associated with being a self-consistent configuration of Lij ’
s are all linear. This linear manifold of constraints depends only on the architecture, i.e., the
graph of connections. The strictly convex function R(Lij) depends on the actual weights W .
Different sets of weights W produce different convex functions over the same linear manifold.
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’
i

i

Figure 5. Consider two paths α + β and γ + δ from the input layer to the output
layer going through the same unit i. Let us assume that the first path assigns a
multiplier Λi to unit i and the second path assigns a multiplier Λ′

i to the same
unit. By assumption we must have:

∑

α Lij +
∑

β Lij = 0 for the first path, and
∑

γ Lij +
∑

δ Lij = 0. But α + δ and γ + β are also paths from the input layer to

the output layer and therefore:
∑

α Lij +
∑

δ Lij = 0 and
∑

γ Lij +
∑

β Lij = 0. As

a result,
∑

α Lij = logΛi =
∑

γ Lij = Λ′

i. Therefore the assignment of the multiplier
Λi must be consistent across different paths going through unit i.

Remark 9.6. One could coalesce all the input units and all output units into a single unit,
in which case a path from an input unit to and output unit becomes also a directed cycle.
In this representation, the constraints are that the sum of the Lij must be zero along any
directed cycle. In general, it is not necessary to write a constraint for every path from input
units to output units. It is sufficient to select a representative set of paths such that every
unit appears in at least one path.

Proof. If we look at any directed path π from unit i to unit j, it is easy to see that we must
have:

∑

π

Lkl = log Λi − log Λj (9.7)

This is illustrated in Figures 3 and 4. Thus along any directed path that connects any input
unit to any output unit, we must have

∑

π Lij = 0. In addition, for recurrent neural networks,
if π is a directed cycle we must also have:

∑

π Lij = 0. Thus in short we only need to add
linear constraints of the form:

∑

π Lij = 0. Any unit is situated on a path from an input
unit to an output unit. Along that path, it is easy to assign a value Λi to each unit by
simple propagation starting from the input unit which has a multiplier equal to 1. When the
propagation terminates in the output unit, it terminates consistently because the output unit
has a multiplier equal to 1 and, by assumption, the sum of the multipliers along the path
must be zero. So we can derive scaling values Λi from the variables Lij. Finally, we need to
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C

B
A

Figure 6. The problem of minimizing the strictly convex regularizer R(Lij) =
∑

ij e
pLij |wij |

p (p > 0), over the linear (hence convex) manifold of self-consistent

configurations defined by the linear constraints of the form
∑

π Lij = 0, where π
runs over input-output paths. The regularizer function depends on the weights. The
linear manifold depends only on the architecture, i.e., the graph of connections. This
is a strictly convex optimization problem with a unique solution associated with the
point A. At A the corresponding weights must be balanced, or else a self-consistent
configuration of lower cost could be found by balancing any non-balanced neuron.
Finally, any other self-consistent configuration B cannot correspond to a balanced
state of the network, since there must exist balancing moves that further reduce the
regularizer cost (see main text). Stochastic balancing produces random paths from
the origin, where Lij= logMij = 0, to the unique optimum point A.
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show that there are no clashes, i.e. that it is not possible for two different propagation paths
to assign different multiplier values to the same unit i. The reason for this is illustrated in
Figure 5. �

We can now complete the proof Theorem 9.1. Given a neural network of BiLUs with
a set of weights W , we can consider the problem of minimizing the regularizer R(Lij over
the self-admissible configuration Lij . For any p > 0, the Lp regularizer is strictly convex
and the space of self-admissible configurations is linear and hence convex. Thus this is a
strictly convex optimization problem that has a unique solution (Figure 6). Note that the
minimization is carried over self-consistent configurations, which in general are not associated
with balanced states. However, the configuration of the weights associated with the optimum
set of Lij (point A in Figure 6) must be balanced. To see this, imagine that one of the
BiLU units–unit i in the network is not balanced. Then we can balance it using a multiplier
λ∗
i and replace Λi by Λ′

i = Λiλ
∗. It is easy to check that the new configuration including

Λ′
i is self-consistent. Thus, by balancing unit i, we are able to reach a new self-consistent

configuration with a lower value of R which contradicts the fact that we are at the global
minimum of the strictly convex optimization problem.

We know that the stochastic balancing algorithm always converges to a balanced state. We
need to show that it cannot converge to any other balanced state, and in fact that the global
optimum is the only balanced state. By contradiction, suppose it converges to a different
balanced state associated with the coordinates (LB

ij) (point B in Figure 6). Because of the

self-consistency, this point is also associated with a unique set of (ΛB
i ) coordinates. The cost

function is continuous and differentiable in both the Lij’s and the Λi’s coordinates. If we
look at the negative gradient of the regularizer, it is non-zero and therefore it must have at
least one non-zero component ∂R/∂Λi along one of the Λi coordinates. This implies that
by scaling the corresponding unit i in the network, the regularizer can be further reduced,
and by balancing unit i the balancing algorithm will reach a new point (C in Figure 6)
with lower regularizer cost. This contradicts the assumption that B was associated with a
balanced stated. Thus, given an initial set of weights W , the stochastic balancing algorithm
must always converge to the same and unique optimal balanced state W ∗ associated with
the self-consistent point A. A particular stochastic schedule corresponds to a random path
within the linear manifold from the origin (at time zero all the multipliers are equal to 1, and
therefore for any i and any j: Mij = 1 and Lij = 0) to the unique optimum point A. �

Remark 9.7. From the proof, it is clear that the same result holds also for any deterministic
balancing schedule, as well as for tied and non-tied subset balancing, e.g., for layer-wise
balancing and tied layer-wise balancing. In the Appendix, we provide an analytical solution
for the case of tied layer-wise balancing in a layered feed-forward network.

Remark 9.8. The same convergence to the unique global optimum is observed if each neuron,
when stochastically visited, is favorably scaled rather than balanced, i.e., it is scaled with
a factor that reduces R but not necessarily minimizes R. Stochastic balancing can also be
viewed as a form of EM algorithm where the E and M steps can be taken fully or partially.

10. Simulations

To further corroborate the results, we ran multiple experiments. Here we report the results
from two series of experiments. The first one is conducted using a six-layer, fully connected,
autoencoder trained on MNIST [8] for a reconstruction task with ReLU activation functions
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Figure 7. SGD applied to E alone, in general, does not converge to a bal-
anced state, but sGD applied to E+R converges to a balanced state. (A-C)
Simulations use a deep fully connected autoencoder trained on the MNIST dataset.
(D-F) Simulations use a deep locally connected network trained on the CFAR10
dataset. (A,D) Regularization leads to neural balance. (B,E) The training loss
decreases and converges during training (these panels are not meant for assessing
the quality of learning when using a regularizer). (C,F) Using weight regularization
decreases the norm of weights. (A-F) Shaded areas correspond to one s.t.d around
the mean (in some cases the s.t.d. is small and the shaded area is not visible).

in all layers and the sum of squares errors loss function. The number of neurons in consecutive
layers, from input to output, is 784, 200, 100, 50, 100, 200, 784. Stochastic gradient descent
(SGD) learning by backpropagation is used for learning with a batch size of 200.

The second one is conducted using three locally connected layers followed by three fully
connected layers trained on CFAR10 [18] for a classification task with leaky ReLU activation
functions in the hidden layers, a softmax output layer, and the cross entropy loss function.
The number of neurons in consecutive layers, from input to output, is 3072, 5000, 2592, 1296,
300, 100, 10. Stochastic gradient descent (SGD) learning by backpropagation is used for
learning with a batch size of 5.

In all the simulation figures (Figures 7, 8, and 9) the left column presents results obtained
from the first experiment, while the right column presents results obtained from the second
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Figure 8. Even if the starting state is balanced, SGD does not preserve the
balance unless the learning rate is infinitely small. (A-C) Simulations use a
deep fully connected autoencoder trained on the MNIST dataset. (D-F) Simulations
use deep locally connected network trained on the CFAR10 dataset. (A-F) The initial
weights are balanced using the stochastic balancing algorithm. Then the network
is trained by SGD. (A,D) When the learning rate (lr) is relatively large, without
regularization, the initial balance of the network is rapidly disrupted. (B,E) The
training loss decreases and converges during training (these panels are not meant
for assessing the quality of learning when using a regularizer). (C,F) Using weight
regularization decreases the norm of the weights. (A-F) Shaded areas correspond to
one s.t.d around the mean (in some cases the s.t.d. is small and the shaded area is
not visible).

experiment. While we used both L1 and L2 regularizers in the experiments, in the figures we
report the results obtained with the L2 regularizer, which is the most widely used regularizer.
In Figures 7 and 8, training is done using batch gradient descent on the MNIST and CIFAR

data. The balance deficit for a single neuron i is defined as:
(
∑

w∈IN(i) w
2−

∑

w∈OUT (i)w
2
)2
,

and the overall balance deficit is defined as the sum of these single-neuron balance deficits
across all the hidden neurons in the network. The overall deficit is zero if and only if each
neuron is in balance. In all the figures, ||W ||F denotes the Frobenius norm of the weights.



24 PIERRE BALDI AND ALIREZA RAHMANSETAYESH

Figure 7 shows that learning by gradient descent with a L2 regularizer results in a balanced
state. Figure 8 shows that even when the network is initialized in a balanced state, without
the regularizer the network can become unbalanced if the fixed learning rate is not very small.
Figure 9 shows that the local stochastic balancing algorithm, by which neurons are randomly
balanced in asynchronous fashion, always converges to the same (unique) global balanced
state.
Code Availability: The code for reproducing the simulation results is available under the
Apache 2.0 license at: https://github.com/ARahmansetayesh/a-theory-of-neural-synaptic-
balance.

A C

B D

Figure 9. Stochastic balancing converges to a unique global balanced state
(A-B) Simulations use a deep fully connected autoencoder trained on the MNIST
dataset. (C-D) Simulations use deep locally connected network trained on the
CFAR10 dataset. (A,C) The weights of the network are initialized randomly and
saved. The stochastic balancing algorithm is applied and the resulting balanced
weights are denoted byWbalanced. The stochastic balancing algorithm is applied 1,000
different times. In all repetitions, the weights converge to the same value Wbalanced.
(B,D) Stochastic balancing decreases the norm of the weights. (A-D) Shaded areas
correspond to one standard deviation around the mean.

11. Discussion

While the theory of neural synaptic balance is a mathematical theory that stands on
its own, it is worth considering some of its possible consequences and applications, at the
theoretical, algorithmic, biological, and neuromorphic hardware levels.

11.1. Theory. Theories of deep learning in networks of McCulloch and Pitt neurons must
often proceed by fixing the kinds of activation functions and neurons that are being used. At
one extreme end of the spectrum, one finds linear networks for which a rich theory is available
[3, 2]. At the other most non-linear end of the spectrum, one finds networks of unrestricted
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Boolean functions which are also amenable to fairly general analyses [1]. In between, one
typically considers networks of linear threshold neurons [6], or sigmoidal neurons (logistic
or tanh activation functions), or ReLU neurons [20]. The results shown here suggest that
results obtained for networks of linear or ReLU neurons, may be exttendable to networks of
BiLU neurons, especially when the homogeneity property plays an essential role, and perhaps
also other neurons such as RePU neurons. In short, a line of investigation suggested by this
work to study all the basic questions about deep learning (e.g. capacity, generalization,
universal approximation properties) in networks of BiLU neurons of increasing architectural
complexity. It is easy to show, for instance, that BiLU networks have universal approximation
properties (see Appendix).

Our results show that for a given architecture with weights W , there is an entire equivalence
class of weights with the same overall performance, associated with scaling operations and
the underlying linear manifold. Global balancing can be viewed as a systematic way of
selecting a unique canonical representative within the class, associated with the corresponding
balanced network. Among other things, the existence of such equivalence classes implies that
the information in the training data does not need to be able to specify the individual
weights, but may instead specify the equivalence class of the weights. This is tied to the
formal notion of capacity [6] and explain in part why large networks can be trained with less
than |W | examples while not overfitting [4]. It is worth noting that the equivalence classes
corresponding to weights that provide the same input-output function may be even larger
than what is given by the linear manifold of scalings, as they could contain other operations
besides scaling, such as permuting the neurons of any given layer in the fully connected case.
However, in the case of a feedforward network of BiLUs where the units are numbered, and
connections run only from lower-numbered units to higher-numbered units, then each unit
has its unique connectivity pattern and the equivalence classes may be restricted to scaling
operations.

Another theoretical application is the study of learning in linear networks with Lp regular-
ization. For instance, it is well known that a feedforward, fully connected, linear autoencoder
with bottleneck layers trained to minimize the sum of square reconstruction error E has a
unique global optimum, up to trivial transformations, corresponding to Principal Compo-
nent Analysis (PCA) in the bottleneck layers. Furthermore, that problem has no spurious
local minima and all other critical points of the error function are saddle points associated
with projections onto linear spaces spanned by the non-principal components. What happens
when an Lp regularizer R is added to the reconstruction error, so that the overall error is
given by E = E+βR. For β very large, R will dominate and the optimal solution is to have
all the weights equal to 0. However, when β is small, the optimal solution is provided by the
theory presented here. The error is dominated by E so the optimum is associated with the
PCA solution, as described above, which can then be refined by balancing to further reduce
R and reach the global optimum.

11.2. Algorithms. On the algorithmic side, we do not advocate that balancing algorithms
should be used systematically, as SGD may reach balanced states by itself when applied with
a regularizer, as we have seen in Section 7. Furthermore, balancing does not change the
input-output function of a network and thus alone it cannot improve the performance of a
network on the training or test sets. Nevertheless, balancing could be used at least: (1) to
initialize a network in a balanced state prior to learning; (2) to check that a network trained
to minimize E +R has been properly trained by checking that each neuron is balanced with
respect to R; (3) to balance a non-properly trained network; or (4) to tweak a network trained
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with ah Lp regularization, towards a state where it is Lq regularized (with q 6= p) without
retraining it. It is also possible that periodically balancing a network during training may
facilitate learning in some situations.

11.3. Biology. The balancing operations are local [5], in the sense that they involve only
the pre-and post-synaptic weights of a neuron. Thus, unlike backpropagation, balancing is
plausible in a physical neural system, as opposed to a digitally simulated neural system and
conceivably balancing could be of interest in neuroscience or in neuromorphic engineering, for
instance from the standpoint of learning or memory maintenance. While there is extensive
literature in neuroscience on the balance between excitation and inhibition in biological net-
works [30, 26], there is no evidence in favor or against neuronal synaptic balance in the sense
described here. However, there is some evidence for the existence of homeostatic processes
that scale the input synaptic weights to regulate the activity of neurons [28, 7, 29]. In addi-
tion, there is also evidence that biological neurons can scale their intrinsic excitability (spike
threshold) to regulate their activity [14, 11]. It is at least conceivable that these two scaling
mechanisms could be at play and work together in some situations. In any case, current
technology is quite far from allowing one to measure the strength of all the incoming and
outgoing synapses of a biological neuron in an animal brain. Thus, it is impossible to draw
any conclusions on the existence of some kind of homeostasis between the incoming and out-
going synapses of biological neurons. Exploratory experiments could potentially be carried
either in simpler organisms with a small number of well-defined neurons, such as C. elegans,
or in cultured neurons. Finally, simulations could be carried out in neural network models
where inhibitory and excitatory neurons are segregated, possibly in uneven proportions–the
overall ratio of excitatory to inhibitory neurons in the mammalian cortex is roughly 80% to
20% [21], with biologically-observed connectivity patterns.

11.4. Neuromorphic Hardware. In physical neural networks (e.g. biological neural net-
works, neuromorphic chips), as opposed to digitally simulated neural networks, the algorithms
for adjusting synaptic weights must be local both in space and time. Yet these networks must
exhibit good global properties. Thus, algorithms that are local and lead to global order, such
as the balancing algorithms covered in this work, are of particular interest when considering
physical, non-simulated, neural systems. For example, while a deep neuron embedded in a
physical network may have no way of monitoring the global training error, conceivably it
could sense and monitor its degree of balance, since that is an entirely local property. The
degree of balance could be used as a local proxy to monitor global learning progress. Fur-
thermore, the physical properties of the underlying hardware could constrain the synaptic
weights or the learning algorithms in ways that could require or benefit from some form of
neurall synaptic balance.

In particular, optimization strategies for training spiking neural networks with low energy
consumption are analyzed in [24] (see also [22]). In particular, they explicitly mention the
homogeneous properties of ReLU neurons and investigate how ReLU scaling can influence
the number of spikes generated in each layer and the average energy consumption at each
layer. Thus there is a direct connection between our work and some of the neuromorphic
literature using scaling methods to control spiking rates and energy consumption, and this
connection leads to a new questions for future work: how does balancing affects spiking
neurons and energy consumption? Under which hardware conditions does balancing leads to
optimal energy consumption?

An interesting special case is provided by memristor devices where the output voltage of
neurons is calculated using the equation V o = V i∗GRs (see Figure 4 in [15]). In this equation
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V i is the presynaptic spike voltage, G represents the memristor’s conductance (equivalent to
synaptic weights), and Rs is the output resistance of the postsynaptic neuron. The power
consumption of the memristor is (V i)2)G, so the lower the value of G is, the lower the power
consumption of the memristor and minimizing the L2 norm is directly connected to mini-
mizing power consumption. Since our balancing algorithm is aimed precisely at minimizing
the L2 penalty), this establishes a direct connection between neural balance and energy min-
imization in memristor-based neuromorphic hardware. Moreover, the issue of the limited
conductivity range of memristors is mentioned in [15] and in [16] Therefore, reducing the
norm of the weights can help mitigate this issue as well.

12. Conclusion

The theory of neural synaptic balance explains some basic findings regarding L2 balance
in feedforward networks of ReLU neurons and extends them in several directions. The first
direction is the extension to BiLU and other activation functions (BiPU). The second direction
is the extension to more general regularizers, including all Lp (p > 0) regularizers. The third
direction is the extension to non-layered architectures, recurrent architectures, convolutional
architectures, as well as architectures with mixed activation functions. The theory is based
on two local neuronal operations: scaling which is commutative, and balancing which is
not commutative. Finally, and most importantly, given any initial set of weights, when
local balancing operations are applied in a stochastic or deterministic manner, global order
always emerges through the convergence of the balancing algorithm to the same unique
set of balanced weights. The reason for this convergence is the existence of an underlying
convex optimization problem where the relevant variables are constrained to a linear, only
architecture-dependent, manifold. Scaling and balancing operations are local and thus may
have applications in physical, non-digitally simulated, neural networks where the emergence
of global order from local operations may lead to better operating characteristics and lower
energy consumption.

Appendix A: Universal Approximation Properties of BiLU Neurons

Here we show that any continuous real-valued function defined over a compact set of
the Euclidean space can be approximated to any degree of precision by a network of BiLU
neurons with a single hidden layer. As in the case of the similar proof given in [2] using
linear threshold gates in the hidden layer, it is enough to prove the theorem for a continuous
function f : 0, 1 → R.

Theorem 12.1. (Universal Approximation Properties of BiLU Neurons) Let f be any con-
tinuous function from [0, 1] to R and ǫ > 0. Let gλ be the ReLU activation function with slope
λ ∈ Rs. Then there exists a feedforward network with a single hidden layer of neurons with
ReLU activations of the form gλ and a single output linear neuron, i.e., with BiLU activation
equal to the identity function, capable of approximating f everywhere within ǫ (sup norm).

Proof. To be clear, gλ(x) = 0 for x < 0 and gλ(x) = λx for 0 ≤ x. Since f is continuous over
a compact set, it is uniformly continuous. Thus there exists α > 0 such that for any x1 and
x2 in the [0, 1] interval:

|x2 − x1| < α =⇒ |f(x2)− f(x1)| < ǫ (12.1)

Let N be an integer such that 1 < Nα, and let us slice the interval [0, 1] into N consecutive
slices of width h = 1/N , so that within each slice the function f cannot jump by more than
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ǫ. Let us connect the input unit to all the hidden units with a weight equal to 1. Let us have
N hidden units numbered 1, . . . , N with biases equal to 0, 1/N, 2/N, ...., N1/N respectively
and activation function of the form gλk

. It is essential that different units be allowed to have
different slopes λk. The input unit is connected to all the hidden units and all the weights
on these connections are equal to 1. Thus when x is in the k-th slice, (k− 1)/N ≤ x < k/N ,
all the units from k + 1 to N have an output equal to 0, and all the units from 1 to k have
an output determined by the corresponding slopes. All the hidden units are connected to
the output unit with weights β1, . . . , βN , and β0 is the bias of the output unit. We want
the output unit to be linear. In order for the ǫ approximation to be satisfied, it is sufficient
if in the (k − 1)/N ≤ x < k/N interval, the output is equal to the line joining the point
f((k− 1)/N) to the point f(k/N). In other words, if x ∈ [(k− 1)/N, k/N), then we want the
output of the network to be:

β0 +
k

∑

i=1

βiλi(x− (i− 1)h) = f(
k − 1

N
) +

f( k
N )− f(k−1

N )

h
(x− (k − 1)h) (12.2)

By equating the y-intercept and slope of the lines on the left-hand side and the righ- hand
side of Equation 12.2, we can solve for the weights β’s and the slopes λ’s. �

As in the case of the similar proof using linear threshold functions in the hidden layer (see
[2],) this proof can easily be adapted to continuous functions defined over a compact set of
R
n, even with a finite number of finite discontinuities, and into R

m.

Appendix B: Analytical Solution for the Unique Global Balanced State

Here we directly prove the convergence of stochastic balancing to a unique final balanced
state, and derive the equations for the balanced state, in the special case of tied layer balancing
(as opposed to single neuron balancing). The Proof and the resulting equations are also valid
for stochastic balancing (one neuron at a time) in a layered architecture comprising a single
neuron per layer. Let us call tied layer scaling the operation by which all the incoming weights
to a given layer of BiLU neurons are multiplied by λ > 0 and all the outgoing weights of
the layer are multiplied by 1/λ, again leaving the training error unchanged. Let us call layer
balancing the particular scaling operation corresponding to the value of λ that minimizes the
contribution of the layer to the L2 (or any other Lp) regularizer vaue. This optimal value of
λ∗ results in layer-wise balance equations: the sum of the squares of all the incoming weights
of the layer must be equal to the sum of the squares of all the outgoing weights of the layer
in the L2 case, and similarly in all LP cases.

Theorem 12.2. Assume that tied layer balancing is applied iteratively and stochastically to
the layers of a layered feedforward network of BiLU neurons. As long as all the layers are
visited periodically, this procedure will always converge to the same unique set of weights,
which will satisfy the layer-balance equations at all layers, irrespective of the details of the
schedule. Furthermore, the balance state can be solved analytically.

Proof. Every time a layer balancing operation is applied, the training error remains the
same, and the L2 (or any other Lp) regularization error decreases or stays the same. Since
the regularization error is always positive, it must converge to a certain value. Using the
same arguments as in the proof of Theorem 9.1, the weights must also converge to a stable
configuration, and since the configuration is stable all its layers must satisfy the layer-wise
balance equation. The key remaining question is why is this configuration unique and can we
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solve it analytically? Let A1, A2, . . . AN denote the matrices of connections between the layers
of the network. Let Λ1,Λ2, . . . ,ΛN−1 be N − 1 strictly positive multipliers, representing the
limits of the products of the corresponding λ∗

i associated with each balancing step at layer i,
as in the proof of Theorem 9.1. In this notation, layer 0 is the input layer and layer N is the
output layer (with Λ0 = 1 and ΛN = 1).

After converging, each matrix Ai becomes the matrix Λi/Λi−1Ai = MiAi for i = 1 . . . N ,
with Mi = λi/Λi−1. The multipliers Mi must minimize the regularizer while satisfying
M1 . . .MN = 1 to ensure that the training error remains unchanged. In other words, to find
the values of the Mi’s we must minimize the Lagrangian:

L(M1, . . . ,MN ) =

N
∑

i=1

||MiAi||
2 + µ(1−

N
∏

i=1

Mi) (12.3)

written for the L2 case in terms of the Frobenius norm, but the analysis is similar in the
general Lp case. From this, we get the critical equations:

∂L

∂Mi
= 2Mi||Ai||

2 − µM1 . . .Mi−1Mi+1 . . .MN = 0 for i = 1, . . . , N and

N
∏

i=1

Mi = 1

(12.4)
As a resut, for every i:

2Mi||Ai||
2 −

µ

Mi
= 0 or µ = 2M2

i ||Ai||
2 (12.5)

Thus each Mi > 0 can be expressed in a unique way as a function of the Lagrangian multiplier
µ as: Mi = (µ/2||Ai||

2)1/2. By writing again that the product of the Miis equal to 1, we
finally get:

µN = 2N
N
∏

i=1

||Ai||
2 or µ = 2

N
∏

i=1

||Ai||
2/N (12.6)

Thus we can solve for Mi:

Mi =
µ

2||Ai||2
=

∏N
i=1 ||Ai||

2/N

||Ai||2
for i = 1, . . . , N (12.7)

Thus, in short, we obtain a unique closed-form expression for each Mi. From there, we infer
the unique and final state of the weights, where A∗

i = MiAi = ΛiAl/Λl−1. Note that each Mi

depends on all the other Mj ’s, again showcasing how the local balancing algorithm leads to
a unique global solution. �
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