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AN ALTERNATIVE TO SPHERICAL WITT VECTORS

THOMAS NIKOLAUS AND MARIA YAKERSON

Abstract. We give a direct construction of the ring spectrum of spherical Witt vectors of a perfect Fp-

algebra R as the completion of the spherical monoid algebra S[R] of the multiplicative monoid (R, ·) at the

ideal I = fib(S[R] → R). This generalizes a construction of Cuntz and Deninger. We also use this to give a

description of the category of p-complete modules over the spherical Witt vectors and a universal property

for spherical Witt vectors as an E1-ring.

The ring of Witt vectors1 associated to a ring R is a classical algebraic object. When R is the finite

field Fp, its ring of Witt vectores is the ring of p-adic integers Zp. More generally, the construction of the

ring of Witt vectors provides a bridge from characteristic p to mixed characteristic (0, p), which makes

it an important tool in arithmetic geometry. An element in the ring of Witt vectors W(R) is given by an

infinite sequence of elements in R, with addition and multiplication of such sequences being defined not

componentwise, but in a non-trivial way, using certain universal polynomials.

When R is a perfect Fp-algebra, a slick construction of the ring W(R) was obtained by Cuntz and

Deninger in [CD14]. They prove in this case that W(R) is isomorphic to a completion of the monoid

ring Z[R], with respect to the multiplicative monoid of R. The completion is taken at the ideal given

by the kernel of the canonical ring map Z[R] → R. The immediate benefits of this approach are

that addition and multiplication are straightforward, and the multiplicative lift2 becomes simply the

composition R→ Z[R]→W(R).

In higher algebra (a.k.a. brave new algebra) one often replaces the ring of integers with the sphere

spectrum S, which can be thought of as a deformation of Z = π0S. Following this philosophy, Lurie

introduced spherical Witt vectors, which are a lift of Witt vectors from the ring of p-adic integers to the

p-complete sphere spectrum [Lur18]. Spherical Witt vectors are an important ingredient, for example, in

the recent work on chromatic homotopy theory by Burklund, Schlank and Yuan [BSY22]. The definition

of spherical Witt vectors is by obstruction theory (see e.g. [BSY22, Section 2]) or by the adjoint functor

theorem using the universal property (see [Ant23]). We offer an easy direct construction along the lines

of Cuntz and Deninger which morally shows that the spherical Witt vectors are generated by convergent

sums of multiplicative lifts:

Theorem 1. Let R be an (ordinary) perfect Fp-algebra and let SW(R) be its E∞-ring spectrum of spheri-

cal Witt vectors. Then there is an equivalence of E∞-rings

SW(R) ≃ S[R]∧I

where the right-hand side is the completion of the spherical monoid ring S[R] of the multiplicative

monoid of R with respect to the ideal I = fib(S[R]→ R).

Recall that for a map of E∞-ring spectra A → B the fibre I is an ideal (in the sense of Smith) and so

are In := I ⊗A · · · ⊗A I. Thus the cofibres A/In are also E∞-rings and we write

A∧I = lim
←−−

A/In .

Equivalently [MNN17, Section 2.1], we have that A∧
I

is the limit of the Amitsur complex of A→ B

A∧I = lim
∆

(
B //

// B ⊗A B
//
//
// B ⊗A B ⊗A B //

//

//

// · · ·

)

and is therefore sometimes called the Bousfield–Kan completion.

Date: May 17, 2024.
1Throughout, we refer specifically to the p-typical Witt vectors.
2This is typically called Teichmüller lift, but we will not use this name due to Teichmüller’s involvement in the Nazi regime
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Note that in such a situation there is also another notion of completion, namely the Bousfield local-

ization at the ideal I. That is the terminal map of ring spectra A → A′ that is a mod I equivalence (i.e.

equivalence after −⊗A B). In general the Bousfield–Kan completion A→ A∧
I

is not a mod I equivalence

and hence doesn’t agree with the Bousfield localization. But if A→ A∧
I

is a mod I equivalence then the

two notions of completion agree. We will show that this is the case in our situation.

Moreover, all of these completions make sense for arbitrary A-modules M and we will show the

following result.

Theorem 2. The∞-category of p-complete modules over SW(R) embeds by restriction fully faithfully into

the∞-category of modules over S[R], i.e. the∞-category of spectra with an action of the multiplicative

monoid R.

For M a bounded below S[R]-module we have

SW(R)⊗̂S[R]M = M∧I

where ⊗̂ is the p-completed tensor product and M∧
I
= lim
←−−

M/InM with InM := In
⊗S[R] M. Moreover if

M is bounded below and p-complete then the following are equivalent:

(1) M lies in the essential image of the embedding of p-complete SW(R)-modules;

(2) M is I-complete in the sense that M
≃

−→ M∧
I

is an equivalence;

(3) M is Bousfield local with respect to the mod I equivalences;

(4) The induced multiplicative R-action on the Fp-homology groups H∗(M,Fp) is additive;

(5) For every r, s ∈ R the map

ρr + ρs − ρr+s : M→ M

is as a map of spectra divisible by p;

(6) For every r, s ∈ R the homomorphism

ρr + ρs − ρr+s : π∗M→ π∗M

is as a homomorphism of graded abelian groups divisible by p;

(7) The induced multiplicative R-action on the abelian groups πn(M)/p3 and πn(M)[p] is additive.

(8) The homotopy groups πn(M) of M all lie separately in the essential image of the embedding of

p-complete SW(R)-modules 4;

If M is not bounded below, then (1), (5), (6), (7), (8) are still equivalent and (2)⇒ (3)⇒ (1)⇒ (4).

As a consequence of this description of the category of modules, we also get a universal property of

spherical Witt vectors:

Corollary 1. Let A be a p-complete E1-ring spectrum. Then we have a pullback square

MapAlg
E1

(SW(R),A) //

��

MapRing(R, π0A/p)

��

MapMonE1

(
(R, ·), (Ω∞A, ·)

)
// MapMon

(
(R, ·), (π0A/p, ·)

)

Here π0A/p is the ordinary quotient of π0A by the ideal (p), which is automatically a two sided ideal,

hence π0A/p is an ordinary associative ring.

In other words: MapAlgE1

(SW(R),A) is the full subspace of MapMonE1

(
(R, ·), (Ω∞A, ·)

)
consisting of

those multiplicative maps for whch the composition R → π0A/p becomes a ring map. Another re-

formulation of Corollary 1 is that the spherical Witt vectors SW(R) are the universal E1-ring with a

multiplicative map from R which becomes additive on π0(SW(R))/p.

3This means the actual, non-derived quotient in abelian groups.
4Note that the homotopy groups of M are considered as S[R]-modules here. But we can equivalently consider them as

(ordinary) modules over Z[R] and then the condition is that it is derived p-complete and the action of Z[R] extends to a W(R)-

action. This in turn then is equivalent to the module being I-complete (by condition 2) which again can be expressed in classical

terms.
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Remark 2. With the same proof as Corollary 1 one can deduce a similar statement for a p-complete

En-ring spectrum A and En-maps out of spherical Witt vectors for n > 1, namely that we have a pullback:

(2.1) MapAlg
En

(SW(R),A) //

��

MapRing(R, π0A/p)

��

MapMonEn

(
(R, ·), (Ω∞A, ·)

)
// MapMon

(
(R, ·), (π0A/p, ·)

)
.

The reason we did not state this here is that when n > 1 one can prove that both horizontal maps are in

fact equivalences (see Proposition 3 below) . For the case n = ∞ this reproves the universal property

of spherical Witt vectors given in [Lur18, BSY22] and used in [Ant23] to construct the spherical Witt

vectors.

For the case n = ∞ it is easy to see that the lower horizontal map in (2.1) is an equivalence: by

perfectness of R we may replace (Ω∞A, ·) by the inverse limit of the p-th power map on Ω∞A which

respects the multiplicative E∞-structure. Using that the p-th power map vanishes on higher homotopy

groups, we can see that this inverse limit is equivalent to the inverse limit perfection of (π0A/p, ·), i.e.

the tilt of π0(A). Then it follows by the fact that (2.1) is a pullback that the upper horizontal map is also

an equivalence. This then gives a new proof of the aforementioned universal property of SW(R) as an

E∞-ring.

For the next statement we use the same obstruction theory that was initial by Lurie to prove the E∞-

universal property of spherical Witt vectors. While the proof of this statement is logically independent

of the results of this paper we include it for completeness. But note that in the case n = ∞ we did sketch

a direct proof using the results of this paper in the previous Remark 2. We thank Maxime Ramzi for a

discussion of the next Statement and allowing us to include his proof in this paper and especially his

example that shows that the condition that π0(A) lies in the center of π∗(A) is necessary, see Remark 4.

Proposition 3. Let A be a p-complete En-ring spectrum for 1 6 n 6 ∞. For n = 1 assume additionally

that π0(A) lies in the center of π∗(A). Then we have a natural equivalence

MapAlgEn
(SW(R),A) ≃ MapCRing(R, π0A♭)

where the tilt π0A♭ is the inverse limit perfection of π0(A)/p.

In particular this implies that every E1-map uniquely extends to an En-map. It also follows that for

n > 2 or under the additional assumption for n = 1 both horizontal maps in the square (2.1) of Remark

2 are equivalences. For the upper line this is the statement of Proposition 3 and for the lower one it is

the Statement of Proposition 3 for R replaced by Fp[R] using that S[R]∧p = SW(Fp[R]).

Finally we note that all of our constructions and statements have, with exactly the same proofs,

analogues for ordinary Witt vectors: for every perfect Fp-algebra R we have an equivalence

W(R) ≃ lim
←−−

(Z[R]/In)

which is a derived version of Cuntz–Deninger’s statement. We also have that the full subcategory of

p-complete objects in the derived category of W(R) is equivalent to a full subcategory of Z[R]-modules

characterized by the analogous conditions to (2) − (6) of Theorem 2, with the difference that we do not

have to assume bounded below anywhere since Fp is dualisable over Z (but not over S where it is only

pseudocoherent). We then have the exact analogues of Corollary 1 and Proposition 3 for W(R).

Acknowledgments. We would like to thank Ben Antieau, Joachim Cuntz, Christopher Deninger, Felix

Gu, Achim Krause, Jonas McCandless, and Maxime Ramzi for useful discussions. We also thank
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dation) – Project-ID 427320536–SFB 1442, as well as under Germany’s Excellence Strategy EXC 2044

390685587, Mathematics Münster: Dynamics-Geometry-Structure.
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1. Proofs of the Results

First observe that we have a map t : Fp[R] → R from the Fp-monoid algebra on the multiplicative

monoid of R to R. We note that Fp[R] is also a perfect Fp-algebra and therefore we get an induced map

T: SW(Fp[R]) → SW(R)

using functoriality of the spherical Witt vectors. The E∞-ring of spherical Witt vectors SW(Fp[R]) is the

unique p-complete lift of Fp[R] to the sphere. Since S[R]∧p is a p-completeE∞-ring whose Fp-homology

is Fp[R] we deduce that SW(Fp[R]) ≃ S[R]∧p . Thus we can interpret T as a map

T: S[R]∧p → SW(R).

We have a factorization S[R]∧p → SW(R) → R of the canonical map S[R]∧p → R through T which follows

by base-changing the first two rings to Fp (since R is an Fp-algebra). 5

Recall that a map of ring spectra A → B is called p-complete homological epimorphism if the map

B⊗̂AB → B is an equivalence, where ⊗̂ means the p-completed tensor product. We have the following

well-known properties:

Lemma 1. (1) A map of connective ring spectra A→ B is a p-complete homological epimorphism

precisely if A ⊗S Fp → B ⊗S Fp is a homological epimorphism.

(2) Any surjective map of ordinary perfect Fp-algebras is a homological epimorphism.

(3) For a p-complete homological epimorphism A → B the restriction functor from p-complete

B-modules to A modules is fully faithful.

(4) If A→ B is a p-complete homological epimorphism and M,N are B-modules, then the canoni-

cal map

M⊗̂AN→ M⊗̂BN

is an equivalence.

Proof. For (1) we simply note that (B ⊗S Fp) ⊗A⊗SFp
(B ⊗S Fp) ≃ (B⊗̂AB) ⊗S Fp and that we can check

equivalences between p-complete, connective spectra after base-change to Fp.

For (2) note that B⊗L
A

B is an animated perfect Fp-algebra and therefore discrete, but from surjectivity

of A→ B it easily follows that π0 is isomorphic to B.

For (3) we simply note that the restriction functor has a left adjoint B⊗̂A− : Mod(A)∧p → Mod(B)∧p
and thus is fully faithful precisely if for any B-module M the counit B⊗̂AM → M is an equivalence.

Since both sides commute with colimits in M it suffices to check this for M = B.

For (4) we note that both sides commute with colimits in M and N and thus we can reduce to M =

N = B. �

Lemma 2. The map T: S[R]∧p → SW(R) is a p-complete homological epimorphism.

Proof. By (1) of the previous Lemma it suffices to check that Fp[R]→ R is a homological epimorphism.

But this is a surjective map of perfect Fp-algebras, so a homological epimorphism by (2). �

Proof of Theorem 1. The completion S[R]∧
I

which we want to understand is the inverse limit of the

corresponding Amitsur complex:

S[R]∧I = lim
∆

(
R //

// R ⊗S[R] R
//
//
// R ⊗S[R] R ⊗S[R] R //

//

//

// · · ·

)

Since R is an Fp-algebra we may replace the tensor products by completed tensor products and then can

replace the tensor products using (3) of Lemma 1 by tensor products over SW(R):

S[R]∧I = lim
∆

(
R //

// R ⊗SW(R)
R

//
//
// R ⊗SW(R)

R ⊗SW(R)
R //

//

//

// · · ·

)

5Note that on π0 the map T induces a map Z[R]∧p → W(R) which corresponds to the usual multiplicative character R→W(R).

This follows again by the same obstruction theory: Z[R]∧p ≃ W(Fp[R]) and there is only one lift of Fp[R] → R to a map

W(Fp[R])→ W(R).
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The cosimplicial diagram on the right-hand side is the Amitsur complex of the map SW(R) → R. Using

that R = Fp ⊗S SW(R) we find that this cosimplicial diagram is also given by the base-change of the

Amitsur complex of S→ Fp along S→ SW(R), i.e.
(
Fp ⊗S SW(R)

//
// Fp ⊗S Fp ⊗S SW(R)

//
//
// Fp ⊗S Fp ⊗S Fp ⊗S SW(R)

//
//

//

// · · ·

)

This is the Adams tower for SW(R) which converges to SW(R) since SW(R) is connective and p-complete,

see e.g. [Bou79, Theorem 6.6]. This completes the proof of the Theorem. �

Proof of Theorem 2. By Lemma 2 and Lemma 1 we find that the restriction Mod(SW(R))
∧

p → Mod(S[R])

is fully faithful. The essential image is exactly given by those p-complete modules where the action

extends to an SW(R)-action, in which case the extension is unique. Note that the left adjoint to restriction

is given by

M 7→ SW(R)⊗̂S[R]M .

We want to show that for M bounded below this agrees with the Bousfield–Kan completion

M→ M∧I = lim
←−−

M/InM .

To see this we compute M∧
I

by the Amitsur complex

M∧I = lim
∆

(
R ⊗S[R] M //

// R ⊗S[R] R ⊗S[R] M
//
//
// R ⊗S[R] R ⊗S[R] R ⊗S[R] M //

//

//

// · · ·

)
.

Now we proceed similar to the proof of Theorem 1. The cosimplicial diagram is equivalent to

lim
∆

(
R⊗̂S[R]M

//
// R⊗̂SW(R)

R⊗̂S[R]M
//
//
// R⊗̂SW(R)

R⊗̂SW(R)
R⊗̂S[R]M

//
//

//

// · · ·

)

And thus by using that R = Fp ⊗S SW(R) we that this is given by the Adams tower of SW(R)⊗̂S[R]M:
(
Fp ⊗S SW(R)⊗̂S[R]M

//
// Fp ⊗S Fp ⊗S SW(R)⊗̂S[R]M

//
//
// · · ·

)

which converges to SW(R)⊗̂S[R]M by boundedness.

Now we let M be arbitrary, that is not necessarily bounded below and show the implications that hold

in this generality:

(1) ⇒ (5): we have a factorization S[R] → SW(R) → map(M,M) as maps of spectra. Taking the mod

p-reduction we get a factorization S[R] → SW(R)/p → map(M,M)/p. We have that π0(SW(R)/p) = R

and the first map identifies on π0 the elements [r] + [s] and [r + s] so that the claim follows.

(5) ⇒ (6) ⇒ (7) are clear, the latter since the homotopy groups of the derived mod p reduction

πn(M)//p are given by πn(M)/p and πn(M)[p].

(7) ⇒ (8): by assumption we have that πn(M)/p and πn(M)[p] are in the essential image of the

restriction. The image of the restriction functor is closed under limits, extensions and shifts. Thus also

the the derived mod p-reduction πnM//p lies in the essential image. Thus by taking iterated extensions

also πnM//pk. Since πnM is derived p-complete it is the inverse limit of πnM//pk over k and therefore

also in the essential image.

(8)⇒ (1): Using the Postnikov tower of M we see that it is a colimit-limit of extensions of πnM and

thus the claim follows since the essential image of restriction is closed under (co)limits, extensions and

shifts.

(2) ⇒ (3): By assumpion M is an inverse limit of extensions of R-modules (considered as S[R]-

modules by restriction). But R-modules are clearly mod I local and therefore so is M.

(3)⇒ (1): Since S[R]→ SW(R) is a p-complete homological epimorphism we find that the restricted

p-complete modules are the local objects for maps of S[R]-modules which are equivalences after base-

change to SW(R). Clearly these maps are still equivalences after base-change to R since we have a

factorization S[R]→ SW(R) → R. Thus the mod I local objects are also restricted along S[R]→ SW(R).

(1)⇒ (4): if M is restricted along S[R]→ SW(R) then the base-change to Fp becomes a module over

SW(R) ⊗S Fp = R, so that on the homology we have an additive R-action.

Finally assume that M is bounded below, then we show (4)⇒ (1): note that R-modules are certainly

in the essential image and thus also the homology M ⊗ Fp by assumption (4) (using also condition (8))
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and also iterated homologies, i.e. M⊗Fp⊗ ...⊗Fp. Then by the convergence of the Bousfield Kan tower

this implies that M is a limit of restricted modules, hence restricted. �

Proof of Corollary 1. By [Lur17, Corollary 3.4.1.7] the slice category of E1-algebras under SW(R) is

equivalent to the∞-category ofE1-algebras in the monoidal∞-category SW(R)
ModSW(R)

of SW(R)-bimodules

equipped with the bimodule tensor product. Since a bimodule is simply a right module in left mod-

ules we deduce from Theorem 2 that this category embeds by restriction (operadically) fully faithfully

into the ∞-category of bimodules S[R]ModS[R] and that the image consists of those p-complete mod-

ules M such that the action from both sides induced R-actions on πnM/p as well as πnM[p]. For

an algebra A in S[R]ModS[R] the multiplicative action of R on π∗A/p and π∗A[p] from both sides fac-

tors over Z[R] → π0A → π0A/p. Thus it lies in the image from both sides precisely if the map

Z[R] → π0A → π0A/p factors over R. In summary we have proven that the category of p-complete

E1-algebras under SW(R) is equivalent to the category of p-complete E1-algebras A under S[R] with the

property that the map Z[R] = π0S[R] → π0A/p factors over R. From this the claim follows immedi-

ately. �

We thank Maxime Ramzi for explaining the proof of Proposition 3 which we present here and for

explaining the subsequent example to us. In the proof we will use repeatedly the following lemma.

Lemma 3. Let A be a p-complete En-ring spectrum for n > 2 and Ã → A a square zero extension by

a p-complete symmetric bimodule P. Then any E1-ring map SW(R) → A has a unique lift to Ã up to

equivalence.

Proof. A lift to Ã is the same data as a nullhomotopy of the corresponding map of bimodules (a deriva-

tion) LSW(R)/S → ΣP where

LSW(R)/S = fib(SW(R) ⊗ SW(R) → SW(R))

is the E1-cotangent complex. Since P is symmetric, such bimodule map is equivalently a module map

from the symmetrization of LSW(R)/S which is the fibre of the canonical map α : SW(R) → THH(SW(R)).

The map α is an Fp-equivalence because HH∗(R;Fp) ≃ R for a perfect Fp-algebra R. Since α is a map

between connective spectra, it is then also a p-adic equivalence, i.e., the fibre of α vanishes p-adically.

Hence the space of nullhomotopies under consideration is trivial, so the space of lifts in the claim is

contractible, and the claim follows. �

Proof of Proposition 3. We may without loss of generality assume that A is connective. We first prove

the case n = 1. By perfectness of R we have that

MapCRing(R, π0A♭) = MapCRing(R, π0(A)/p) = MapAlg
En

(SW(R), π0(A)/p) .

Thus it suffices to shows that the natural map

(2.2) MapAlg
En

(SW(R),A)→ MapAlg
En

(SW(R), π0(A)/p)

induced by A→ π0(A)/p is an equivalence. We will decompose it as

A→ π0(A)→ π0(A)//p→ π0(A)/p

and show that at each step a lift of a map from SW(R) is unique up to equivalence.

First, we consider the space of lifts of a map SW(R) → π0(A) to A. We write A as the limit of its

Postnikov tower A = lim τ6mA. It suffices to show that the lift is unique up to equivalence for each

τ6mA. Note that each τ6m+1A is a square zero extension of τ6mA by Σm+1(πm+1A). The assumption that

π0(A) lies in the center of π∗(A) ensures that the bimodule πm+1A is symmetric, in the sense that it is

induced by a left module (using that π0A is commutative). Thus we can apply Lemma 3 to deduce the

uniqueness of each lift.

Next, we consider the space of lifts of a map SW(R) → π0(A)//p to π0(A). Here we argue similarly:

we write π0(A) = lim π0(A)//pm by p-completeness, then observe that each π0(A)//pm+1 is a square zero

extension of π0(A)//pm by π0(A)//p and apply Lemma 3.

Finally, we use that π0(A)//p is a square zero extension of π0(A)/p by Σπ0A[p] and apply Lemma 3

again. This finishes the proof for n = 1.
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For n > 1 we argue inductively: using Dunn additivity the space of En-maps MapAlgEn
(SW(R),A) can

be written as the totalization of a cosimplicial diagram

[k] 7→ MapAlg
En−1

((SW(R))
⊗̂S(k+1),A) .

We have that (SW(R))
⊗̂S(k+1)

= S
W

(
R
⊗Fp

(k+1)
) so that by the inductive hypothesis this cosimplicial diagram

is equivalent to

[k] 7→ MapRing(R⊗Fp (k+1), π0A♭)

which agrees with the space of En-maps R → π0A♭, which are the same as commutative ring maps by

discreteness. This shows the case of finite n and the case n = ∞ follows since it is the limit of the all the

space of En-maps, hence the limit of a constant diagram. �

Remark 4 (Ramzi). From the proof of Proposition 3 we can see that the assumption on π0(A) being

in the center is necessary. Otherwise, let A be a square zero extension of SW(R) by the (non-symmetric)

bimodule LSW(R)/S. If the claim of Proposition 3 would hold for such A, it would imply that the space of

bimodule maps LSW(R)/S → ΣLSW(R)/S is contractible. In particular, its π1 would be trivial, so ΣLSW(R)/S = 0.

By definition of the E1-cotangent complex, this would imply that SW(R) is idempotent. Hence R =

SW(R) ⊗S Fp would also be idempotent, which is not true unless R = Fp.
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