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THE EYRING–KRAMERS LAW FOR EXTINCTION TIME OF

CONTACT PROCESS ON STARS

YOUNGHUN JO

Abstract. In this paper, we derive a precise estimate of the mean of the extinction time of the

contact process on star graphs with a fixed infection rate. Specifically, we obtain not only the

exponential main factor but also the sharp sub-exponential prefactor of the mean extinction time.

To that end, we first provide an accurate estimation of the quasi-stationary distribution on non-

extinction of the contact process, utilizing special function theory and quantitative Laplace’s method.

Subsequently, we employ the recently developed potential theoretic approach to metastability of non-

reversible Markov processes, enabling us to deduce these results.

1. Introduction

The contact process is a class of interacting particle systems introduced by Harris [15] in 1974,

which models the spread of an infection in a population. It is also referred to as the susceptible-

infected-susceptible (SIS) model by mathematical epidemiologists. In a contact process on a graph G,

infected sites recover with rate 1, and transmit the infection to each adjacent site with rate λ. For a

comprehensive introduction to the contact process, we refer the reader to [19, Part I] and references

therein.

A critical feature of the contact process on finite graphs is that the infection eventually ceases almost

surely. This extinction of infection occurs when all vertices are healthy at some point in time, a state

maintained forever once reached. Consequently, on finite graphs, the study focuses on estimating the

hitting time τG of this all-healthy state, termed the extinction time. The initial configuration typically

considered is the all-infected state. The rate λ influences the extinction time; higher rates lead to

prolonged durations before the process reaches the healthy state, due to more frequent transmission

of the infection by each infected node. Accordingly, characterizing the quantitative relation between

the extinction time τG and rate λ is the main agenda in the study of the contact process.

For large enough λ, the infection may persist for an exceedingly long period. To be more precise,

consider a family of finite graphs (GN )N≥1 with increasing size and fixed λ > 0. Then, for sufficiently

large λ, the extinction time possesses an exponential growth, that is, there exists cλ > 0 such that

P[τGN
≥ exp(cλ|GN |)] N→∞−−−−→ 1,

where for any graph G we denote its number of vertices by |G|. This behavior has been demonstrated

across various types of graphs, including boxes of Zd [7, 31, 10, 11, 12, 21, 22], general finite graphs

[24, 29], and random graphs [9, 23, 20, 30].

The exponential growth of the extinction time can be interpreted as an instance of metastability,

a widespread phenomenon characterized by prolonged persistence in transient states within stochastic

systems. Metastability often indicates a system undergoing a first-order phase transition, where the

transition times between metastable states grows exponentially as N → ∞, where N stands for the
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system size or resolution. This behavior is prevalent across a wide class of models, including con-

densing interacting particle systems, low-temperature spin systems, and stochastic partial differential

equations. We refer to the monographs [6, 25] for a detailed discussion on recent developments on this

topic.

The metastable dynamics of the contact process has been extensively analyzed for a large class of

graphs. Mountford, Mourrat, Valesin, and Yao [24] proved that if λ > λc(Z), there exists cλ > 0 such

that

EτGN
≥ exp(cλ|GN |)

for connected graphs GN of uniformly bounded degree, where λc(Z) denotes [19] the critical infection

rate for the phase transition of the contact process on Z, defined as the infimum rate at which an

infection started from a single node survives forever almost surely. Schapira and Valesin [29] dropped

the bounded degree condition and established a slightly weaker result. If we shift our focus to more

concrete families, something more is known. A series of works [7, 31, 11, 21, 22] showed that if λ is

sufficiently large, then there exists a sharp exponent for the extinction time on boxes of Zd, that is,

there exists cλ > 0 such that

1

|BN | log τBN

N→∞−−−−→ cλ in probability, (1.1)

where BN is a box of Zd with side length N . Schapira and Valesin [30] proved the analogous result for

a variety of random graph models. It is worth pointing out that the restriction that λ sufficiently large

is essential: for certain graphs, including boxes of Zd [10], the extinction time grows logarithmically

in the number of vertices for sufficiently small λ. We also mention that the logarithmic estimate (1.1)

is hard to obtain unless we are able to exploit a specific geometric feature of the underlying graph.

For instance, when we consider the periodic lattice Z
d
N , instead of the open boundary condition, the

logarithmic estimate of the form (1.1) is not available.

We next turn our concern to the precise asymptotics of the extinction time EτG, instead of the

logarithmic estimate. For a process possessing metastable behavior, a sharp asymptotic formula for

the mean hitting time Eτ from one metastable set to another is often referred to as the Eyring–

Kramers law [13, 17]. The Eyring–Kramers law for the extinction time of the contact process is known

to be a very difficult problem, and is known only for complete graph thanks to its simple geometric

structure. As a complete graph has very strong spatial symmetry, we can reduce the contact process

on complete graph down to a one-dimensional nearest neighbor random walk, on which we can readily

compute explicit hitting times. Yet, even a little bit of asymmetry of the underlying graph (e.g., one-

dimensional cycle ZN ) introduce significant complicatedness into the contact process, complicating

quantitative analysis.

Historically, studies of the extinction time often employed coarse methodologies such as percolation

theory and coupling methods, which have yet to yield sharp estimates due to their reliance on less

precise formulas for the mean extinction time. Meanwhile, a significant advancement in metastability

theory for proving the Eyring–Kramers law was achieved in the impressive works of Bovier, Eckhoff,

Gayrard, and Klein [4, 5]. They developed a precise framework for quantifying key metastability

metrics like transition time and hitting probability using potential theoretic terms such as equilibrium

potential and capacity. As a result, they were able to develop a robust methodology for analyzing

metastable behavior of reversible dynamics, now known as the potential theoretic approach. This

framework has been extended to nonreversible settings very recently in [14, 18, 32, 34]. We refer to

[6, 33] for a detailed description on this scheme.
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Figure 1. Two modes of the contact process on a star,

contingent on the status of the hub.

The main focus of this article is contact process on star graphs. We refer to Figure 1 for examples of

configurations of the contact process on a star. A star graph, characterized by a central node connected

directly to all other nodes, is a graph with one discernible asymmetry and serves as a natural model

for studying epidemic hubs. The contact process on stars was initially investigated by Pemantle [28]

within his study on contact process on trees. Recently, Durrett and Huang [16] provided upper and

lower bounds for the exponent of the extinction time. More recently, Wang [35] observed from the

perspective of large deviation theory that the explicit exponent of the mean extinction time must equal

cλ = 2 log(1 + λ)− log(1 + 2λ)

so that the mean extinction time is ecλN up to a subexponential prefactor on a star with N leaves.

The significance of stars in contact process studies stems from their role as building blocks or long-time

infection reservoirs within larger graph structures. This theme appears in studies involving a varity

of underlying graph types, especially random graph models, including preferential attachment models

[3], power law random graphs [9, 23], Galton–Watson trees [16], and random hyperbolic graphs [20].

In this study, we establish the Eyring–Kramers law for the extinction time of the contact process on

star graphs through the innovative application of the potential theoretic approach for non-reversible

systems. This marks the first nontrivial example of sharp estimates for the mean extinction time and

the inaugural application of potential theoretic principles to the study of the contact process. The

main result is stated in Theorem 2.1.

Let us make some remarks on our proof methodology now. One obstacle in application of potential

theory is that potential theory traditionally requires the dynamics to be irreducible while the contact

process is not. We bypass this through a novel use of quasi-stationary distribution, allowing the poten-

tial theoretic framework to be applied to systems with absorbing states. We employ techniques such

as special function theory and refined Laplace’s method to compute the precise estimate of the quasi-

stationary distribution. Additionally, the non-reversibility of the contact process poses substantial

difficulty in applying the potential theoretic framework, which we overcome using recent developments

in the analysis of non-reversible dynamics based on the flow structure.

2. Model and Main Result

Throughout this article, we set a fixed value λ > 0. Let G = (V,E) be an undirected simple graph

of bounded degree, and write x ∼ y when vertices x and y are adjacent. The contact process on G

with infection rate λ is a continuous time Markov process (ηt)t≥0 on {0, 1}V . When identifying ηt with
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the subset {x ∈ V : ηt(x) = 1} of V , the transition rate of the process is described by
{
ηt → ηt \ {x} for each x ∈ ηt with rate 1,

ηt → ηt ∪ {x} for each x 6∈ ηt with rate λ · |{y ∈ ηt : x ∼ y}|,

where |A| is the cardinality of a set A. At time t, we say that a vertex x is healthy if ηt(x) = 0, and

infected if ηt(x) = 1. Note that the all-healthy state ηt ≡ 0 is an absorbing state of the process.

Let SN be the star graph with a hub and N leaves. Since all N leaves are homogeneous, the contact

process on a star can be faithfully described by a new Markov process (ot, nt)t≥0 on {0, 1} × [0, N ]

where ot is the status of the hub, healthy or infected, and nt is the number of infected leaves.1 This

process, in essence, behaves as a continuous time random walk on a ladder graph, whose transition

rates defined as: 



(1, n) → (1, n+ 1) with rate λ(N − n),

(1, n) → (1, n− 1) with rate n,

(1, n) → (0, n) with rate 1,

(0, n) → (0, n− 1) with rate n,

(0, n) → (1, n) with rate λn.

The dynamics of this process is significantly influenced by the status of the hub. Specifically, when the

hub is healthy (ot = 0), the number of infected leaves cannot increase until the hub becomes reinfected.

This dependency introduces a critical asymmetry affecting the overall behavior of the infection spread

within the graph. We refer to Figure 2 for an illustration.

Our main result is the Eyring–Kramers law for the extinction time of the contact process on stars.

Theorem 2.1 (Eyring–Kramers law). Let ε > 0 be given. Then, for x ∈ {0, 1} × [εN,N ], we have2

Exτ(0,0) = κλN
− 1

1+2λ

( (1 + λ)2

1 + 2λ

)N
(1 + o(1)) (2.1)

as N → ∞, where the error term o(1) is uniform in x and the constant κλ can be explicitly written as

κλ =
(1 + λ

λ

) 2
1+2λ

Γ
(

2(1+λ)
1+2λ

)
.

Here, Γ(a) is the gamma function. In particular,

lim
N→∞

sup
x∈{0,1}×[εN,N ]

1

N
logExτ(0,0) = 2 log(1 + λ)− log(1 + 2λ). (2.2)

The exact exponent of the mean extinction time, as specified on the right-hand side of (2.2), aligns

with the observation made by Wang [35].

The paper is organized as follows. In Section 3, we explore the behavior of the quasi-stationary

distribution on non-extinction of the process and establish its sharp asymptotic formula as N → ∞.

In Section 4, we introduce the potential theoretic framework for non-reversible dynamics. Finally, in

1In this article, we let [a, b] stand for the intersection of the closed interval [a, b] with Z where a, b ∈ R.
2Let (fN )N≥1 = (fN (n))N≥1 and (gN )N≥1 = (gN (n))N≥1 be collections of real functions in n. We write fN = O(gN ),
gN = Ω(fN ), or fN . gN if there exists some C > 0 such that

|fN (n)| ≤ C|gN (n)| for all N ≥ 1 and n.

We write fN = o(gN ) or fN ≪ gN if

lim
N→∞

sup
n

fN (n)

gN (n)
= 0.

In particular, fN = o(1) if supn fN (n) → 0 as N → ∞. We write fN ≃ gN if fN = gN (1 + o(1)).
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Figure 2. The transition rates for the contact process on a star.

Section 5, we prove our main theorem by representing the mean extinction time in terms of capacity

and equilibrium potential, and by estimating the capacity using variational principles.

3. Energy Landscape

We begin by examining the quasi-stationary distribution of the contact process on a star graph SN
with fixed infection rate λ > 0. In Subsection 3.1, we interpret the quasi-stationary distribution as

the stationary distribution of a modified process, and establish its representation in an explicit form.

In Subsection 3.2, we obtain the sharp asymptotic behavior of the quasi-stationary distribution, using

techniques such as special function theory and refined Laplace’s method. Some direct consequences of

the asymptotics are given in Subsection 3.3.

3.1. Quasi-stationary Distribution. Recall that a contact process is not irreducible in general, as it

exhibits a unique absorbing state, the all-healthy state. Therefore, we cannot directly apply potential

theory because the stationary distribution is the Dirac mass on the absorbing state. To address this,

we slightly modify the process by adding supplementary transition rates from the absorbing state to

other states, so that the modified process becomes irreducible. Importantly, this type of modification

does not affect the extinction time.

A natural choice for these supplementary transition rates, which does not depend on the underlying

graph structure, would be rates proportional to the quasi-stationary distribution of the process. In

this case, the stationary distribution of the resulting process would be a convex combination of the

quasi-stationary distribution and the Dirac mass on the absorbing state. Meanwhile, for the contact

process on stars, due to its structural simplicity, it sufficies to introduce only a single transition rate:

(0, 0) → (1, 0) with rate α

for α > 0. We will refer to this modified process as the regenerative process. Denote the stationary

distribution of the regenerative process by ν = νN,λ,α. It will turn out that ν can actually be repre-

sented as a convex combination of the Dirac mass on the absorbing state (0, 0), the states (1, 0) and
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(0, 1), and the quasi-stationary distribution on ({0, 1} × [0, N ]) \ {(0, 0)} with respect to the contact

process. Note that the selection of α is not relevant in subsequent analyses as thus.

For simplicity of computation, we define a scaled measure µ = µN,λ,α given by ν = 1
ZN,λ

µ for a

scaling constant ZN,λ = ν(1, N)−1, setting its value at the all-infected state to be µ(1, N) = 1. We

write:

un = µ(0, n), vn = µ(1, n)

for 0 ≤ n ≤ N , indicating the quasi-stationary measures for the process when the hub is healthy and

infected, respectively.

The stationary measure for modified contact process has previously been considered by Cator and

Mieghem [8]. Indeed, their setting involves a different version of modification; instead of adding

supplementary rates, they removed every transition into the all-healthy state and considered the trace

process (cf. Subsection 4.3) restricted to the states with infected hub. The stationary distribution of

such a process, denoted by πn = π(1, n), is basically a restriction of the quasi-stationary distribution

of the contact process.

By examining the stationary condition, we can readily derive the following 3-term recurrence rela-

tions for the sequences (un)0≤n≤N and (vn)0≤n≤N in a manner similar to that described in [8, Section

III].

Proposition 3.1 (3-term recurrence relation for quasi-stationary distribution). Let the sequences

(un)0≤n≤N and (vn)0≤n≤N be as above. Then, for all 0 ≤ n ≤ N , it holds that

vn = (1 + λ)an − an+1,

an+1 = λ(N − n)vn − (n+ 1)vn+1,

(n+ 1)an+2 − (n+ 2 + λ(N + 1))an+1 + λ(1 + λ)(N − n)an = 0,

(n+ 2)vn+2 − (n+ 2 + λN)vn+1 + λ(1 + λ)(N − n)vn = 0,

(3.1)

where uN+2 = uN+1 = vN+2 = vN+1 = 0 and

an =




nun if n 6= 0,

α
1+λu0 if n = 0.

By [8, Equation (12)], the recurrence relation for (vn)0≤n≤N stated in the last line of (3.1) simi-

larly applies to the quasi-stationary distribution (πn)0≤n≤N with the exception at n = 0. Therefore,

(vn)0≤n≤N is a constant multiple of (πn)0≤n≤N , only except at n = 0. From now on, with slight

abuse of notation, we will regard ν and µ as the quasi-stationary distribution and the quasi-stationary

measure of the contact process, respectively.

In the same paper, Cator and Mieghem also established the exact solution of the recurrence rela-

tion for the quasi-stationary distribution. For the sake of completeness, we briefly reformulate their

computation and result here.

Proposition 3.2. Let (πn)0≤n≤N be the sequence satisfying π1 = λNπ0,
∑N

n=0 πn = 1, and

(n+ 2)πn+2 − (n+ 2 + λN)πn+1 + λ(1 + λ)(N − n)πn = 0
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for 1 ≤ n ≤ N − 1 where πN+1 = 0. Then, we have3

πn =− b

λ(1 + 2λ)

[N−1∑

j=n

(−1)j−n
(
N − 1

j

)(
j

n

)
B
(

1
1+2λ , j + 1

)( λ

1 + 2λ

)j]
(1 + λ)n

− b

1 + 2λ

[ N−1∑

j=n−1

(−1)j−n+1

(
N − 1

j

)(
j

n− 1

)
B
(

1
1+2λ , j + 1

)( λ

1 + 2λ

)j]
(1 + λ)n−1

− c− b
λ

1 + 2λ

[ N∑

j=n

(−1)j−n
(
N

j

)(
j

n

)
B
(

1
1+2λ , j + 1

)( λ

1 + 2λ

)j]
(1 + λ)n

(3.2)

for 1 ≤ n ≤ N , and

π0 =− b

λ(1 + 2λ)

N−1∑

j=0

(−1)j
(
N − 1

j

)
B
(

1
1+2λ , j + 1

)( λ

1 + 2λ

)j

− c− b
λ

1 + 2λ

N∑

j=0

(−1)j
(
N

j

)
B
(

1
1+2λ , j + 1

)( λ

1 + 2λ

)j
,

(3.3)

where B(a, b) is a beta function. Here, b = 2π2−λN(λN +1−λ)π0 and c = −π0 and they also satisfy

1 =
c

1 + 2λ

N∑

j=0

(
N

j

)
B
(

1
1+2λ , j + 1

)( λ2

1 + 2λ

)j

+
(1 + λ)b

λ(1 + 2λ)

N−1∑

j=0

(
N − 1

j

)
B
(

1
1+2λ , j + 1

)( λ2

1 + 2λ

)j

− b

λ(1 + 2λ)

N∑

j=0

(
N

j

)
B
(

1
1+2λ , j + 1

)( λ2

1 + 2λ

)j
.

(3.4)

Remark 3.3. The first summation in the expression (3.2) can be transformed as follows.

N−1∑

j=n

(−1)j−n
(
N − 1

j

)(
j

n

)
B
(

1
1+2λ , j + 1

)( λ

1 + 2λ

)j

=

(
N − 1

n

)( λ

1 + 2λ

)n ∫ 1

0

N−n−1∑

l=0

(−1)l
(
N − n− 1

l

)( λ

1 + 2λ

)l
tl+n(1− t)−

2λ
1+2λ dt

=

(
N − 1

n

)( λ

1 + 2λ

)n ∫ 1

0

tn
(
1− λ

1 + 2λ
t
)N−n−1

(1− t)−
2λ

1+2λ dt

=
1 + 2λ

λ

(
N − 1

n

)∫ λ
1+2λ

0

un(1 − u)N−n−1
(
1− 1 + 2λ

λ
u
)− 2λ

1+2λ

du.

3We note that the solution presented here slightly differs from that in the original paper. By carefully following the
computations line-by-line, we can verify that our solution is consistent with the recurrence relation.
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By performing the similar transformation for the other two lines, we obtain an alternative integral

expression for the solution:

πn =− b

λ2

(
N − 1

n

)
(1 + λ)n

∫ λ
1+2λ

0

un(1− u)N−n−1
(
1− 1 + 2λ

λ
u
)− 2λ

1+2λ

du

− b

λ

(
N − 1

n− 1

)
(1 + λ)n−1

∫ λ
1+2λ

0

un−1(1 − u)N−n−1
(
1− 1 + 2λ

λ
u
)− 2λ

1+2λ

du

− c− b
λ

λ

(
N

n

)
(1 + λ)n

∫ λ
1+2λ

0

un(1− u)N−n
(
1− 1 + 2λ

λ
u
)− 2λ

1+2λ

du.

(3.5)

Similarly, from equation (3.3), we obtain

π0 =− b

λ(1 + 2λ)

∫ 1

0

(
1− λ

1 + 2λ
t
)N−1

(1− t)−
2λ

1+2λ dt

− c− b
λ

1 + 2λ

∫ 1

0

(
1− λ

1 + 2λ
t
)N

(1− t)−
2λ

1+2λ dt.

(3.6)

Proof of Proposition 3.2. Define the generating function

G(z) =

N∑

n=0

πnz
n

so that G(1) = 1. The recurrence relation for (πn)0≤n≤N yields the differential equation

(1 − z − λ(1 + λ)z2)G′(z) + (λ(1 + λ)Nz − (1 + λN))G(z) = bz + c,

where b = 2π2 − λN(λN + 1− λ)π0 and c = −π0.
The homogeneous solution of the equation

(1− z − λ(1 + λ)z2)G′
h(z) + (λ(1 + λ)Nz − (1 + λN))Gh(z) = 0,

which can be found by separating variables, is

Gh(z) = C(z − r1)
c1(z − r2)

c2 ,

where C is a constant and 


r1 = 1

1+λ ,

r2 = − 1
λ ,




c1 = − 1

1+2λ ,

c2 = N + 1
1+2λ .

Now we variate the constant so that we express G(z) = C(z)Gh(z). Note that

C(1) =
( λ

1 + λ

)N+ 2
1+2λ

.

Putting into the primary differential equation gives

C′(z) = − bz + c

λ(1 + λ)(z − r1)c1+1(z − r2)c2+1
.

We may now integrate both sides from 1 to z to obtain

C(z) =
( λ

1 + λ

)N+ 2
1+2λ − 1

λ(1 + λ)

∫ z

1

bu+ c

(u− r1)c1+1(u− r2)c2+1
du.
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By changing variables with t = 1+2λ
1+λ

1
1+λu , we obtain

C(z) =
( λ

1 + λ

)N+ 2
1+2λ

− b

λ(1 + λ)

(λ(1 + λ)

1 + 2λ

)N[
B
(

1+2λ
(1+λ)(1+λz) ;

1
1+2λ , N

)
−B

(
1+2λ
(1+λ)2 ;

1
1+2λ , N

)]

− c− b
λ

1 + 2λ

(λ(1 + λ)

1 + 2λ

)N[
B
(

1+2λ
(1+λ)(1+λz) ;

1
1+2λ , N + 1

)
−B

(
1+2λ
(1+λ)2 ;

1
1+2λ , N + 1

)]
,

(3.7)

where B(x; a, b) is the incomplete beta function. Note that for a nonnegative integer k, the identity

B(k, b)−B(x; k, b) =

k−1∑

j=0

(
k − 1

j

)
B(j + 1, b)xk−1−j(1− x)j+b

holds, and this can be readily shown by induction on k. After we apply this identity to (3.7), we obtain

the solution (3.2) by expanding. The relation (3.4) follows from checking analyticity of G(z). �

3.2. Asymptotic Analysis.

Theorem 3.4 (Asymptotic behavior of quasi-stationary measure, high infection regime). Let

vhighn =

(
N

n

)
λn−NfN,λ(n),

where

fN,λ(n) =
N−1∏

k=n

[
1 +

1

(1 + 2λ)(k + 1)− λN

]
.

Then, the scaled quasi-stationary measure vn = µ(1, n) with infected hub satisfies the following.

(1) Let ε > 0 be given, and let δ = εN . Then, for n ∈ [ λ
1+2λN + δ,N ], we have

vn = vhighn (1 +O(N−1))

as N → ∞, where the error term is uniform in n.

(2) Let 0 < a < 1
2 be given, and let δ = N

1
2+a. Then, for n ∈ [ λ

1+2λN + δ,N ], we have

vn = vhighn (1 +O(N−2a))

as N → ∞, where the error term is uniform in n.

Theorem 3.5 (Asymptotic behavior of quasi-stationary measure, low infection regime). Let

vlown = CN,λ(1 + λ)ngN,λ(n),

where

gN,λ(n) =
(
1− 1 + 2λ

λ

n

N

)− 2λ
1+2λ

and

C−1
N,λ =

λ

1 + 2λ
NB

(
1

1+2λ , N
)(λ(1 + λ)

1 + 2λ

)N
.

Then, the scaled quasi-stationary measure vn = µ(1, n) with infected hub satisfies the following.

(1) Let ε > 0 be given, and let δ = εN . Then, for n ∈ [0, λ
1+2λN − δ], we have

vn = vlown (1 +O(N−1))

as N → ∞, where the error term is uniform in n.
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(2) Let 0 < a < 1
2 be given, and let δ = N

1
2+a. Then, for n ∈ [0, λ

1+2λN − δ], we have

vn = vlown (1 +O(N−2a))

as N → ∞, where the error term is uniform in n.

(3) Let 0 < a < 1
2 be given, and let δ = N

1
2+a. Then, for n ∈ [ λ

1+2λN − δ, λ
1+2λN + δ], we have

CN,λ(1 + λ)ne−2δ ≪ vn . CN,λ(1 + λ)nmax
{
N

λ
1+2λ , N

1
2

∣∣∣ λ

1 + 2λ
− n

N

∣∣∣
1

1+2λ
}

as N → ∞, where the error term is uniform in n.

Remark 3.6. By applying Theorem 3.5 to the recurrence relation (3.1), we obtain

αµ(0, 0) = λNCN,λ(1 +O(N−1)). (3.8)

Remark 3.7. The theorem highlights a marked difference in the asymptotic behavior of vn between

two distinct regimes: one characterized by a large number of infected leaves, and the other by a smaller

number. The prefactors fN,λ(n) and gN,λ(n) exhibit subexponential growth in N . Consequently, in the

high infection regime, the dominant exponential factor of vn is
(
N
n

)
λn−N , whereas in the low infection

regime, it is dominated by CN,λ(1 + λ)n.

To understand the rationale behind these exponentially dominating factors in vn, consider the

dual modes of the dynamics, contingent on the status of the hub. When n is sufficiently large, the

infection rate of the hub, proportional to n, significantly outweighs its cure rate of 1. This allows

us to approximate that the hub remains perpetually infected. Under this assumption, the leaves

evolve independently, each following a Markov chain with an infected rate of λ and a cure rate of

1. Consequently, the distribution of n rapidly converges to a binomial distribution Binom(N, λ
1+λ),

elucidating the
(
N
n

)
λn−N factor.

Conversely, in scenarios where n is small, the mode with a healthy hub predominantly influences

the energy landscape despite its brief temporal occurrence. In such cases, when the hub is healthy, the

next transition in the process could either be the reinfection of the hub, with a probability of λ
1+λ , or

the healing of an infected leaf, with a probability of 1
1+λ . Thus, once the hub is cured, the number

of subsequently cured leaves before the hub is reinfected follows a (truncated) geometric distribution

with a success probability of λ
1+λ , which accounts for the (1 + λ)n factor.

The transition between these regimes occurs at a point where the influences of both modes are

comparably significant. A pathwise approach, grounded in large deviation theory, reveals that this

transitional state corresponds to when the proportion of infected leaves approximates λ
1+2λ .

Remark 3.8. The sequence (vn)0≤n≤N attains its global maximum at n ≃ λ
1+λN , and its global

minimum at n = 0. The former is the metastable state of the process, which is defined to be a state

with maximal stability level, while the latter is the saddle point of the process. Hence, the exact

exponent of the potential barrier is

lim
N→∞

1

N
log(v⌊ λ

1+λ
N⌋/v0) = 2 log(1 + λ)− log(1 + 2λ).

This suggests the large deviation principle

lim
N→∞

1

N
logEτ = 2 log(1 + λ)− log(1 + 2λ),

which was observed by Wang [35].

To outline the proof of the asymptotic behavior of vn, we first address the high infection regime.

Our primary focus is on demonstrating that the deviation between vn and vhighn remains controlled as n
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descends from N . This is established inductively by leveraging the recurrence relation outlined in (3.1).

Moving to the low infection regime, we initiate our analysis by deriving the explicit representation of

CN,λ. Subsequently, we segment the low infection regime into three distinct sections. The initial

section concerns those values of n that are neither close to 0 nor near λ
1+2λN . For these, we apply

Laplace’s method to the integral formula in (3.5) for vn in a more refined manner. The second section

addresses values of n proximal to 0, where our approach mirrors that used in the high infection regime,

albeit initiated from the outcomes of Laplace’s method applied previously. The final section deals with

values of n near the transitional point λ
1+2λN . Here, we once again utilize the integral expression (3.5)

to derive reasonable asymptotic bounds for vn.

Proof of Theorem 3.4. Define xn = vn/v
high
n and yn = xn/xn+1. Then xN = xN−1 = 1, yN−1 = 1,

and the sequence (yn)0≤n≤N−1 has a recurrence relation

(1 + λ)(n+ 1)
(
1 +

1

(1 + 2λ)(n+ 2)− λN

)(
1 +

1

(1 + 2λ)(n+ 1)− λN

)
(yn − 1)

=
2(1 + λ)((1 + λ)(n+ 1)− λN)

((1 + 2λ)(n+ 2)− λN)((1 + 2λ)(n+ 1)− λN)
+ λ(N − n− 1)

yn+1 − 1

yn+1
,

(3.9)

which can be directly obtained from (3.1).

Now we prove the theorem in two steps.

Step 1. n ∈ [ λ
1+2λN + εN,N ], where ε > 0.

By the relation (3.9), it holds that

|yn − 1| ≤ 2 |(1 + λ)(n + 1)− λN |
(n+ 1)((1 + 2λ)(n+ 2)− λN)((1 + 2λ)(n+ 1)− λN)

+
λ(N − n− 1)

(1 + λ)(n+ 1)

|yn+1 − 1|
yn+1

≤ A

N2
+ (1 − r)

|yn+1 − 1|
yn+1

(3.10)

with constants A > 0 and 0 < r < 1 that only depend on λ and ε. Choose a constant B > 0 that only

depend on λ and ε so that the inequality

A

N2
+ (1− r)

B/N2

1−B/N2
≤ B

N2

holds for all sufficiently large N . For instance, B = 2A
r works. Since

|yN−1 − 1| = 0 ≤ B

N2
,

we can inductively show that |yn − 1| ≤ B
N2 for all n ∈ [ λ

1+2λN + εN,N ]. Thus, we obtain

|log xn| =
N−1∑

k=n

|log yk| ≤ N
∣∣∣log

(
1− B

N2

)∣∣∣ = O(N−1),

so |xn − 1| = O(N−1) for all n ∈ [ λ
1+2λN + εN,N ].

Step 2. n ∈ [ λ
1+2λN + δ,N ], where δ = N

1
2+a, 0 < a < 1

2 .

We mimic the proof in the previous step. Write n = λ
1+2λN + d. We claim that

|yn − 1| = O(Nd−3).
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Similarly as in (3.10), we have

|yn − 1| ≤ 2 |(1 + λ)(n + 1)− λN |
(n+ 1)((1 + 2λ)(n+ 2)− λN)((1 + 2λ)(n+ 1)− λN)

+
λ(N − n− 1)

(1 + λ)(n+ 1)

|yn+1 − 1|
yn+1

≤ A

d2
+
(
1− r

d

N

) |yn+1 − 1|
yn+1

with constants A > 0 and 0 < r < 1 that only depend on λ and ε. Put B = 2A
r , then it holds that

A

d2
+

(
1− r

d

N

) BN(d+ 1)−3

1−BN(d+ 1)−3
≤ BN

d3

for all sufficiently large N . Hence, we can inductively show that |yn − 1| ≤ BNd−3 for all n ∈
[ λ
1+2λN + δ,N ]. Thus, we obtain

|log xn| =
N−1∑

k=n

|log yk| ≤
N−1∑

k=n

log
(
1 +B

N

(k − λ
1+2λN)3

)
.

1

N

∫ 1
1+2λ

δ
N

dt

d3
= O(N−2a),

and the proof is complete. �

Lemma 3.9. Let −1 < a < 0 and 0 < p < 1 be given. Then, for each m ∈ Z>0,

∫ 1

0

(1− pt)N (1− t)a dt =

m−1∑

k=0

(−1)k
(
a

k

)
p−k−1B(k + 1, N + 1) +O(N−m)

as N → ∞, where B(a, b) is the beta function.

Proof. Denote the integral on the left-hand side by IN . The term (1 − pt)N exponentially decays as

N → ∞ for t ∈ [0, 1] bounded away from 0, while (1− t)a has a unique algebraic pole at 1. Hence, we

may replace the integration range by [0, 1/2] without affecting the asymptotic behavior, so that the

range does not contain 1.

Now, by Taylor’s theorem,

IN =

∫ 1/2

0

(1− pt)N (1− t)a dt+O(N−m)

=

m−1∑

k=0

(−1)k
(
a

k

)∫ 1/2

0

(1− pt)N tk dt+

∫ 1/2

0

(1− pt)NO(tm) dt+O(N−m).

Note that
∫ 1/2

0

tk(1− pt)N dt = p−k−1B(p/2; k + 1, N + 1),

where B(x; a, b) is the incomplete beta function. By the asymptotic expansion [27, Equation (8.18.1)]

of incomplete beta functions, the error between B(p/2; k+1, N+1) and B(k+1, N+1) is exponentially

small in N . Thus,

IN =

m−1∑

k=0

(−1)k
(
a

k

)∫ 1/2

0

(1 − pt)N tk dt+

∫ 1/2

0

(1 − pt)NO(tm) dt+O(N−m)

=

m−1∑

k=0

(−1)k
(
a

k

)
p−k−1B(k + 1, N + 1) +O(N−m)

since B(m,N + 1) = O(N−m). �
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Proposition 3.10 (Initial value condition). As N → ∞,

v1
vN

= CN,λ(1 + λ)(1 +O(N−1)),

where CN,λ is as in Theorem 3.5.

Proof. We claim that
b

π0
= −λ2N2 + λ(1 + 3λ)N +O(1), (3.11)

where b and π0 are as in Proposition 3.2.

Put

IN =

∫ 1

0

(
1− λ

1 + 2λ
t
)N

(1 − t)−
2λ

1+2λ dt.

Then from (3.6), we obtain the relation

b

π0
=
λ(1 + 2λ− IN )

IN − IN−1
.

We may deduce the asymptotic expansion (3.11) by applying Lemma 3.9 and performing long division.

By putting n = N in the solution (3.2), we have

πN
π0

=− b

(1 + 2λ)π0
B
(

1
1+2λ , N

)( λ

1 + 2λ

)N−1

(1 + λ)N−1

− c− b
λ

(1 + 2λ)π0
B
(

1
1+2λ , N + 1

)( λ

1 + 2λ

)N
(1 + λ)N

=
1

λ(1 + 2λ)
B
(

1
1+2λ , N + 1

)(λ(1 + λ)

1 + 2λ

)N[
λ+

(
1−

N + 1
1+2λ

N

1 + 2λ

1 + λ

) b

π0

]

=
λ

1 + λ
N

1

CN,λ
(1 +O(N−1)).

Therefore, we can conclude that

v1
vN

=
π1
πN

=
λNπ0
πN

= CN,λ(1 + λ)(1 +O(N−1)),

and this is precisely the assertion of the proposition. �

Proof of Theorem 3.5. The proof will be divided into three steps.

Step 1. n ∈ [εN, λ
1+2λ − δ], where ε > 0, 0 < a < 1

2 , and δ = εN or δ = N
1
2+a.

We abbreviate n/N = β and min{β, λ
1+2λ − β} = γ. Recall from (3.5):

πn =− b

λ2

(
N − 1

n

)
(1 + λ)n

∫ λ
1+2λ

0

un(1− u)N−n−1
(
1− 1 + 2λ

λ
u
)− 2λ

1+2λ

du

− b

λ

(
N − 1

n− 1

)
(1 + λ)n−1

∫ λ
1+2λ

0

un−1(1− u)N−n−1
(
1− 1 + 2λ

λ
u
)− 2λ

1+2λ

du

− c− b
λ

λ

(
N

n

)
(1 + λ)n

∫ λ
1+2λ

0

un(1− u)N−n
(
1− 1 + 2λ

λ
u
)− 2λ

1+2λ

du

=

[−b
λ
βn(1− β)N−n

(
N

n

)]
(1 + λ)n−1

(
1− 1 + 2λ

λ
β
)− 2λ

1+2λ

∫ λ
1+2λ

0

e−NPn(t)Qn(t) dt,

where

Pn(t) = −β log t
β
− (1− β) log

1− t

1− β
,
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Qn(t) =

( λ
1+2λ − t
λ

1+2λ − β

)− 2λ
1+2λ [1 + λ

λ

1− β

1− t
+
β

t
− 1 + λ

λ

]
.

For ease of computation, we have omitted a term with c from Qn(t) here. This can be justified by

performing the same method of computation below on the term with c separately, while noting that

c/b = O(N−2) by (3.11).

By Stirling’s series [27, Equation (5.11.3)], we obtain
(
N

n

)
=

1√
2πNβn+1/2(1− β)N−n+1/2

[
1 +

1

12

(
1− 1

β
− 1

1− β

) 1

N
+O(N−2)

]
.

Hence,

πn =
−b
λ

1√
2πNβ(1 − β)

[
1 +

1

12

(
1− 1

β
− 1

1− β

) 1

N
+O(N−2)

]

× (1 + λ)n−1
(
1− 1 + 2λ

λ
β
)− 2λ

1+2λ

∫ λ
1+2λ

0

e−NPn(t)Qn(t) dt.

The function Pn(t) attains a unique minimum 0 at t = β on (0, 1), and we have

P ′
n(t) = −β

t
+

1− β

1− t
,

P (3)
n (t) = −2

[ β
t3

− 1− β

(1− t)3

]
,

P ′′
n (t) =

β

t2
+

1− β

(1− t)2
,

P (4)
n (t) = 6

[ β
t4

+
1− β

(1− t)4

]
,

and

Q′
n(t) = Qn(t)An(t), Q′′

n(t) = Qn(t)[An(t)
2 +A′

n(t)],

where

An(t) =
2λ

1 + 2λ

1
λ

1+2λ − t
+

1+λ
λ

1−β
(1−t)2 − β

t2

1+λ
λ

1−β
1−t +

β
t − 1+λ

λ

.

We have assumed that γ = Ω(N− 1
2+a), so outside the interval (β − γ/3, β + γ/3), the exponential

term in the integral vanishes rapidly as N → ∞ while Qn(t) has only algebraic poles of order less than

1. Hence, we may replace the integration range by (β − γ1, β + γ2) without affecting the asymptotic

behavior, where:

• γ/3 < γi < γ/2,

• Pn(β − γ1) = Pn(β + γ2) = κ.

Note that Pn(t) and Qn(t) are smooth on the interval (β − γ1, β + γ2).

Now we apply Laplace’s method for approximating integrals. Theoretical background can be found

in various textbooks, for instance, [26, Section 3.7–9]. Write pn,s(t) = 1
(s+2)!P

(s+2)
n (t) and qn,s(t) =

1
s!Q

(s)
n (t) so that we have Taylor expansions

Pn(t) = p0(t− β)2 + p1(t− β)3 + p2(t− β)4 + . . . ,

Qn(t) = q0 + q1(t− β) + q2(t− β)2 + . . . ,

where pn,s(β) = ps and qn,s(β) = qs. Substitute v = Pn(t) for t ≥ β sufficiently close to β, then we

have ∫ β+γ2

β

e−NPn(t)Qn(t) dt =

∫ κ

0

e−Nvf(v) dv,

where

f(v) =
Qn(t)

P ′
n(t)

= an,0(β)v
−1/2 + an,1(β) + an,2(β)v

1/2 + an,3(β)v + . . . .
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Here, an,s is a polynomial in pn,i’s and qn,i’s divided by some power of p
1/2
n,0 , which can be explicitly

computed by series reversion. The first few terms can be given as follows.

an,0 =
qn,0

2p
1/2
n,0

, an,1 =
1

2p2n,0
[pn,0qn,1 − pn,1qn,0],

an,2 =
1

16p
7/2
n,0

[8p2n,0qn,2 − 12pn,0pn,1qn,1 + 3(5p2n,1 − 4pn,0pn,2)qn,0].

(3.12)

Similarly as before, we write an,s(β) = as for brevity. We also have
∫ β

β−γ1

e−NPn(t)Qn(t) dt =

∫ κ

0

e−Nvf̃(v) dv,

where

f̃(v) = a0v
−1/2 − a1 + a2v

1/2 − a3v + . . . .

Thus, the integral to estimate becomes
∫ β+γ2

β−γ1

e−NPn(t)Qn(t) dt = 2

∫ κ

0

e−NvFn(v) dv,

where

Fn(v) = a0v
−1/2 + a2v

1/2 + a4v
3/2 + . . . .

For a fixed s ≥ 1, the above integral can be expressed as
∫ κ

0

e−NvFn(v) dv

=

∫ ∞

0

e−Nv
s−1∑

i=0

a2iv
i−1/2 dv −

∫ ∞

κ

e−Nv
s−1∑

i=0

a2iv
i−1/2 dv +

∫ κ

0

e−NvRn,s(v) dv

=

s−1∑

i=0

Γ
(
i+

1

2

) a2i
N i+1/2

−
s−1∑

i=0

Γ
(
i+

1

2
, Nκ

) a2i
N i+1/2

+

∫ κ

0

e−NvRn,s(v) dv,

(3.13)

where Γ(a, x) is the incomplete gamma function and

Rn,s(v) = Fn(v) −
s−1∑

i=0

a2iv
i−1/2.

Note that the incomplete Gamma function can be bounded with

Γ(r, x) ≤ e−xxr

x−max{r − 1, 0} (x > max{r − 1, 0}).

See [27, Equation (8.10.1)] and [26, Chapter 3, Equation (2.14)]. Since Nκ = Ω(Na) and a2i grows

algebraically as N → ∞, we may neglect the second term of the last line in (3.13) without affecting

the asymptotic behavior.

Now, we will show that the third term is also sufficiently small for some s. By Taylor’s theorem,

there exists some t∗ lying between β and t such that

Rn,s(v) = an,2s(t∗)v
s−1/2.

First, we consider the n’s with γ ≥ ε > 0. For t ∈ [β − γ/2, β + γ/2], each of pn,i’s and qn,i’s is

uniformly bounded in n, and pn,0 is uniformly bounded away from 0 in n. Hence, each of an,s’s is
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uniformly bounded in n, so
∣∣∣∣
∫ κ

0

e−NvRn,s(v) dv

∣∣∣∣ ≤
∫ κ

0

e−Nv|an,2s(t∗)|vs−1/2 dv = O
( 1

Ns+1/2

)
.

This yields that

∫ κ

0

e−NvFn(v) dv =

s−1∑

i=0

Γ
(
i+

1

2

) a2i
N i+1/2

+O
( 1

Ns+1/2

)
,

so

πn =
−b
λ

1√
2πNβ(1− β)

[
1 +

1

12

(
1− 1

β
− 1

1− β

) 1

N
+O(N−2)

]

× (1 + λ)n−1
(
1− 1 + 2λ

λ
β
)− 2λ

1+2λ · 2
∫ κ

0

e−NvFn(v) dv

=
−b
λ

1√
2πNβ(1− β)

[
1 +

1

12

(
1− 1

β
− 1

1− β

) 1

N
+O(N−2)

]

× (1 + λ)n−1
(
1− 1 + 2λ

λ
β
)− 2λ

1+2λ

[s−1∑

i=0

2Γ
(
i+

1

2

) a2i
N i+1/2

+O
( 1

Ns+1/2

)]
.

Putting s = 2 gives

πn =
−b
λ

1√
2πNβ(1− β)

[
1 +

1

12

(
1− 1

β
− 1

1− β

) 1

N
+O(N−2)

]

× (1 + λ)n−1
(
1− 1 + 2λ

λ
β
)− 2λ

1+2λ
[
2
√
π

a0
N1/2

+
√
π

a2
N3/2

+O
( 1

N5/2

)]
.

Since p0 = 1
2β(1−β) and q0 = 1, we have

a0 =
q0

2p
1/2
0

=

√
β(1− β)

2
.

Recall from (3.11):
b

π1
= −λN + (1 + 3λ) +O(N−1),

so we obtain

πn =
−b
λN

[
1 +

1

12

(
1− 1

β
− 1

1− β

) 1

N
+O(N−2)

]

× (1 + λ)n−1
(
1− 1 + 2λ

λ
β
)− 2λ

1+2λ
[
1 +

a2√
2β(1− β)

1

N
+O

( 1

N2

)]

= π1(1 + λ)n−1
(
1− 1 + 2λ

λ
β
)− 2λ

1+2λ

×
[
1 +

[
−1 + 3λ

λ
+

1

12

(
1− 1

β
− 1

1− β

)
+

a2√
2β(1− β)

] 1

N
+O

( 1

N2

)]
.

(3.14)

Next, we deal with the case when γ ≤ ε and γ = Ω(N− 1
2+a). For t ∈ [β − γ/2, β + γ/2], each of

pn,i’s is uniformly bounded, and

qn,0(t) = O(1),

qn,1(t) = O(γ−1) = O(N
1
2 (1−2a)),

qn,2(t) = O(γ−2) = O(N1−2a),
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so

an,2(t) =
1

16p
7/2
n,0

[8p2n,0qn,2 − 12pn,0pn,1qn,1 + 3(5p2n,1 − 4pn,0pn,2)qn,0] = O(N1−2a).

Now we put s = 1 and proceed similarly as before. Since we have
∣∣∣∣
∫ κ

0

e−NvRn,1(v) dv

∣∣∣∣ ≤
∫ κ

0

e−Nv|an,2(t∗)|v1/2 dv = O(N− 1
2−2a),

the integral to estimate has an asymptotic expression
∫ κ

0

e−NvFn(v) dv =
√
π

a0
N1/2

+O(N− 1
2−2a).

Hence,

πn =
−b
λ

1√
2πNβ(1− β)

[
1 +

1

12

(
1− 1

β
− 1

1− β

) 1

N
+O(N−2)

]

× (1 + λ)n−1
(
1− 1 + 2λ

λ
β
)− 2λ

1+2λ
[
2
√
π

a0
N1/2

+O(N− 1
2−2a)

]

= π1(1 + λ)n−1
(
1− 1 + 2λ

λ
β
)− 2λ

1+2λ
[
1 +O(N−2a)

]
.

Step 2. n ∈ [0, εN ], where 0 < ε < λ
1+2λ .

On this regime, we may replace gN,λ(n) by

g̃N,λ(n) =

n−1∏

k=0

[
1 +

2λ

λN − (1 + 2λ)(k + 1)− 1

]
,

since

g̃N,λ(n) = exp

[n−1∑

k=0

log
(
1 +

2λ

λN − (1 + 2λ)(k + 1)− 1

)]

= exp

[n−1∑

k=0

( 2λ

λN − (1 + 2λ)(k + 1)− 1
+O(N−2)

)]

=
(
1− 1 + 2λ

λ

n

N

)− 2λ
1+2λ

(1 +O(nN−2))

= gN,λ(n)(1 + O(N−1))

(3.15)

by Taylor’s theorem. We also replace vlown by ṽlown accordingly.

Define xn = vn/ṽ
low
n and yn = xn/xn+1. Pick n0 = ⌊εN⌋. We will show that xn0 = 1 + O(N−1)

and yn0 = 1+O(N−2). Recall from (3.14) in the previous step: for n’s sufficiently close to n0, we have

vn
vlown

=
v1
CN,λ

×
[
1 +

[
−1 + 3λ

λ
+

1

12

(
1− 1

β
− 1

1− β

)
+

an,2(β)√
2β(1− β)

] 1

N
+O

( 1

N2

)]
, (3.16)

where β = n/N and an,2 is defined as in (3.12). For such n, we have

gN,λ(n+ 1)

gN,λ(n)
=

(
1− 1 + 2λ

λN − (1 + 2λ)n

)− 2λ
1+2λ

=
g̃N,λ(n+ 1)

g̃N,λ(n)
(1 +O(N−2)),

so we may replace the left-hand side of (3.16) by xn. Write

D(n) = −1 + 3λ

λ
+

1

12

(
1− 1

β
− 1

1− β

)
+

an,2(β)√
2β(1− β)

.
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Then we have

xn =
v1
CN,λ

×
[
1 +D(n)

1

N
+O

( 1

N2

)]
,

so

yn =
xn
xn+1

= 1 + (D(n)−D(n+ 1))
1

N
+O(N−2).

Hence, it sufficies to show that

D(n0 + 1)−D(n0) = O(N−1).

This follows immediately from the observation thatD(n) is a differentiable function in β with uniformly

bounded differential in a neighborhood of β = n0/N .

The sequence (yn)0≤n≤N−1 has a recurrence relation

(1 + λ)(n+ 2)
(
1 +

2λ

λN − (1 + 2λ)(n+ 1)− 1

)(
1 +

2λ

λN − (1 + 2λ)n− 1

)1− yn+1

yn+1

= − 2λ2(1 + 4λ)(N − n)

(λN − (1 + 2λ)(n+ 1)− 1)(λN − (1 + 2λ)n− 1)
+ λ(N − n)(1− yn),

which can be directly obtained from (3.1). Hence,

|yn − 1| ≤ 2λ(1 + 4λ)

(λN − (1 + 2λ)(n+ 1)− 1)(λN − (1 + 2λ)n− 1)

+
(1 + λ)(n + 2)

λ(N − n)

(
1 +

2λ

λN − (1 + 2λ)(n+ 1)− 1

)(
1 +

2λ

λN − (1 + 2λ)n− 1

)

× |yn+1 − 1|
yn+1

≤ A

N2
+ (1− r)

|yn+1 − 1|
yn+1

with constants A > 0 and 0 < r < 1 that only depend on λ and ε. Choose a constant B > 0 that only

depend on λ and ε so that the inequality

A

N2
+ (1− r)

B/N2

1−B/N2
≤ B

N2

holds for all sufficiently large N . For instance, B = 2A
r works. Since

|yn0 − 1| ≤ B

N2
,

if we pick A sufficiently large, we can inductively show that |yn − 1| ≤ B
N2 for all n ∈ [1, εN ]. Thus,

we obtain

|log xn| =
n0−1∑

k=n

|log yk|+ |log xn0 | ≤ N
∣∣∣log

(
1− B

N2

)∣∣∣+ |log xn0 | = O(N−1),

so |xn − 1| = O(N−1) for all n ∈ [1, εN ].

Step 3. n ∈ [ λ
1+2λN − δ, λ

1+2λN + δ], where δ = N
1
2+a, 0 < a < 1

2 .

We abbreviate n/N = β, and denote n = ( λ
1+2λ − γ)N . Here, we allow γ to be negative. Recall

from (3.5):

πn =− b

λ2

(
N − 1

n

)
(1 + λ)n

∫ λ
1+2λ

0

un(1− u)N−n−1
(
1− 1 + 2λ

λ
u
)− 2λ

1+2λ

du
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− b

λ

(
N − 1

n− 1

)
(1 + λ)n−1

∫ λ
1+2λ

0

un−1(1 − u)N−n−1
(
1− 1 + 2λ

λ
u
)− 2λ

1+2λ

du

− c− b
λ

λ

(
N

n

)
(1 + λ)n

∫ λ
1+2λ

0

un(1− u)N−n
(
1− 1 + 2λ

λ
u
)− 2λ

1+2λ

du

=
−b
λ

(1 + λ)n−1

∫ λ
1+2λ

0

(
N

n

)
tn(1− t)N−nSn(t)

(
1− 1 + 2λ

λ
t
)− 2λ

1+2λ

dt,

where

Sn(t) =
1 + λ

λ

1− β

1− t
+
β

t
− 1 + λ

λ
.

Then, we shrink the integration range to ( λ
1+2λ − γ1,

λ
1+2λ ) where γ1 = N− 1

2+a. Note that this does

not affect our argument; we are all clear with the lower bound, and observe that the integrand in the

above expression is condensed around t = λ
1+2λ − γ as in previous steps for the upper bound. In this

interval, Sn(t) is uniformly bounded and uniformly bounded away from 0, so we may replace Sn(t) by

1. We will show that

e−2Nγ1 ≪
∫ λ

1+2λ

λ
1+2λ−γ1

(
N

n

)
tn(1− t)N−n

(
1− 1 + 2λ

λ
t
)− 2λ

1+2λ

dt (3.17)

and
∫ λ

1+2λ

λ
1+2λ−γ1

(
N

n

)
tn(1 − t)N−n

(
1− 1 + 2λ

λ
t
)− 2λ

1+2λ

dt . max{N−1+ λ
1+2λ , N− 1

2 |γ| 1
1+2λ }. (3.18)

This together with (3.11) concludes our proof since

−b
λ

= π1N(1 + o(1)).

Let us prove the inequality of (3.17). Denote the above integral by IN,n, then

IN,n ≥ γ1

(
N

n

)( λ

1 + 2λ
− γ1

)n( 1

1 + 2λ

)N−n

. (3.19)

By Stirling’s formula [27, Equation (5.11.1)], we obtain

log

(
N

n

)
= −n log n

N
− (N − n) log

N − n

N
+O(logN).

Hence, by taking log of each sides of (3.19) and expanding into Taylor series at λ
1+2λ , we obtain

log IN,n ≥ −γ1N +O(Nγ21 ),

which establishes our conclusion.

For the inequality (3.18), we begin with the following quantitative local limit theorem for i.i.d.

Bernoulli random variables:∣∣∣∣
(
N

n

)
tn(1− t)N−n − 1√

2πNt(1− t)
e−

(n−Nt)2

2Nt(1−t)

∣∣∣∣ ≤
0.516

Nt(1− t)
.

This can be found in Zolotukhin, Nagaev, and Chebotarev [36, Lemma 5]. The error on the right-hand

side can be neglected since
∫ λ

1+2λ

λ
1+2λ−γ1

0.516

Nt(1− t)

(
1− 1 + 2λ

λ
t
)− 2λ

1+2λ

dt = O(N−1)

∫ λ
1+2λ

λ
1+2λ−γ1

(
1− 1 + 2λ

λ
t
)− 2λ

1+2λ

dt

= o(N−1+ λ
1+2λ ).
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Hence, it sufficies to show that
∫ λ

1+2λ

λ
1+2λ−γ1

1√
2πNt(1− t)

e−
(n−Nt)2

2Nt(1−t)

(
1− 1 + 2λ

λ
t
)− 2λ

1+2λ

dt . max{N−1+ λ
1+2λ , N− 1

2 |γ| 1
1+2λ },

or, ∫ λ
1+2λ

λ
1+2λ−γ1

e−N(β−t)2
( λ

1 + 2λ
− t

)− 2λ
1+2λ

dt . max{N− 1
2+

λ
1+2λ , |γ| 1

1+2λ }.

Note that 1
2t(1−t) in the exponent is replaced by a smaller constant 1. By substituting λ

1+2λ − t = u,

we obtain
∫ λ

1+2λ

λ
1+2λ−γ1

e−N(β−t)2
( λ

1 + 2λ
− t

)− 2λ
1+2λ

dt =

∫ γ1

0

e−N(γ−u)2u−
2λ

1+2λ du.

We divide the integration range into two parts:
∫ γ1

0

e−N(γ−u)2u−
2λ

1+2λ du =

∫ γ2

0

e−N(γ−u)2u−
2λ

1+2λ du+

∫ γ1

γ2

e−N(γ−u)2u−
2λ

1+2λ du,

where γ2 = max{N− 1
2 , |γ|}. For the first integral, observe that

∫ γ2

0

e−N(γ−u)2u−
2λ

1+2λ du ≤
∫ γ2

0

u−
2λ

1+2λ du . max{N− 1
2+

λ
1+2λ , |γ| 1

1+2λ }.

For the second integral, we can assert that
∫ γ1

γ2

e−N(γ−u)2u−
2λ

1+2λ du ≤ N
λ

1+2λ

∫ ∞

γ2

e−N(γ−u)2 du ≤ N
λ

1+2λ

∫ ∞

0

e−Nu
2

du . N− 1
2+

λ
1+2λ ,

and the proof is complete. �

3.3. Basic Properties of Energy Landscape. In this subsection, we establish some basic properties

of the quasi-stationary measure of the contact process on stars. These properties are crucial for

subsequent computation within the potential theoretic framework.

Lemma 3.11. Let vn = µ(1, n) be the scaled quasi-stationary measure with infected hub. Put m =

⌊ λ
1+λN⌋, the number of infected leaves at the metastable state. Then, as N → ∞, the mass at the

metastable state is

vm ≃ 1 + λ√
2πλN

(1 + λ

λ

)N+ 2
1+2λ

.

Proof. By the asymptotic formulas for vn in Theorem 3.4, it sufficies to show that

vhighm =

(
N

m

)
λm−NfN,λ(m) =

1 + λ√
2πλN

(1 + λ

λ

)N+ 2
1+2λ

(1 + o(1)). (3.20)

By Stirling’s formula [27, Equation (5.11.1)], we obtain
(
N

m

)
=

1√
2πλN

(1 + λ)N+1

λm
(1 + o(1)).

Also, a computation analogous to (3.15) reveals that for n ∈ [ λ
1+2λN + εN,N ] where ε > 0, we have

fN,λ(n) =
(1 + 2λ

1 + λ

n

N
− λ

1 + λ

)− 1
1+2λ

(1 +O(N−1)).

Summing up, we may conclude that (3.20) holds. �

Lemma 3.12. Let un = µ(0, n) and vn = µ(1, n) be the scaled quasi-stationary measure. Let ε > 0 be

given. Put m = ⌊ λ
1+λN⌋, the number of infected leaves at the metastable state, and R = N

1
2+ε. Then,
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as N → ∞, the total mass of the process is

ZN,λ =

N∑

n=0

(un + vn) ≃
∑

|n−m|<R

vn ≃
(1 + λ

λ

)N+ 2
1+2λ

, (3.21)

where the second summation is taken over n’s that satisfy |n−m| < R.

Proof. We begin by proving
N∑

n=0

vn ≃
∑

|n−m|<R

vn ≃
√
2πλN

1 + λ
vm.

The right-hand side of the above equality agrees with the right-hand side of (3.21) by Lemma 3.11.

Write n = m+ k. By the asymptotic formulas for vn in Theorems 3.4 and 3.5, vn/vm rapidly decays

as N → ∞ if k ≥ R. Hence, we may neglect n’s such that |n −m| ≥ R, and suppose that k < R.

Similarly as in the proof of Lemma 3.11, we obtain

vn = vhighn (1 + o(1))

=
1√
2πN

1

( nN )n+
1
2 (N−n

N )N−n+ 1
2

λn−N
(1 + 2λ

1 + λ

n

N
− λ

1 + λ

)− 1
1+2λ

(1 + o(1))

= vm
1

(1 + 1+λ
λ

k
N )n(1− (1 + λ) kN )N−n

(1 + o(1)).

Also, it is easy to check that

1

(1 + 1+λ
λ

k
N )n(1− (1 + λ) kN )N−n

= exp
[
− (1 + λ)2

2λ

k2

N

][
1 +O

( k
N

)]

by taking log of each sides and expanding into Taylor series. Thus, it follows that

∑

|n−m|<R

vn ≃ vm
∑

|k|<R

exp
[
− (1 + λ)2

2λ

k2

N

]
≃ 2πλN

1 + λ
vm erf

(1 + λ√
2λ

R√
N

)
≃ 2πλN

1 + λ
vm,

where erf(x) is the error function.

It remains to prove that the sum of un’s is negligible with respect to the sum of vn’s. By the

relations between un’s and vn’s in Proposition 3.1,

N∑

n=0

un = u0 + λ(N − 1)v1 +

N∑

n=2

(
λ
N − n

n
− n

n− 1

)
vn

=
∑

|n−m|<R

(
λ
N − n

n
− n

n− 1

)
vn(1 + o(1)) = O(N−1)

∑

|n−m|<R

vn,

which is our claim. �

Lemma 3.13. Let vn = µ(1, n) be the scaled quasi-stationary measure with infected hub. Then, as

N → ∞,
N∑

n=0

vn
(1 + λ)n

= λNCN,λ(1 +O(N−1)). (3.22)

The proof of Lemma 3.13 is given in Section 5.
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4. Potential Theory for Non-reversible Markov Chains

In this section, we introduce basic terminologies and review the potential theoretic approach for

estimating the mean extinction time. These concepts and methods are employed in subsequent analyses

in the next section. We refer to [33] for more details.

Throughout this section, let (X(t))t≥0 be an irreducible continuous-time Markov process on a finite

set H, with jump rate r : H×H → [0,∞) and stationary distribution µ.

4.1. Basic Terminology. Since H is a finite set, the space L2(µ) consists of all real functions on H.

The generator L is an operator acting on f ∈ L2(µ) by

(Lf)(x) =
∑

y∈H

r(x, y)(f(y) − f(x)), x ∈ H.

Then L defines a positive semi-definite quadratic form on L2(µ) given by

D(f) = 〈f,−Lf〉µ =
1

2

∑

x∈H

∑

y∈H

µ(x)r(x, y)[f(y) − f(x)]2

where f ∈ L2(µ), called the Dirichlet form.

The time-reversed process of (X(t))t≥0, called the adjoint process, is the continuous-time Markov

process (X†(t))t≥0 on H with rate

r†(x, y) =
µ(y)r(y, x)

µ(x)
, x, y ∈ H.

The generator L† of the adjoint process given by

(L†f)(x) =
∑

y∈H

r†(x, y)(f(y)− f(x)), x ∈ H

for f ∈ L2(µ) is indeed the adjoint operator to L, that is,

〈f,Lg〉µ = 〈L†f, g〉µ
for f, g ∈ L2(µ). The process is called reversible if L† = L.

Define the symmetrized process of (X(t))t≥0 as a continuous-time Markov process (Xs(t))t≥0 on H
with rate

rs(x, y) =
1

2µ(x)
[µ(x)r(x, y) + µ(y)r(y, x)], x, y ∈ H.

Note that µ is the stationary distribution for the reversible process (Xs(t))t≥0.

For nonempty disjoint subsets A and B of H, define the equilibrium potential between A and B

with respect to the process (X(t))t≥0 as the function hA,B : H → [0, 1] given by

hA,B(x) = Px[τA < τB], x ∈ H,

where Px denotes the law of the process (X(t))t≥0 starting from x. It can be immediately checked

that

hB,A = 1− hA,B,

and 



hA,B ≡ 1 on A,

hA,B ≡ 0 on B, and

LhA,B ≡ 0 on (A ∪B)c.
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The equilibrium potential with respect to the adjoint process (X†(t))t≥0 will be denoted by h†A,B. The

capacity between A and B with respect to the process (X(t))t≥0 is defined as

cap(A,B) = D(hA,B).

Note that

cap(A,B) = D(hA,B) = D(hB,A) = cap(B,A).

The capacity endows two important basic properties.

Proposition 4.1. Let A and B be two nonempty disjoint subsets of H. Then,

cap(A,B) = cap†(A,B),

where cap† denotes the capacity with respect to the adjoint process.

Proposition 4.2. Let A′ and B′ be two nonempty disjoint subsets of H, and A and B be nonempty

subsets of A and B, respectively. Then,

cap(A,B) ≤ cap(A′, B′).

Given a process, we can represent its mean hitting times in terms of capacities, equilibrium potential,

and stationary distribution.

Proposition 4.3 (Mean hitting time formula). Let x, y ∈ H be two distinct states. Then,

Ex[τy] =
1

cap(x, y)

∑

z∈H

h†x,y(z)µ(z).

In general, it is difficult to compute the precise equilibrium potential hA,B. Hence, the following

rough estimate for hA,B can be useful.

Proposition 4.4. Let (X(t))t≥0 be a continuous-time Markov process on a finite set H, and A,B ⊆ H
be nonempty and disjoint. Then,

1− cap(x,B)

cap(x,A ∪B)
≤ hA,B(x) ≤

cap(x,A)

cap(x,A ∪B)
for all x ∈ (A ∪B)c.

Now we introduce the flow structure associated to the Markov process. For two sites x and y in

H, we say that x ∼ y if r(x, y) + r(y, x) > 0. Note that x ∼ y if and only if y ∼ x. Define the set of

directed edges by

E = {(x, y) ∈ H ×H : x ∼ y}.
A flow on H is a function φ : E → R that is anti-symmetric, in the sense that

φ(x, y) = −φ(y, x) for all (x, y) ∈ E.

We denote the space of flows by F. Define the conductance between sites as

c(x, y) = µ(x)r(x, y), x, y ∈ H,

and consider the symmetrized conductance

cs(x, y) =
1

2
[c(x, y) + c(y, x)], x, y ∈ H

so that cs(x, y) = cs(y, x). Then, we define an L2-structure on the flow space by

〈φ, ψ〉F =
1

2

∑

(x,y)∈E

φ(x, y)ψ(x, y)

cs(x, y)
, φ, ψ ∈ F.
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The flow norm is defined as ‖φ‖F = 〈φ, φ〉1/2
F

.

For a flow φ, the divergence of φ at a site x ∈ H is defined by

(div φ)(x) =
∑

y:x∼y

φ(x, y).

For A ⊆ H, define

(div φ)(A) =
∑

x∈A

(div φ)(x).

The flow φ is called divergence-free at x ∈ H if (div φ)(x) = 0, and divergence-free on A ⊆ H if it is

divergence-free at all x ∈ A.

Given a function f : H → R, we define three associated flows as follows.

Φf (x, y) = f(y)c(y, x)− f(x)c(x, y),

Φ∗
f (x, y) = f(y)c(x, y)− f(x)c(y, x),

Ψf (x, y) = cs(x, y)[f(y)− f(x)] = (1/2)(Φf +Φ∗
f )(x, y).

Then, it holds that

(div Φf )(x) = µ(x)(L†f)(x) and (div Φ∗
f )(x) = µ(x)(Lf)(x) (4.1)

for all x ∈ H.

4.2. Dirichlet and Thomson Principles. Variational principles are useful tool for estimating the

capacity of a process. In this subsection, we introduce two variational principles: the Dirichlet principle

and the Thomson principle, which give upper and lower bounds for capacity, respectively.

For nonempty and disjoint subsets A and B of H, and real numbers a and b, let Ca,b(A,B) be the

set of all real-valued functions f on H such that f |A ≡ a and f |B ≡ b.

Theorem 4.5 (Dirichlet principle). Let (X(t))t≥0 be a continuous-time Markov process on a finite set

H, and A,B ⊆ H be nonempty and disjoint. Then,

cap(A,B) = inf
f∈C1,0(A,B),φ∈F

{
‖Φf − φ‖2 − 2

∑

x∈H

hA,B(x)(div φ)(x)

}
,

and

(f, φ) =
(1
2
(hA,B + h†A,B),

1

2
(Φh†

A,B

− Φ∗
hA,B

)
)

is the unique minimizer.

Theorem 4.6 (Thomson principle). Let (X(t))t≥0 be a continuous-time Markov process on a finite

set H, and A,B ⊆ H be nonempty and disjoint. Then,

cap(A,B) = sup
g∈C0,0(A,B),ψ∈F\{0}

1

‖Φg − ψ‖2
[∑

x∈H

hA,B(x)(div ψ)(x)

]2
,

and constant multiples of

(g, ψ) =
( 1

2 cap(A,B)
(h†A,B − hA,B),

1

2 cap(A,B)
(Φh†

A,B

+Φ∗
hA,B

)
)

are maximizers.

Remark 4.7. Both formulas in the principles involve the term
∑

x∈H

hA,B(x)(div φ)(x)
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which can be decomposed into

(div φ)(A) +
∑

x∈(A∪B)c

hA,B(x)(div φ)(x).

Note that if we take the test function and flow as the given minimizer or maximizer, then the second

term vanishes, and the first term is equal to 0 for the Dirichlet principle while equal to 1 for the

Thomson principle. In practice, to find good test function and flow, we may divide (A ∪B)c into two

components C1 and C2 so that the test flow is approximately divergence-free on C1 and hA,B is small

on C2.

4.3. Trace Process. In this subsection, we briefly introduce the notion of trace process. For a deeper

discussion of the theory, we refer the reader to [2].

Let F be a proper subset of H. The trace process of (X(t))t≥0 on F is the process obtained by

ignoring the time spent by the process outside the set F . More precisely, let (Tt)t≥0 be the time

(X(t))t≥0 spent on the set F in the time interval [0, t], and (St)t≥0 be the generalized inverse of

(Tt)t≥0. The trace process (XF (t))t≥0 is defined by XF (t) = X(St), which is well-defined and takes

value in F , almost surely.

The stationary distribution for the trace process is µ restricted to F , that is,

µF =
1

µ(F )
µ|F .

Denote the capacity with respect to the trace process by capF , then we have

µ(F ) capF (A,B) = cap(A,B) (4.2)

for all nonempty disjoint subsets A and B of F .

5. Proof of Eyring–Kramers Law

In this section, we prove the Eyring–Kramers law for the mean extinction time of contact process

on star graphs by estimating the capacity of the process.

Following methodologies similar to those in [8] and [9], we consider the trace process of the regen-

erative process (ot, nt)t≥0, restricted to the set

F = {(0, 0)} ∪ {(1, n) : 0 ≤ n ≤ N},

that is, we ignore the time spent by the process when the hub is healthy, except at the stable state

(0, 0). It turns out that the jump rate of the trace process can be easily determined. When there are

n > 0 infected leaves and the hub is healthy, the next transition of the contact process is either to (1, n)

with a probability of λ
1+λ , or to (0, n − 1) with a probability of 1

1+λ . Hence, once the hub becomes

healthy, the number H of leaves that are cured before the hub is reinfected follows a (truncated)

geometric distribution, specifically:

P[H = j] =





λ
(1+λ)j+1 for 0 ≤ j ≤ n− 1,

1
(1+λ)n for j = n.
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Consequently, the jump rate rF (x, y) of the trace process on F is given by




rF ((1, n), (1, n+ 1)) = λ(N − n) for 0 ≤ n ≤ N,

rF ((1, n), (1, n− 1)) = n+ λ
(1+λ)2 for 1 ≤ n ≤ N,

rF ((1, n), (1, n− j)) = λ
(1+λ)j+1 for 1 ≤ n ≤ N and 2 ≤ j ≤ n− 1,

rF ((1, n), (0, 0)) =
1

(1+λ)n for 0 ≤ n ≤ N,

rF ((0, 0), (1, 0)) = α.

Lemma 3.13 immediately follows from the notion of the trace process.

Proof of Lemma 3.13. By the stationary condition at the state (0, 0) for the trace process on the set

F ,
N∑

n=0

µ(1, n)

(1 + λ)n
= αµ(0, 0),

so the lemma follows from (3.8). �

Recall that the mass of the set F converges to 1 as N → ∞ by Lemma 3.12. For simplicity,

throughout this section, we will treat the quasi-stationary distribution ν as though it were the station-

ary distribution of the trace process. It is also important to note that a sharp estimate of the capacity

of the trace process on F serves as an estimate for that of the original process.

5.1. Capacity Estimation. In this subsection, we apply variation principles to obtain a sharp esti-

mate for the capacity of the process.

Theorem 5.1 (Capacity estimate). Let ε > 0 be given. Then, for n ∈ [εN,N ], we have

cap((0, 0), (1, n)) = (1 + 2λ)
( λ

1 + λ

) 2
1+2λ

B
(

1
1+2λ , N

)−1( 1 + 2λ

(1 + λ)2

)N
(1 + o(1)) (5.1)

as N → ∞, where the error term o(1) is uniform in n.

To prove the theorem above, we construct good test functions and flows for use in variational

principles for the trace process. Initially, we build two functions h and h†, which are designed to

approximate the equilibrium potential of the trace process and its adjoint between the stable state

(0, 0) and the state (1, n). Next, we establish tentative test functions and flows:

(f, φ) =
(1
2
(h+ h†),

1

2
(Φh† − Φ∗

h)
)
and (g, ψ) =

(1
2
(h† − h),

1

2
(Φh† +Φ∗

h)
)
, (5.2)

which are alike the extremizers that appear in Theorems 4.5 and 4.6. Finally, we make a slight

modification to these test flows φ and ψ so that the resulting flows are divergence-free, except at the

states (0, 0) and (1, n). Let us now provide some heuristics for our selection of the test function and

flows.

For the case of h, since the infected hub spreads the infection to all N leaves, the process is highly

unlikely to hit the stable state before the state (1, n). Hence, it is reasonable to set

h(x) =

{
1 if x = (0, 0),

0 otherwise

for x ∈ F .
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Now consider the adjoint (X†
F (t))t≥0 of the trace process, which has jump rates

r†F (x, y) =
µ(y)

µ(x)
rF (y, x), x, y ∈ F.

Assume that x = (1, k), and 1 ≪ k ≪ N . By Theorem 3.5, as N → ∞,

r†F ((1, k), (1, k − 1)) =
λ

1 + λ
N(1 + o(1)),

r†F ((1, k), (1, k + 1)) = (1 + λ)k(1 + o(1)).

Also, for long jumps, if k + 1 < k + j ≤ N , then

r†F ((1, k), (1, k + j)) =
µ(1, k + j)

µ(1, k)

λ

(1 + λ)j+1
.

Recall that from Lemma 3.13, we have

N−k∑

j=2

µ(1, k + j)(1 + λ)−(k+j) = λNCN,λ(1 + o(1)),

since

µ(1, k)(1 + λ)−k = CN,λ(1 + o(1))

if k ≪ N . Hence, the process performs a long jump at a rate of

N−k∑

j=2

r†F ((1, k), (1, k + j)) =
N−k∑

j=2

λ

1 + λ

µ(1, k + j)(1 + λ)−(k+j)

µ(1, k)(1 + λ)−k
=

λ2

1 + λ
N(1 + o(1)).

So roughly speaking, if the adjoint process is located at (1, k), then k decreases by 1 with approximate

rate λ
1+λN , while k increases by some large number with approximate rate λ2

1+λN . Considering the

long jumps as transitions to the state (1, n), each jump of the process either moves the system one

step closer the state (0, 0), with a probability of 1
1+λ , or results in a transition to the state (1, n), with

a probability of λ
1+λ . Thus, it is plausible to put an approximately geometric h†:

h†(x) =





1 if x = (0, 0),

(1 + λ)−k if x = (1, k), 0 ≤ k ≤ R1,

0 otherwise

for some 1 ≪ R1 ≪ N , say R1 = ⌊N q⌋ for some small q > 0.

The divergence of the associated flows of h and h† can be directly computed from (4.1) by applying

(3.8) and Lemma 3.13.

Lemma 5.2. Let 0 < q < 1, R1 = ⌊N q⌋, and let h and h† be as above. Then for x ∈ F , as N → ∞,

(div Φ∗
h)(x) =




− 1
ZN,λ

λNCN,λ(1 + o(1)) if x = (0, 0),

1
ZN,λ

µ(1, k)(1 + λ)−k if x = (1, k), 0 ≤ k ≤ N,
(5.3)

and

(div Φh†)(x) =





− 1
ZN,λ

λNCN,λ(1 + o(1)) if x = (0, 0),

1
ZN,λ

CN,λO(N
q) if x = (1, k), 0 ≤ k ≤ R1,

1
ZN,λ

λNCN,λ(1 + o(1)) if x = (1, R1 + 1),

0 otherwise.

(5.4)
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We now modify the test flows φ and ψ defined in (5.2) so that the flows become divergence-free,

except at the sites (0, 0) and (1, n). Heuristically, we anticipate that the equilibrium potential of

the trace process rapidly decays for states distant from the stable state (0, 0). Thus, to derive good

estimates using the variational principles, it is sufficient to modify the flows meticulously only at the

sites x = (1, k) with 0 ≤ k ≤ R1. For other sites, the modifications to the flows are made more crudely.

In the remainder of this subsection, stating Φ(x, y) = s for a flow Φ implicitly implies that Φ(y, x) =

−s.

Lemma 5.3. Let Φ be one of the flows φ and ψ, and let R2 = ⌊rN⌋ where 0 < r < λ
1+2λ . Then, there

exists a flow η satisfying

η(x, y) =





1
ZN,λ

CN,λO(N
−1+2q) if x = (1, k), y = (1, l), k ∈ [0, R1], l ∈ [0, R2],

1
ZN,λ

CN,λO(N
2+2q) if x = (1, k), y = (1, k + 1), k ∈ [R1 + 1, N ],

0 otherwise,

so that the flow Φ̂ = Φ + η becomes divergence-free, except at the sites (0, 0) and (1, n).

Proof. By Lemma 5.2, together with Theorems 3.4 and 3.5,

(div Φ)(1, k) =





1
ZN,λ

CN,λO(N
q) if 0 ≤ k ≤ R1,

1
ZN,λ

CN,λO(N) otherwise.

Let us first inductively modify the flow to be divergence-free at (1, k) for each 0 ≤ k ≤ R1. Put

Φ−1 = Φ. Fix k, and suppose that a flow Φk−1 is divergence-free at (1, j) for all 0 ≤ j < k, and

(div Φk−1)(1, k) = Dk. Consider the flow Φk = Φk−1 + ηk where

ηk(x, y) =




(R2 − k)−1Dk if x = (1, l), y = (1, k), l ∈ [k + 1, R2],

0 otherwise.

Then each term appears in ηk is of O(N−1)Dk, and the resulting flow Φk is divergence-free at (1, j)

for all 0 ≤ j ≤ k. Repeating this procedure, we obtain a flow ΦR1 that is divergence-free at all (1, k),

0 ≤ k ≤ R1. We can readily observe that ΦR1 possesses divergence of 1
ZN,λ

CN,λO(N
1+2q) at all other

sites. Define

η̃(x, y) =





−∑k
l=0(div ΦR1)(1, l) if x = (1, k), y = (1, k + 1), k ∈ [R1 + 1, n− 1],

∑N
l=k+1(div ΦR1)(1, l) if x = (1, k), y = (1, k + 1), n 6= l ∈ [n,N − 1],

0 otherwise.

Then the flow η =
∑R1

k=1 ηk + η̃ satisfies the requirements of the lemma. �

Proof of Theorem 5.1. The proof is straightforward. Let the test functions and flows (f, φ) and (g, ψ)

be defined as in (5.2), and let φ̂ and ψ̂ be the modified flows as described in Lemma 5.3. Employing

Theorems 4.5 and 4.6 with the test functions and flows constructed above allows us to establish upper

and lower bounds for the capacity, represented by:

‖Φf − φ̂‖2 and
1

‖Φg − ψ̂‖2
|(div ψ̂)(0, 0)|,
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respectively. We will show that these two bounds coincide at

1

ZN,λ
λNCN,λ(1 + o(1)), (5.5)

which agrees with the right-hand side of (5.1) by Lemma 3.12.

Note that

Φf − φ = Φg − ψ =
1

2
(Φh +Φ∗

h) = Ψh.

By (3.8) and Lemma 3.13, it holds that

‖Ψh‖2 =
1

2

∑

x,y∈F

csF (x, y)[h(y)− h(x)]2

=
1

2ZN,λ

[
µ(0, 0)α+

N∑

k=0

µ(1, k)(1 + λ)−k
]
=

1

ZN,λ
λNCN,λ(1 + o(1)).

Also, Lemma 5.2 implies that

(div ψ)(0, 0) = − 1

ZN,λ
λNCN,λ(1 + o(1)).

Hence, the two terms

‖Φf − φ‖2 and
1

‖Φg − ψ‖2 |(divψ)(0, 0)|

coincide at (5.5).

Let η be the modification flow as outlined in Lemma 5.3. Then Ψh is supported on the pairs (x, y)

where either x or y equals (0, 0), while η is supported on their complement. Consequently, Ψh and η

are orthogonal with respect to the flow inner product, and η is divergence-free at (0, 0).

What is left to show is that the norm of η is negligible in comparison to the norm of Ψh. We have

csF ((1, k), (1, l)) &





1
ZN,λ

CN,λ if k ∈ [0, R1], l ∈ [0, R2],

1
ZN,λ

CN,λ(1 + λ)R1 if k ∈ [R1 + 1, N − 1], l = k + 1,

which is clear from Theorems 3.4 and 3.5. Hence, we obtain

‖η‖2 ≤
R1∑

k=0

R2∑

l=1

1

csF ((1, k), (1, l))

[ 1

ZN,λ
CN,λO(N

−1+2q)
]2

+

N−1∑

k=R1+1

1

csF ((1, k), (1, k + 1))

[ 1

ZN,λ
CN,λO(N

2+2q)
]2

=
1

ZN,λ
CN,λ

[
O(N−1+5q) + (1 + λ)−R1O(N5+4q)

]
≪ 1

ZN,λ
λNCN,λ

when q > 0 is sufficiently small, so the proof is complete. �

5.2. Proof of Main Theorem. We prove our main theorem, the Eyring–Kramers law.

Proof of Theorem 2.1. Let ε > 0 be given, and let x ∈ {0, 1} × [εN,N ]. What we have to prove is:

Exτ(0,0) =
1

1 + 2λ

(1 + λ

λ

) 2
1+2λ

B
(

1
1+2λ , N

)( (1 + λ)2

1 + 2λ

)N
(1 + o(1)). (5.6)

Note that this is equivalent to (2.1) because B( 1
1+2λ , N) ≃ Γ( 1

1+2λ )N
− 1

1+2λ by Stirling’s formula [27,

Equation (5.11.12)].
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Suppose that the formula (5.6) holds for states with infected hub, then consider an initial config-

uration x = (0, n) with healthy hub. By the monotonicity of contact process, the mean extinction

time starting from (0, n) is less than or equal to the mean extinction time starting from (1, n). This

observation establishes one direction of the inequality for (5.6). For the opposite direction, note that

when the hub is healthy, the probability that the next jump of the process results in the reinfection

of the hub is λ
1+λ . Hence, the process started from (0, n) reinfects the hub before it reaches the state

(0, ⌊n/2⌋) with high probability, so our assertion readily follows. Now we only need to consider an

initial configuration x = (1, n) with infected hub.

We see at once that the right-hand side of (5.6) is the inverse of the capacity between two states

(0, 0) and (1, n) by Theorem 5.1. By the mean hitting time formula in Proposition 4.3, it sufficies to

show that ∑

z∈H

h†(1,n),(0,0)(z)ν(z) = 1 + o(1), (5.7)

where H = {0, 1} × [0, N ], and ν is the quasi-stationary distribution of the process.

Given that h†(1,n),(0,0)(z) ≤ 1 for all z ∈ H, our task is to establish a lower bound for the left-hand

side of (5.7). Define m = ⌊ λ
1+λN⌋ and R = N

1
2+ε, and consider z = (1, l) with |l−m| < R and l 6= n.

Lemma 3.12 indicates that the stationary distribution of the process is concentrated in such z values.

By Proposition 4.4, together with Propositions 4.1, 4.2, and (4.2), it holds that

1− capF ((1, l), (0, 0))

capF ((1, l), (1, n))
≤ h†(1,n),(0,0)(1, l).

Hence, if we prove that

capF ((1, l), (0, 0)) ≪ capF ((1, l), (1, n)) (5.8)

uniformly in n and l, the assertion follows.

The left-hand side of (5.8) can be estimated using Theorem 5.1, so the task now is to find a lower

bound for the right-hand side. We apply Theorem 4.6, the Thomson principle. Set the test function

g ≡ 0, and the test flow ψ satisfying4

ψ(x, y) =

{
±1 if x = (1, j), y = (1, k), j, k ∈ [l, n], |j − k| = 1,

0 otherwise

so that ψ is a unit flow from (1, l) to (1, n) that is divergence-free except at (1, l) and (1, n). Then, we

obtain

capF ((1, l), (1, n)) ≥
1

‖ψ‖2 =

[ ∑

k,k+1∈[l,n]

1

cs((1, k), (1, k + 1))

]−1

≥ 1

N
min

k,k+1∈[l,n]
cs((1, k), (1, k + 1)),

where the summation and minimum run along k’s such that both k and k + 1 lie inside the interval

[l, n]. It holds that

cs((1, k), (1, k + 1)) =
1

2ZN,λ

[
λ(N − k)µ(1, k) +

(
k + 1 +

λ

(1 + λ)2

)
µ(1, k + 1)

]

≥ 1

ZN,λ
µ(1, k + 1).

4In this proof, if l > n, we regard [l, n] as the interval [n, l].
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Hence, it sufficies to show that

N2CN,λ ≪ µ(1, k)

uniformly for all k ∈ [εN,N ], and this is clear from Theorems 3.4 and 3.5. �
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