
1

Controllability Test for Nonlinear Datatic Systems
Yujie Yang, Letian Tao, Likun Wang, Shengbo Eben Li

Abstract—Controllability is a fundamental property of control
systems, serving as the prerequisite for controller design. While
controllability test is well established in modelic (i.e., model-
driven) control systems, extending it to datatic (i.e., data-driven)
control systems is still a challenging task due to the absence of
system models. In this study, we propose a general controllability
test method for nonlinear systems with datatic description, where
the system behaviors are merely described by data. In this
situation, the state transition information of a dynamic system
is available only at a limited number of data points, leaving
the behaviors beyond these points unknown. Different from
traditional exact controllability, we introduce a new concept
called ϵ-controllability, which extends the definition from point-
to-point form to point-to-region form. Accordingly, our focus
shifts to checking whether the system state can be steered to
a closed state ball centered on the target state, rather than
exactly at that target state. Given a known state transition
sample, the Lipschitz continuity assumption restricts the one-
step transition of all the points in a state ball to a small
neighborhood of the subsequent state. This property is referred
to as one-step controllability backpropagation, i.e., if the states
within this neighborhood are ϵ-controllable, those within the
state ball are also ϵ-controllable. On its basis, we propose a
tree search algorithm called maximum expansion of controllable
subset (MECS) to identify controllable states in the dataset.
Starting with a specific target state, our algorithm can iteratively
propagate controllability from a known state ball to a new one.
This iterative process gradually enlarges the ϵ-controllable subset
by incorporating new controllable balls until all ϵ-controllable
states are searched. Besides, a simplified version of MECS is
proposed by solving a special shortest path problem, called Floyd
expansion with radius fixed (FERF). FERF maintains a fixed
radius of all controllable balls based on a mutual controllability
assumption of neighboring states. The effectiveness of our method
is validated in three datatic control systems whose dynamic
behaviors are described by sampled data.

I. INTRODUCTION

Feedback control plays a critical role in modern industry
sectors, such as power electronic systems, chemical processes,
and road transportation. System analysis and controller syn-
thesis are two principal tasks in feedback control systems.
The former involves studying inherent properties in plant
dynamics, such as controllability, observability, and stability,
while the latter is about designing an online controller to
ensure that the closed-loop system exhibits desired behaviors.
As achieving desired behaviors depends on specific plant
structures, excellent controller design requires an in-depth
comprehension of some inherent properties of system dy-
namics. Controllability, as a fundamental property of control
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systems, describes the system’s ability to be steered from
an initial state to an arbitrary final state in a finite time.
Before controller design, a proper controllability test should
be performed to check whether the system has the required
state transfer capability.

The concept of controllability was first introduced by
Kalman and other contemporary researchers in the 1960s,
along with a series of criteria for assessing the controllability
of linear systems [1]. The controllability test between two
states can be reframed as verifying the existence of a solution
for all admissible control inputs in a multi-step state transfer
equation. Linear systems are featured with the superposition
principle, which means that an arbitrary subsequent state can
be expressed as a linear combination of the initial state and
control inputs. Thus, its controllability test can be transformed
into the full-rank test of a coefficient matrix that comes
from linear state space model [2]. This coefficient matrix is
also known as the controllability matrix. In addition, some
researchers have proposed another coefficient matrix called
controllability Gramian, whose positive definiteness is used
as an equivalent criterion for full-rank test. In contrast to
these two algebraic criteria, which analyze controllability in an
integrated manner, the modal criteria focus on finding control-
lable subsystems or controllable modes in a regional way. For
example, Kalman decomposition (1963) linearly transformed
a state space model into a standard form, which could be
decomposed into observable and controllable subsystems [3].
Popov et al. (1966) introduced the famous Popov-Belevitch-
Hautus test, which identified uncontrollable modes of a linear
system by finding left eigenvectors of the system matrix that
is orthogonal to the input matrix [4]. In short, linear con-
trollability test is equivalent to property assessment of certain
matrices constructed from state space models. When it comes
to nonlinear systems, controllability test requires analyzing
the existence of solutions to nonlinear ordinary differential
equations, which depends on specific forms of the equations
and is undeterminable in general cases. Due to this difficulty,
only a few sufficient conditions have been proposed for non-
linear controllability test. Moreover, these sufficient conditions
are given on a case-by-case basis due to the complexity and
diversity of system dynamic behaviors. Gershwin et al. (1971)
provided a sufficient condition for global controllability of
nonlinear systems by utilizing a Lyapunov-like scalar function
to indicate whether the system state can be transferred to
the target state [5]. Hermann (1977) used the Lie theory to
characterize the directions of vector fields in continuous-time
nonlinear systems. If the vector fields span the entire state
space, system controllability is ensured under some special
cases, such as symmetric and affine systems [6]. Yamamoto
(1977) transformed controllability test to solving a fixed-
point problem of nonlinear continuous operator in a Banach
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Fig. 1. Comparison of control paradigms. In the modelic control paradigm, the first step is to establish a dynamic model through system identification. This
model offers a continuous but inaccurate description of state transition information. In the datatic control paradigm, data is used directly for system analysis
and controller synthesis, providing a discrete yet precise description of state transition.

space. With this transformation, his study discovered that a
sufficient condition for controllability is the existence of a
subset in the Banach space that is invariant for the nonlinear
operator [7]. The above analysis reveals a key requirement
shared by both linear and nonlinear systems: an accurate
mathematical model of the system is indispensable. For exam-
ple, Gershwin’s method requires an affine nonlinear model to
specify gradient directions for validating Lyapunov conditions.
Hermann’s method utilizes an infinitely differentiable model
to compute vector fields of closed-loop systems. Yamamoto’s
method relies on a mathematical model consisting of norm-
bounded functions to discern the structure of dynamic equation
and transform it into a set of linear equations.

Recent years have witnessed a paradigm shift in control
field from modelic description to datatic description. Here,
modelic and datatic are two newly coined words, where
modelic means model-driven, model-based or model-related,
and datatic has a corresponding meaning related to data. The
key distinction between these two paradigms lies in how to
describe system dynamics: either a mathematical model or
data points [8], [9]. In the modelic control paradigm, an
explicit system model is established based on physical laws
or system identification, providing a continuous description of
system dynamics across the state-action space. Such models
are essential for analyzing system properties and synthesizing
controllers, as exemplified by the aforementioned controllabil-
ity test methods. However, in many complex systems such as
earth atmosphere, financial market, and road transportation, it
is often impossible to accurately capture their dynamics solely
through basic physical laws or simple hypothetical functions.
As a result, strong simplification of their dynamics must be
made at the cost of introducing substantial model errors, which
can significantly sacrifice the accuracy of system property
analysis. The datatic control paradigm, fueled by technical
advancements of data storage and parallel computation, has
shown great potential in solving complex control tasks. This
control paradigm directly leverages data for system property

analysis and controller synthesis, eliminating the dependency
on pre-built mathematical models. As direct measurements of
system’s input and output sequences, data provides accurate
state transition information, thus bypassing the issue of model
mismatch. Nevertheless, the accuracy in datatic description
comes at the expense of tempo-spatial incompleteness. Unlike
explicit models, system measurements are not continuous in
both temporal and spatial domains but only in the form of
a limited number of data points. There is no information
in the interval of any two data points, as shown in Fig. 1.
Therefore, datatic description of a dynamic system must be
discrete rather than continuous in the state-action space. As a
consequence, traditional system property analysis tools based
on continuous models become inapplicable in datatic control
systems. Since controller design depends on whether states are
controllable, datatic controllers become meaningless without
reliable controllability test.

Despite its fundamental importance, controllability test is
often neglected in systems with datatic description. While
numerous data-based learning methods emerge, e.g., imitation
learning [10], [11] and reinforcement learning [12], [13], most
of them share a default but actually unconfirmed assumption
that all the system states are controllable. This neglect has
changed in recent years, with some researchers beginning to
consider the controllability test of linear datatic systems. One
class of datatic test methods verifies controllability through
experiments that strictly limit control inputs. Wang et al.
(2011) proposed to conduct m groups of experiments, where
control inputs were set to the same one-hot vector in each
test, with m indicating the dimension of control input [14].
The system controllability was assessed by examining the rank
of a new controllability matrix generated from these special-
ized experiments. Subsequently, Liu et al. (2014) extended
this experimental method by considering both measurement
noise and process noise and generalized the one-hot control
input to a linearly independent vector via invertible linear
transformation [15]. Shaker et al. (2017) performed similar
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specialized experiments to compute a multi-step controllability
Gramian for controllability test [16]. The inverse of the
smallest eigenvalue of controllability Gramian serves as the
upper bound on the minimum control energy. The core idea of
these three methods is to calculate controllability matrix from
data collected from a finite number of experiments, in which
control inputs are held constant in each experiment group.
Another class of datatic test methods for linear systems does
not perform experiments with fixed control inputs but relies on
trajectories generated by experiments with arbitrary policies.
Waarde et al. (2020) proposed the concept of data informativ-
ity to assess whether the collected data is informative enough
for determining controllability within an unknown system set
[17]. They introduced a data-driven Hautus test, which built
a trajectory-based matrix and examined whether this matrix
was fully ranked or not. Mishra et al. (2021) extended this
arbitrary-policy-based experiment method to general input-
output linear systems that assume no measurement of system
state. Under the condition of persistently exciting control
inputs, they provided a sufficient and necessary condition
for system controllability by examining the rank of Hankel
matrix constructed from the input-output trajectories [18]. The
aforementioned studies reveal that controllability test in linear
systems can be simplified to validating properties of certain
matrices from experiments, which is feasible to implement in
datatic control.

Obviously, existing datatic test methods are limited to linear
systems. This limitation is caused by the fact that traditional
controllability is actually a kind of exact controllability (also
called point-to-point controllability), which requires continu-
ous state transition information to accurately position initial
and target states, as well as their intermediate states. In
a nonlinear system with datatic description, its information
is always insufficient no matter how many data samples
are collected. Specifically, to match the needs of traditional
controllability, one must find a sequence of data points that
are exactly connected one after another from the initial state
to the target state. This is almost impossible because data
points are discrete and may not be collected in the manner of
complete trajectories. As a result, exact controllability is not
a practical definition in nonlinear datatic systems. Moreover,
strictly controlling a state to a given point is often unnecessary
in many real-world tasks. For example, in anesthesia control,
doctors are concerned with whether drug can be injected into a
target organ instead of exactly at a specific cell. In autonomous
driving, it is sufficient for the vehicle to stay within a certain
lane, not necessarily aligned perfectly with the lane center.

To the best of our knowledge, this paper proposes the first
method to test the controllability of nonlinear systems with
datatic description, where state transition information is only
available at a finite number of data points. We introduce a
new definition called ϵ-controllability, which concerns whether
the system state can be transferred into a small neighborhood
of the target state rather than exactly at that state. The
Lipschitz continuity assumption is used to restrict the one-
step transfer range of an unknown state to the neighborhood
of the subsequent state in the dataset. On its basis, one-step
controllability backpropagation theorem is introduced, which

propagates the ϵ-controllability from a known state ball to a
new one. Leveraging this theorem, our proposed algorithm can
maximumly find ϵ-controllable states of a specified target state.
Our main contributions are summarized as follows.

1) We propose the concept of ϵ-controllability that extends
the definition of controllability from point-to-point form
to point-to-region form. A state is considered to be ϵ-
controllable with respect to a given target state if it can
be steered to a closed state ball of this target through
finite-step state transition. On its basis, we introduce
the notion of ϵ-controllable set, in which all the states
are ϵ-controllable with respect to the same target state.
For a nonlinear system with datatic description, its
controllability test is equivalent to finding those states
that belong to the ϵ-controllable set of a particular state
as many as possible.

2) We propose a tree search algorithm called maximum
expansion of controllable subset (MECS) to effectively
identify potential ϵ-controllable states in the dataset. The
Lipschitz continuity is assumed to hold, which confines
the one-step transition of all the states in a state ball
to a known neighborhood of the subsequent state. This
means that if all the states within this neighborhood are
ϵ-controllable, it follows that those within the state ball
are also ϵ-controllable. Therefore, ϵ-controllability can
propagate from one subset to another, which is referred
to as one-step controllability backpropagation. Starting
from a target ϵ-controllable subset, our MECS algorithm
iteratively applies one-step controllability backpropaga-
tion to gradually identify all the states in the dataset that
are capable of reaching this target subset.

II. DEFINITION OF ϵ-CONTROLLABILITY

The traditional definition of system controllability is the
ability to steer the system from a certain initial state to
the target state within a finite time step, which is referred
to as point-to-point controllability. This concept, which con-
cerns achieving precise state transition, is also called exact
controllability. Existing research on exact controllability tests
relies on continuous state transition information across the
entire state-action space, which can be provided by a known
system model. However, in a datatic system, data points
provide a discrete representation of state transition, leaving
the dynamics information within the intervals between any
two points unknown. This information discontinuity makes
the verification of exact controllability impractical for systems
with datatic description. Consequently, for their controllability,
our interest lies in whether the system state can be transferred
to a small region of the target point.

Following the analysis above, we introduce a new definition
of controllability, called ϵ-controllability, which is actually a
kind of point-to-region controllability. Under this definition,
the system controllability concerns whether the state can be
transferred to a small neighborhood of the target state rather
than exactly at that state point. The difference between exact
controllability and ϵ-controllability is shown in Fig. 2.
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Fig. 2. The difference between exact controllability and ϵ-controllability:
The graph depicts four state trajectories from collected data. Stars denote
target states; blue points denote states within the neighborhood of the target
A with radius ϵ. Pink points denote exact controllable states w.r.t. target B, as
they can be precisely steered to the target state. Conversely, red points denote
ϵ-controllable states w.r.t. target A, which are only capable of being steered
into a neighborhood of that target state.

Consider a discrete-time nonlinear system:

x′ = f(x, u), (1)

where x ∈ X is the system state, x′ ∈ X is the next state,
u ∈ U is the control input, and X and U are the state and
control input spaces, respectively. Before formally defining ϵ-
controllability, let us define a neighborhood of a state, which
is a closed ball in the state space:

B(y, δ) = {z ∈ X | d(z, y) ≤ δ}, (2)

where y ∈ X is the ball center, δ ≥ 0 is the ball radius, and
d(·, ·) is a metric on the state space X , which is chosen as the
Euclidean distance in this paper. We refer to B(y, δ) as a state
ball of y with radius δ.

Definition 1 (ϵ-controllability): A state x ∈ X is said to be
ϵ-controllable with respect to its target xT if x can reach the
target neighborhood B(xT, ϵ) within a finite number of steps,
where ϵ denotes the error radius.

Definition 2 (ϵ-controllable set): The ϵ-controllable set
refers to a set of states that are ϵ-controllable with respect to
the same target xT.

To provide a mathematical description of ϵ-controllability,
let us introduce a reachability function g(·, ·) : X × X →
{0, 1}:

g(x, xT) = max
0≤t<∞

{I(xt = xT)|x0 = x}, (3)

where {xi}∞i=0 denotes the state trajectory, and I(·) is an
indicator function. The reachability function g(x, xT) = 1 if
there exists a control policy driving x to xT within a finite
number of steps. Conversely, g(x, xT) = 0 indicates that no
policy can drive x to xT. In mathematics, x is ϵ-controllable
with respect to xT if and only if

∃z ∈ B(xT, ϵ), g(x, z) = 1. (4)

The ϵ-controllable set C(xT, ϵ) is denoted as

C(xT, ϵ) = {x ∈ X |∃z ∈ B(xT, ϵ), g(x, z) = 1}. (5)

The ϵ-controllability is an extension of exact controllability
from a point-to-point form to a point-to-region form. When the
value of error radius equals zero, ϵ-controllability degenerates
to exact controllability. Obviously, ϵ-controllability proves
particularly suitable for datatic systems with discrete and
sparse state transition information. This concept also provides
a tolerable error bound for reaching the target state, which is
determined by the error radius. For many practical control
tasks, it is adequate to reach a state that is close to the
target but with some small error, making ϵ-controllability a
reasonable definition.

III. CONTROLLABILITY TEST FOR NONLINEAR DATATIC
SYSTEMS

A datatic system is represented by a dataset D collected
from system dynamics (1):

D = {(xi, ui, x
′
i)|x′

i = f(xi, ui), i = 1, 2, · · · , N}, (6)

where N is the number of data points. The ϵ-controllability
test aims to find all ϵ-controllable states in D with respect to
a specific target state. Recall that exact controllability test is
impractical in a datatic system because an arbitrarily chosen
target may not be located in the dataset D. The ϵ-controllability
allows us to relax the requirement of exactly reaching the tar-
get state. Even with this relaxation, ϵ-controllability test is still
intractable without further assumption on system dynamics.
This is because those intermediate points in the sequence still
have to be exactly connected, which is not always accessible
due to the discreteness of datatic description. What we need
is to further relax exact connection to some neighboring
connection. That is to say, any state in the sequence does
not have to reach its subsequent state exactly but can just
reach a neighborhood of it. To test ϵ-controllability using such
a data sequence, we need to verify whether all states in all
neighborhoods will reach their subsequent neighborhoods in
one step. This verification requires extending state transition
information from data points to their neighborhoods, which
necessitates a continuity assumption of system dynamics. With
a proper continuity assumption, we are able to iteratively
backpropagate ϵ-controllable neighborhoods to their one-step
predecessors, which builds the basis of identifying all ϵ-
controllable states in the dataset.

A. Lipschitz continuity assumption

As mentioned above, testing ϵ-controllability in general
datatic systems requires continuity assumption of system dy-
namics f . Specifically, we need to ensure that two states in
the same neighborhood are still close to each other after a
one-step transition, so that both of them can be contained in a
subsequent neighborhood. This means that we need to restrict
the rate of change of f , which can be achieved by forcing
f to be continuously differentiable. Here, we assume that
f is Lipschitz continuous, which is weaker than continuous
differentiability but achieves the same goal.
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Assumption 1 (Lipschitz continuity): The system dynamics
f(x, u) is Lipschitz continuous with respect to x and u, i.e.,
there exists Lipschitz constants Lx, Lu ≥ 0 such that for all
x1, x2 ∈ X and u1, u2 ∈ U , the following inequality holds:

d(f(x1, u1), f(x2, u2)) ≤ Lxd(x1, x2) + Lud(u1, u2), (7)

where d(·, ·) is the metric on X and U . In this paper, it is
chosen as the Euclidean distance.

Assumption 1 enables us to extend state transition infor-
mation from discrete data points to their continuous neigh-
borhoods. With this extension, we can perform controllability
test based on a sequence of connected neighborhoods instead
of just data points, thus overcoming the difficulty of data
discreteness.

B. One-step controllability backpropagation

The test of controllability relies on one of its basic proper-
ties: transitivity. This property means that if x1 is controllable
with respect to x2, and x2 is controllable with respect to x3,
then x1 is also controllable with respect to x3. When testing
controllability, transitivity is actually applied in the opposite
direction of a trajectory. Specifically, the first controllable state
we know is the target state. Then, all states that reach the target
state in one step are termed as controllable. By repeating this
process, all controllable states in D can be found. This process
can be viewed as propagating controllability backward along
state trajectories and is therefore called controllability back-
propagation. Controllability test in a datatic system needs to
extend the exact state transition to a neighborhood transition.
In other words, this test should be performed in a backward
manner not only along the data points themselves but also
along all states in their neighborhoods.

To understand why such backpropagation among neigh-
borhoods is possible, let us first consider a one-step con-
trollability backpropagation. Suppose that all states in the
neighborhood of a data point z with radius σ are ϵ-controllable,
i.e., B(z, σ) ⊂ C(xT, ϵ). According to the transitivity of
controllability, if a state reaches this neighborhood in one
step, it is also controllable. Let us assume that xi is such
a state in the dataset. To continue backpropagation, we need
to further find a neighborhood of xi, denoted as B(xi, ri),
in which all states are controllable. Here, ri is the radius
of new state ball. This is possible if all states in B(xi, ri)
reach B(z, σ) in one step. Thanks to the Lipschitz continuity
assumption, we can always find an ri ≥ 0 that achieves this
goal. This conclusion is formally stated in the following one-
step controllability backpropagation theorem.

Theorem 1 (one-step controllability backpropagation):
Given a neighborhood B(z, σ) in which all states are ϵ-
controllable with respect to xT, if there exists a data point
xi such that its subsequent state x′

i lies within B(z, σ), i.e.,
x′
i ∈ B(z, σ), then all states in B(xi, ri) are ϵ-controllable

with respect to xT, where

ri = (σ − d(x′
i, z))/Lx.

Proof: Considering that x′
i ∈ B(z, σ), we have

d(x′
i, z) ≤ σ. (8)

For any state x ∈ B(xi, ri), we have

d(x, xi) ≤ (σ − d(x′
i, z))/Lx. (9)

Given the Lipschitz continuity of f with respect to x, we have
the following inequality:

d(f(x, ui), x
′
i) = d(f(x, ui), f(xi, ui))

≤ Lxd(x, xi)

≤ σ − d(x′
i, z).

(10)

Then using the triangle inequality, we obtain that

d(f(x, ui), z) ≤ d(f(x, ui), x
′
i) + d(x′

i, z) ≤ σ. (11)

Therefore, for any state x ∈ B(xi, ri), we have f(x, ui) ∈
B(z, σ). This implies that x reaches an ϵ-controllable subset
with respect to xT in one step, confirming that x is also ϵ-
controllable.

𝑧 
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′) 
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Data point
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Reachable ball

Expanded ball

𝑥 

𝑥 ′  

𝑟/𝐿𝑥 
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𝑥𝑖
′  

Fig. 3. One-step controllability backpropagation. Lipschitz continuity re-
stricts the subsequent states of the expanded ball to be within the reachable
ball. If the reachable ball is contained by an ϵ-controllable subset, i.e.,
the selected ball, all states in the expanded ball are also ϵ-controllable.
Consequently, controllability backpropagates from the selected ball to the
expanded ball.

Theorem 1 is the basis of ϵ-controllability test in general
datatic systems. It extends the transitivity of controllability
from exact state transition to neighborhood transition using the
Lipschitz continuity of system dynamics. Fig. 3 gives an illus-
tration of Theorem 1. The orange ball represents the known
neighborhood of ϵ-controllable states B(z, σ). It is called
selected ball because there may be many such neighborhoods
and this is the one we select for backpropagation. The blue
point represents the state xi that reaches B(z, σ) in one step,
and its subsequent state x′

i is represented by the green point.
According to Lipschitz continuity, all states in a neighborhood
of xi, called expanded ball, will reach a neighborhood of x′

i

in one step, called reachable ball. The name of expanded ball
comes from the fact that it is an expansion of the current ϵ-
controllable subset. The name of reachable ball comes from
the fact that it is where the states in the expanded ball will
reach in one step. The radii of the two balls are related by the
Lipschitz constant Lx. The maximum radius of the reachable
ball is achieved when it is tangent to the selected ball, i.e.,
r = σ−d(x′

i, z). At this time, the radius of the expanded ball



6

also achieves its maximum r/Lx, which exactly equals ri in
Theorem 1.

The one-step controllability backpropagation theorem pro-
vides a solid basis for identifying new ϵ-controllable subsets.
By iteratively applying this theorem, we can find all ϵ-
controllable subsets in the dataset, which is basically what
our following ϵ-controllability test algorithm does.

C. Controllability test algorithm for datatic system

This section introduces an ϵ-controllability test algorithm for
general datatic systems, called maximum expansion of control-
lable subset (MECS). This algorithm finds all ϵ-controllable
states in the dataset by searching a tree with ϵ-controllable
balls as its nodes, which is called ϵ-controllable tree. The
root node of the tree is the target ball, which is ϵ-controllable
by definition. Every other node of the tree is a ball centered
at a data point. The child nodes are determined by the state
transition relationship: all states in a child node reach its parent
node in one step. According to Theorem 1, such child nodes
are also ϵ-controllable. For each data point, it is ϵ-controllable
if it is contained in at least one node of the tree. By traversing
the ϵ-controllable tree, we can obtain all ϵ-controllable states
in the dataset. In the following description, we use the terms
“node” and “ball” interchangeably, which actually refer to the
same thing.

The MECS algorithm searches the ϵ-controllable tree by
iteratively performing four steps: a) Selection, b) Expansion,
c) Evaluation, and d) Pruning, as shown in Fig. 4. In the
selection step, we choose one node from all current leaf
nodes for expansion. The selection rule is simple: we always
choose the leaf node with the maximum radius. Although any
tree search algorithm can be used for selection, e.g., depth-
first search and breadth-first search, we find that selecting
the node with the maximum radius significantly improves
algorithm efficiency. This heuristic is based on the intuition
that a larger state ball is likely to contain more data points,
resulting in the acquisition of more expanded balls. This is
also where the name of our MECS algorithm comes from, i.e.,
it selects the ϵ-controllable subset with the maximum radius
for expansion. In the expansion step, we traverse the dataset
to find all data points whose subsequent states lie within the
selected ball. According to the transitivity of controllability,
these data points are ϵ-controllable. Furthermore, according
to Theorem 1, neighborhoods of these data points are also ϵ-
controllable. The radii of their neighborhoods are computed in
the evaluation step. With radii computed, the newly expanded
balls become leaf nodes of the ϵ-controllable tree and are
ready for next expansion. Before starting the next iteration, we
perform a pruning step to eliminate overlap among leaf nodes
because it will lead to redundant expansions. Specifically, if a
leaf node is contained in another one, then all states expanded
from the smaller node can also be expanded from the larger
one. Therefore, the smaller node can be removed to improve
computational efficiency. Since other leaf nodes have been
pruned in previous iterations, we only need to consider the
newly expanded nodes in the pruning step: if an expanded node
is contained by any other leaf node, it is removed; conversely,

if an expanded node contains any other leaf node, the latter
is removed. With the pruning step, the advantage of selecting
the leaf node with the maximum radius becomes clearer: it
will likely result in larger and more expanded balls, allowing
more leaf nodes to be pruned and saving more computing
time. MECS repeats these four steps until all nodes in the ϵ-
controllable tree are visited. At this time, there are no more
states to expand, and all ϵ-controllable states are found.

The pseudocode of MECS is detailed in Algorithm 1. At
its beginning, we estimate the local Lipschitz constants within
a neighborhood of radius δ for each state xi in the dataset
D. The estimation method will be introduced in the following
section. Next, two sets are initialized: Sunv for unvisited ϵ-
controllable balls and Svis for visited ones, which correspond
to leaf nodes and internal nodes of the ϵ-controllable tree.
The target ball B(xT, ϵ) is treated as an initial ϵ-controllable
ball and added to Sunv. Then, the aforementioned four steps
are iteratively performed to search the ϵ-controllable tree. It
is worth noting that in the evaluation step, the radius of the
expanded ball must be smaller than δ, i.e.,

r = min{δ, σ − d(x′
i, z)}.

This is because the estimated local Lipschitz constant is valid
only within a ball of radius δ.

Algorithm 1: Maximum Expansion of Controllable
Subset (MECS)

Input : The target state xT, error radius ϵ, dataset D
Output: A set of ϵ-controllable balls Svis

1 // Lipschitz constant estimation
2 for i = 1, 2, . . . , N do
3 (L̂xi

, L̂ui
)← LipschitzEstimation(i);

4 end
5 Initialize two empty sets Svis and Sunv;
6 Sunv.add(B(xT, ϵ));
7 while Sunv is not empty do
8 // Selection
9 B(z, σ)← argmaxB(z,σ)∈Sunv

σ;
10 Move B(z, σ) from Sunv to Svis;
11 for i = 1, 2, . . . , N do
12 // Expansion
13 if x′

i ∈ B(z, σ) then
14 // Evaluation
15 ri = min{δ, (σ − d(x′

i, z))/L̂xi
};

16 Sunv.add(B(xi, ri));
17 end
18 end
19 // Pruning
20 Prune Sunv according to containment relation;
21 return Svis;
22 end

Fig. 5 demonstrates a simple example of how MECS works.
Initially, the target ball is the only unvisited ϵ-controllable
ball and is thus selected. In the first expansion, four data
points are found whose subsequent states lie within the target



7

𝑡 

𝑡 − 1 

𝑡 − 2 

… 

Expansion Evaluation PruningSelection

Repeat until all nodes are visited

Newly expanded stateVisited ball Unvisited ball Selected ball

Select ball with 

maximum radius

Compute radii of 

expanded balls

Prune according to 

containment relation

Expand controllable state 

from selected ball

Fig. 4. Four key steps of MECS algorithm. Selection: Choose the leaf node with the maximum radius. Expansion: Find data points with subsequent states
within the selected ball. Evaluation: Compute the radii of the expanded balls using the one-step controllability backpropagation theorem. Pruning: Remove
the leaf nodes that are contained by others.

Data point
Selected ball

Expanded ball
Visited ball

ℬ(𝑥T , 𝜖) 

Unvisited ball

❌
2

nd
 expansion

1
st

 expansion
ℬ(𝑥T , 𝜖) 

ℬ(𝑥T , 𝜖) ℬ(𝑥T , 𝜖) 

Fig. 5. A example of MECS. In the first iteration, the target ball is selected,
and four ϵ-controllable balls are expanded. In the second iteration, two more
ϵ-controllable balls are expanded, and one of them is pruned.

ball, and the radii of their corresponding ϵ-controllable balls
are computed. Now the four newly expanded balls become
unvisited balls. In the second iteration, we select the one
with the maximum radius among them and further obtain two
expanded balls. In the pruning step, one of them is removed
because it is contained by an unvisited ball.

D. Estimation of local Lipschitz constants

In our MECS algorithm, computing the radius of the ex-
panded ball relies on the local Lipschitz constant Lx within a
neighborhood of each data point. For a data point (xi, ui, x

′
i),

its local Lipschitz constant is estimated by considering all
data points within a neighborhood of xi with radius δ, whose
indexes are denoted by

Ii = {j|d(xi, xj) ≤ δ, 1 ≤ j ≤ N}.

The estimation of Lx involves solving a linearly constrained
quadratic programming (LCQP) problem:

minLx,Lu L2
x + L2

u

s.t. (Lx, Lu) ∈ Cfeas,
(12)

where Cfeas is the feasible region of LCQP:

Cfeas = {(Lx, Lu) |d(x′
j , x

′
k)

≤ Lxd(xj , xk) + Lud(uj , uk),

∀j, k ∈ Ii}.
(13)

The estimated Lipschitz constants are the minimum values that
satisfy the Lipschitz continuity constraints imposed by data
points within the neighborhood.

Fig. 6 shows a geometric interpretation of LCQP (12). In
the Lx−Lu coordinate plane, all possible Lipschitz constants

𝐿𝑥  

𝐿𝑢  

(𝐿𝑥
∗ , 𝐿𝑢

∗ ) 

(𝐿 𝑥 , 𝐿 𝑢) 

Feasible region    

Objective function   

Possible Lipschitz cone
𝒞𝐿𝑖𝑝𝑠  

𝒞𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒  

Fig. 6. A geometric interpretation of the Lipschitz constant estimation
problem. In the Lx −Lu coordinate plane, the region enclosed by the green
line represents all possible Lipschitz constants, and L∗

xi
and L∗

ui
denote the

smallest possible local Lipschitz constants of f(x, u) with respect to x and
u, respectively. The light blue line represents the linear constraints of LCQP,
while the dark blue line encloses the feasible domain. The orange curve depicts
the objective function of LCQP. In this illustration, (L̂xi , L̂ui ) is the optimal
solution to LCQP.
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constitute the possible Lipschitz set:

CLips = {(Lx, Lu) |d(f(x1, u1), f(x2, u2))

≤ Lxd(x1, x2) + Lud(u1, u2),

∀x1, x2 ∈ B(xi, δ), u1, u2 ∈ U}.
(14)

In fact, the possible Lipschitz set is a cone as follows:

CLips = {(Lx, Lu)|Lx ≥ L∗
xi
, Lu ≥ L∗

ui
}, (15)

where L∗
xi

and L∗
ui

are the smallest possible local Lipschitz
constants of f(x, u) with respect to x and u. In Fig. 6, the
objective function of LCQP is represented by a circle. We
denote its solution as (L̂xi

, L̂ui
), which corresponds to the

points where the circle tangentially intersects the feasible re-
gion. The LCQP problem approximates the possible Lipschitz
cone CLips using a limited number of data points. Each data
point constitutes a linear constraint that corresponds to a half-
plane in the Lx−Lu coordinate plane. The feasible region of
LCQP is then formed by the intersection of these half-planes,
providing an estimation of Lipschitz constants based on the
available data.

The possible Lipschitz cone is necessarily contained within
the feasible region, i.e., CLips ⊂ Cfeas. As more data becomes
available in Ii, the feasible region converges to the possible
Lipschitz cone, leading to increasingly accurate estimates of
the smallest possible local Lipschitz constants.

E. A simplified expanding algorithm with fixed radius

The state balls found by MECS are rigorously ϵ-controllable
according to one-step controllability backpropagation theorem.
However, its evaluation step suffers from high computational
complexity because it requires calculating both the radii of
reachable balls and local Lipschitz constants to determine the
radius of each expanded ball. To reduce computational burden,
we propose a simplified version of MECS based on shortest
path search to identify ϵ-controllable balls. This simplified
algorithm is named Floyd expansion with radius fixed (FERF),
which maintains the radius of all expanded balls as the same
value ϵ throughout the searching process, neither enlarging it
nor reducing it. This simplification is based on the assumption
that two states are mutually controllable if their distance is less
than the ball radius. Under this assumption, if the subsequent
state x′

i of a data point xi is ϵ-controllable, then all states in
the ball B(xi, ϵ) are also ϵ-controllable. Applying this idea to
the evaluation step in MECS, we can replace the computation
of the expanded ball’s radius with a direct assignment, i.e.,
assign ri = ϵ in Algorithm 1.

With this replacement, continuing to use the original four-
step iteration of MECS is not the best choice. A better ap-
proach is to convert the ϵ-controllability test to a shortest path
problem for a directed graph. To understand this conversion,
let us consider a directed graph G = {V,E}, where the vertex
set V contains all states in the dataset and their subsequent
states, plus the target state, i.e.,

V = set
(
{xi}Ni=1 ∪ {x′

i}Ni=1 ∪ {xT}
)
,

where the operator set(·) removes all duplicated elements in a
sequence. The edge set E contains all pairs of vertices (xi, xj)

Data pointLocal controllable region Target state

𝑥T 
Convert to 

a directed graph 𝑥T 

ℬ(𝑥T , 𝜖) 

Fig. 7. A graph search formulation for ϵ-controllability test. If the distance
between two states is less than ϵ, they are assumed to be mutually controllable.
Under this assumption, the dataset can be converted into a direct graph. Testing
ϵ-controllability is equivalent to solving a shortest path problem for this graph.

such that xi is controllable with respect to xj in one step. Such
a one-step controllability holds in two cases. The first is that
xj is the subsequent state of xi in the dataset, i.e., xj = x′

i.
The second is that the distance between xi and xj is less than
or equal to ϵ, so they are mutually controllable according to
our assumption. In the second case, (xj , xi) is also in the
edge set. An illustration of such a graph is shown in Fig. 7.
In this graph, whether a state is ϵ-controllable with respect
to the target state xT is equivalent to whether there exists a
path from the state to xT. Therefore, the ϵ-controllability test
can be converted to a shortest path problem in the directed
graph. Specifically, for each state in the dataset, we compute
the length of its shortest path to the target state. If and only
if the length is finite, the state is ϵ-controllable. To compute
the length of a path, we construct a distance matrix:

Ai,j =


0, if i = j

1, if (xi, xj) ∈ E

∞, otherwise,

where 1 ≤ i, j ≤ |V | and xi, xj denote the i-th and j-th
vertices in V , respectively. Matrix A essentially defines the
distance between two ordered states as the number of steps
from the former to the latter and initializes all distances greater
than 1 as infinity. On the basis of this matrix, we can use
Floyd’s algorithm [19] to compute the distances among all
state pairs, i.e., shortest paths in a directed graph. With all
distances computed, for an arbitrarily chosen target state, we
can directly obtain all ϵ-controllable states by picking out those
with finite distances to the target. Note that this ability is not
achievable by the MECS algorithm since it constructs the ϵ-
controllable tree with a given target state as the root node and
only finds ϵ-controllable states with respect to this target.

IV. ANALYSIS OF ALGORITHM COMPLEXITY

This section analyzes the time complexity of our two algo-
rithms, MECS and FERF, and shows how their computational
efficiency can be improved by selecting proper data structures.
Let us denote the dataset size by N , the maximum number of
data points in the neighborhood by n, and the total number of
iterations by M .

The time complexity of MECS is analyzed first. For each
sample (xi, ui, x

′
i), computing its local Lipschitz constant
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involves two steps: the first is to search for neighboring states
of xi within radius δ; the second is to solve LCQP (12). A
naive method for searching neighboring states is to traverse the
whole dataset, which has a complexity of O(N). To alleviate
this, we construct a k-d tree on the dataset with a complexity
of O(N logN), and query it to obtain neighbors of each
state with a complexity of O(logN) [20]. The complexity of
solving LCQP grows quadratically with respect to its number
of inequality constraints [21], which is upper bounded by n
in Problem (12). This, solving this LCQP incurs a complexity
of O(n2). Consequently, the overall complexity of computing
Lipschitz constants is O(N(logN + n2)).

During each iteration, assume that the number of unvisited
balls is S. Then, the complexity of finding the one with the
maximum radius is O(S), and that of searching for states in
the selected ball is O(logN). Since the number of states in
the selected ball is upper bounded by n, the complexity of the
pruning step, which traverses both unvisited balls and states in
the selected ball, is upper bounded by O(Sn). Consequently,
the complexity of each iteration is O(logN + Sn). Since the
number of unvisited balls S varies across different iterations,
we set a loose upper bound N on it. Therefore, the complexity
of each iteration is upper bounded by O(Nn), and the overall
complexity of MECS is upper bounded by O(MNn). In
general cases, the total number of iterations M is difficult to
determine. As a special case, when the Lipschitz constant Lx

is greater than 1, we always have M ≤ N , and the complexity
is upper bounded by O(N2n). This is because in this case,
the radius of expanded ball gradually decreases, ensuring that
the same state will not be expanded twice. In practice, the k-d
tree greatly improves the computational efficiency of MECS.
However, in complexity analysis, since the number of unvisited
balls S is relaxed to N , the acceleration of k-d tree is not
reflected in the upper bound of overall time complexity.

For FERF, we assume that the size of vertex set is L. Due
to the inherent characteristics of the directed graph, we have
the inequality L ≤ 2N +1. The time complexity of filling the
vertex set and initializing the distance matrix is O(N), and
the complexity of filling the distance matrix using Lipschitz
continuity assumption is O(L2). Finally, the complexity of
solving the shortest path problem using Floyd’s algorithm is
O(L3). Therefore, the overall time complexity of FERF is
O(N3). This complexity does not include an indeterminable
number of iterations M as MECS because Floyd’s algorithm
is guaranteed to end after a three-level traversal of the vertex
set. Moreover, FERF finds ϵ-controllable states with respect
to all possible target states instead of just a given one as
MECS. For the case of a given target state, we can use another
shortest path algorithm, e.g., Dijkstra’s algorithm, to compute
the distances of all states to a specific target. In this case, the
complexity of FERF can be further reduced to O(N2).

V. EXPERIMENTAL VALIDATION

This section evaluates our controllability test method in
three datatic control systems, including both linear and non-
linear ones. To measure how many states can be transferred
to a given target, we introduce a new performance index

called degree of controllability (DOC), which is defined as the
proportion of ϵ-controllable states to all states in the dataset.
For each system, we focus on four aspects: 1) the process of ϵ-
controllability expansion and the final ϵ-controllable subsets;
2) the impact of different error radii on DOC for the same
target state; 3) the impact of different target states on DOC
for the same error radius; and 4) comparison of estimated
Lipschitz constant with the true value.

A. Mass-spring system

We start validating our MECS algorithm in a linear time-
invariant system. Consider a 2-dimensional mass-spring sys-
tem: [

y′ ẏ′
]⊤

= A
[
y ẏ

]⊤
+Bu,

A =

[
1 ∆t

− k
m∆t 1− ρ

m∆t

]
,

B =
[
0 1

m∆t
]⊤

,

(16)

where y is the displacement, m = 0.5 kg is the mass,
k = 1N/m is the elastic coefficient, ρ = 1.5N/(m · s)
is the damping coefficient, and ∆t = 0.1 s is the sampling
time. The system state is x = [y, ẏ]⊤ and the equilibrium
is xequ = [0.0, 0.0]. We specify a bounded working space
{X ,U} for data collection and controllability verification:

X = [−1.0, 1.0]× [−1.0, 1.0],
U = [−1.0, 1.0].

(17)

This linear system is controllable because its controllability
matrix has full row rank, i.e.

rank([A AB]) = 2. (18)

It means that for any two states, there exists a series of control
inputs that steer one state to the other.

We first collect the dataset consisting of multiple state-
action trajectories. This dataset, shown in Fig. 8a, exhibits
dense clustering of states around the equilibrium point. This
clustering is attributed to the system’s tendency to transfer
toward the equilibrium point due to damping. The initial
state is randomly chosen in the state space, and actions
are determined by a random policy. Once the state-action
trajectory reaches a maximum length of 50, the system state is
reset. The sampling process continues until the dataset contains
a total of N = 5000 state transition pairs. Data collection for
subsequent experiments followed a similar process.

For a linear system, the Lipschitz constant is the same for
all states and can be theoretically computed as

L∗
x = sup

x1,x2∈X

∥(Ax1 +Bu)− (Ax2 +Bu)∥2
∥x1 − x2∥2

= ∥A∥2.

(19)
The true Lipschitz constant is the Euclidean norm of system
matrix, i.e., L∗

x = ∥A∥2 = 1.021. By solving LCQP with a
confidence radius of δ = 0.2, the estimate of local Lipschitz
constant is L̂x = 0.98. The small error in Lipschitz constant
estimation is acceptable because it does not have much effect
on the size of ϵ-controllable subsets found by MECS.
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After data collection and Lipschitz constant estimation, we
start to identify ϵ-controllable states using MECS. With the
error radius ϵ = 0.05 and the target state xT = xequ, the final ϵ-
controllable subsets are visualized in Fig. 8. The ϵ-controllable
subsets identified in different iterations are shown in Fig. 9.
These subsets gradually expand from the neighborhood of
equilibrium point until covering almost all states in the dataset.

1.0 0.5 0.0 0.5 1.0
y

1.00

0.75

0.50

0.25

0.00

0.25

0.50
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1.00

y

state point

(a) Data points

1.0 0.5 0.0 0.5 1.0
y

1.0

0.5

0.0

0.5

1.0

y

ε-controllable subset
target state

(b) ϵ-controllable subset

Fig. 8. Sampled data points and identified ϵ-controllable subsets in a mass-
spring system when ϵ = 0.05. The red points represent states, and the orange
arrows represent their corresponding time derivatives. The length of the arrows
represents the norm of time derivatives. The blue area represents ϵ-controllable
subsets.

The relationship between the error radius ϵ and DOC is
visualized in Fig. 10a. As ϵ increases, the interested target ball
is enlarged, leading to an increased proportion of ϵ-controllable
states. When the target state is set to the equilibrium point,
all states in the dataset are ϵ-controllable as long as ϵ exceeds
0.02. When the target state deviates from the equilibrium point,
a larger ϵ is required to ensure ϵ-controllability of all states.
When ϵ becomes sufficiently large, the target ball covers the
entire dataset, and all states become ϵ-controllable.

We calculate DOC for various target states, with a fixed
error radius ϵ = 0.05, as shown in Fig. 10b. It shows that
DOC is high in the region near the equilibrium point. Beyond
a certain distance, DOC decreases dramatically as the target
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Fig. 9. The ϵ-controllable subsets expansion process for a mass-spring system
when equilibrium point is targeted (ϵ = 0.05). The blue area represents ϵ-
controllable subsets.
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Fig. 10. The effect of different error radii and target states on DOC in a
mass-spring system.

state moves away from the equilibrium point. This is because
states near the equilibrium point are more likely to be reached,
as system energy tends to dissipate due to friction.

Next, we examine a system that is uncontrollable in the
sense of traditional exact controllability. We discard the control
input in the mass-spring system where the system matrix A
has two real eigenvalues less than 1. The dataset and identified
ϵ-controllable subset with respect to the equilibrium point are
shown in Fig. 11. As all states follow their specific trajectories
towards the equilibrium point, they are all ϵ-controllable when
the target state is set to the equilibrium point.
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Fig. 11. Sampled data points and identified ϵ-controllable subsets in a mass-
spring system without control input when ϵ = 0.05.

We further analyze the relationship between the error radius
ϵ and DOC under different target states, as shown in Fig. 12a.
When the target state is set to the equilibrium point, all states
are controllable even with a small ϵ. When the target state
deviates from the equilibrium point, DOC remains small until
ϵ exceeds 0.16. We also calculate DOC for different targets
in the state space with ϵ = 0.05, as visualized in Fig. 12b. It
shows that DOC remains low throughout the state space except
for a tiny region near the equilibrium point. This phenomenon
arises because, in a system without control input, the states
are steered to the equilibrium point along their particular
trajectories but lack the ability to transfer between each other.

B. Oscillator

We consider a Van der Pol oscillator, which is a highly
nonlinear system:

y′ = y + ẏ∆t,

ẏ′ = −y∆t+ ẏ(1− 1

2
(1− y2))∆t+ u∆t,

(20)
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Fig. 12. The effect of different error radii and target states on DOC in a
mass-spring system without control input.

where y is the position coordinate, x = [y, ẏ]⊤ is the system
state, and ∆t = 0.1 s is the sampling time. The equilibrium
point is xequ = [0.0, 0.0]. We specify a bounded state-action
space for data collection and controllability test:

X = [−1.0, 1.0]× [−1.0, 1.0],
U = [−0.5, 0.5].

(21)

Data collection is conducted using the aforementioned sam-
pling method with a maximum trajectory length of 200. The
sampled data points are shown in Fig. 14a, in which the
number of data points is N = 5000. Then, the local Lipschitz
constants for each state-action pair are estimated by solving
LCQP. We visualize LCQP at xequ in Fig. 13. It shows that
our method accurately estimates the local Lipschitz constants
when data is sufficient.
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Fig. 13. The estimation of local Lipschitz constant in an oscillator system.
In the Lx − Lu coordinate plane, the region enclosed by the green line
represents all possible Lipschitz constants. L∗

xi
and L∗

ui
denote the smallest

possible local Lipschitz constants of f(x, u) with respect to x and u. The
blue lines represent the linear constraints of LCQP. The orange curve depicts
the objective function of LCQP. In this illustration, (L̂xi , L̂ui ) is the optimal
solution to LCQP.

For controllability test, we use MECS to find all ϵ-
controllable states. To better understand how the target state
affects controllability, we set it to a non-equilibrium point
xT = [0.25, 0]. The identified ϵ-controllable subsets are vi-
sualized in Fig. 14b. The result is consistent with the intuition
that nearly all states in the dataset are ϵ-controllable.

We examine the influence of the error radius ϵ on control-
lability, as shown in Fig. 16a. It indicates that for ϵ ≥ 0.02,
all states in the dataset are ϵ-controllable with respect to
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Fig. 14. Sampled data points and identified ϵ-controllable subsets in an
oscillator system when ϵ = 0.05.
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Fig. 15. The process of ϵ-controllable set expansion for controllability
verification in an oscillator system (ϵ = 0.05), where the blue area represents
the ϵ-controllable subset.

the equilibrium point. When target states deviate from the
equilibrium point, DOC surges only when ϵ is larger than
0.06. This indicates that the equilibrium point exhibits superior
controllability compared to its surrounding states in the sense
of DOC. Fig. 16b shows DOC for different target states when
ϵ = 0.05. In a region near the equilibrium point, almost
all states are ϵ-controllable, while outside this region, DOC
quickly drops to zero.

We consider an uncontrollable version of the oscillator
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Fig. 16. Relationship between changes in DOC with error radius ϵ and target
state in an oscillator system.
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system by removing its control input. The sampled data points
are shown in Fig. 17a. The states are steered towards the
equilibrium point following helical trajectories. Fig. 17b shows
the identified ϵ-controllable subsets when xT deviates from
xequ. Due to the lack of control input, only states on specific
helical curves can be steered to the target state.
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y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

state point

(a) Data points
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target state

(b) ϵ-controllable subset

Fig. 17. Sampled data points and identified ϵ-controllable subsets in an
oscillator system without control input when ϵ = 0.05.

Fig. 18a shows DOC under different error radii. For the
equilibrium point, a small ϵ is sufficient to make all states
ϵ-controllable. For non-equilibrium points, DOC significantly
drops when ϵ is small and slowly rises as ϵ increases. The
relationship between DOC and the target state is visualized
in Fig. 18b. It clearly shows that almost all states are ϵ-
controllable when the target state is set to the equilibrium
point. When the target state deviates from the equilibrium
point, DOC drops much more quickly to zero than in the case
with control input.

C. Tunnel-diode circuit

In the aforementioned systems, there is only one equilibrium
point, and all states in the dataset are ϵ-controllable with
respect to it. Next, we explore a more complex system with
multiple equilibrium points. Consider a tunnel-diode circuit:

x1
′ = x1 +

1

C
(−h(x1) + x2)∆t,

x2
′ = x2 +

1

L
(−x1 −Rx2 + u)∆t,

(22)

whose parameters are R = 1.5 × 103 Ω, C = 2 × 10−12 F,
L = 5× 10−6 H, and ∆t = 0.1 s, and h(·) is given by

h(x1) = 17.76x1 − 103.79x2
1 + 229.62x3

1

− 226.31x4
1 + 83.72x5

1.
(23)
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Fig. 18. The effect of different error radii and target states on DOC in an
oscillator system without control input.

The control input is constant at u = 1.2V. We specify a
bounded state space for data collection and controllability
verification:

X = [−0.3, 1.4]× [−0.3, 1.4] . (24)
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x 2
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Fig. 19. Data points for controllability verification in a tunnel-diode circuit.

The collected data points are shown in Fig. 19, in which
the number of data points is N = 5000. We can verify that
the system has two equilibrium points. In fact, by setting
ẋ1 = ẋ2 = 0, we have three equilibrium points: xequ0 =
[0.285.0.61], xequ1 = [0.063.0.758], and xequ2 = [0.884.0.21].
Among them, xequ1 and xequ2 are stable equilibrium points,
while xequ0 is a saddle point. Therefore, all state trajectories
eventually reach either xequ1 or xequ2.

Fig. 20 and Fig. 21 demonstrate the expansion of ϵ-
controllable subset when target states are set to xequ1 and
xequ2, respectively. When the expansion originates from either
of them, the ϵ-controllable subsets do not intersect with those
expanded from the other one. The effect of ϵ on DOC is further
discussed. As depicted in Fig. 22a, DOC is independent of ϵ
at three equilibrium points. Besides, the sum of DOC at xequ1

and xequ2 approximately equals 1, indicating that almost no
state is ϵ-controllable when the target state is the unstable
equilibrium xequ0. In this system, all states rapidly converge
toward their nearest stable equilibrium point.

The results for DOC under different target states are vi-
sualized in Fig. 22b. It shows that in this system, not all
states are ϵ-controllable with respect to a specific equilibrium
point. Only states in a surrounding area of each equilibrium
point can be steered to it. Beyond these areas, DOC is almost
zero for any equilibrium point. The DOCs for the two stable
equilibrium points are 0.3 and 0.7, which is consistent with
the fact that all states can only be steered to their nearest
stable equilibrium point. The final ϵ-controllable subsets for
two stable equilibrium points are visualized in Fig. 23.

In conclusion, MECS is applicable to both linear and
nonlinear datatic systems. When the target state coincides with
the equilibrium point, the maximum number of ϵ-controllable
states is achieved. The error radius represents a relaxation
of traditional exact controllability, allowing states to reach
only a neighborhood of the target state. As the error radius
increases, more states become ϵ-controllable. When the error
radius tends to zero, ϵ-controllability degenerates to traditional
exact controllability.
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Fig. 20. The process of ϵ-controllable set expansion in a tunnel-diode circuit
when xequ1 = [0.063, 0.758].
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Fig. 21. The process of ϵ-controllable set expansion in a tunnel-diode circuit
when xequ2 = [0.884, 0.21].
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Fig. 22. The effect of different error radii and target states on DOC in a
tunnel-diode circuit.
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Fig. 23. The relationship between the final ϵ-controllable subsets and sampled
trajectories of a tunnel-diode circuit without control input when target states
are xequ1 and xequ2.

VI. CONCLUSION

This paper proposes a controllability test method for datatic
(i.e., data-driven) control systems by introducing a new con-
cept called ϵ-controllability. This concept extends the defini-
tion of controllability from traditional point-to-point form to a
point-to-region form, making it more applicable for dynamic
systems whose behaviors are described by a limited number of
data points. By leveraging the Lipschitz continuity assumption
to extrapolate unknown state transition from data points, we
establish the one-step controllability backpropagation theorem.
This theorem enables the expansion of controllability from
a known ϵ-controllable subset to a new one. Based on this
theorem, we propose the maximum expansion of controllable
subset (MECS) algorithm to efficiently identify controllable
states in nonlinear systems with datatic description. MECS
searches the ϵ-controllable tree by iteratively performing four
steps: selection, expansion, evaluation, and pruning until all
ϵ-controllable states are found. To reduce the computational
complexity of MECS, we propose a simplified algorithm
called Floyd expansion with radius fixed (FERF) based on a
mutual controllability assumption of neighboring states. FERF
maintains a fixed radius of all expanded balls and finds ϵ-
controllability states by solving a shortest path problem. In
many real-world systems, such as those with image state
spaces, it is impractical to verify exact controllability of
every individual state element. Our two algorithms offer an
alternative solution to numerically test their controllability,
which requires defining specialized distance metrics between
states that selectively focus on critical state elements. The new
definition of ϵ-controllability and its testing methods establish
a basic theory and provide a practical tool for controllability
analysis of datatic control systems.
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