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Abstract—Variable speed limit (VSL) control is an established
yet challenging problem to improve freeway traffic mobility
and alleviate bottlenecks by customizing speed limits at proper
locations based on traffic conditions. Recent advances in deep
reinforcement learning (DRL) have shown promising results in
solving VSL control problems by interacting with sophisticated
environments. However, the modeling of these methods ignores
the inherent graph structure of the traffic state which can be a key
factor for more efficient VSL control. Graph structure can not
only capture the static spatial feature but also the dynamic tempo-
ral features of traffic. Therefore, we propose the DVS-RG: DRL-
based differential variable speed limit controller with graph state
representation. DVS-RG provides distinct speed limits per lane in
different locations dynamically. The road network topology and
traffic information(e.g., occupancy, speed) are integrated as the
state space of DVS-RG so that the spatial features can be learned.
The normalization reward which combines efficiency and safety
is used to train the VSL controller to avoid excessive inefficiencies
or low safety. The results obtained from the simulation study on
SUMO show that DRL-RG achieves higher traffic efficiency (the
average waiting time reduced to 68.44%) and improves the safety
measures (the number of potential collision reduced by 15.93%
) compared to state-of-the-art DRL methods.

Index Terms—Variable speed limit (VSL); deep reinforcement
learning (DRL); Graph state representation.

I. INTRODUCTION

A. Background

Traffic bottlenecks disrupt the vehicular traffic, and result
in increased vehicular delays, driving stress, environmental
pollution, and reduced traffic safety and efficiency[1], [2], [3].
Once a traffic bottleneck occurs, vehicles will quickly accu-
mulate in the upstream sections, which commonly happens
at entrance ramps and sections where lanes are reduced, as
shown in Fig. 1a. Variable speed limits(VSLs) can limit the
traffic flow into the bottleneck section and are an effective way
to eliminate traffic bottlenecks among mainstream traffic flow
control [4]. The VSL can be applied upstream of the bottleneck
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point to harmonise the speed across vehicles to regulate the
mainstream arriving flow, as shown in Fig. 1b. The adaptive
VSL can change posted speed limits by displays on overhead
or roadside variable message signs (VMS) in response to
the development of the prevailing traffic information. VSLs
systems can improve throughput and traffic safety and ensure
stable traffic flow affected by congestion through balanced
speed and utilization of lanes. Moreover, the differential
variable speed limits (DVSL) method has sparked widespread
interest among researchers, which dynamically sets distinct
speed limits for each lane, and is capable of offering precise
and timely lane-level VSL instructions, as illustrated in Fig. 1c.
DVSLs have exhibited advantages in congestion alleviation, as
well as accident and emission reductions [3], [5] .

Fig. 1: (a) The traffic bottleneck performance under NO-VSL;
(b) The traffic bottleneck performance under VSL; (c) The
traffic bottleneck performance under DVSL.

B. Related work
The traditional VSL method can be divided into two types:

reactive and proactive. The reactive VSL control includes
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open-loop [1] and ruled-based [6] techniques. As previously
mentioned, realtime VSL decisions changed based on prese-
lected thresholds of traffic flow, occupancy, or mean speed [7].
Although the logic of the above methods is simple and easy
to deploy [8], its major limitation is time lag. The proactive
VSL method have been developed to address the limitations of
the reactive counterparts, which can dynamically adjust VSL
decisions based on the feedback of the system [9], [10], [11],
[12], [13]. The most representative is the model predictive
control (MPC), which was used to prevent traffic jams by
predicting the traffic flow [14], [15], [16]. The core idea is
traffic breakdowns are anticipated before they even occur,
and remedial VSL strategies are implemented and resolve
shockwaves before traffic reaches breakdown. However, build-
ing an accurate and reliable traffic flow prediction model is
challenging, because the microscopic drivers’ behavior, such
as sudden deceleration, merging, or lane changing, resulting
in uneven headways, cannot be completely reflected in the
model.

Deep reinforcement learning (DRL) is a model-free and
data-driven approach that is used as an alternative to model-
based approaches [17] in the context of traffic panning and
control [18], [19]. DRL consists of an agent gradually learning
the optimal control policy by utilizing experiences acquired
from repeated interactions with the environment, without pre-
defined human rules or models in a complex environment [20],
[21]. As a result, a well-trained DRL agent can, theoretically,
make predictions on system evolution and achieve a proactive
control scheme. DRL-based VSL has been also proposed,
which can be divided into 3 categories[22]:

In value-based methods, the Q-learning (QL) algorithm is
used in early research [23], [24], [25], [26]. The common
problem is Q table used to record experiences is limits space.
To address the curse of dimensionality for large-scale traffic
control, Walraven et al. [23] proposed function approximation
techniques. Wang et al. [25] proposed a multi-agent system
with a distributed QL algorithm to tackle the cooperative
control problem in continuous traffic state space. Furthermore,
Kisic et al. [27] proposed a deep Q-learning-based (DQL) VSL
algorithm including a customized learning process and a com-
plex reward function consisting of three separate objectives.
The value-based methods including QL or DQL rely on finding
an action which maximizes the action-value function, however,
they discretize the action domain for the applications with
continuous action variables. The discretization of the action
domain may lead to the curse of the dimensionality issue since
the number of total actions increases exponentially with the
number of action types. Moreover, the discretization of action
space may cause information loss and lead to sub-optimal
solutions. This makes it intractable to apply the value-based
method to applications with high-dimension and continuous
action space.

The second category includes the policy-based methods.
Peng et al. [28] developed a VSL controller based on Proximal
Policy Optimization(PPO) and the training curve shows that
the performance of the controller has been improved via the
PPO algorithm with increasing reward and decreasing loss.
Wang et al. [2] developed a centralized traffic control system

that can coordinate multiple ramp metering and VSL traffic
controllers on freeways to minimize the total travel time.
The results show that the deep deterministic policy gradient
(DDPG) and twin delayed deep deterministic policy gradient
(TD3) outperform other control methods and the reward curve
of TD3 is more stable than DDPG. Although the training
curves of both methods have an upward trend, the fluctuations
are obvious.

In actor and critic methods, Wu et al. [3] developed a
DVSL controller based on DDPG, in which dynamic and
distinct speed limits per lane can be imposed. Different reward
signals are used to train the DVSL controller, and a comparison
between these reward signals is conducted. Their experiments
have shown that their proposed method can reduce congestion,
as well as accidents and emissions in a simulation study.
However, most of their training reward curves reported in the
paper do not seem to converge.

Above all, there are some proposed customizing neural
network methods for VSL(DVSL) controllers [2], [3], which
may have hyperparameter sensitivity, training instability, etc.
The massive input traffic data and the evolving behaviours of
agents (controllers) in the global environment cause nonsta-
tionarity and instability during training, which is a common
phenomenon [3], [29]. What‘s more, VSL traffic flow with
temporal and spatial is necessary to provide valuable informa-
tion for the VSL method which is ignored by most studies.
As the author knows, there is no literature that integrates
topological relationships and traffic conditions information
into DRL-based VSL(DVSL).

C. Scope and Contributions

To address the challenges mentioned above, we propose
DVS-RG: DVSL control combined with DRL and graph
state representation to improve the traffic efficency and safety
during the merging area, which is is also open-sourced here1.
A graph is a data structure with great expressive power to
model a set of objects (lanes) and their relationships and
is already successfully applied in transportation systems[29],
[30], [31]. Considering the decisions of DVSL relate not only
information pertaining to traffic information in its proximity
(temporal information) but also location information pertaining
to coming from downstream or upstream (spatial information),
a directed graph including traffic flow information and segment
network topology is proposed. A directed graph passes with
non-linear neighbourhood transformation and then is followed
by aggregation to yield a fused representation of spatial
embedding to form graph state representation that serves as
the state space of DRL. The state space, which involves traffic
information and information dissemination based on the spatial
relationship between DVSL lanes and their surroundings, will
benefit the DVSL agent in learning policy. While, the proposed
DRL-DVSL framework can be tested in the open-source algo-
rithm , which can avoid the drawbacks of customizing neural
networks The contribution of this paper can be summarized
as follows:

1https://github.com/jingwenyanga/DVS-RG/

https://github.com/jingwenyanga/DVS-RG/
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1) A novel state space design is proposed where we com-
bine the traffic information and the graph representation
of the road network. This novel design allows the DVSL
agent to capture finer-grained traffic information and its
dissemination, which has benefits for training the DVSL
agent;

2) Reward normalization is introduced in the design of
the reward function, which can filter out some lower
efficiency and high collision situations. The normaliza-
tion layer is introduced to merge different traffic data to
speed up training.

3) Experiments validate the effectiveness of the proposed
method compared with state-of-the-art methods. The
method has significant improvement in efficiency and
safety, up to 68.44% and 15.93%, respectively.

D. Paper Organization

The remainder of this paper is organized as follows. Section
II introduces the system design and detail architecture. Section
III details the scenario and experiments implemented. Section
IV presents the results and analysis to demonstrate the value of
the proposed method. Finally, Section V discusses conclusions
and future extensions of this work.

II. SYSTEM OVERVIEW

A. System Design Goals

The goal of the proposed model is to optimize the freeway
bottleneck traffic via DRL-based differential VSL controllers.
Optimising traffic efficiency and safety are the main objectives
considered in the proposed control system.

• High safety: Safety is the first consideration in traffic
control system design. Time-to-collision (TTC) index has
been extensively utilized to evaluate rear-end collision
risks[5]. TTC is defined as the time remaining to a
potential collision if the interacting road users’ speed and
direction remain unchanged. To identify dangerous situ-
ations, a critical threshold must be determined for TTC.
When the values are over the threshold, the likelihood
of traffic accidents increases. The TTC of each vehicle
is calculated and if the TTC is less than the determined
threshold, the vehicle will potentially collide. Therefore,
the target of the proposed control system regarding safety
is to have fewer vehicles with the TTC exceeding the
threshold defined.

• High efficiency: Average Waiting time (AWT) is an
important measure that not only reflects traffic efficiency
but also reflects the freeway level-of-service scale. Total
stopped time (TST) may aggravate the phenomenon of
stop-and-go shockwaves to some extent, which causes
low-efficiency and high-safety. Throughput serves as the
evaluation index of traffic efficiency, which represents the
number of vehicles that pass through the study site in a
time interval. In this paper we are focusing on Bottleneck
throughput(BT).

To address the two main objectives of this paper, a control
system is designed to decrease the AWT, TST and increase
BT to untimately improve efficiency.

B. System Architecture

A traffic control area can be divided into a series of
segments, and the segment length should satisfy ∆L ≥ vseg∆t
according to the Courant-Friedrichs-Lewy (CFL) condition,
where x is the segment length, vseg is the average speed
of the segment, and ∆t is the time step. It notices that This
work assumes that all the vehicles are connected and the V2X
communication is assumed to be perfect without packet loss
and no latency. Some studies show imposing VSL control
some distance upstream of a bottleneck to starve the inflow
to the bottleneck and dissipate the queue [1], [2], [13], [24].
The acceleration area allows for vehicles that exit from the
controlled congestion to accelerate and traverse the bottleneck
area with the critical speed. The maximum throughput is
achieved at the bottleneck and capacity drop is avoided[4].
Therefore, five areas should be focused for DVSL control:
the mainlane inflow area (MI), DVSL application area (DSA),
acceleration area(AA) , on-ramp inflow area (RI) and merging
area (MA). Except MA, the length of each area is generally
∆L. The length of MA is changed according to different
scene. The length of MA is generally the distance from the on-
ramp point to the off-ramp point. When the distance between
the on-ramp point and the off-ramp is bigger than ∆L or there
is no off-ramp, the MA distance equals ∆L from the on-ramp
point(bottleneck point). The downstream of the bottleneck
point includes the two following areas of interest: mainlane
outflow area (MO) and ramp outflow area (RO), as is shown
in the upper part of Fig 2.

The actor-critic is used in this paper for the DVSL controller
and is a hybrid architecture combining value-based and policy-
based methods that help to stabilize the training by reducing
the variance: The actor generates an action for the DVSL strat-
egy, and the critic is utilized to evaluate DVSL strategy. Policy-
based DRL is effective in high dimensional and stochastic
continuous action spaces, and learning stochastic policies, and
the value-based DRL excels in sample efficiency and stability.
The actor-critic architecture integrates the advantages above
mentioned. The algorithm architecture along with the graph
state representation used for DVSL is shown in the lower part
of Fig 2. The DVSL controller outputs a set of speed limits for
each lane to improve traffic efficiency and safety. The design
of action, state, and reward for the DVSL controller is given
as follows:

1) Action: The action set includes several values of the
speed limit in continuous space. The action a shown in Eq. 1

a = [avsl1 , avsl2 , . . . , avslNc
] (1)

avsl = vvslmin + vm × u (2)

vvslmin ≤ avsl ≤ vvslmax (3)

where Nc is the number of lanes in the DSA; u is the output
of the agent, u ∈ [0, 1]; vm is a coefficient; The vvsl is the
value of the speed limit of each lane and is required to be
greater than the minimum speed limit vvslmin and not greater
than the maximum speed limit vvslmax.
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Fig. 2: The actor-critic architecture for DVSL with graph state representation

2) Reward: The reward is calculated at every time step t.
The efficiency and safety of the system are considered the two
main factors during our reward design process.

For efficiency, we consider the average speed of the MA
as the most important index. The average speed is normalized
to facilitate the DRL training process. The calculation of this
index is as follows:

vMA =

{
0, if ∃ vMA,i < vc,min∑NMA

i=1 vMA,i−vc,min

vmax−vc,min
, otherwise

(4)

vMA =
1

Tc

Tc∑
t=1

vMA(t) (5)

where vMA reflect the average speed of MI and is calculated
by the speed of each lane; if the speed of any MI lane is less
than the customized critical minimize speed value vc,min, the
vMA is equal to its average; otherwise, the vMA is equals 0;
vmax is the maximum speed allowed by the road; vMA,i is
the speed of lane i in MA; Tc is the time of a control horizon;
vMA is the average speed of MA during a control horizon

For safety, TTC is an effective index for identifying traffic
conflict and evaluating the safety of the traffic flow, estimating
the time required for a car to hit its preceding one. If the TTC
of the vehicle is less than the TTC threshold, which means a
possible collision is recognised. The value of TTC can reflect
the total number of such possible rear-end collisions for a
given time period. Since the value of TTC is inversely related

to crash risk, a expand index based on TTC is designed as
a safety reward function in this work and it can prompt the
DVSL agent to implement speed limit action to reduce the
collision risk of the traffic flow. To do so, the NPC is defined
as the number of vehicles with a potential collision and the
value in the node surround at the time step t (see Eq. 6).

NPC =

M∑
i=0

TTCi

when TTCi < TTCc

(6)

NPC =
1

Tc

Tc∑
t=1

M −NPC(t)

M
(7)

where TTCc is the threshold of the TTC, M is the total
number of vehicles.

The reward function is defined as:

r =
1

2
(vMA +NPC) (8)

3) State: The DVSL controller in this paper provides the
speed limits in each lane, so the occupancy and average speed
of each lane will be considered in state space. The MA is
the first to be affected by traffic bottlenecks, and the traffic
capacity of the MA area will decrease; If the implement
of traffic control strategy is not in time, a large number
of vehicles will accumulate and spread in upstream of the
bottleneck point. Therefore, the state of the DVSL controller
should focus on 5 areas: 1 is MA and 4 are MI, DSA, AA
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and RI, which is in the upstream of merging point. The state
s is denoted as Eq. 9.

s = [sMI,1, sMI,2, . . . , sMA,NMA
]Ns

(9)

Ns = NMI +NDSA +NAA +NRI +NMA (10)

sMI,1 = {(o1MI , v
1
MI)} (11)

take the MI parameters as example, sMI,1 represent the state
of lane 1 in MI; Ns represent the number of total lanes in 5
area above mentioned; NMI is the number of lanes of MI;
o1MI is the occupation of lane l of the MI; v1MI is the average
speed of lane l of the MI;

In this work, the geometric features of the target traffic
network are expressed by a graph and the traffic state data is
embedded into the graph to represent the state of the proposed
controller. The lanes in MA, MI, DSA, AA and RI are defined
as graph nodes and the relationship between lane and lane as
graph edges.

(1) Graph
The state can be encoded into a directed graph, G(0)t =

(V
(0)
t , E), where V

(0)
t is a set of the initial node features for

the graph, and E is the set of graph edges which is defined as
the relationship between lanes in this paper. The initial node
features are initialized as follows:

V (0)(t) = {V (0)
1 (t), V

(0)
2 (t), . . . , V

(0)
i (t)} (12)

where i ∈ I is the number of nodes, which is equal to Ns.
v
(0)
i (t) is a traffic state representation of Ith node and is

the state of each lane, as is shown in Eq. 11. The value of
occupancy and average speed in each lane indicates the node
features of the input graph.

E = {ei,j}i ̸=j (13)

where E the adjacency matrix representing the graph structure;
ei,j represents a relationship between two lanes i and j
determined depending on the traffic flow direction. We classify
the types of relationship between lanes into two groups:

• eij = 1 if i is upstream of j, or i, j are neighbours.
• eij = 0 not match above condition.
The relationships between lanes are determined, so once the

adjacency matrix E is established, it does not change with the
passage of time.

(2) Graph state representation
The initial node features for the graph are processed into

an information-condensed node and relationship features of
the target graph by employing graph message passing [31]. A
single update is composed of the following iterative computa-
tional steps.

Step 1: Message passing
In the message passing, the feature update of each lane is

determined by collecting and aggregating information from its
neighbouring lanes. This process can be expressed using the
following formula:

H = V × E ×WT (14)

where H is the updated feature matrix; E is the adjacency
matrix representing the graph structure,as shown in Eq.13. V
is the feature matrix containing the features of all nodes, as
shown in Eq.11. W is the weight matrix used for message
passing. This formula captures the propagation of information
from neighboring lanes to each lane in the graph structure of
road network.

Step 2: Aggregation:
In the aggregation process, the updated feature representa-

tions from neighboring nodes are aggregated using the sigmoid
function to generate a new feature representation for each
node.

H
′
= sigmoid(H) (15)

where the sigmoid function which squashes the input value to
a range between 0 and 1. The sigmoid function introduces non-
linearity and can help capture complex relationships between
the aggregated features.

C. Deep Reinforcement Learning Algorithm

As mentioned previously, the actor-critic approach has been
chosen for this work, and specifically, we have implemented
the Proximal Policy Optimization (PPO) algorithm [32], which
employs multiple epochs of stochastic gradient ascent for each
policy update. These methods are known for their stability and
reliability.

Algorithm 1 presents the training process of the DVSL con-
troller. The policy π is designed to direct the DVSL controller
in selecting the most suitable action for a given state s, with
the goal of maximizing the cumulative reward value r. We
predefined the termination condition as the number of training
iterations I . In each iteration, there are E episodes running in
parallel, and each episode lasts H timesteps. The trajectory
data τ including Vt, at, rt is collected in N timesteps, and
the value of estimate advantages Â is calculated based on
the collecting trajectory τ (see line 10, Algorithm 1); update
the policy parameter θ through gradient ascent with sampled
M timesteps (see line 13, Algorithm 1) and then update the
parameter ω through gradient descent with B timesteps (see
line 17, Algorithm 1); To avoid instability in the process of
policy update we have included the following measures: if the
current policy is better than the previous strategy, the gradient
length will extend and if the current policy is not better than
the previous strategy, the gradient length is less (see lines 20
to 23, Algorithm 1).

III. EVALUATION METHODOLOGY

To assess the performance of the proposed algorithm, ex-
periments are conducted on a high-performance computer with
the following hardware configuration: Processor: AMD Ryzen
7 5800 8-Core (16 CPUs), 3.4GHz; Memory: 16384MB RAM;
Graphics Card: NVIDIA GeForce RTX 3070. Python version
3.8 is used as the programming language. The simulation
platform used is Simulation of Urban MObility (SUMO)
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Algorithm 1 Training process of DVSL using PPO

Require:
1: Obtain the ID of DVSL controller.
2: Set the number of episodes in parallel to E, and the time

horizon for each episode to N
3: Initialize the policy parameter for each agent, πθ; Initialize

the value network parameter for each agent, ω
4: Initialize sample batch B, M

Ensure:
5: for Iteration = 1,2,3,...,I do
6: for episode = 1,2,3,...,E do
7: for timesteps t = 1,2,3,...,N do
8: collecting the node feture V and graph topology E

and than based on the Eq. 14,13 in turn, the state
Vt with graph information can be obtained.

9: Run policy πθ for T timesteps, collecting τ =
{Vt, at, rt}

10: Estimate advantages Â =
∑

t′>t γ
t
′
−tr

tt
′ −

Vω(Vt)
11: πold ← πθ

12: for j ∈ {1, ...,M} do
13: JPPO(θ) =

∑T
t=1

πθ(at|Vt)
πold(at|Vt)

Â− λKL[πold|πθ]

14: Update θ by a gradient ascent method w.r.t.
JPPO(θ)

15: end for
16: for j ∈ {1, ..., B} do
17: LBL(ω) = −

∑T
t=1 Â

2

18: Update ω by a gradient decent method
w.r.t.LBL(ω)

19: end for
20: if KL[πold|πθ] > βhighKLtarget then
21: λ← αλ
22: else if KL[πold|πθ] < βhighKLtarget then
23: λ← λ

α
24: end if
25: end for
26: end for
27: end for

version 1.16.02, which is one of the most widely used open-
source microscopic traffic simulators. Our model design and
implementation are based on SUMO-RL3, which provides
DRL-related API to work with SUMO dynamically. The
algorithm part is from Ray[rllib] version 2.3.14, is an open-
source library, offering support for production-level, highly
distributed RL workloads.

A. Testing Scenario

The selection of the scenario is based on the study con-
ducted in the literature[3]. It is a classic construct and the
traffic network can be any freeway section with on and off-
ramps. In the V2I environment, ∆t is updated every 5 seconds,

2https://eclipse.dev/sumo/
3https://lucasalegre.github.io/sumo-rl/
4https://docs.ray.io/en/latest/rllib/index.html

and the free flow speed is 100 km/h Considering that the
segment length should satisfy ∆x ≥ vseg∆t according to the
CFL condition [2], 200 meters is set as the segment length. In
addition, vehicle detection devices are deployed on each lane
at every 200 meters upstream of the bottleneck area, which is
the main source nformation of state space. The induction loop
detectors (E1) are used and collect information every 30-time
steps. The details of the area divide and the deployment of
detection devices are shown in Fig. 3. In this scenario, there
are 5 lanes in MI, DSA and AA, respectively; there is 1 lane in
RI area; there are 6 lanes in MA area. Each lane has two types
of traffic information: occupancy and mean speed. Therefore,
44 states and 5 actions in this paper.

Fig. 3: Area divide and detectors deploy of state space

Fig. 4: The traffic traffic performance of MA.

The traffic generated is also set to be consistent with
the literature [3] and includes three route choices: (1) From
mainlane to mainlane (M2M), (2) From mainlane to off-ramp
(M2Off), and (3) From on-ramp to mainlane (On2M). The
vehicle depart will last for 5 hours from 5:00 am to 10:00
am. The number of vehicles per hour, within three routes, is
modelled as a Poisson process. Similar to the literature, each
simulation lasts 18000 seconds [3]. The number of vehicles is
collected by the traffic detectors sampling every 30 seconds,
as shown by the blue line in Fig.4. Based on the sampling
data, the throughput can be calculated and is shown by the
orange line in Fig.4. As shown in Fig.4, there is an obvious
increase in throughput at MA at around 3200 seconds and then
it fluctuates at around 7000 veh/h. Based on the observation,

https://eclipse.dev/sumo/
https://lucasalegre.github.io/sumo-rl/
https://docs.ray.io/en/latest/rllib/index.html
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TABLE I: Types of vehicles

Paremeters Type 1 Type 2 Type 3 Type 4

Length 8 8 3.5 3.5

carFollowModel Krauss IDM Krauss IDM

speedFactor normc(1,0.1)

lcSpeedGain 1 0.8 1 0.8

there is a traffic bottleneck after 3200 seconds. To focus on
solving the bottleneck problem, the training process for DVSL
will commence at 3000 seconds and conclude at 5400 seconds,
lasting for a duration of 2400 seconds.

In order to make the traffic environment more complex,
there are 4 types of vehicles in traffic flow, as is shown in
Table I. The speedFactor is applied in each and is the mean
and deviation of the speed distribution of traffic flow, which
is beneficial to the realism of a simulation. The parameter
lcSpeedGain represents the extent to which vehicles adjust
lanes to increase speed. In this paper, vehicles may switch to
an adjacent lane with a higher speed limit to achieve higher
speeds when the speed limit of a lane is low. This prevents
vehicles from being overly conservative and lingering in lanes
with low-speed limits for extended periods.

B. Evaluation Metrics

• Efficiency: Average waiting time(AWT) (second). The
sum of all vehicles’ consecutive standing which means
the speed below 0.1 m/s; Total Stop Times (TST) (veh)
denotes the aggregate count of vehicles moving at speeds
below 0.1 m/s. Bottleneck Throughput (BT) (veh/h)
represents the number of vehicles passing the bottleneck
area during one hour.

• Safety: TTC which means a possible collision is recog-
nized when the time gap between the two adjacent cars
is less than the threshold of 3 seconds. The sum of the
over threshold value is the NPC which is calculated by
Eq. 6.

C. Compared Methods

To test the effectiveness of our proposed system, we com-
pared the performance of the following algorithms.

• Baseline: The baseline is NO-VSL control in the on-
ramp area. The partial traffic performance is shown in
4, proving that without traffic management and control
measures, the MA will quickly reach the maximum
throughput, causing a traffic bottleneck.

• DVS-Rule: DVS-Rule (Rule-based DVSL) is similar to
VS-Rule. The VSL signs automatically change according
to traffic occupancy and the flow of each lane in the
bottleneck area [6].

• DVS-DDPG: DVS-DDPG method [3] is a state-of-the-art
DRL-based, in which dynamic and distinct speed limits
among lanes can be imposed. The proposed DRL model
uses DDPG based on a novel actor-critic architecture
to learn a large number of discrete speed limits in a

continuous action space. The action in Eq.1, state space
in Eq.9 and reward in Eq.9 are used.

• TD3LVSL: TD3LDVSL method [5] is another state-of-
the-art DRL-based, which is a reinforcement learning-
based lane-level VSL (LVSL) control approach for con-
ducting refined traffic control on the mainlane. An actor-
critic framework is developed to generate and evaluate
the discrete speed limits of each lane in continuous action
space. The action in Eq.1, state space in Eq.9 and reward
in Eq.9 are used.

• DVS-TD3: DVS-TD3 method is a TD3-based DVSL
control. The state space is as shown in Eq.9. DVS-TD3
aims to demonstrate that the PPO algorithm has a good
performance on DVSL control compared to TD3.

• DVS-PPO: The DVS-PPO method is a DVSL control
based on the PPO algorithm. The state space is as shown
in Eq.9. Introducing DVS-PPO aims to demonstrate
whether the state with topology has an advantage in DRL
training process.

• DVS-RG: DVS-RG (DVSL based on DRL with Graph
State Representation) is proposed in this paper. DVS-RG
and DVS-PPO are based on the PPO algorithm. The two
methods have the same reward and action. The difference
is that the state space of the DVS-PPO method is a matrix
represented by occupancy and speed, as shown in Eq.9,
but the occupancy and speed in a directed graph are
integrated as the state space, as shown in Eq. 14, 15.

All the above-mentioned DRL methods have the same
action, reward and state, except for TD3LVSL. The reward
training process of the controllers of VS-PPO, DVS-PPO,
DVS-TD3, DVS-DDPG and DVS-RG methods are shown in
Fig. 5. The design of reward and in TD3LVSL is based on the
work presented in [5] and the training process of all is shown
in the bottom part of Fig. 5.

The algorithms of VS-PPO, DVS-PPO, DVS-TD3 and
DVS-RG are from RLLIB which is open-resource. The al-
gorithm of DVS-DDPG is from [3] which is a customised
actor-critic architecture.

IV. EVALUATION RESULTS AND ANALYSIS

1) Comparison With Other RL Methods: In this section, 5
DRL-based methods are tested in the scenario depicted in Fig.
3.

From Fig.5, we can see the fluctuation of DVS-DDPG
under the training process. The curve of reward has the same
trend in [3] and is more difficult to converge. The reason
predicted is that the customised model is more sensitive to
hyperparameters. Compared with the DVS-DDPG, the reward
of The VS-PPO, DVS-PPO, DVS-TD3 and DVS-RG grows
steadily during the training process and are trained in the
proposed environment framework. The The policy capacity is
100 in the default setting in this framework which means can
be shared among the policies. In addition, there are 2 rollout
workers during training, process, so the trajectory collection
is double. That is the reason why is the smoothness of the
training curve of VS-PPO, DVS-PPO, DVS-TD3 and DVS-
RG.
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In Fig.5, the solid line indicates the mean reward value of
each episode, and the shadowed area indicates the standard
deviation.

We further compared the cumulative rewards of DRL-based
VSL in Fig. 5. Our goal is to maximize the reward in Eq. 8, and
the higher reward implies a higher travelling speed and fewer
potential collisions. We can see that both the PPO algorithms
have the highest cumulative return during the training process,
and the reward value curve has an upward reward trend before
40 episodes. The DVS-RG method has slightly outperformed
the DVS-PPO method after 60 episodes and the reward curve
of the training process increased slightly. The only difference
between the two methods is that the state space of the DVS-
PPO is a matrix with traffic status, while the state space of the
DVS-RG contains not only the state information of the nodes
but also the state of the leading node. This result shows that
having the state information of the neighbour node is beneficial
for the training of the DVSL control strategy.

Additionally, we observe fluctuations in the training process
of TD3LVSL depicted in the lower section of Fig. 5. We
attribute this to two main factors: firstly, TD3LVSL[5] employs
a complex action space consists 15, organized into 3 segments
with 3 lanes each; secondly, the state space solely focuses on
density. We believe these factors hinder the agent’s ability to
optimize the policy.

Fig. 5: Training process of DVS-PPO, DVS-TD3, DVS-DDPG
and DVS-RG methods.

2) Comparison With State-of-the-Art Methods: Table II
presents the traffic performance across various methods within
the same scenario, focusing on both efficiency and safety.
The baseline is No-DVSL, where no traffic control method is
implemented under a traffic bottleneck environment. Figures
6a, 6b, 6c, and 6d show the distribution of the evaluation index
across 8 episodes for each method, encompassing 4 state-
of-the-art DRL-based algorithms along with our proposed
method.

Efficiency: As shown in Table II, in terms of TST, the DVS-
RG method has an average reduction of 40.41% compared
with NO-VSL and has a more densely distributed TST values,
as shown in Fig. 6a; in terms of AWT, the DVS-RG method

TABLE II: Average performance under different methods.

Method TST AWT BT TTC

No-VSL 518.00 8.86 6133.50 4574.00

DVS-Rule 400.00 4.16 6028.50 4377.00
-22.78% -53.06% 0.05% -4.31%

DVS-DDPG 375.00 4.92 6022.70 4159.25
-27.61% -44.43% 0.39% -9.07%

TD3LVSL 378.38 4.19 6160.13 4435.25
-26.95% -52.72% 0.43% -3.03%

DVS-TD3 332.75 3.30 6161.07 4285.50
-35.76% -62.76% 0.45% -6.31%

DVS-PPO 399.50 5.44 6151.01 3959.66
-22.88% -38.56% 0.29% -13.43%

DVS-RG 308.67 2.80 6175.76 3845.33
-40.41% -68.44% 0.69% -15.93%

The best performances are in bold

(a) (b)

(c) (d)

Fig. 6: The evaluation matrix distributions of 8 episodes;(a)
TST;(b) AWT; (c) BT; (d) NFC
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showed the most significant improvement at 68.44%. The
average AWT value of DVS-TD3 is close to the result of DVS-
RG and is the second-best performance. From the Fig. 6b, the
distribution of DVS-TD3 is the most densely expected DVS-
RG. In terms of BT, all methods have some limited improve-
ment. The reasons for seeing these results could be related to
the settings for the generated fixed traffic flow. Despite all
this, DVS-RG has the best performance, increasing 0.69%
throughput in the merging area during the control process
under the simulations compared to the baseline. Fig. 6c shows
that the dense distribution of BT for all DRL methods follows
a similar distribution. Overall, the DRL-based VSL controllers
have an advantage over the traditional method DVS-rule. DVS-
RG performs best in terms of efficiency, followed by DVS-
TD3. The efficiency results show that DVS-RG is better than
DVS-PPO and we can conclude that state space representation
is beneficial for agent’s learning. Fig.6a, Fig.6b and Fig.6c
show the value distribution of results obtained by TD3LVSL,
DVS-TD3, DVS-PPO and DVS-RG is stable compared with
DVS-DDPG. In comparison to the DRL network we utilize,
the DDPG with the customized neutral network has poor
robustness.

Safety: DVS-RG method reduced TTC by average over
15.93% of average each episode, as shown in Table II.
Other methods expect DVS-PPO to improve less traffic safety
as well, which demonstrates that PPO-based traffic control
measures are beneficial for the safety of road networks. This
point can also be confirmed in Fig.6d.

In summary, DVS-RG demonstrates superior performance
in terms of efficiency and safety compared with no matter
traditional methods and state-of-the-art methods. Expect DVS-
DDPG, the other methods have a gentle reward curve and a
dense distribution of results which demonstrates the proposed
environment framework has the advantage on stable learning
during the training process. The comparison of various indi-
cators between TD3DVSL and TD3VSL can also prove the
superiority of the proposed DRL architecture including the
design of reward and state space. DVS-TD3 and DVS-PPO,
with the same environmental framework, have differences that
result in efficiency and safety. From the result shown TD3 al-
gorithm is sensitive to efficiency reward and the PPO algorithm
is sensitive to safety reward. This result can give some sugges-
tions for researchers and engineers for strategy determination.
DVS-RG outperforms DVS-PPO, which demonstrates the state
space integrates the road network topology structure and traffic
flow information have benefits for the agent to rapidly learn
the relationship between the features resulting from the spatial
structure.

V. CONCLUSIONS AND FUTURE WORK

This paper proposed a novel DVSL control strategy with
DRL that was supported by a graph-based state representation,
DVS-RG, to improve freeway traffic mobility and alleviate
recurring bottlenecks by customising speed limits at proper
locations based on the traffic state. DVS-RG has shown signif-
icant improvements in traffic efficiency (i.e., average waiting
time, total stopped time and bottleneck throughput) as well as

traffic safety (i.e., time-to-time collision ), which outperforms
other DRL-based and traditional methods. Compared to the
No-VSL method, DVS-RG can save up to 68.44% in average
waiting time while reducing potential collision time by up to
15.93%.

In the future, experiments for larger transportation networks
will be conducted to analyze the performance. Furthermore,
the present work assumes data availability but some events
(e.g. sensor failures, emergency traffic) could generate various
types of anomalous data. Evaluating the robustness of the
proposed method under several anomalous data may constitute
the object of future studies.
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Reinforcement Learning Methods for Variable Speed Limit Control,”
Applied Sciences, vol. 10, no. 14, p. 4917, 2020.

[23] E. Walraven, M. T. J. Spaan, and B. Bakker, “Traffic flow optimiza-
tion: A reinforcement learning approach,” Engineering Applications of
Artificial Intelligence, vol. 52, pp. 203–212, 2016.

[24] Z. Li, P. Liu, C. Xu, H. Duan, and W. Wang, “Reinforcement Learning-
Based Variable Speed Limit Control Strategy to Reduce Traffic Conges-
tion at Freeway Recurrent Bottlenecks,” IEEE Transactions on Intelli-
gent Transportation Systems, vol. 18, no. 11, pp. 3204–3217, 2017.

[25] C. Wang, J. Zhang, L. Xu, L. Li, and B. Ran, “A New Solution for Free-
way Congestion: Cooperative Speed Limit Control Using Distributed
Reinforcement Learning,” IEEE Access, vol. 7, pp. 41 947–41 957, 2019.

[26] Y. Han, A. Hegyi, L. Zhang, Z. He, E. Chung, and P. Liu, “A new
reinforcement learning-based variable speed limit control approach to
improve traffic efficiency against freeway jam waves,” Transportation
Research Part C: Emerging Technologies, vol. 144, p. 103900, 2022.
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