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Abstract

We study various aspects of capacity of entanglement in the squeezed states of a scalar field

theory. This quantity is a quantum informational counterpart of heat capacity and characterizes

the width of the eigenvalue spectrum of the reduced density matrix. In particular, we carefully

examine the dependence of capacity of entanglement and its universal terms on the squeezing

parameter in the specific regimes of the parameter space. Remarkably, we find that the capacity

of entanglement obeys a volume law in the large squeezing limit. We discuss how these results

are consistent with the behavior of other entanglement measures including entanglement and

Renyi entropies. We also comment on the existence of consistent holographic duals for a family

of Gaussian states with generic squeezing parameter based on the ratio of entanglement entropy

and the capacity of entanglement.
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1 Introduction

In recent years, surprising new connections have been developing between quantum information

theory, quantum many-body systems and quantum gravity. In particular, understanding the en-

tanglement structure of quantum systems in a pure or mixed state has become an active area of

research, e.g., see [1–6] for reviews. Also in the context of gauge/gravity correspondence, fascinating

connections have been developing between quantum information and quantum gravity including the

holographic entanglement entropy proposals and the notion of geometry from entanglement, e.g.,

see [7] and references therein. Moreover, in order to quantify entanglement and quantum correlations

several measures has been studied so far including entanglement and Renyi entropies. Indeed, the

entanglement entropy is the unique measure which assesses the amount of quantum entanglement

between two subsystems for a given pure state |ψ⟩. In this case, assuming that Htot. = HA ⊗HĀ,

entanglement entropy can be written in terms of von Nuemann entropy as

SE = −TrA (ρA log ρA) , (1.1)

where ρA is the reduced density matrix defined as ρA = TrĀ (|ψ⟩⟨ψ|). Further, the Renyi entropy

is a one-parameter generalization of entanglement entropy which is given by

Sn =
1

1− n
log TrρnA, (1.2)
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where n is a positive integer. It is then easy to show that entanglement entropy follows by analytic

continuation of the Renyi entropy down to n = 1, i.e., SE = limn→1 Sn. Further, other interesting

cases to consider are the large and small n limits, which yield

S∞ ≡ lim
n→∞

Sn = − log λmax, S0 ≡ lim
n→0

Sn = logN , (1.3)

where λmax is the largest eigenvalue of the reduced density matrix and N denotes the number of

nonvanishing eigenvalues of ρA. Besides the already mentioned case of the entanglement and Renyi

entropies, there are many attempts to construct new information theoretic measures for studying the

entanglement structure in more general setting, e.g., mutual information [8], logarithmic negativity

[9] and entanglement of purification [10]. However, in this paper, we focus on another measure that

has recently entered this discussion which is called the capacity of entanglement [11]

CE ≡ lim
n→1

Cn = lim
n→1

n2
∂2

∂n2
((1− n)Sn) , (1.4)

where Cn is the n-th capacity of entanglement. Indeed, considering n as the inverse temperature,

the above definition is similar to the corresponding relation between the heat capacity and ther-

mal entropy. Further, using the definition of the modular Hamiltonian, i.e., HA = − log ρA, it

is straightforward to show that the entanglement entropy and capacity of entanglement are the

expectation value and variance (the second cumulant) of HA respectively

SE = Tr ρAHA = ⟨HA⟩,

CE = Tr ρAH
2
A − (Tr ρAHA)

2 = ⟨H2
A⟩ − ⟨HA⟩2. (1.5)

Thus the capacity of entanglement characterizes the width of the eigenvalue spectrum of the reduced

density matrix such that for a maximally entangled state, i.e., ρA ∝ I, it vanishes. Indeed, in this

case the Renyi entropies are independent of n and we have a flat entanglement spectra. Recently,

there have been many attempts to investigate various properties of this quantity in different setups

both in the field theory and holography which have led to a remarkably rich and varied range

of new insights, e.g., [12–24]. In particular, an interesting observation in [14] was that systems

where are all entanglement is carried by EPR pairs have zero capacity of entanglement. Thus,

whenever we find that CE ∼ SE , e.g., (1 + 1)-dimensional CFTs at equilibrium, EPR pairs are

not a very good approximation of the quantum state and randomly entangled pairs of qubits give

a better description. Moreover, as proposed in this reference, restricting to field theories with

holographic duals without higher derivative terms, the ratio CE
SE

turns out to be exactly equal to

one. An interesting question is that whether this result also hold for more general QFTs without a

holographic dual.

Clearly, the capacity of entanglement depends on the choice of the original state of the system.

The main aim of this article is to further investigate the state dependence of the capacity of en-

tanglement. We study this dependence by considering a general class of Gaussian states which are
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solutions to the time dependent Schrödinger equation, the so-called squeezed states. As we will see

the squeezed states are less classical than the vacuum state (which is a special case of a coherent

state) and thus study the entanglement structure in a squeezed state may help us to gain a better

insight into the quantum features of the system in question. In the following we will focus on a scalar

field theory in (1 + 1)-dimensions to address this problem. Indeed, in order to avoid the ultraviolet

divergences in the continuum limit, we should regulate the theory by placing it on a one dimensional

spatial lattice. Thus the model reduces to an infinite chain of quantum harmonic oscillators. Let

us add that the entanglement entropy for this setup in squeezed states has been previously studied

in [25]. These authors proposed an extension of the method introduced in [26, 27] to more general

cases including squeezed states. Interestingly, using a systematic method they show that for a free

scalar field theory in (1+1)-dimensions the entanglement entropy obeys the volume law rather than

the area law in large squeezing limit. This is in contrast with the behavior of entanglement entropy

in typical ground states which exhibits area law scaling where in (1+1)-dimensions is replaced with

a logarithmic scaling. Further, their result is in agreement with the Page’s argument where for a

typical pure quantum state of a joint system, the smaller subsystem is almost maximally mixed,

showing little sign that the total system is pure [28]. Interestingly, the Page curve followed by

the entropy of Hawking radiation [29]. In this context, an especially interesting question concerns

how the scaling of the capacity of entanglement alters under a non-trivial squeezing when the total

system is in a random squeezed state.

Additionally, in [30, 31], using the holographic proposals, it was shown that the capacity of en-

tanglement is a useful probe of the Hawking radiation during the black hole evaporation process.

Interestingly enough, the authors argued that this measure shows a discontinuity or a peak at the

Page time while the entanglement entropy varies smoothly. In this sense, one can consider CE as

a convenient probe which can characterizes the order of a phase of the quantum systems. Indeed

a primary motivation for this work came from these efforts to study the behavior of different en-

tanglement measures including the capacity of entanglement in random pure states and to compare

our results to those obtained in the context of holography. Let us mention that this comparison

involves two very different models, that is a free scalar theory with a single degree of freedom versus

a holographic quantum field theory which is strongly coupled and has a large number of degrees of

freedom.

The remainder of our paper is organized as follows: In section 2, we give the general framework

in which we are working, establishing our notation and the general form of the squeezed states and

harmonic models in question. Section 3 contains a summary about the behaviors of entanglement

measures in ground state of a scalar theory. We review old results for the entanglement entropy

and also find new ones for the case of capacity of entanglement. To get a better understanding of

the results, we will also compare the behavior of different measures in specific scaling regimes. In

section 4, we extend our studies to the case of squeezed states. Specifically, we present a combination

of numerical and analytic results on the scaling of different entanglement measures in the large

squeezing limit. Next, we return to the field theory problem by generalizing these results to the
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continuum limit in section 5. Given the entanglement measures for the scalar field theory, we

then ask how our results compare to holographic ones. Finally, we close in section 6 with a brief

discussion of our results and directions for future work.

2 Set-up

We start by considering a simple quantum harmonic oscillator with the following Hamiltonian1

H =
p2

2m
+

1

2
mω2x2. (2.1)

Defining the annihilation and creation operators

a =
1√
2mω

(mωx+ ip), a† =
1√
2mω

(mωx− ip), (2.2)

we haveH = ω(a†a+ 1
2). In this case a class of Gaussian solutions to the time dependent Schrödinger

equation which consists of the so-called coherent states are given by

ψ(x, t) =
(mω
π

)1/4
exp

(
−mω

2
(x− x0(t))

2 + ip0(t)(x− x0(t))− iϕc(t)
)
, (2.3)

where

x0(t) = X0Re
(
eiω(t−t0)

)
, p0(t) = mẋ0(t), ϕc(t) =

−x0(t)p0(t)
2

+
ω(t− t0)

2
+ϕ0. (2.4)

These states minimize the uncertainty relation with uncertainty equally distributed between position

and momentum such that

∆x =
∆p

mω
=

1√
2mω

, ∆x∆p =
1

2
. (2.5)

Indeed, they have the same minimal uncertainty value as found for the vacuum state. Further, the

mean values of position and momentum operators in coherent state follow a classical orbit, e.g.,

⟨ẍ⟩ + ω2⟨x⟩ = 0, and hence these states correspond to the most classical states of the harmonic

oscillator. It is also easy to show that any eigenstate of the annihilation operator, i.e., a|α⟩ = α|α⟩,
where α is a complex parameter, represents a coherent state. Clearly, these states include the

vacuum state as a special case with α = 0.

Let us now turn to another class of Gaussian solutions to the time dependent Schrödinger

equation which are more general, the so-called squeezed states. The corresponding wave function

1For simplicity of notation in what follows, we will use hat symbol for the quantum operators only when there is
a danger of confusion. Also we will set h̄ = 1.
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reads

ψ(x, t) =

(
mRe(w(t))

π

)1/4

exp

(
−mw(t)

2
(x− x0(t))

2 + ip0(t)(x− x0(t))− iϕs(t)

)
, (2.6)

where2

w(t) = ω
1− i sinh z cos 2ωt

cosh z + sinh z sin 2ωt
, ϕs(t) = ϕc(t)−

ωt

2
+

1

2
tan−1 tanh z

2 + tanωt

1 + tanh z
2 tanωt

. (2.7)

In the above expressions z is the squeezing parameter such that for z = 0, we recover the

coherent states. The key feature of a squeezed state in the harmonic potential is that although its

profile is still Gaussian, its width is different from the vacuum state. Further, the corresponding

uncertainty relation is easily found to be

∆x∆p =
1

2

√
1 + sinh2 z cos2 2ωt, (2.8)

which shows that the squeezed states are not minimal uncertainty states at all times. Indeed, the

time slices where the above relation becomes minimal are easily found to be tmin = (2k+1)T8 where

T = 2π
ω and k is an integer. It is straightforward to show that when the squeezed state is a minimal

uncertainty state, we have

(∆x)min =
1√

2mωe±z
, (∆p)min =

√
mωe±z

2
, (2.9)

which shows the possibility of arbitrary compression of the position uncertainty at the expense of

appropriate fluctuation in the momentum variable and vice-versa.

In the next sections much of our discussion will focus on the different aspects of entanglement

measures when the corresponding state is given by eq. (2.6) to examine how the squeezing parameter

can affect different quantities. To do so, we consider a free massive scalar field in (1+1)-dimensions

with Hamiltonian

H =
1

2

∫
dx
(
π2(x) + (∂xϕ(x))

2 +m2ϕ2(x)
)
. (2.10)

In order to circumvent the divergences so as to obtain finite results for the measures, we should

regulate the above model by placing it on a lattice, which reduces the system to an infinite chain

of coupled harmonic oscillators. Indeed, the general Hamiltonian for a system of N coupled (one-

dimensional) harmonic oscillators can be written as

H =
1

2

N∑
i=1

pT .p+
1

2

N∑
i,j=1

xT .K.x, (2.11)

2We set the origin of time coordinate to be 0.
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where

xT =
(
x1, · · · , xN

)
, pT =

(
p1, · · · , pN

)
, (2.12)

and K is a real symmetric matrix. Now, this suggests that we begin with an even simpler warm-up

problem, namely, the case of two coupled harmonic oscillators

H =
p21
2

+
p22
2

+
k0
2
(x21 + x22) +

k1
2
(x1 − x2)

2, (2.13)

where k1 determines the strength of the coupling between the two oscillators such that weak and

strong coupling regimes correspond to k1 ≪ k0 and k1 ≫ k0 limits respectively. We see that

this simple set-up maintains some interesting features of our original problem which helps us to

better investigate the continuum scalar theory. Let us recall that related investigations attempting

to better understand the entanglement structure in general Gaussian states have also appeared

in [32–34].

3 Preliminaries: CE for ground state

As a first step towards understanding different entanglement measures including capacity of entan-

glement in squeezed states, we would like to study the same quantities in a simpler set-up where

the state is vacuum. We begin with the case of two coupled harmonic oscillators and then, having

built up some intuition, we return to the more involved problem by generalizing these results to a

lattice of coupled oscillators.

3.1 Two coupled harmonic oscillators

In this case the corresponding Hamiltonian is given by eq. (2.13). Indeed, the entanglement entropy

in this model was studied in [26,27]. Here we would like to apply the techniques developed in these

references to examine the behavior of Renyi entropy and capacity of entanglement. To do so, one

simply rewrites the Hamiltonian in terms of the canonical coordinates,

H =
1

2

(
p2+ + ω2

+x
2
+ + p2− + ω2

−x
2
−
)
, (3.1)

where

x± =
x1 ± x2√

2
, ω2

+ = k0, ω2
− = ω2

+ + 2k1. (3.2)

Now we have two decoupled harmonic oscillators, and thus the vacuum state can be written as the

product of the vacuum state wave functions for the two individual oscillators as follows

ψ0(x+, x−) =
(ω+ω−

π2

)1/4
exp

(
−
ω+x

2
+ + ω−x

2
−

2

)
. (3.3)
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The above expression can be rewritten in terms of the physical coordinates of the two oscillators and

then the corresponding reduced density matrix can be found by integrating out the x1 coordinate,

i.e., ρ2(x2;x
′
2) =

∫
dx1ψ0(x1, x2)ψ

∗
0(x1, x

′
2), which yields

ρ2(x2;x
′
2) =

(
γ − β

π

)1/2

exp
(
−γ
2

(
x22 + x′

2
2

)
+ βx2x

′
2

)
, (3.4)

where

β =
(ω+ − ω−)

2

4 (ω+ + ω−)
, γ =

(ω+ + ω−)
2 + 4ω+ω−

4 (ω+ + ω−)
. (3.5)

Moreover, solving the eigenvalue problem for the reduced density matrix, i.e.,∫
dy ρ2(x; y)fk(y) = pkfk(x), (3.6)

one finds an infinite tower of eigenvalues as follows

pk = (1− ξ)ξk, ξ =
β

γ + α
=

(√
ω+ −√

ω−√
ω+ +

√
ω−

)2

, k = 0, · · · ,∞, (3.7)

where α =
√
γ2 − β2. Note that based on the above result the weak and strong coupling regimes

correspond to ξ → 0 and ξ → 1 limits respectively. Now using eq. (1.2), we can evaluate the Renyi

entropy which yields

Sn =
1

1− n
log

∞∑
k=0

pnk =
1

1− n
(n log(1− ξ)− log(1− ξn)) . (3.8)

Combining the above result with eqs. (1.1) and (1.4), we obtain entanglement entropy and capacity

of entanglement

SE =
ξ

ξ − 1
log ξ − log(1− ξ),

CE = ξ

(
log ξ

1− ξ

)2

. (3.9)

Further the n-th capacity of entanglement is obtained by the replacement ξ → ξn in CE . Remark-

ably, in the weak coupling regime a perturbative expansion yields

SE = −ξ log ξ + ξ + · · · , CE = ξ (log ξ)2 + 2ξ2 (log ξ)2 + · · · , (3.10)

which shows that in this limit both quantities vanish. This is consistent with the idea that as k1/k0

decreases, the reduced density matrix becomes more and more separable. On the other hand, in
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the strong coupling limit we obtain

SE = − log(1− ξ) + 1 + · · · CE = 1− (ξ − 1)2

12
+ · · · . (3.11)

Interestingly, we see that in this limit CE/SE ≪ 1 which is consistent with the idea that the reduced

density matrix becomes more and more maximally mixed as one increases the coupling.

In figures 1 and 2 we summarize the numerical results for different entanglement measures. Fig-

ure 1 presents various quantities as functions of the coupling between the two harmonic oscillators.

The left panel presents the dependence of entanglement entropy and capacity of entanglement on

ξ. We note a number of key features: First, both these measures start at the same value (which

is equal to zero corresponds to a separable state) and then increase as one increases the coupling.

Second, although the entanglement entropy diverges in the strong coupling limit, the capacity of

entanglement saturates to unity in agreement with eq. (3.11). Interestingly, for a specific value of

the coupling these measures coincide, i.e., CE(ξ∗) = SE(ξ∗) where ξ∗ ∼ 0.31. The middle panel

demonstrates the Renyi entropy as a function of the coupling for several values of n. Although Sn

is a decreasing function of the Renyi index, it increases with the coupling as expected. In the right

panel we show the n-th capacity of entanglement for the same values of the parameters. We see

that Cn decreases with n and also saturates from below to unity.

SE

CE
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S
E
,C

E

n=1

n=2

n=3

n=4

0.0 0.2 0.4 0.6 0.8 1.0

0

1
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ξ

S
n n=1

n=2

n=3

n=4

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ξ

C
n

Figure 1: SE and CE (left), Sn (middle) and Cn (right) as functions of the coupling between the
two harmonic oscillators.

We present the n-dependence of Sn and Cn for several values of the coupling in figure 2. Based

on these plots, we see that the qualitative dependence of these measures on the coupling is similar

to n = 1 case. Also both measures decrease as we increase the Renyi index. Finally, as this simple

example illustrates, the entanglement entropy and its fluctuations, characterized by the capacity of

entanglement have no reason to be equal, except for a specific coupling. This result is different from

what happens for QFTs with a holographic gravity dual (without higher derivative terms) where

the ratio CE/SE turns out to be exactly equal to one [14].

3.2 A lattice of oscillators and continuum limit

In this section we generalize our studies to a lattice of N coupled harmonic oscillators, where the

corresponding Hamiltonian is given by eq. (2.11), in specific directions. Similar to the previous case,
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Figure 2: Sn (left) and Cn (right) as functions of the Renyi index for several values of the coupling
between the two harmonic oscillators.

the ground state wave function is described by a factorized Gaussian in the corresponding normal

mode space. To see this we recall that as shown in [27] the matrix K can be diagonalize by a real

orthogonal similarity transformation, i.e., KD = UKUT . Then writing the Hamiltonian in terms

of the normal modes reduces the problem to a chain of decoupled quantum harmonic oscillators.

Thus the total vacuum state can be written as

ψ0(x̃) =

N∏
i=1

(ωi

π

)1/4
exp

(
−ωix̃

2
i

2

)
, (3.12)

where x̃i and ωi denote the normal coordinates and eigenfrequencies respectively. Further, in order

to find the reduced density matrix we would like to express the above wave function in terms of the

original variables xi in the position basis. It is relatively simple to show that in this case the above

expression becomes

ψ0(x) =

(
det Ω

πN

)1/4

exp

(
−xT .Ω.x

2

)
, (3.13)

where Ω is the square root of K, i.e.,

Ω = UTK
1/2
D U, (KD)ij = ωi δij . (3.14)

We would like to evaluate the reduced density matrix by tracing over the first Ñ oscillators. To do

so, we consider the following decomposition

Ω =

(
A B

BT C

)
, (3.15)
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where A is an Ñ × Ñ matrix and C is an (N − Ñ)× (N − Ñ) matrix. Now it is straightforward to

explicitly evaluate the reduced density matrix as3

ρred.(xÑ+1
, · · · , xN ;x′

Ñ+1
, · · · , x′N ) = N exp

(
−x

T .γ.x+ x′T .γ.x′

2
+ xT .β.x′

)
, (3.16)

where β = BTA−1B
2 , γ = C − β and N is a normalization factor. Moreover, as shown in [27] the

above expression can be rewritten as follows

ρred.(zÑ+1
, · · · , zN ; z′

Ñ+1
, · · · , z′N ) = N

N∏
i=Ñ+1

exp

(
−z

2
i + z′2i
2

+ β̃iziz
′
i

)
, (3.17)

where

β̃ = γ
−1/2
D V βV Tγ

−1/2
D , z =W Tγ

1/2
D V x. (3.18)

Also V and W defined as the corresponding similarity transformations that diagonalize γ and β̃

respectively, i.e., γD = V γV T and β̃D = Wβ̃W T . Comparing eq. (3.17) to eq. (3.4) we see that

the Renyi entropy can be calculated by summing the contribution for each of the remaining modes

as follows

Sn =
1

1− n

jmax∑
j=1

(
n log(1− ξj)− log

(
1− ξnj

))
, (3.19)

where ξj =
β̃j

1+(1−β̃2
j )

1/2
and jmax = min(Ñ ,N − Ñ). Note that as long as we are dealing with

pure states, the spectrum of the reduced density matrices for A and Ā is the same and hence

Sn(A) = Sn(Ā). Further, the corresponding expressions for entanglement entropy and capacity of

entanglement are similar to eq. (3.9) where again we should consider the contribution for each of

the modes, i.e.,

SE =
∑
j

(
ξj

ξj − 1
log ξj − log(1− ξj)

)
, (3.20)

CE =
∑
j

ξj

(
log ξj
1− ξj

)2

. (3.21)

We now wish to apply this approach to the problem of finding different entanglement measures in

the continuum limit. For example considering a free scalar theory given by eq. (2.10) and replacing

the space continuum with a discrete mesh of lattice points the Hamiltonian can be transformed into

3Note that x now has N − Ñ components, so we do not use the bold face notation which refers to eq. (2.12).
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a discrete counterpart as follows

H =
1

2

N∑
i=1

(
π2i + (ϕi+1 − ϕi)

2 +m2ϕ2i

)
, (3.22)

where without loss of generality we set the lattice spacing equal to unity, i.e., ϵ = 1. We see that

the above expression and eq. (2.11) will be in complete agreement if we choose

Kij = (2 +m2)δi,j − (δi+1,j + δi,j+1) . (3.23)

It is then possible to extract Ω using eq. (3.14) and to use eqs. (3.19) and (3.20) to determine

the behavior of the entanglement measures. Generally, it is not possible to find the quantities

analytically and thus in the following we will employ a numerical treatment.

The corresponding numerical results for different quantities are summarized in figures 3 and

4. Note that we will mainly consider N = 60, because the interesting qualitative features of the

entanglement measures are independent of the total system size. Also this choice facilitates a

comparison to the analogous results for entanglement entropy in [27]. In the left panel of figure 3,

the entanglement entropy is plotted as a function of Ñ for several values of the mass parameter.

Further, we show the behavior of capacity of entanglement for the same values of the parameters

in the right panel of this figure. We can see that both measures have qualitatively similar behavior

and decrease with m. Also in all cases CE is slightly larger than SE . Notice that as long as we are

dealing with pure states, the entanglement measures are symmetric, e.g., SE(A) = SE(Ā) where Ā

is the complement of A.
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0.0

0.1

0.2

0.3

0.4

0.5

0.6
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E
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16
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1

4

0 10 20 30 40 50 60
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E

Figure 3: SE (left) and CE (right) as functions of Ñ for several values of the mass parameter.

In the left panel of figure 4, we present the behavior of the Renyi entropy as a function of Ñ

for several values of n in the massless regime. From this plot, one can infer that the qualitative

features of the Renyi entropy are similar to SE . Again, we see that the Renyi entropy is a decreasing

function of n such that the rate of change of Sn is a monotonically decreasing function of the Renyi

index and saturates from above to a constant in the large n limit. Let us add that we found

11



similar results for Cn, although we do not explicitly show the corresponding figures here. In order

to investigate how these quantities approach the large n limit, in the right panel of figure 4, we

plot the maximum values of Sn and Cn (which occurs at Ñ = N
2 ) as functions of the Renyi index.

The dashed line indicates the asymptotic value of the Renyi entropy given by eq. (1.3) where the

largest eigenvalue of the reduced density matrix can be evaluated numerically to be λmax ∼ 0.83.

Finally, the asymptotic behavior of n-th capacity is consistent with the large n expansion, i.e.,

C∞ ∼ limn→∞ n2λ−n
max ∼ 0.
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Figure 4: Left : Renyi entropy as a function of Ñ for several values of n. Right : Maximum values of
entanglement entropy and capacity of entanglement as a functions of the Renyi index. The dashed
line indicates the asymptotic value of the Renyi entropy given by eq. (1.3). In both plots we consider
the massless regime.

4 CE for harmonic systems in a squeezed state

In this section, we wish to return to our original problem which is computing the capacity of

entanglement of a chain of coupled oscillators in squeezed states. Again, as a warm up problem,

we first consider the case of a single pair of coupled harmonic oscillators and then generalize the

problem to more involved case consisting of N degrees of freedom in the next sections.

4.1 Two coupled harmonic oscillators

Let us begin with the case of two oscillators as in section 3.1, but now the overall system lying in

a squeezed state given by eq. (2.6). Again, we can write the total wave function as the product of

the wave functions for the two individual oscillators as follows4

ψ(x, t) =

(
Re(w+)Re(w−)

π2

) 1
4

×

exp

(
−w+(x+ − x0+)

2 + w−(x− − x0−)
2

2
+ip0+(x+ − x0+) +ip0−(x− − x0−)

)
,(4.1)

4Based on the results of [25] in the following we will set ϕs+ = ϕs− = 0 without loss of generality.
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where x± were defined in eq. (3.2) and we have also introduced the new variables x0± = x01±x02√
2

and p0± = p01±p02√
2

. The corresponding reduced density matrix can be found by rewriting the wave

function in terms of the original coordinates and integrating out the x1 variable. The calculation

follows straightforwardly from the considerations of the previous section. We have then

ρ2(x2;x
′
2) =

(
Re(γ)− β

π

)1/2

exp

(
−γy

2
2 + γ∗y′2

2

2
+ βy2y

′
2 + ip02(y2 − y′2)

)
, (4.2)

where we have defined y2 = x2 − x02, y
′
2 = x′2 − x′02 and

β =
|w+ − w−|2

4Re (w+ + w−)
, γ =

|w+ + w−|2+4w+w−
4Re (w+ + w−)

. (4.3)

Interestingly, although γ is complex, the eigenvalues of the reduced density matrix depend only on

the real part of this parameter [25]. Indeed, as shown in this reference the calculation proceeds

essentially as the ground state case and the resulting spectrum is given by

pk = (1− ξ)ξk, (4.4)

where ξ = β
Re(γ)+α and α =

√
Re(γ)2 − β2. Again we can evaluate different entanglement measures

using eqs. (3.8) and (3.9). It is worthwhile to mention that based on eq. (2.7) the spectrum

of the reduced density matrix depends on time and thus we expect that the measures are also

time-dependent.

With these tools in hand, let us examine the dependence of the measures on the squeezed

parameter in more detail. The numerical results for different quantities are summarized in figures 5

and 6. Figure 5 shows the time evolution of entanglement measures when only the symmetric mode

SE
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Figure 5: Left : Evolution of entanglement entropy and capacity of entanglement. Right : Sn and
Cn as a function of time for n = 2. In both panels we set ω− = 2ω+ = 2, z+ = 0.5 and z− = 0. Also
the dashed lines are the corresponding results for the ground state where both squeezing parameter
vanish.

is squeezed. From these plots, one can infer that different measures exhibit qualitatively similar
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behaviors. Clearly, in this case the evolution is periodic with period τ+ ≡ T+

2 = π
ω+

. We see that

CE reaches it maximum values at times tmax = (4k + 1) τ+4 where k is an integer. Interestingly, the

capacity of entanglement is always greater than the entanglement entropy such that the difference

of these quantities becomes maximal when they reach their maximum values. Moreover, the right

panel shows that for larger values of n this difference becomes less pronounced.
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Figure 6: Evolution of entanglement entropy (left) and capacity of entanglement (right) for several
values of z+ for ω− = 2ω+ = 2 and z− = 0.

Now we proceed further by examining in more detail the z dependence of the entanglement

measures, as shown in figure 6. The key observation to note here is that while both SE and CE

are monotonically increasing functions of the squeezing parameter, only the entanglement entropy

goes on to grow indefinitely as we increase z. Indeed, the right panel illustrates that CE saturates

to unity in the large z limit. To gain some insights into this behavior, let us turn our attention to

the computation of the mean quantities which is defined as M ≡ 1
T

∫ T
0 M(t)dt. Before examining

the full z dependence of the mean capacity of entanglement, we would like to study its asymptotic

behaviors in small and large z limit. In [25] it was shown that in these limits the expansions for the

mean entanglement entropy become

SE =

{
SE0 − 1

16

(
1 +

1+4ξ0+ξ20
1−ξ20

ln ξ0

)
z+ + · · · , z+ ≪ 1,

z+
2 + 1− 3 ln 2 + ln

(√
ω+

ω−
+
√

ω−
ω+

)
+O(e−z+), z+ ≫ 1,

(4.5)

where SE0 and ξ0 denote the corresponding vacuum values with z+ = 0. This shows that for a large

squeezing parameter the mean entanglement entropy grows linearly with z. A similar derivation

holds in the present case and it is also easy to find that the expression for the mean capacity of

entanglement reduces to

CE =

{
CE0 +

1
8

(
1 + 2

1+3ξ0+ξ20
1−ξ20

ln ξ0 +
1
2
1+6ξ0+ξ20
(1−ξ20)

2 (ln ξ0)
2
)
z2+ + · · · , z+ ≪ 1,

1−O(e−2z+), z+ ≫ 1,
(4.6)

which shows that in the large z limit, the capacity of entanglement saturates to unity.

The numerical results for the Renyi entropy and n-th capacity of entanglement as functions
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of the squeezing parameter for different values of the Renyi index with specific values of ω± are

summarized in figure 7. Note that the case of n = 1 corresponds to SE and CE . In this case our

numerical results coincide with the analytical expansions given by eqs. (4.5) and (4.6). Interestingly,

we see that in the large z limit CE/SE ≪ 1 which shows that the reduced density matrix becomes

more and more maximally mixed as one increases the squeezing parameter. The left panel illustrates

that all curves for Sn have the same behavior in large n limit. In particular, one gets asymptotic

linear growth with the same slope for different values of n and z. Moreover, the right panel also

shows that the asymptotic behavior of the mean value of the n-th capacity of entanglement in large

squeezing limit is almost independent of the Renyi index. Indeed, it is straightforward to show that

the corresponding scaling of Sn and Cn with z at leading order is the same as eqs. (4.5) and (4.6)

respectively.
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Figure 7: Mean values of the Renyi entropy (left) and n-th capacity of entanglement (right) as
functions of the squeezing parameter for several values of the Renyi index. The asymptotic behavior
of Cn in large z limit is almost independent of n. Here we set ω− = 2ω+ = 2 and z− = 0.

To close this subsection, let us comment on extending this discussion to cases where both modes

are squeezed. Indeed, in this case the evolution of the entanglement measures is in general not

periodic, as the ratio of the frequencies of the two modes may be irrational. Again we found

similar results for small and large squeezing parameter, although we do not explicitly show the

corresponding figures here.

4.2 A chain of oscillators

In this section we again consider the system of N coupled harmonic oscillators which was defined

in eq. (2.11) to compute several entanglement measures, but now for the squeezed states given

by eq. (2.6). The main question of interest is what are the additional technicalities involved in

computing different measures in squeezed states compared to the vacuum state. In particular, we

would like to investigate to what extent the squeezing parameter modifies the behavior of capacity of

entanglement. Here, it is worth mentioning that, the influence of this parameter on the entanglement

entropy was studied in [25] and we will follow the discussion there closely. Indeed, the spectrum of
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the reduced density matrix corresponding to a squeezed state can be evaluated as detailed in this

reference. These authors proposed three equivalent scenarios to compute the eigenvalues of ρA. In

what follows we briefly review one of the approaches used in the reference which is fairly simple. To

do so, assume that all the corresponding normal modes lie in a squeezed state whose wave function

is given as follows

ψ(x) =

(
det Re (Ω)

πN

)1/4

exp

−(x− x0).Ω.(x− x0)

2
+ ip0.(x− x0)− i

∑
j

ϕsj

 , (4.7)

where Ω was defined in eq. (3.14), but now ωi’s are given by the application of eq. (2.7) for each

normal mode and hence it is a complex symmetric matrix. It is straightforward to show that in

this case the reduced density matrix for the remaining (N − Ñ) oscillators becomes

ρred.(xÑ+1
, · · · ;x′

Ñ+1
, · · ·)=

(
detRe(γ − β)

πN−Ñ

)1
2

exp

(
−y.γ.y − y′.γ∗.y′

2
+ y′.βy + ip0.(y2 − y′2)

)
,(4.8)

where

β =
1

2
B†Re(A)−1B, γ = C − 1

2
BTRe(A)−1B, (4.9)

and y = x − x0. Note that we consider the same decomposition for Ω as in eq. (3.15). Also note

that here γ is a real symmetric matrix and β is a Hermitian matrix. Indeed, this result is different

from what happens for the ground state where β is a real and symmetric matrix. Hence in this

case it cannot be diagonalized via a real orthogonal transformation. Fortunately, as shown in [25]

for our purposes a general solution is not required and in order to find the eigenvalues of eq. (4.8),

it is sufficient to compute the spectrum of a simpler matrix Ω̃ defined by

Ω̃ = Re(Ω)−1

(
−Re(A) iIm(B)

−iIm(B)T Re(C)

)
. (4.10)

The relation between the two spectra is ξj =
ξ̃j−1

ξ̃j+1
where the normalization condition for the density

matrix allows us to neglect ξ̃j < 1. Further, the eigenstates can be written in terms of the Hermite

polynomials. We skip over the details of the calculation and we refer the interested reader to [25]

for further details. Having the corresponding eigenvalues, the entanglement measures can be found

using the same formulae as in the previous section, e.g., eq. (3.20). Now we are equipped with all

we need to study the behavior of the entanglement spectrum and thereby other related quantities

in a squeezed state. To do so, we employ a numerical treatment in the next section.

Before we proceed further, we would like to study the asymptotic behaviors of the entanglement

measures in large squeezing limit. Indeed, this study plays an important role in our analysis in the

next section. Here for simplicity we restrict our analysis to a specific case where all modes lie in

a squeezed state with the same squeezing parameter which is very large, i.e., z ≫ 1. Of course, a
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similar analysis has been previously done for the entanglement entropy in [25]. Indeed, as shown in

this reference in the large z limit the corresponding eigenvalues can be written as

ξj = 1− e−zξ
(1)
j + · · · , (4.11)

where ξ
(1)
j are some z independent positive coefficients. Using the above expression one finds the

following expansion for the entanglement entropy

SE = min(Ñ ,N − Ñ)(z + 1)−
jmax∑
j=1

log ξ
(1)
j −O

(
e−z
)
. (4.12)

Thus in the large z limit the entanglement entropy has a linear dependence on the squeezing

parameter. In a similar manner, one can show that

Sn = min(Ñ ,N − Ñ)

(
z +

log n

n− 1

)
−

jmax∑
j=1

log ξ
(1)
j +O

(
e−z
)
, (4.13)

which shows that the Renyi entropy also has a linear behavior in this limit. Further, the corre-

sponding expression for the capacity of entanglement can be determined in a similar way and the

result is

CE = min(Ñ ,N − Ñ)−O
(
e−2z

)
. (4.14)

Thus asymptotically, it approaches a constant value which is exactly the number of degrees of

freedom of the smaller subsystem. Indeed, based on the above results we see that at leading order

all the measures are time-independent and proportional to the volume of the smaller subsystem.

Again, we see that in this limit CE ≪ SE which shows that the reduced density matrix becomes

more and more maximally mixed as one increases the squeezing parameter. It is also easy to show

that in this case the expansion for Cn is the same as CE . In the next section, we numerically

evaluate the entanglement measures for a free scalar theory in a squeezed state which enables us to

more explore the validity of these expressions.

5 CE for a massless scalar in squeezed states

In this section we proceed our previous analysis in a scalar theory, whose Hamiltonian is given by

eq. (3.22), to more investigate the behavior of the capacity of entanglement in a squeezed state.

First, we provide a simple analysis where just a single mode is squeezed and examine the various

regimes in the evolution of entanglement measures. Next, we will extend this study to a more

general case where all the normal modes lie in a squeezed state which enables us to directly extract

some interesting features of the z dependence of the capacity of entanglement.
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5.1 Squeezing a single mode

To begin, we consider the system lying in a state where only one normal mode is squeezed and

thus its wave function is given by eq. (2.6). Also the remaining modes are put in their ground

states. In the following we will use is to denote the index of the squeezed mode. Further, based

on the results of section 4.1 we expect that the evolution of the measures is periodic with period

τs ≡ Ts
2 = π

ωs
where ωs is the normal frequency of the corresponding squeezed mode. The examples

depicted in figure 8 exhibit this behavior for the capacity of entanglement. In the figure, CE as a

function of Ñ is presented for several values of is with z = 3. The black markers correspond to the

vacuum state. Based on this figure, it is evident that squeezing mostly increases CE in comparison
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Figure 8: The capacity of entanglement as a function of Ñ for several time slices when only a single
mode has been squeezed with z = 3. The black markers correspond to the vacuum state.

to that in the vacuum state. Nevertheless, we notice that for is = 1 and t = 0.75 τs the capacity

of entanglement becomes smaller than that of the vacuum state. It is expected that this behavior

also happens for other values of z and is. Further, the oscillations of CE can be traced back to the

trigonometric functions appearing in the wave function corresponding to the squeezed state. The

larger is, the shorter the period of oscillation. Also as this parameter increases, the amplitude of

oscillation becomes smaller. Moreover, one can see that in this regime the oscillation seems more or

less the same independent of is. Let us add that similar behavior was found for the entanglement

entropy in [25].

To gain some insights into this behavior, let us turn our attention to the computation of the

mean entanglement measures in this setup. The corresponding results for the mean capacity of

entanglement are summarized in figure 9. The left panel illustrates CE as a function of Ñ for

several values of the index of the squeezed mode. We see that the mean capacity of entanglement

is always larger than that in the vacuum state of the system. Further, the right panel shows this

quantity as a function of is for several divisions of the system in two subsystems. We note a number

of key features: First, CE is not monotonous with the index of the squeezed mode. Indeed, for small

values of Ñ the mean capacity of entanglement first increases approximately linearly with is and

then after some fluctuations decreases to a constant value. Note that the intermediate fluctuations

become less pronounced in the large Ñ limit. Second, for large values of Ñ the mean capacity of

entanglement first increases very sharply with is and then suddenly saturates to a constant value.

To close this subsection, we examine the z dependence of mean entanglement measures in figures
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Figure 9: Mean capacity of entanglement as a function of Ñ (left) and is (right) for several values
of the parameters when a single mode has been squeezed with z = 3.

10 and 11. We focus our analysis on the special case of is = 1 because the interesting qualitative

features of the measures do not depend strongly on which mode is squeezed. Note that we have

also included the corresponding results for the mean entanglement entropy, which was previously

reported in [25], to allow for a meaningful comparison between the different measures. Based on

figure 10, we observe that both SE and CE are monotonically increasing functions of the squeezing

parameter, as expected. Further, the left panel illustrates that for large squeezing, the entanglement

entropy has a linear dependence on z. Remarkably, from the right panel we can deduce that the

mean capacity of entanglement saturates to a constant value in this regime. Hence, we expect

that the corresponding reduced density matrix becomes more and more maximally mixed as one

increases the squeezing parameter. Moreover, the saturation value is a monotonically increasing

function of both Ñ and is.

Figure 11 illustrates the behavior of mean values of the Renyi entropy and n-th capacity of

entanglement as functions of the squeezing parameter for several values of the Renyi index. The

left panel shows that Sn exhibits a linear dependence on the squeezing parameter with the same

slope for different values of n. Further, in the right panel we see that Cn with n ≥ 2 saturate from

below to unity independent of the Renyi index. Indeed, for larger values of n, the mean value of the

n-th capacity of entanglement vanishes initially but then rapidly rises to the final constant value

corresponding to the large squeezing regime.

5.2 Squeezing all modes

We turn now to a more realistic case where all modes lie in a squeezed state with the same squeezing

parameter. As in the previous section, unlike the case where we had squeezed a single mode, the

evolution of entanglement measures are not necessarily periodic. Moreover, as we have shown in

section 4.2, the large z behavior of the measures are completely independent of time. In particular,

in this regime the scaling of the capacity of entanglement is not sensitive to the details of the time

evolution of the reduced density matrix.
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Figure 10: Entanglement entropy (left) and capacity of entanglement (right) as functions of z for
is = 1 and several values of Ñ .
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Figure 11: Mean values of the Renyi entropy (left) and n-th capacity of entanglement (right) as
functions of the squeezing parameter for several values of the Renyi index with is = 1 and Ñ = 10.

The corresponding numerical results are summarized in figures 12 and 13. The capacity of en-

tanglement for various random instants as function of Ñ when all modes lie in a squeezed state with

the same squeezing parameter is depicted in figure 12. Once again, the black markers correspond to

the vacuum state. Note that the qualitative behavior of the capacity of entanglement is more or less

the same independent of the random instant that we have chosen. Clearly, CE is a monotonically

increasing function of the squeezing parameter. Further, as we increase the squeezing parameter the

scaling of the capacity of entanglement tends asymptotically to eq. (4.14) as expected. Let us recall

that according to this equation the leading term is time-independent and thus the fluctuations of

the capacity of entanglement with time decrease as the squeezing parameter increases.

To get a better understanding of the results, we compare the behavior of mean entanglement

entropy and mean capacity of entanglement in figure 13. The markers in this figure show the numer-

ical results which in the large z limit coincide with the leading term of the asymptotic expansions

given by eqs. (4.12) and (4.14) (represented by the continuous red line). Further, based on our
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Figure 12: Capacity of entanglement for various random instants as functions of Ñ when all modes
lie in a squeezed state with the same squeezing parameter. The black markers correspond to the
vacuum state.

numerical results we see that at leading order SE and CE are proportional to the volume of the

smaller subsystem. Indeed, for an infinite chain of oscillators in the continuum limit we have

SE =
zℓ

ϵ
+ · · · , CE =

ℓ

ϵ
+ · · · , (5.1)

where ℓ ≡ Ñϵ and L ≡ Nϵ→ ∞. Thus in this limit SE

CE
= z ≫ 1 which is a feature of a maximally

mixed state. Moreover, the measures are both sensitive to the UV cutoff, but the ratio is finite.

We conclude that at least for the free massless scalar field theory, the ratio of the leading terms

is scheme independent. Of course, the numerical results depicted in the left panel for the mean

entanglement entropy are consistent with the Page’s argument that in an arbitrary quantum state

the entropy is close to maximal. Hence we expect entanglement entropy to scale with the volume

(instead of the area) of the entangling region.

The right panel shows that this special behavior also holds for capacity of entanglement. In

particular, we see that CE is always continuous and varies smoothly. This feature contrasts with

the holographic results for the capacity of entanglement corresponding to the black hole evaporation

process as previously noted in [30,31]. Of course, their results should be hold in a strongly coupled

theory with a large number of degrees of freedom which is completely different from our free scalar

model. Thus there is no a priori reason to expect that the results should agree in these cases.

Interestingly enough, based on eq. (5.1) we see that in large squeezing limit the relationship CE = SE

is completely broken. Indeed, as proposed in [14] perhaps such a relation in QFTs is a hint of a dual

gravitational interpretation. Therefore, at least in this regime the corresponding squeezed states

can not have a solution of a classical gravity theory as a holographic dual. This is the main clue

that forbids us to compare our results with some previous studies on capacity of entanglement in

the context of holography. Let us emphasize that we found similar results for Sn and Cn which are

consistent with the asymptotic expansions we reported in the previous section, although we do not

explicitly show the corresponding figures here.
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Figure 13: Mean entanglement entropy (left) and mean capacity of entanglement (right) as functions
of Ñ for several values of z. The red lines indicate the asymptotic behavior in large z limit given
by eqs. (4.12) and (4.14). The mean has been calculated as the average of 300 random times.

6 Conclusions and discussions

In this paper, we explored the evolution and scaling of the entanglement measures in squeezed states

which are the most general Gaussian states. We have mainly studied the behavior of capacity

of entanglement, the quantum information theoretic counterpart of heat capacity, for a specific

harmonic model which is a discrete counterpart of a (1+ 1)-dimensional free scalar field theory. To

gain some intuition for the problem, we began by studying the simple case of a pair of harmonic

oscillators. In this case we have studied different aspects of the capacity of entanglement in various

setups and with different parameters numerically.

In particular, the time evolution of entanglement measures when only a single mode has been

squeezed is periodic with period equal to half the period of the corresponding mode. Further, the

capacity of entanglement is always greater than the entanglement entropy such that the difference

of these quantities becomes maximal when they reach their maximum values. A key observation

to note here is that while both SE and CE are monotonically increasing functions of the squeezing

parameter, only the entanglement entropy goes on to grow indefinitely as we increase z. Indeed,

the capacity of entanglement saturates to unity in the large z limit. Hence, we see that in this

limit CE
SE

≪ 1 which shows that the corresponding reduced density matrix becomes more and more

maximally mixed as one increases the squeezing parameter. Moreover, the asymptotic behavior of

the mean value of the Renyi entropy and n-th capacity of entanglement in large squeezing limit

is almost independent of the Renyi index. In addition, considering more general cases where both

modes are squeezed, although the evolution of the entanglement measures is in general not periodic,

the qualitative features of the results are the same.

We have also extended these studies to the system of N coupled harmonic oscillators to inves-

tigate to what extent the squeezing parameter modifies the behavior of the entanglement measures

including the capacity of entanglement. In particular, we have shown that where all modes lie in
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a squeezed state the measures are time-independent and proportional to the volume of the smaller

subsystem in large squeezing limit. Again, we have found that in this limit the ratio of capacity

over entropy is negligible and thus the reduced density matrix behaves as a maximally mixed state.

In order to gain further insights into certain properties of these quantities in squeezed states,

we have also considered a scalar field theory, which is the continuum counterpart of our harmonic

chain. In this case when only a single mode has been squeezed, we found a number of key features:

First, the mean capacity of entanglement is not monotonous with the index of the squeezed mode

such that for large values of Ñ , it first increases very sharply with is and then suddenly saturates

to a constant value. Second, we observed that CE is a monotonically increasing function of the

squeezing parameter and saturates to a constant value in the large z limit. Further, the mean Renyi

entropy exhibits a linear dependence on the squeezing parameter with the same slope for different

values of the Renyi index. Also we have shown that the mean value of n-th capacity saturates from

below to unity independent of n. Indeed, for larger values of the Renyi index, Cn vanishes initially

but then rapidly rises to a constant value corresponding to the large squeezing regime.

Once again, considering the more realistic case where all modes lie in a squeezed state, the large

z behavior of the measures are completely independent of time. In particular, in this regime the

scaling of the capacity of entanglement is not sensitive to the details of the time evolution of the

reduced density matrix. We have also found numerically that at leading order CE is proportional to

the volume of the smaller subsystem which is consistent with asymptotic scaling given by eq. (4.14).

Interestingly, for an infinite chain of oscillators in the continuum limit the corresponding behaviors

of SE and CE are given by eq. (5.1) which is a feature of a maximally mixed state. Here we recall

that this equation holds in the large squeezing limit and thus CE/SE ∼ z−1 → 0. As we have

mentioned before this means that the corresponding reduced density matrix can be approximated

as proportional to the identity operator to the extent that its Renyi entropies are independent of

n and thus we have a flat entanglement spectra. Remarkably, in the holographic context one can

produce the n-independent Renyi entropies by considering specific semiclassical states, the so-called

fixed-area states [35–38].5 It is an interesting question whether or not a more concrete connection

can be found between the squeezing states in the filed theory and fixed-area states of quantum

gravity.

Of course, eq. (5.1) is consistent with the Page’s argument that in an arbitrary quantum state

the entropy is close to maximal. Hence we expect entanglement entropy to scale with the volume

(instead of the area) of the entangling region. Our results show that this interesting behavior also

holds for the capacity of entanglement. Moreover, the measures are both sensitive to the UV cutoff,

but the ratio is finite and thus at least for the free massless scalar field theory, the ratio of the

leading terms is scheme independent. We found similar results for other entanglement measures

which are consistent with the asymptotic expansions in the large squeezing limit.

To close our discussion, we would like to recall that our result for the capacity of entanglement

for a family of random states, where CE is continuous, contrasts with the holographic computations

5We thank Mohammad Hasan Vahidinia for bringing this to our attention and raising the following question.
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correspond to the black hole evaporation process reported in [30, 31]. Indeed, we expect that a

meaningful comparison between the field theory and holographic results is achieved by considering

strongly coupled theories with a large number of degrees of freedom. This investigation is beyond

the scope of the present paper. It would be interesting to explore the behavior of CE in general

setups including rational and holographic CFTs [39–42]. Some additional topics to explore include

generalizing our results to higher dimensions [43] or to non-relativistic models [44–47]. Another

interesting direction is to study the scaling of capacity of entanglement in theories which exhibit a

volume law scaling of the entanglement entropy [48–51]. In addition, we have been focused on the

exploration of the capacity only in a free scalar theory, but it should be feasible to extend our work

to more realistic cases with non-trivial interactions where we believe the capacity will exhibit more

interesting features [52]. We leave the details of some interesting problems for future study [53].
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