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Abstract

This work is devoted to establish an improved blow-up criterion for strong solutions to a

three-dimensional compressible non-Newtonian fluid with vacuum. The considered system is the

Power Law model in a bounded periodic domain in R3. We establish a blow-up criterion for the

local strong solutions in terms of the L4(0, T ; L∞(Ω))−norm of the gradient of the velocity for any

power-law index q > 1.
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1 Introduction

In this paper, we analyze a initial-boundary value problem for the Navier-Stokes equations describing

the flow of a compressible non-Newtonian fluid that reads


















∂tρ + div(ρu) = 0 in ΩT ,

∂t(ρu) + div(ρu ⊗ u) − div S + ∇p = 0 in ΩT .
(1.1)

Here Ω ⊂ R3 is the domain occupied by the fluid, T > 0 is the time of evolution and QT = (0, T )×Ω.

We denote by u(t, x) the fluid velocity, by ρ(t, x) the fluid density, by p is the pressure which is

assumed here to be a given function of ρ, i.e. p = aργ, with a > 0 and γ > 1, and by S the viscous

stress. We assume the periodic boundary condition is a torus, that is,

Ω = T
3.

We restrict ourselves to the constitutive relation

S = 2µDu + λ div u I + τ∗(|Du|2 + δ2)
q−2

2 Du, (1.2)

with q is a number belongs to (1,∞), τ∗ > 0 is the yield stress also assumed to be a constant, shear

rate Du = 1
2
(∇u + ∇tu), and |Du|2 is the Hilbert-Schmidt norm defined by (also called Frobenius

norm)

|Du|2 =
3

∑

i, j=1

|Di ju|2
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with Du = (Di ju)16i, j63 and Di ju =
1
2
(∂iu j + ∂ jui). The coefficients µ and λ are the so-called Lamé

viscosity coefficients assumed here constants, while they satisfy the following physical restrictions:

µ > 0 2µ + λ > 0 δ > c > 0. (1.3)

Consider the initial value

(ρ, u)(x, 0) = (ρ0, u0)(x) in Ω. (1.4)

The earliest work of incompressible non-Newtonian fluid is attributed to Ladyzhenskaya [1, 2].

Ladyzhenskaya gave S = ν1Du+ ν2|Du|r−2
Du with ν1 > 0 and ν2 > 0 being constants and studied the

global existence of weak solutions for Dirichlet boundary conditions with the exponent r > 1+ 2d
d+2 (d

stands for space dimension). Inspired by [1, 2], the non-Newtonian fluids has been studied intensively,

and various existence and regular properties have been proved in the last years. Bellout, Bloom

and Nečas [3] proved that there exist Young-measure-valued solutions to the incompressible non-

Newtonian fluids for space periodic problems under some conditions. Nečasová and Penel [4] proved

L2−decay for weak solution to an incompressible non-Newtonian fluid in whole space under some

assumptions. Guo and his cooperators obtained a series results about incompressible non-Newton

fluids (see the monographs [5, 6]). Bartłomiej and Aneta showed the existence of weak solutions for

unsteady flow of incompressible nonhomogeneous, heat-conducting fluids with generalised form of

the stress tensor without any restriction on its upper growth [7]. More results on the mathematical

theory of the incompressible non-Newtonian fluids, we can refer the monographs [8, 9] and papers

[3, 10, 11, 5, 6, 12, 13] and therein references.

The first mathematical analysis on the compressible non-Newtonian fluid goes back to [14], where

the existence of the measure-valued solutions to the equations (1.1)-(1.2) was proved. Later, Mamon-

tov [15, 16] illustrated the global existence of weak solution under the assumptions of an exponentially

growing viscosity and isothermal pressure. Recently, Abbatiello, Feireisl and Novotńy proved the

existence of so-called dissipative solution in [17]. For the existence of the strong solution, the local-

in-time existence were established for the absence of vacuum in [18]. Xu and Yuan [19] proved the

local-in-time existence and uniqueness in one space dimension with singularity and vacuum. While

the initial energy is small, Yuan, Si and Feng [20] established the global well-posedness of strong

solutions for the initial boundary value problems of the one-dimensional model (1.1)-(1.2). Fang and

Zang showed the global existence and uniqueness of strong solutions to the Cauchy problem for a

one-dimensional compressible non-Newtonian fluid of power-law type in [21].

Recently, Bilal Al Taki [22] studied the local existence and uniqueness of the strong solution of

system (1.1)-(1.2) in three-dimensional space. It is a nature question that whether the strong solution

of system (1.1)-(1.2) blows up in finite time.

It is vital to review the abundant results of blow up criteria of the compressible Navier-Stokes

equations since they will guide us to hunt the blow up criteria of compressible non-Newtonian fluid.

The famous result of the blow up criterion of the compressible Navier-Stokes equations was proved

by Fan and Jiang in [23] for two dimensions and 7µ > 9λ that

lim
T→T ∗

(

sup
06t6T

‖ρ‖L∞(Ω) +

∫ T

0

(‖ρ‖W1,q0 (Ω) + ‖∇ρ‖
4
L2(Ω)

)dt

)

= ∞.

Later, Huang and Xin [24] proved the following blow-up criterion to the compressible Navier-Stokes

equations

lim
T→T ∗

(

‖ div u‖L1(0,T ;L∞(R3)) + ‖ρ
1
2 u‖Ls(0,T ;Lr(R3))

)

= ∞,

2



and

lim
T→T ∗

(

‖ρ‖L∞(0,T ;L∞(R3)) + ‖ρ
1
2 u‖Ls(0,T ;Lr(R3))

)

= ∞,

with 2
s
+

3
r
6 1 (3 < r 6 ∞). Fang, Song and Guo [25] gave the blowup criterion of compressible

non-Newtonian fluid equations over one-dimensional bounded interval as follows

lim
T→T ∗

sup
(

‖ρ‖L∞(0,T ;H1(I)) + ‖ux‖L∞(0,T ;Lp(I))

)

= ∞.

Yuan and his cooperators proved in [26] that

lim
T→T ∗

∫ T

0

‖ux‖L∞(I)dt = ∞,

is a blowup criterion for compressible non-Newtonian fluids in one-dimensional bounded interval.

Very recently, Bilal Al Taki and his cooperators [28] studied the blowup criterion for compressible

non-Newtonian fluids in three dimensions, and proved the following blow up criteria that

lim
T→T ∗

sup
(

‖ρ‖W1,q0 (Ω) + ‖u‖H1(Ω)

)

= ∞,

with q ∈ (3,∞), q0 = min {6, q}.

Definition 1.1. The pair (ρ, u) is called a strong solution to system (1.1)-(1.2) if (ρ, u) is a weak

solution, satisfies equations (1.1) almost everywhere in (0, T ∗)×Ω, and enjoys the following properties

ρ ∈ L∞(0, T ∗; W1,6(Ω)) (ρ)t ∈ L∞(0, T ∗; L6(Ω))

u ∈ L∞(0, T ∗; H1(Ω)) ∇2u ∈ L2(0, T ∗; L6(Ω))
√
ρut ∈ L∞(0, T ∗; L2(Ω)) ut ∈ L2(0, T ∗; H1(Ω)).

(1.5)

The aim of the present paper is to give the blow-up criterion to the system (1.1)-(1.4). Our main

results are the following.

Theorem 1.1. Let Ω = T3 be a periodic domain and

µ > 0 2µ + λ > 0 δ > c > 0.

Suppose that the initial data (ρ0, u0) satisfy

0 6 ρ0 ∈ W1,6(Ω), u0 ∈ W2,6(Ω), (1.6)

and the compatibility condition:

− div

(

2µDu0 + λ div u0 I + τ
∗(|Du0|2 + δ2)

q−2
2 Du0

)

+ ∇p0 =
√
ρ0g, (1.7)

where g is a function in L6(Ω). Assume that (ρ, u) is a local strong solution to the initial-boundary-

value problem (1.1)-(1.4) satisfying (1.6)-(1.7) on (0, T ∗)×Ω for the maximal time of existence T ∗ > 0.

Then

lim
T→T ∗

∫ T

0

‖∇u‖4L∞(Ω)dt = ∞. (1.8)

Theorem 1.2. Under the conditions of Theorem 1.1, the following is also true:

lim
T→T ∗

(

‖ρ‖L∞(0,T ;L∞(Ω)) + ‖∇u‖L∞(0,T ;L3(Ω))

)

= ∞. (1.9)

3



We now comment on the analysis of this paper. In the proof of our main theorems, we shall deal

with several difficulties. First, it is not easy to get higher order estimation by direct calculation, so

we use the iterative method. Second, we shall use the results established in Lemma 2.3 to estimate

‖u‖W2,6(Ω) .

The rest of the paper is organized as follows: In Section 2, we collect some elementary facts and

inequalities which will be needed later. The main results, Theorem 1.1 and Theorem 1.2 proved in

Section 3 and Section 4 respectively. Notice that in all the estimates established below, we will denote

by C a generic constant may depending on a, µ, λ, ε and the norms of the data, however, it does not

depend on the parameter δ.

2 Preliminaries

In this section, we begin with the local existence and uniqueness of strong solutions obtained in [22].

Lemma 2.1. If the initial data (ρ0, u0) satisfy (1.6) and (1.7). then there exists a small time T1 > 0

and a unique strong solution (ρ, u) to the initial-boundary-value problem (1.1)-(1.4) in Ω × (0, T1).

Next, the well-known Gagliardo-Nirenberg inequality which will be used later frequently (see

[27]).

Lemma 2.2. (Gagliardo-Nirenberg inequality) Let Ω ⊂ Rn be a bounded domain and j, k be pos-

itive integers. For 1 6 p, r 6 ∞ and 0 6 j < k, there exists some constant C = C(n, k, p, r, j, θ,Ω)

such that

‖∇ ju‖Lq(Ω) 6 C‖∇ku‖θLp(Ω)‖u‖
1−θ
Lr(Ω) (2.1)

holds for any u ∈ W
k,p

0
(Ω), where 1

q
=

j

n
+ θ( 1

p
− k

n
) + 1−θ

r
.

Next, we recall some estimates of nonlinear elliptic system stated in [22].

Lemma 2.3. Let Ω be a periodic domain in Rd. Given a function f ∈ Lp(Ω) (1 < p < ∞) such that
∫

Ω

f dx = 0.

Assume that u is a unique solution to the following nonlinear elliptic system


















− div Sδ = f ,

Sδ = 2µDu + λ div u I + τ∗(|Du|2 + δ2)
q−2

2 D u.
(2.2)

Then the following assertions hold.

• If d = 1, then the solution u of (2.2) belongs to W2,p(Ω) provided that µ > 0, q > 1 and δ > 0.

In particular, we have

µ

p

∫

Ω

|∂2
xu|p dx + τ∗(q − 1)

∫

Ω

|∂xu|2(|∂xu|2 + δ2)
q−4

2 |∂2
xu|p dx 6

µ1−p

p

∫

Ω

| f |p dx.

• If d = 2 (or 3) and f ∈ L2(Ω), then the solution u of (2.2) belongs to H2(Ω) provided that

q > 1, δ > 0, for the case that there exist some small ε > 0 such that µ > ε, 2µ + λ > ε. In

particular, there exists constant C > 0 independent of δ such that

µ

∫

Ω

|∇ curl u|2 dx + (2µ + λ)

∫

Ω

|∇ div u|2 dx

4



+ τ∗min(1, (q − 1))

∫

Ω

|Du|2(|Du|2 + δ2)
q−4

2 |∇Du|2 dx 6 C

∫

Ω

| f |2 dx.

• If d = 2 (or 3), then the linearized operator associated to equation (2.2) at a reference solution

u∗ ∈ W
2− 2

p
,p

(Ω) (p > d + 2), denoted by A(u∗,D) still yield maximal Lp−regularity provided

that µ > 0, 2µ + λ > 0, q > 1 and δ > c for some c > 0. Moreover, there exists constant C > 0

dependent on δ (the notation C(δ−1) concerns a constant who may have an unfavorable effect

when δ becomes close to zero), such that

‖u‖W2,p(Ω) 6 ‖A(u∗,D)u‖Lp(Ω) 6 C(δ−1)‖ f ‖Lp(Ω).

In addition, we explain the notations and conventions uesd throughout this paper. We define the

function β : R+ → R+ as

β(s) = µ +
τ∗

2
s

q−2
2 , (2.3)

and denote by B := |Du|2 + δ2, then we can rewrite div S as

div S = β(B)∆u +
(

λ + β(B)
)

∇ div u + 2β′(B)∇
(

|Du|2
)

·Du.

Since D is symmetric, the ith entry of div S becomes

[

div S
]

i =

3
∑

k=1

(

β(B)∂2
kui + (λ + β(B))∂i∂kuk

)

+ 4β′(B)

3
∑

j,k,l=1

Di juDklu∂ jDklu

=

3
∑

k=1

(

β(B)∂2
kui + (λ + β(B))∂i∂kuk

)

+ 4β′(B)

3
∑

j,k,l=1

DikuD jlu∂k∂lu j

=

3
∑

j,k,l=1

akl
i j∂k∂lu j,

where

a
k,l
i, j
= β(B)δklδi j + (λ + β(B))δilδ jk + 4β′(B)DikuD jlu,

with δkl denoting the Kronecker symbol. Define the quasi-linear differential operator A(u,D) as

A(u,D) =
∑

k,l=1

Ak,l
DkuDlu, (2.4)

where the matrix-valued coefficients

Ak,l(u) =
(

a
k,l
i, j

)

.

3 Proof of Theorem 1.1

Let (ρ, u) be a local strong solution to the problem (1.1)-(1.4) as described in Theorem 1.1.

Lemma 3.1. Under the condition of Theorem 1.1, the standard energy estimate yields that

sup
06t6T

∫

Ω

(ρ|u|2 + ργ)dx +

∫ T

0

∫

Ω

|∇u|2dxdt +

∫ T

0

∫

Ω

|Du|qdxdt 6 C, (3.1)

holds for any T ∈ (0, T ∗), where C is a constant depending on the initial date.
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Suppose that there exists some constant M > 0 such that

∫ T

0

‖∇u‖4L∞(Ω)dt 6 M, (3.2)

for any 0 < T < T ∗.

Lemma 3.2. Under the condition of Theorem 1.1 and (3.2), there exists a positive constant C > 0

such that

sup
06t6T

‖ρ‖L∞(Ω) 6 C, (3.3)

holds for any T ∈ (0, T ∗).

The proof of Lemma 3.2 is simple, and the proof is omitted here.

Lemma 3.3. Under the condition of Theorem 1.1 and (3.2), there exists a positive constant C such

that
d

dt
‖∇u‖2

L2(Ω)
+

∫

Ω

ρ|ut |2dx 6 C‖∇u‖L∞(Ω)(1 + ‖
√
ρut‖2L2(Ω)

) + ε‖∇ut‖2L2(Ω)
+C, (3.4)

for any fixed ε ∈ (0, 1).

Proof. Multiplying (1.1)2 by ut and integrating the resulting equation over Ω, we obtain that

∫

Ω

ρ|ut|2 dx +
1

2

d

dt

∫

Ω

(

µ|∇u|2 + (λ + µ)(div u)2
+

2

q
τ∗(|Du|2 + δ2)

q

2
)

dx

=

∫

Ω

(

− ρu · ∇u
)

· ut dx −
∫

Ω

∇p · ut dx. (3.5)

Based on Lemma 3.1 and Lemma 3.2, each term on the right-hand side of equation (3.5) is estimated

as follows
∫

Ω

−ρu · ∇u · ut dx 6 ‖∇u‖L∞(Ω)‖
√
ρu‖L2(Ω)‖

√
ρut‖L2(Ω)

6 C‖∇u‖L∞(Ω)(1 + ‖
√
ρut‖2L2(Ω)

),

−
∫

Ω

∇p · ut dx =

∫

Ω

p div ut dx 6 ‖p‖L2(Ω)‖ div ut‖L2(Ω) 6 ε‖∇ut‖2L2(Ω)
+C.

for any fixed ε ∈ (0, 1). Thus, one arrives at

∫

Ω

ρ|ut |2dx +
1

2

d

dt

∫

Ω

(µ|∇u|2 + (λ + µ)(div u)2
+

2

q
τ∗(|Du|2 + δ2)

q

2 )dx

6 C‖∇u‖L∞(Ω)(1 + ‖
√
ρut‖2L2(Ω)

) + ε‖∇ut‖2L2(Ω)
+C. (3.6)

and so (3.4) is obtained. �

Lemma 3.4. Under the condition of Theorem 1.1 and (3.2), there exists a positive constant C such

that

d

dt

∫

Ω

(

ρ|ut |2 + p(div u)2
)

dx +

∫

Ω

|∇ut |2dx (3.7)

6 C(‖∇u‖4L∞(Ω) + 1)(1 + ‖√ρut‖2L2(Ω)
+ ‖∇p‖2

L2(Ω)
) + ε‖∇2u‖2

L2(Ω)
,

for any fixed ε ∈ (0, 1).
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Proof. The equation (1.1)2 is rewritten as

ρ∂tu + (ρu · ∇)u − µ∆u − (λ + µ)∇ div u − τ∗ div
(

(|Du|2 + δ2)
q−2

2 Du
)

+ ∇p = 0.

Differentiating the above equation with respect to time, one gets that

ρutt + ρ(u · ∇)ut − µ∆ut − (λ + µ)∇ div ut − τ∗div
(

(|Du|2 + δ2)
q−2

2 Du
)

t + ∇pt

= −ρt(ut + (u · ∇)u) − ρ(ut · ∇)u.

Multiplying the above equation by ut and integrating the resulting equation over Ω, one obtains that

1

2

d

dt

∫

Ω

ρ|ut|2 dx + µ

∫

Ω

|∇ut |2 dx + (λ + µ)

∫

Ω

| div ut|2 dx − τ∗
∫

Ω

ut · div
(

(|Du|2 + δ2)
q−2

2 Du
)

t
dx

= −
∫

Ω

ρt

(

ut + (u · ∇)u
)

· ut dx −
∫

Ω

ρ(ut · ∇)u · ut dx +

∫

Ω

pt div ut dx

= −
∫

Ω

ρu · ∇((ut + (u · ∇)u) · ut) dx −
∫

Ω

ρ(ut · ∇)u · ut dx +

∫

Ω

pt div ut dx. (3.8)

It follows from the equation (1.1)1 that

pt + div(pu) + (γ − 1)p div u = 0. (3.9)

Hence,

−
∫

Ω

pt div ut dx =

∫

Ω

(∇p · u + γp div u) div ut dx

=

∫

Ω

((∇p · u) div ut) dx +
γ

2

d

dt

∫

Ω

p(div u)2 dx − γ
2

∫

Ω

pt(div u)2 dx

=
d

dt

∫

Ω

γ

2
p(div u)2dx +

∫

Ω

∇p · u div ut dx

+
γ

2

(

∫

Ω

−pu · ∇(div u)2 dx + (γ − 1)

∫

Ω

p(div u)3 dx
)

.

Substituting this identity into (3.8), we obtain that

d

dt

∫

Ω

(

1

2
ρ|ut |2 +

γ

2
p(div u)2

)

dx + µ

∫

Ω

|∇ut |2 dx + (λ + µ)

∫

Ω

| div ut|2 dx

− τ∗
∫

Ω

ut · div
(

(|Du|2 + δ2)
q−2

2 Du
)

t
dx

6 C

∫

Ω

(

p|∇u|3 + p|u||∇u||∇2u| + |∇p||u||∇ut | + ρ|u||ut ||∇ut |

+ ρ|u||ut ||∇u|2 + ρ|u|2|ut||∇2u| + ρ|u|2|∇u||∇ut | + ρ|ut |2|∇u|
)

dx

:=

8
∑

k=1

Ik. (3.10)

Note that

−
∫

Ω

ut · div
(

(|Du|2 + δ2)
q−2

2 Du
)

t
dx

=

∫

Ω

Dut :
(

(|Du|2 + δ2)
q−2

2 Du
)

t dx

7



=

∫

Ω

(|Du|2 + δ2)
q−2

2 Dut : Dut dx +
q − 2

2

∫

Ω

(|Du|2 + δ2)
q−4

2 Du(|Du|2)t : Dut dx

=

∫

Ω

(|Du|2 + δ2)
q−2

2 |Dut|2 dx + (q − 2)

∫

Ω

(|Du|2 + δ2)
q−4

2 |Du|2|Dut |2 dx

>

∫

Ω

(|Du|2 + δ2)
q−4

2
(

(q − 1)|Du|2 + δ2
)

|Dut|2 dx > 0

for all q > 1. Now, each term on the right hand of (3.10) is estimated as follows

|I1| 6 C‖p‖L∞(Ω)‖∇u‖3
L3(Ω)

6 C‖∇u‖3L∞(Ω),

|I2| 6 C‖ρ‖γ−
1
2

L∞(Ω)
‖√ρu‖L2(Ω)‖∇u‖L∞(Ω)‖∇2u‖L2(Ω) 6 C‖∇u‖2L∞(Ω) + ε‖∇

2u‖2
L2(Ω)
,

|I3| 6 C‖∇p‖L2(Ω)‖u‖L∞(Ω)‖∇ut‖L2(Ω) 6 C‖∇u‖2L∞(Ω)‖∇p‖2
L2(Ω)

+ ε‖∇ut‖2L2(Ω)
,

|I4| 6 C‖√ρut‖L2(Ω)‖u‖L∞(Ω)‖∇ut‖L2(Ω) 6 C‖∇u‖2L∞(Ω)‖
√
ρut‖2L2(Ω)

+ ε‖∇ut‖2L2(Ω)
,

|I5| 6 C‖
√
ρu‖L2(Ω)‖

√
ρut‖L2(Ω)‖∇u‖2L∞(Ω) 6 C‖∇u‖2L∞(Ω)(‖

√
ρut‖2L2(Ω)

+ 1),

|I6| 6 C‖√ρut‖L2(Ω)‖∇u‖2L∞(Ω)‖∇
2u‖L2(Ω) 6 C‖∇u‖4L∞(Ω)‖

√
ρut‖2L2(Ω)

+ ε‖∇2u‖2
L2(Ω)
,

|I7| 6 C‖√ρu‖L2(Ω)‖∇u‖2L∞(Ω)‖∇ut‖L2(Ω) 6 C‖∇u‖4L∞(Ω) + ε‖∇ut‖2L2(Ω)
,

|I8| 6 C‖∇u‖L∞(Ω)‖
√
ρut‖2L2(Ω)

.

Substituting all the estimates into (3.10), we get that

d

dt

∫

Ω

(

ρ|ut |2 + p(div u)2
)

dx +

∫

Ω

|∇ut |2dx

6 C(‖∇u‖4L∞(Ω) + 1)(1 + ‖√ρut‖2L2(Ω)
+ ‖∇p‖2

L2(Ω)
) + ε‖∇2u‖2

L2(Ω)
.

for any fixed ε ∈ (0, 1). �

Lemma 3.5. Under the condition of Theorem 1.1 and (3.2), there exists a positive constant C such

that

d

dt
‖∇p‖L6(Ω) 6 C(‖∇u‖L∞(Ω)‖∇p‖L6(Ω) + ‖∇2u‖L6(Ω)), (3.11)

d

dt
‖∇p‖2

L2(Ω)
6 C(‖∇u‖L∞(Ω) + 1)‖∇p‖2

L2(Ω)
+ ε‖∇2u‖2

L2(Ω)
, (3.12)

and

‖u‖W2,6(Ω) 6 C(1 + ‖∇u‖2
H1(Ω)

+ ‖∇p‖L6(Ω)) + ε‖∇ut‖2L2(Ω)
, (3.13)

for any fixed ε ∈ (0, 1).

Proof. The equation (1.1)1 implies that

pt + div(pu) + (γ − 1)p div u = 0.

Differentiating it with respect to xk yields

(pxk
)t + u · ∇pxk

+ ∇p · uxk
+ γpxk

div u + γp div uxk
= 0. (3.14)

Now, multiplying the equation (3.14) by pxk
|pxk
|4, integrating the resulting equation over Ω and sum-

ming over k, we get that

d

dt
‖∇p‖6

L6(Ω)
6 C

∫

Ω

|∇u||∇p|6 dx +

∫

Ω

p|∇ div u||∇p|5 dx

6 C
(

‖∇u‖L∞(Ω)‖∇p‖6
L6(Ω)

+ ‖p‖L∞(Ω)‖∇ div u‖L6(Ω)‖∇p‖5
L6(Ω)

)

.
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So, (3.11) is deduced from Lemma 3.2. By similar way, multiplying the equation (3.14) by pxk
, one

arrives at
d

dt
‖∇p‖2

L2(Ω)
6 C(‖∇u‖L∞(Ω) + 1)‖∇p‖2

L2(Ω)
+ ε‖∇2u‖2

L2(Ω)
.

In order to prove (3.13), one has to show the Lp−estimates on the elliptic operator associated to

the system based on the results ststed in Lemma 2.3. Indeed, we write the momentum equation as

follows

−A(u∗,D)u = −ρut − ρ(u · ∇u) − ∇p + (A(u,D)u −A(u∗,D)u) (3.15)

where u∗ is a reference solution. Investigating (3.15) as a quasi-linear elliptic equation, we know that

the linearized operator still yield maximal Lp−regularity according to the last statement in Lemma

2.3. According to the definition of the operator A in (2.4), we have that

A(u,D)u −A(u∗,D)u = (β(|Du|2 + δ2) − β(|Du∗|2 + δ2))(∆u + ∇ div u)

+ 4

3
∑

j,k,l=1

(β′(|Du|2 + δ2)DikuD jlu − β′(|Du∗|2 + δ2)Diku∗D jlu
∗)∂k∂lu j,

where β(·) was defined in (2.3). Therefore, we have

‖A(u,D)u −A(u∗,D)u‖Lp(Ω)

6 C‖|Du|2 − |Du∗|2‖L∞(Ω)‖u‖W2,p(Ω)

+C

3
∑

k,l=1

‖|DikuD jlu − Diku∗D jlu
∗|‖L∞(Ω)‖u‖W2,p(Ω)

+ 4C

3
∑

k,l=1

‖(|Du|2 − |Du∗|2)Diku∗D jlu
∗‖L∞(Ω)‖u‖W2,p(Ω)

6 C‖|Du| − |Du∗|‖L∞(Ω)‖|Du| + |Du∗|‖L∞(Ω)‖u‖W2,p(Ω)

+C

3
∑

k,l=1

(|Diku|L∞(Ω)‖|D jlu| − |D jlu
∗|‖L∞(Ω)

+ |D jlu
∗|L∞(Ω)‖|Diku| − |Diku∗|‖L∞(Ω))‖u‖W2,p(Ω)

+ ‖|Du| − |Du∗|‖L∞(Ω)‖Diku∗D jlu
∗‖L∞(Ω)‖|Du| + |Du∗|‖L∞(Ω)‖u‖W2,p(Ω)

6 C‖∇(u − u∗)‖L∞(Ω)‖u‖W2,p(Ω).

Thus, one can choose the reference solution u∗ of (3.15) such that u represents a small perturbation

of u∗, and deduces from (3.15) that

‖u‖W2,p(Ω) 6 C‖ − ρut − ρ(u · ∇u) − ∇p‖Lp(Ω) + ε‖u‖W2,p(Ω). (3.16)

So,

‖u‖W2,6(Ω) 6 C(‖ρut‖L6(Ω) + ‖ρ(u · ∇u)‖L6(Ω) + ‖∇p‖L6(Ω))

6 C(‖ρ‖L∞(Ω)‖∇ut‖L2(Ω) + ‖ρ‖L∞(Ω)‖∇u‖2
L6(Ω)

+ ‖∇p‖L6(Ω))

6 C(‖∇ut‖L2(Ω) + ‖∇u‖2
H1(Ω)

+ ‖∇p‖L6(Ω))

6 C(1 + ‖∇u‖2
H1(Ω)

+ ‖∇p‖L6(Ω)) + ε‖∇ut‖2L2(Ω)
.

The proof of Lemma 3.5 is completed. �
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Lemma 3.6. Under the condition of Theorem 1.1 and (3.2), there exists a positive constant C such

that

sup
0≤t≤T

(

‖√p(div u)‖2
L2(Ω)

+ ‖√ρut‖2L2(Ω)
+ ‖∇p‖2

L2(Ω)
+ ‖∇p‖L6(Ω) + ‖∇u‖2

L2(Ω)

)

6 C, (3.17)

and ‖u‖W2,6(Ω) is almost everywhere finite on [0, T ] for any T ∈ (0, T ∗).

Proof. By virtue of Lemma 2.3, we get

‖∇2u‖2
L2(Ω)

6 C(‖ρut‖2L2(Ω)
+ ‖ρ(u · ∇)u‖2

L2(Ω)
+ ‖∇p‖2

L2(Ω)
)

6 C(‖√ρut‖2L2(Ω)
+ ‖√ρu‖2

L2(Ω)
‖∇u‖2L∞(Ω) + ‖∇p‖2

L2(Ω)
)

6 C(‖√ρut‖2L2(Ω)
+ ‖∇u‖2L∞(Ω) + ‖∇p‖2

L2(Ω)
). (3.18)

So,

‖∇u‖2
H1(Ω)

6 C(‖√ρut‖2L2(Ω)
+ ‖∇u‖2L∞(Ω) + ‖∇p‖2

L2(Ω)
) + ‖∇u‖2

L2(Ω)
. (3.19)

Gathering (3.4), (3.7), (3.11), (3.12), (3.18) and (3.19), and multiplying (3.13) by some appropriate

coefficient, we deduce that

d

dt

(∫

Ω

(ρ|ut |2 + p(div u)2)dx + ‖∇p‖2
L2(Ω)

+ ‖∇p‖L6(Ω) + ‖∇u‖2
L2(Ω)

)

+ ‖∇ut‖2L2(Ω)
+ ‖∇2u‖2

L2(Ω)
+ ‖u‖W2,6(Ω) (3.20)

6 C(‖∇u‖4L∞(Ω) + 1)(1 + ‖√ρut‖2L2(Ω)
+ ‖∇p‖2

L2(Ω)
+ ‖∇p‖L6(Ω) + ‖∇u‖2

L2(Ω)
).

Using Gronwall inequality and estimate (3.2), we deduce that

‖√p(div u)‖2
L2(Ω)

+ ‖√ρut‖2L2(Ω)
+ ‖∇p‖2

L2(Ω)
+ ‖∇p‖L6(Ω) + ‖∇u‖2

L2(Ω)

6 C(ρ0, u0)exp

(∫ t

0

(1 + ‖∇u‖4L∞(Ω))ds

)

6 C. (3.21)

Furthermore, one integrates (3.20) over (0, T ) and deduces from (3.2), (3.13) and (3.21) that

∫ T

0

‖u‖W2,6(Ω) dt 6 C. (3.22)

So, we can get ‖u‖W2,6(Ω) is almost everywhere finite on [0, T ]. The proof of Lemma 3.6 is completed.

�

Note that the functions (ρ, u)(x, T ∗) , lim
t→T ∗

(ρ, u) satisfy the conditions imposed on the initial data

(1.6) at the time t = T ∗. Furthermore,

−µ△u − (λ + µ)∇ div u + ∇p − τ∗((|Du|2 + δ2)
q−2

2 Du) |t=T ∗= lim
t→T ∗
ρ

1
2 (x, T ∗)g(x)

with g(x) , lim
t→T ∗

(

ρ
1
2 (ut+u ·∇u)

)

(x, t) ∈ L2(Ω). Thus, (ρ, u)(x, T ∗) satisfies (1.7) also. Now, one takes

(ρ, u)(x, T ∗) as the initial data and applying Lemma 2.1 to extend the local strong solution beyond T ∗.

This is a contradiction and the proof of Theorem 1.1 is completed.
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4 Proof of Theorem 1.2

Let (ρ, u) be a strong solution to the problem (1.1)-(1.4) as described in Theorem 1.2. Under the

condition of Theorem 1.1, the standard energy estimate (3.1) is holds.

Suppose that there exists some constant M > 0 such that

‖ρ‖L∞(0,T ;L∞(Ω)) + ‖∇u‖L∞(0,T ;L3(Ω)) 6 M, (4.1)

for any 0 < T < T ∗.

Lemma 4.1. Under the condition of Theorem 1.2 and (4.1), there exists a positive constant C such

that

d

dt

∫

Ω

(

ρ|ut|2 + p(div u)2
)

dx +

∫

Ω

|∇ut|2 dx 6 C
(

1 + ‖∇p‖2
L3(Ω)

+ ‖∇u‖2
H1(Ω)

+ ‖√ρut‖2L2(Ω)

)

.

(4.2)

Proof. Taking same argument as (3.10), one gets that

d

dt

∫

Ω

(

1

2
ρ|ut |2 +

γ

2
p(div u)2

)

dx + µ

∫

Ω

|∇ut |2 dx + (λ + µ)

∫

Ω

| div ut|2 dx

− τ∗
∫

Ω

ut · div
(

(|Du|2 + δ2)
q−2

2 Du
)

t
dx

6 C

∫

Ω

(

p|∇u|3 + p|u||∇u||∇2u| + |∇p||u||∇ut | + ρ|u||ut ||∇ut |

+ ρ|u||ut ||∇u|2 + ρ|u|2|ut||∇2u| + ρ|u|2|∇u||∇ut | + ρ|ut |2|∇u|
)

dx

:=

8
∑

k=1

Ik. (4.3)

Now, each term on the right hand of (3.10) is estimated as follows

|I1| 6 C‖ρ‖γ
L∞(Ω)
‖∇u‖3

L3(Ω)
6 C,

|I2| 6 C‖p‖L∞(Ω)‖u‖L6(Ω)‖∇u‖L3(Ω)‖∇2u‖L2(Ω)

6 C‖ρ‖γ
L∞(Ω)
‖∇u‖L2(Ω)‖∇u‖L3(Ω)‖∇2u‖L2(Ω)

6 C +C‖∇u‖2
H1(Ω)
,

|I3| 6 C‖∇p‖L3(Ω)‖u‖L6(Ω)‖∇ut‖L2(Ω)

6 C‖∇p‖L3(Ω)‖∇u‖L2(Ω)‖∇ut‖L2(Ω)

6 C‖∇p‖2
L3(Ω)

+ ε‖∇ut‖2L2(Ω)
,

|I4| 6 C‖ρ‖
3
4

L∞(Ω)
‖
√
ρut‖

1
2

L2(Ω)
‖u‖L6(Ω)‖∇ut‖L2(Ω)‖ut‖

1
2

L6(Ω)

6 C‖∇u‖L2(Ω)‖
√
ρut‖

1
2

L2(Ω)
‖∇ut‖

3
2

L2(Ω)

6 C‖√ρut‖2L2(Ω)
+ ε‖∇ut‖2L2(Ω)

,

|I5| 6 C‖ρ‖L∞(Ω)‖u‖L6(Ω)‖ut‖L6(Ω)‖∇u‖2
L3(Ω)

6 C‖∇u‖L2(Ω)‖∇ut‖L2(Ω)‖∇u‖2
L3(Ω)

6 C + ε‖∇ut‖2L2(Ω)
,

|I6| 6 C‖ρ‖L∞(Ω)‖u‖2L6(Ω)
‖ut‖L6(Ω)‖∇2u‖L2(Ω)
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6 C‖∇u‖2
L2(Ω)
‖∇ut‖L2(Ω)‖∇u‖H1(Ω)

6 C‖∇u‖2
H1(Ω)

+ ε‖∇ut‖2L2(Ω)
,

|I7| 6 C‖ρ‖L∞(Ω)‖u‖2L6(Ω)
‖∇u‖L6(Ω)‖∇ut‖L2(Ω)

6 C‖∇u‖2
L2(Ω)
‖∇u‖H1(Ω)‖∇ut‖L2(Ω)

6 C‖∇u‖2
H1(Ω)

+ ε‖∇ut‖2L2(Ω)
,

|I8| 6 C‖ρ‖
1
2

L∞(Ω)
‖ut‖L6(Ω)‖

√
ρut‖L2(Ω)‖∇u‖L3(Ω)

6 C‖∇ut‖L2(Ω)‖
√
ρut‖L2(Ω)

6 C‖√ρut‖2L2(Ω)
+ ε‖∇ut‖2L2(Ω)

.

for any fixed ε ∈ (0, 1). So, it is deduced from (4.3) that

d

dt

∫

Ω

(

ρ|ut|2 + p(div u)2
)

dx +

∫

Ω

|∇ut |2dx 6 C
(

1 + ‖∇p‖2
L3(Ω)

+ ‖∇u‖2
H1(Ω)

+ ‖√ρut‖2L2(Ω)

)

.

This completes the proof of Lemma 4.1. �

Lemma 4.2. Under the condition of Theorem 1.2 and (4.1), there exists a positive constant C such

that

‖∇2u‖2
L2(Ω)

6 C(‖
√
ρut‖2L2(Ω)

+ ‖∇p‖2
L2(Ω)

+ 1). (4.4)

Proof. By virtue of Lemma 2.3, one gets that

‖∇2u‖2
L2(Ω)

6 C(‖ρut‖2L2(Ω)
+ ‖ρ(u · ∇u)‖2

L2(Ω)
+ ‖∇p‖2

L2(Ω)
)

6 C(‖√ρut‖2L2(Ω)
+ ‖u‖2

L6(Ω)
‖∇u‖2

L3(Ω)
+ ‖∇p‖2

L2(Ω)
)

6 C(‖√ρut‖2L2(Ω)
+ ‖∇p‖2

L2(Ω)
+ 1).

Hence

‖∇u‖2
H1(Ω)

6 C(‖√ρut‖2L2(Ω)
+ ‖∇p‖2

L2(Ω)
+ 1). (4.5)

The proof of Lemma 4.2 is completed. �

Lemma 4.3. Under the condition of Theorem 1.2 and (4.1), there exists a positive constant C such

that

sup
0≤t≤T

(

‖√ρut‖2L2(Ω)
+ ‖∇p‖L6(Ω) + ‖

√
p(div u)‖2

L2(Ω)

)

6 C, (4.6)

and ‖u‖W2,6(Ω) is almost everywhere finite on [0, T ], for any T ∈ (0,min{ 1
3C f 3(0)

, T ∗}), with f (0) ,

1 + ‖√ρ0(u0)t‖2L2(Ω)
+ ‖∇p0‖L6(Ω) + ‖

√
p0(div u0)‖2

L2(Ω)
.

Proof. Taking similar argument in Lemma 3.5, gathering (4.2), (4.4) and (4.5), and multiplying (3.13)

by some appropriate coefficient, one obtains that

d

dt

(∫

Ω

(ρ|ut |2 + p(div u)2)dx + ‖∇p‖L6(Ω)

)

+ ‖∇ut‖2L2(Ω)
+ ‖∇2u‖2

L2(Ω)
+ ‖u‖W2,6(Ω)

6 C
(

1 + ‖
√
ρut‖2L2(Ω)

+ ‖∇p‖4
L6(Ω)

+ ‖∇u‖L∞(Ω)‖∇p‖L6(Ω)

)

6 C

(

1 + ‖√ρut‖2L2(Ω)
+ ‖∇p‖4

L6(Ω)
+ ‖u‖

1
4

L6(Ω)
‖∇2u‖

3
4

L6(Ω)
‖∇p‖L6(Ω)

)

(4.7)
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6 C
(

1 + ‖√ρut‖2L2(Ω)
+ ‖∇p‖L6(Ω)

)4
+ ε‖∇2u‖L6(Ω),

holds for any fixed ε ∈ (0, 1). Hence,

d

dt

(∫

Ω

(ρ|ut |2 + p(div u)2)dx + ‖∇p‖L6(Ω)

)

6 C
(

1 + ‖√ρut‖2L2(Ω)
+ ‖∇p‖L6(Ω) + ‖

√
p(div u)‖2

L2(Ω)

)4
.

(4.8)

Setting f (t) , 1 + ‖√ρut‖2L2(Ω)
+ ‖∇p‖L6(Ω) + ‖

√
p(div u)‖2

L2(Ω)
, (4.8) can rewritten as

f ′(t) 6 C f 4(t).

So,

f (t) 6 f (0)(1 − 3Ct f 3(0))−
1
3

holds for any t ∈ (0,min{ 1
3C f 3(0)

, T ∗}),with f (0) , 1+‖√ρ0(u0)t‖2L2(Ω)
+‖∇p0‖L6(Ω)+‖

√
p0(div u0)‖2

L2(Ω)
.

Thus, one integrates (4.7) over (0, T ) to deduce that

∫ T

0

‖u‖W2,6(Ω) dt 6 C (4.9)

holds for any T ∈ (0,min{ 1
3C f 3(0)

, T ∗}). So, one gets that ‖u‖W2,6(Ω) is almost everywhere finite on

[0, T ] for any T ∈ (0,min{ 1
3C f 3(0)

, T ∗}). The proof of Lemma 4.3 is completed. �

On the basis of the lemma 4.3, taking t1 ∈ (0,min{ 1
3C f 3(0)

, T ∗}), one finds that (ρ, u)(x, t1) ,

lim
t→t1

(ρ, u) satisfy the conditions imposed on the initial data (1.6) at the time t = t1. Furthermore,

−µ△u − (λ + µ)∇ div u + ∇p − τ∗((|Du|2 + δ2)
q−2

2 D(u)) |t=t1= lim
t→t1
ρ

1
2 (x, t1)g(x),

with g(x) , lim
t→t1

(

ρ
1
2 (ut + u · ∇u)

)

(x, t1) ∈ L2(Ω). Thus, (ρ, u)(x, t1) satisfies (1.7) also. Now, one takes

(ρ, u)(x, t1) as the initial data and apply Lemma 2.1 to extend the local strong solution beyond T ∗.

This is a contradiction and the proof of Theorem 1.2 is completed.
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