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Abstract. The nature of dark matter is an unsolved cosmological problem and axions are one
of the weakly interacting cold dark matter candidates. Axions or ALPs (Axion-like particles)
are pseudo-scalar bosons predicted by beyond-standard model theories. The weak coupling
of ALPs with photons leads to the conversion of CMB photons to ALPs in the presence of
a transverse magnetic field. If they have the same mass as the effective mass of a photon
in a plasma, the resonant conversion would cause a polarized spectral distortion leading to
temperature fluctuations with the distortion spectrum. The probability of resonant conversion
depends on the properties of the cluster such as the magnetic field, electron density, and its
redshift. We show that this kind of conversion can happen in numerous unresolved galaxy
clusters up to high redshifts, which will lead to a diffused polarised anisotropy signal in the
microwave sky. The spectrum of the signal and its shape in the angular scale will be different
from the lensed CMB polarization signal. This new polarised distortion spectrum will be
correlated with the distribution of clusters in the universe and hence, with the large-scale
structure. The spectrum can then be probed using its spectral and spatial variation with
respect to the CMB and various foregrounds. An SNR of ∼ 4.36 and ∼ 93.87 are possible
in the CMB-S4 145 GHz band and CMB-HD 150 GHz band respectively for a photon-ALPs
coupling strength of gaγ = 10−12GeV−1 using galaxy clusters beyond redshift z = 1. The
same signal would lead to additional RMS fluctuations of ∼ 7.5× 10−2 µK at 145 GHz. In
the absence of any signal, future CMB experiments such as Simons Observatory (SO), CMB-
S4, and CMB-HD can put constraints on the coupling strength better than current bounds
from particle physics experiment CERN Axion Solar Telescope (CAST).
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1 Introduction

The Cosmic Microwave Background (CMB) is the primordial radiation that surrounds us
and is a remnant of the hot Big Bang in the early universe. The initially tightly coupled
radiation and baryons were decoupled due to the expansion of the universe. When the optical
depth at the time of decoupling was significantly lowered, the photons were able to travel
large distances and left the photon-baryon fluid at the last scattering surface at a redshift z
≈ 1089 [1]. These photons are now observed as the CMB and are highly redshifted with a
monopole temperature of 2.7255 K [2]. Many processes affect the CMB at higher multipoles
like Doppler shift, lensing, scattering, etc. The power spectrum of the CMB is very well
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known from the correlation between temperature and polarization power spectra [3]. Cosmic
Background Explorer (COBE), Wilkinson Microwave Anisotropy Probe (WMAP) and Planck
have provided invaluable information about the CMB and our universe. Several upcoming
experiments such as Simons Observatory (SO)[4], CMB-S4[5], CMB-HD [6] will be making
even higher resolution CMB observations in the coming years, with an emphasis on probing
the polarized CMB and spectral distortions, which refer to the departures from Planck black-
body spectrum [7].

The CMB photons as they pass through galaxy clusters, can undergo conversions to
axion-like particles (ALPs) if ALPs exist in the universe, irrespective of whether they consti-
tute a fraction of dark matter. These conversions can be resonant or non-resonant and are
well studied [8–11]. The resonant conversions are dominant and require the effective masses
of photon and ALP to be equal. This sets the stage for the probability of conversion that de-
pends on the magnetic field and electron density profile, as well as the redshift of the cluster.
The conversion leads to a new type of polarized spectral distortion in the CMB. With the on-
going and upcoming experiments, we will be able to gain further insight into the anisotropies
and distortions in the CMB. In this paper, we study the capabilities of these experiments in
being able to probe this ALP distortion signal from unresolved galaxy clusters.

A multi-band approach can be used to constrain the ALP coupling constant from clus-
ters that are resolved in multiple frequency observations. Radio, X-rays and optical surveys
can provide information about the cluster magnetic field, electron density profiles and their
redshifts respectively [12–14]. The ALP distortion signal can then be probed either using the
power spectrum of the region around the cluster or via a pixel signal-based approach. These
will be considered in a follow-up analysis [15, 16]. The bounds on coupling constants may be
independently revisited using the analysis for resolved clusters [15] or from unresolved ones,
which we deal with in this work.

The unresolved clusters refer to the clusters that are not resolvable in the required
electromagnetic (EM) bands (such as radio, microwave, optical, and X-ray) from which in-
formation about the electron density, magnetic field, and redshifts can be inferred. These
clusters need to be resolvable also in the microwave region of the EM spectrum though, so
that polarization information is measured using CMB experiments. Most of the contribution
to the diffused background comes from the high redshift z > 1 clusters for which there is a
CMB measurement of the polarization signal, but no information in radio, optical, and X-ray
to know the astrophysical properties and source redshift of the galaxy cluster. These signals
originating from these high redshift clusters will contribute to an ALP background signal in
CMB across the sky.

In this work, we show that a new kind of CMB polarised fluctuation can appear from
unresolved galaxy clusters. We have studied a halo-based ALP power spectrum model is this
analysis applicable to different masses of ALPs. In a halo model, the dark matter halos are
biased tracers of the matter field in the universe. The galaxy clusters are embedded in these
dark matter halos. These clusters are sites of photon-ALP resonant conversions. Thus, the
large-scale structure of the universe provides a way of probing this ALP signal from unre-
solved clusters, using correlations between the signals at different locations in the sky. This
correlation attributes its origin to the matter distribution in the universe. This correlation
can be modeled to be within the cluster (one-halo term) or in two different clusters (two-halo
term). The one-halo term or the Poissonian component dominates at smaller angular scales,
while the two-halo term or the clustering component contributes at large angular scales and
may or may not dominate the Poissonian component[17].
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The ALP background signal will depend on the ALP coupling constant, frequency of
observation, ALP masses, cluster distribution in the universe, etc. The ALP power spectrum
will also depend on the electron density and magnetic field profiles of clusters. These will
be related to the masses of the clusters and their evolution at different redshifts. Thus,
an understanding of the astrophysical evolution of various mass galaxy clusters at different
redshifts will provide better constraints on this background spectrum, but that hasn’t been
considered in this analysis.

The CMB temperature fluctuations are contaminated by foregrounds, especially from
the galactic plane (like dust and synchrotron emissions). All these (including the CMB) are
contaminants to the ALP-distortion signal. Based on the spatial and frequency information
of the power spectrum of each component, the ALP background power spectrum can be
estimated. Cleaning can improve the SNR by removing the effect of these contaminants.
Not only does the signal-to-noise ratio (SNR) depend on the contamination from CMB and
foregrounds, but also on the instrument beam and noise. The impact of different cleaning
techniques like template matching and Interior Linear Combination (ILC) [18, 19] in reducing
the effect of foregrounds and CMB on this background signal and improving its detectability
has been studied.

The motivation behind searching for the diffused ALP signal is highlighted in Sec. 2, fol-
lowed by the CMB photon to ALP resonant conversion in galaxy clusters in Sec. 3. The ALP
background, along with achievable SNR in various experiments after cleaning are analyzed
in 4. The estimator for the ALP power spectrum and the related covariance is mentioned
in Sec. 5, followed by a spectral and comparison of ALP diffused spectrum with CMB and
foregrounds in Sec. 6 . The constraints obtained on ALP coupling constant using ILC are
mentioned in Sec. 8. Sec. 9 summarizes the need and the techniques that can be used to
increase the detectability of this faint background signal. The power spectrum of the ALP
signal produced in a single cluster is studied in Appendix A. The variation of ALP spectrum
due to contribution for very high redshifts is explained in Appendix B. The derivation for
the map-based power spectrum estimator and the bounds on coupling constant using the
template matching of foregrounds is provided in Appendix C and D respectively. We have
used natural units (ℏ = 1, c = 1, kB = 1) in most places, until explicitly mentioned. We have
used the cosmological parameters from Planck 2015 results [20].

2 Motivation

The ALP signal which originates from photon-ALP resonant conversion in galaxy clusters
will lead to polarized distortions in the CMB at low angular scales. If these clusters are at
low redshifts and resolvable in multiple EM bands, the polarization information along the line
of sight can be modelled to obtain bounds on the weak coupling ALPs may be having with
photons.

There will also be clusters at high redshifts which will lead to polarized ALP distortions
in the CMB. These clusters may not be well resolved in multiple EM bands and will lead
to a kind of diffused signal across the sky with a unique spectrum in both spectral (ν) and
angular frequencies or multipoles (ℓ). The power spectrum of this ALP background signal
would dominate over the CMB power spectrum at low angular scales or high multipoles, and
also increase with frequency of observation in the radio and microwave regions of the EM
spectrum. This distinctive property of the polarized spectrum is a signature to detect an
ALP diffused background.
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To obtain bounds on the background spectrum, a comparison between the observed
power spectrum of the microwave sky and that of the fiducial (no ALPs case) power spec-
trum is required. The background spectrum will contribute to the residual of the two spec-
trums. Using the covariance for the observed sky, one can obtain bounds on the diffused ALP
spectrum from unresolved clusters.

The CMB photons that had scattered off the last scattering surface pass through the
matter cosmic web (see Fig.1). The matter power spectrum contains information about the
matter density field at various scales. The matter field consists of dark matter halos, which are
hosts to galaxy clusters. The clusters which are not resolved in one or some of the frequency
bands or are at high redshifts, are unresolved and signals from them cannot be individually
separated. The ALP distortion signal is obtained from all these clusters as the photon-ALP
conversion takes place in the presence of cluster magnetic fields. These signals from unresolved
clusters at various redshifts are integrated along the line of sight and produce a faint polarized
ALP distortion background signal. Using halo modeling of these clusters, one can use the
halo distribution to obtain constraints on the ALP background power spectrum.

With the upcoming high-resolution CMB experiments such as the SO, CMB-S4, and
the proposed CMB-HD, we will be able to estimate the ALP power spectrum, based on its
frequency and spatial dependence, which is very distinct as compared to the spectra from
other phenomena, to obtain constraints on the photon-ALP coupling constant gaγ .

Figure 1: The following is a schematic diagram that illustrates the production of ALP signal
from unresolved clusters as the CMB photons pass through the matter field (or cosmic web)
of the universe. These conversions form an ALP background signal around us, which can
be modelled using the cluster distribution in our universe. The power spectrum of this ALP
distortion map will be different as compared to the CMB.

3 CMB photon - ALP resonant conversion in Galaxy clusters

The CMB black-body radiation peaks at 160.2 GHz, with very tiny fluctuations. Also, it
is anisotropic with spatial fluctuations in temperature of the order of 10−5. Only about
∼ 5% of the CMB photons are linearly polarized. Also, there are spectral distortions in the
CMB, which represent its deviations from a black-body spectrum, due to the absorption or
emission of photons at different frequencies. These arise due to phenomena like the µ and y
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distortions. Earlier the photon-baryon fluid was efficiently thermalized via processes like the
Compton, double Compton and bremsstrahlung [21]. Energy release via particle-decays and
primordial black hole evaporation gets redistributed. When these processes that redistribute
the energy and photons start becoming inefficient due to the Hubble expansion, distortions
start setting in, which can be probed to study the early universe physics [22]. The CMB
polarization spectrum is mainly affected by Thomson scattering and gravitational lensing,
and also exhibits an independence from the frequency of observation [23].

There are also numerous secondary anisotropies that generate temperature and polariza-
tion fluctuation in the CMB. The anisotropies introduced due to galaxy clusters are secondary
as they are generated after the epoch of recombination. These anisotropies can be probed
either using the temperature intensity fluctuations in the CMB, or using fluctuations in its
polarization. These include lensing [24], thermal Sunyaev Zeldovich (SZ) effect [13], kinetic
SZ [13], etc.

In this work, we look at another secondary anisotropy, that owes its origin to galaxy
clusters, and will be generated in the CMB if ALPs exist in nature. These are caused by
the conversion of CMB photons to ALPs in the presence of the magnetic fields of galaxy
clusters. These conversions are frequency-dependent and lead to spectral distortions in the
CMB. This conversion takes place in the presence of magnetic fields in astrophysical systems
such as galaxy clusters and voids. We mainly focus on distortion from galaxy clusters in this
analysis. The interaction between ALPs and photons is given by the following Lagrangian
[25]:

Lint = −gaγFµνF̃
µνa

4
= gaγE · Bexta. (3.1)

This interaction introduces a polarized distortion in the CMB as an ALP is formed. After
a conversion, the photon gets polarized perpendicular to the magnetic field direction at the
resonant location. These conversions will be dominated by resonant conversions which satisfy
the condition [9]:

ma = mγ =
ℏωp

c2
≈ ℏ

c2

√
nee2/meϵ0, (3.2)

here ωp is the plasma frequency and ne is the electron density at the location.
So, the electron density at a location in the cluster determines the ALP mass that can

be formed at that location. For a spherically symmetric electron density profile, ALPs of a
particular mass will be formed in a spherical shell in the cluster. This shell will be projected
as a disk in 2D. Higher mass ALPs shall be formed near the center of the cluster with a disk
of lower angular size as compared to the lower mass ALPs. The ALPs being probed are in
the mass range 10−15 − 10−11 eV, which depends on the electron density of the cluster. The
dispersion relation for photon-ALP conversion is given as (here Bt refers to the transverse
magnetic field):

2ω(ω − k) = −ω(∆e +∆a)± ω∆osc =
m2

a +m2
γ

2
±

(m2
a −m2

γ

2

)2

+ ω2g2aγB
2
t

1/2

, (3.3)

where the parameters are defined as:

∆e ≈ ω2
p/2ω,
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∆a = −m2
a/2ω,

∆aγ = gaγBt/2,

∆2
osc = (∆a −∆e)

2 + 4∆2
aγ .

This dispersion relation comprises two dispersion branches. The probability of conversion is
related to the probability of a shift from one dispersion branch to the other. It is quantified
using the adiabaticity parameter, which compares the scale over which electron density varies
to the oscillation scale over which conversion can occur:

γad =
∆2

osc

|∇∆e|
=

∣∣∣∣∣2g2aγB2
tν(1 + z)

∇ω2
p

∣∣∣∣∣. (3.4)

If the resonant condition is satisfied (ma = mγ), in the adiabatic case (γad >> 1), the
photon-ALP conversion will definitely occur. In the non-adiabatic case (γad << 1), the
conversion will be probabilistic with the probability given as 1− p, where p refers to the
probability of branch shift when passing from a high density to low density region or vice-
versa. This is given as [9]:

p = e−πγad/2. (3.5)

There will be a probability related to the photon-ALP conversion at any location of the
cluster with the mass depending on the electron density at that location. There will always be
two resonances for a CMB photon while propagating in and out of the cluster due to change
in electron density (low → high and then high → low ) [9]. For the ultimate product of the
two resonances to be an ALP, the conversion should take place at only one of the resonances.
This probability is found to be [10]

P(γ → a) = 2p(1− p) = 2e−πγad/2(1− e−πγad/2), (3.6)

where 1− p is the probability of conversion at the resonant location.
In the non-adiabatic limit (γad << 1), this is approximated as:

P(γ → a) ≈ πγad.

The change in intensity due to this conversion in the CMB is given as:

∆Iαν = P(γ → a)Icmb(ν) ≈ πγad

(
2hν3

c2

)
1

ehν/kTcmb − 1
. (3.7)

4 Diffused Axion Power Spectrum: A new signal in the polarization sky
of CMB

The matter field in our universe comprises dark matter halos, which are hosts to galaxy clus-
ters, which themselves are hosts to galaxies. Any diffused signal that owes its origin to these
matter overdensities can be studied using modeling of the distribution of these overdensity re-
gions. In the halo model, halos are descriptors of the nonlinear matter density of the universe
[1, 17, 26]. These halos represent regions of overdensity in the matter density field, while the
voids point to under-density. As we are interested in the diffused background from ALPs, we
consider the halo approach to calculate the signal from high-density regions of the large-scale
matter distribution in the Universe.
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4.1 Halo modeling of matter in the universe

The matter power spectrum contains information about the 3D distribution of matter. It
defines the matter density field at different scales. It is well described by a linear theory at
large scales, while higher-order non-linear statistics are required to describe the gravitational
collapsed systems at small scales, which calls for a halo modeling of the matter field in
the universe. We have used the ΛCDM cosmological model to calculate the matter power
spectrum using CAMB [27]. The perturbations in the matter density field can be written as

ρm(x) = [1 + δm(x)]ρ̄m, (4.1)

with ρ̄m being the mean matter density. The dark matter is the dominant constituent of the
matter density in the universe. The distribution of these halos can be assumed to follow the
matter distribution in the universe. This gives the matter density field from a superposition
of halos ′i′ of masses Mi( [1]):

ρm(x) =
∑
i

ρh(|x− xi|,Mi), (4.2)

with ρh being the density profile of the halo. These halos are assumed to only be interacting
gravitationally and hence, their properties only depend on their masses. These are assumed
to have undergone spherical collapse and subsequent virialization. Their masses are typically
defined as the mass within the radius at which the density of the halo becomes about 200
times the critical density of the universe ρc. The profiles start steepening beyond this radius.

The perturbations in the matter density field can be expressed in the halo model as:

δm(x) =

∫
d lnM

M

ρm

dn

d lnM

∫
d3x′δh(x

′,M)y(|x− x′|,M), (4.3)

where δh accounts for the variations in the mass function, i.e.,

dn(x)

dM
= [1 + δh(x,M)]

dn

dM
. (4.4)

The distribution of dark matter halos with halo mass and redshift is referred to as the
halo mass function. A general mass function is of the form

dn/dM = f(σ)
ρcΩm

M

d lnσ−1

dM
. (4.5)

Here Ωm is the matter density parameter. The σ represents the RMS deviation in the initial
density fluctuation field smoothed with a tophat filter, and f(σ) is the halo multiplicity func-
tion. The Tinker mass function [28] uses the multiplicity function with four free parameters
(d = 1.97, e = 1.00, f = 0.51, g = 1.228) and a normalization (B = 0.482) and the values are
set to those for M200m. The multiplicity function reads

f(σ) = B

[(σ
e

)−d
+ σ−f

]
exp(−g/σ2). (4.6)

The halo mass function decreases with increasing redshifts and increasing masses, which leads
to more heavier clusters at lower redshifts. This is reflected in the probability of clusters of
higher masses being low as compared to those of lower mass in the redshift range of 0.5 to
7. Also, the slope becomes steeper with increasing redshift at higher masses. This indicates
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that the proportion of high to low-mass clusters is greater at low redshifts as compared to
higher ones. In the halo model, the non-linear matter power spectrum can be written as the
sum of the contributions from one and two-halo terms, i.e.,

P(k) = P1h(k) + P2h(k). (4.7)

The mass elements in a single halo are accounted for by the one-halo term, while the clustering
information is contained in the two-halo term. The two-halo term dominates at low angular
scales, while the one-halo term may dominate at high angular scales.

The correlation function quantifies the excess probability of finding two halos separated
by some distance with respect to the Poissonian probability in the case of random uniform
distribution. It is given as [17]:

ξmm(|x1 − x2|) = ⟨δm(x1)δm(x2)⟩. (4.8)

The spatial matter-matter correlation function is given as the Fourier transform of the
power spectrum, i.e.,

ξmm(r) =
1

2π2

∫
dkk2P(k)

sin(kr)

kr
. (4.9)

The galaxy clusters are embedded in these dark matter halos. The distribution of these
halos traces that of matter. This distribution is related using the linear bias (adopted from
[28]). connecting the halo-matter and matter-matter correlation functions:

ξhm(z, r) = b(z)ξmm(z, r). (4.10)

4.2 Halo Modelling of photon-ALP Resonant conversion Power Spectrum

The CMB photon-ALP resonant conversion for unresolved clusters can be modelled with
the distribution of galaxy clusters at high redshifts. The clusters can be considered to be
halos of low masses (1013 − 7× 1015M⊙), modulus a cluster bias factor taking into account
the astrophysics of these clusters. We use the matter power spectrum from CAMB and the
Tinker mass function for our analysis.

The ALP signal at a location within the cluster will be correlated with the signal for
locations within the cluster (due to the finite probability of resonant conversion). Similar
to the case of SZ power spectrum (see [29]), the one-halo term represents the Poissonian
component of the power spectrum and is given as:

Cax
ℓ,1h =

∫ zmax

zmin

dz
dVc

dz

∫ Mmax

Mmin

dM
dn(M, z)

dM
|αℓ(M, z)|2. (4.11)

Here dVc
dz is the differential comoving volume and αℓ is the angular harmonic transform of

fluctuations (refer to Appendix C) due to the photon-ALP resonant conversion in a single
cluster [10, 15]. αℓ’s depend on the electron density and magnetic field profiles of the clusters.
The inference of αℓ’s and its dependency on frequency, coupling constant, and cluster profiles
is explained in Appendix A when ALPs of all masses in the range 10−15 − 10−11 eV are
assumed to be generated in galaxy clusters. The integrals take into account the total number
of clusters of various masses at different redshifts which lie in the cluster mass range (Mmin

to Mmax) and the redshift range being considered (zmin to zmax). This contribution to the
ALP power spectrum will be present even if there is no clustering effect due to gravitational
attraction.
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The ALP signal will also be correlated with the signal at locations outside its cluster.
This is taken into account by the two-halo term (where we use the limber approximation
applicable at l > 20) given as:

Cax
ℓ,2h =

∫ zmax

zmin

dz
dVc

dz
Pm

(
k =

ℓ+ 1/2

r(z)
, z

)
×
[∫ Mmax

Mmin

dM
dn(M, z)

dM
b(M, z)αℓ(M, z)

]2
. (4.12)

Here r(z) is the comoving distance at redshift z. The two-point halo correlation function has
been expressed in terms of the matter power spectrum as

Ph(k,M1,M2, z) = b(M1, z)b(M2, z)Pm(k, z), (4.13)

which arises due to the clustering between the halos.
There will be several clusters in a certain mass interval within a given redshift interval.

We have considered random electron density and magnetic field profiles for the galaxy clusters
and the median of their |αℓ(M, z)|2’s as the contribution of these clusters to the ALP back-
ground spectrum. In principle, these single cluster power spectrums (|αℓ(M, z)|2’s) depend on
the evolution of clusters based on their masses and redshifts. This in turn would allow one
to relate the cluster electron density and magnetic field profiles with their masses at different
redshifts and model the single cluster contribution to the power spectrum well. The single
cluster power spectrums (|αℓ(M, z)|2’s) will also depend on the range of ALP masses that are
being considered to be produced in the cluster and the variation of coupling constants with
the ALP masses. We consider the case where ALPs of all masses in the range 10−15 − 10−11

eV are produced in the galaxy clusters with the corresponding probabilities if the resonant
condition is satisfied (ma = mγ). The coupling constant has been assumed to be uniform for
all ALP masses in this range (gaγ = 10−12GeV−1).

We have considered the ALP background signal to have its origin in clusters of masses
1013 − 1015M⊙. We create various mass bins in this range. We simulate various mass binned
clusters in redshift bins from z = 0.5 to z = 7, beyond which we believe the background signal
won’t be affected much by higher redshift clusters. We simulate the quantity |B|2/∇ne in
clusters and select the median values at various distances from the cluster center to obtain an
ALP signal that would serve as a representative for the particular bin. The power spectrum
for such a cluster acts as the ALP distortion spectrum |αℓ|2 for that bin and is used in the
evaluation of the one and two-halo ALP power spectrums in Equs.4.11 and 4.12 respectively.

The one-halo term dominates at high multipoles as it considers the cluster interior where
the signal is generated, which corresponds to smaller angular scales. So, there are power
contributions at high redshifts from various clusters. This prevents the lowering of one-halo
power spectrum as it scales as ℓ0 at high multipoles.

The two-halo term increases at low multipoles (ℓ = 20 to 100) as the correlation is
high, accompanied by a large number of clusters at low redshifts. With increasing multipoles,
it then decreases as the number of clusters starts decreasing significantly with redshift and
the halo correlation also decreases. The two-halo term may contribute more than one-halo
term for the low-multipole range (20 < ℓ < 200) when Mmin is low, as the low masses at
low redshifts contribute significantly to the halo-halo correlation. Hence, the ALP spectrum
shape will depend on the strength of the signal at low multipoles, which will be determined
by the number of clusters contributing and their individual contributions, which themselves
will depend on the cluster masses and profiles.

There will be clusters at very high redshifts and with the polarized photon travelling
through high and low redshift clusters, it may get depolarized due to turbulence or stochastic
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Figure 2: The CMB is smooth at low angular scales, but if photon-ALP resonant conver-
sion takes place, it will lead to additional fluctuations in the CMB. The RMS fluctuations
from this conversion for a coupling constant of gaγ = 10−12GeV−1, would be of the order of
7.5× 10−2 µK. The observed power spectrum at high multipoles in the presence of ALPs will
not follow the usual dampening as observed for the case of the CMB-only map (blue line),
but will increase with multipoles (orange line).

effects. Hence, it is mostly the low redshift clusters (z < 3.5), (accompanied by the fact that
they are in large numbers) that mainly contribute to the polarized ALP diffused signal. The
polarization information will be lost as well if the beam size of the instrument is higher than
the angular scale of the cluster on the sky.

The CMB is very smooth at very high multipoles (ℓ > 4000), with low spatial fluc-
tuations. If there is photon-ALP conversion in unresolved clusters, it will create a diffused
background of the ALP signal which will cause additional fluctuations in the CMB at low
angular scales or high multipoles (see Fig.2). For a coupling constant of gaγ = 10−12GeV−1,
the additional RMS fluctuations would be of the order of 7.5× 10−2 µK at 145 GHz. The
effect on the observed power spectrum is seen at high multipoles (ℓ > 4000) where the CMB-
only map shows a dampening of power with increase in multipoles, while the power increases
in the case of the CMB+ALPs map.

The one-halo and two-halo power spectrums at 145 GHz are shown in Fig.3. These
spectrums correspond to a minimum redshift zmin = 1. The grey lines represent the noise
power spectrum Nℓ corresponding to the 140 - 150 GHz band for various detectors (SO,
CMB-S4 and CMB-HD) as these are the bands with higher sensitivities compared to the ones
at higher and lower frequencies.

The increase in one-halo at low multipoles sets the maximum angular scale up to which
ALPs are formed. At high multipoles, the shape of the ALP power spectrum will be in-
dependent of the strength and scale almost as ℓ0 (Dℓ varies as ℓ2) following the one-halo
contribution. Here we have considered a randomly uniform orientation of the magnetic field
at various locations in a cluster. This gives the ℓ2 dependence to Dℓ

αα at high multipoles.
In principle, the variation of individual |αℓ|’s at high multipoles will depend on the mag-

netic field orientation within the cluster. The individual variations due to these |αℓ|’s will
be suppressed as many clusters are integrated along the line of sight. The polarization infor-
mation for a photon travelling from high redshift clusters may get lost due to depolarization
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Figure 3: This figure shows the one-halo Poissonian (solid lines) and two-halo cluster-
ing (dashed lines) components of the ALP background spectrum for a coupling constant
of gaγ = 10−12GeV−1 at 145 GHz. The CMB polarization spectrum DEE

ℓ is shown in a
dash-dotted line and is independent of frequency. Here g12 is dimensionless defined as
g12 = gaγ × 1012GeV. The grey lines represent the noise power spectrum Nℓ correspond-
ing to the beam size for frequency bands in the range 140-150 GHz for various detectors.

from turbulence and stochastic effects in galaxy clusters. Thus, the low redshift clusters will
impact the shape of the background spectrum the most as these are the clusters for which the
polarization signal can be resolved. The ALP background spectrum will be correlated with
the synchrotron background spectrum from galaxy clusters.

4.3 The differences of the ALP power spectrum from other polarized cosmolog-
ical signals.

The lensed CMB polarization power spectrum DEE
ℓ is independent of the frequency of ob-

servation. Also, its dependence on multipoles is well-known from the correlation between
temperature and polarization spectrums. Other effects that induce polarization in the CMB
include reionization and the polarized SZ effect. The reionization power spectrum decreases
with an increase in frequency and also weakens at high multipoles. The polarized SZ power
spectrum increases with multipoles but its strength is weak with fluctuations of the order
of 10−8 K [13, 30]. The ALP power spectrum strength on the other hand increases with
frequency in the radio and microwave regimes of the electromagnetic spectrum. The two-halo
term may dominate at low multipoles (20 < ℓ < 200), while the one-halo term dominates at
high multipoles. The high multipoles can be used to probe the ALP signal from the damped
CMB power spectrum. The spectrum takes into account the ALP signals generated in var-
ious mass clusters, integrated over different redshifts. The individual features of the signal
are thus suppressed and the power spectrum does not show spikes or high oscillations. This
is in contrast to the CMB at low multipoles. For a low zmin, this characteristic may not hold
as resolved and well-luminous clusters may be contributing to the background. For the mass
range 1013 to 7× 1015M⊙, redshift range 1 to 7, and a coupling constant gaγ = 10−12GeV−1,
the one and two-halo contributions are shown in Fig. 3. Here g12 is dimensionless and is de-
fined as g12 ≡ gaγ × 1012GeV. The ALP power spectrum crosses the CMB power spectrum
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at a lower multipole value for higher frequencies and vice versa. These spatial and spectral
variations with respect to other polarized signals can be used to probe the ALP background
spectrum.

4.4 Sources of variation of ALP diffused spectrum due to cosmological factors

The background spectrum owes its origin to the unresolved clusters of various masses at
different redshifts. Also, the coupling and masses of ALPs will determine the amplitude of
this diffused spectrum.

Variation with minimum redshift: With a lower minimum redshift (zmin), the back-
ground power spectrum increases (Fig.4), while it decreases with a higher minimum redshift.
It is mainly the low redshift clusters that contribute to the ALP background signal as these
are large in number and have their polarization signals intact. For the high redshift clusters,
depolarization of the photons may occur as a result of multiple scatterings. With the upcom-
ing improved detectors, we will be able to resolve clusters at lower redshifts (z < 1). The
bright clusters at low redshifts could also significantly affect the shape and strength of the
power spectrum, especially at low multipoles. Their contribution to the background spec-
trum need not be considered and constraints from them can be obtained using the analysis
for resolved clusters (explained in a separate work [15]).

Figure 4: Variation of the ALP power spectrum (solid: one-halo, dashed: two-halo) for
various minimum redshifts zmin. The power spectrum strength decreases with an increase in
the minimum redshift which is considered as the clusters at low redshifts contribute to the
background spectrum. The CMB E-mode spectrum is also plotted for reference

Variation with cluster masses: The strength of the power spectrum also depends on
the range of masses being considered. For different halo mass ranges, the spectrum decreases
with decreasing mass range (Fig.5). The higher cluster masses contribute to low redshifts.
The low cluster masses are less resolved and may contribute even at higher redshifts. The
decrease in background spectrum will depend on the contribution of various mass clusters
to the ALP background spectrum, which can be analyzed by studying the relation between
cluster masses and their electron densities. Since the one-halo power spectrum is about two
orders in magnitude higher than the two-halo contribution at the relevant scales corresponding
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Figure 5: This figure shows the variation of the ALP background spectrum with the minimum
mass considered for the cluster range (Mmin). The spectrum increases with a lower minimum
mass. This is due to the presence of more low mass clutsers as is depicted by the halo mass
function. These low mass clusters contribute significantly to the spectrum, because of our
random modelling of galaxy cluster profiles.

to high multipoles (ℓ > 4000), we will not be plotting the two-halo contributions in any of
the upcoming plots. But its contribution in the calculations will be considered.

Figure 6: This figure shows the variation of ALP background spectrum with the ALP cou-
pling constant gaγ . The power spectrum increases as the coupling strength increases, scaling
as g4aγ The CMB E-mode spectrum is also plotted for reference. Here g12 ≡ gaγ × 1012GeV.

Variation with photon-ALP coupling constant and ALPs masses: The ampli-
tude of the ALP signal is proportional to the square of the coupling constant gaγ (Eq.3.4), so
the power spectrum scales as g4aγ (see Fig. 6). This is expected as the higher the coupling,
the higher will be the distortion signal.

We have considered ALPs of all masses in the range 10−15 − 10−11 eV are being pro-
duced. The ALP background spectrum will also depend on the ALP masses that may exist
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in nature. If ALPs of masses only in a certain subrange of the mass range considered, exist
in nature, the power spectrum shall decrease. This decrease will be greater if only high mass
ALPs exist (10−13 − 10−11 eV), while lower if low mass ALPs exist (10−15 − 10−13 eV). This
is because the single cluster distortion spectrums αℓ’s are generally higher for low mass ALPs
which are formed in the outer regions of clusters with low electron density and high conversion
probabilities (see Eq.3.4).

For a variation in coupling constant with ALP mass, signals would be generated in
spherical shells in a spherically symmetric cluster. These shells would be visible as different-
sized disks, with a larger disk corresponding to low mass ALPs. The signals from these
different disks will then need to be summed up to obtain the net ALP distortion signal.

4.5 Sources of variation in the ALP Power Spectrum due to cluster astrophysics

The ALP background spectrum will depend on the single cluster power spectrums (αℓ’s),
which depend on the astrophysics of the galaxy clusters via their electron density and magnetic
field profiles. For all clusters considered, the profile parameters have been assigned random
values within the allowed range. In principle, these would depend on the masses of clusters
and their evolution at different redshifts.

Figure 7: (a) Variation of the ALP power spectrum with electron density strength ne. The
power spectrum strength varies inversely with the square of electron density (Dαα

ℓ ∝ n−2
e ),

when all mass ALPs are formed.(b) Variation of the ALP power spectrum with Magnetic
field magnitude |B|. The power spectrum strength varies proportionally with the quadruple
of electron density (Dαα

ℓ ∝ |B|4). The CMB E-mode spectrum is also plotted for reference.

The power spectrum depends on the electron density profiles, magnetic field profiles, the
masses of galaxy clusters, and the dependence of electron density on the mass density of galaxy
clusters. The effect of change in profiles will be similar to the dependence followed by |αℓ|2,
as expected. If ALPs of masses in only a sub-range of what we have considered (10−15−10−11

eV) are formed, the dependence of the ALP background spectrum on these profile parameters
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can change, especially in the case of high mass ALPs, following the variation of |αℓ|2. The
variation of |αℓ|2 with the mass of ALPs has been considered in a separate work [15].

Here we consider the variation of ALP diffused spectrum with a change in electron
density and magnetic field strengths. With the mass range of 10−15− 10−11 eV, ALPs can be
formed at every location for most of the galaxy clusters. Since the probability of conversion
goes as P(γ → a) ∝ 1

|∇ne| , the signal strength at every location within the cluster will vary as
∝ n−1

e . Thus the background power spectrum shall vary as Dℓ ∝ n−2
e (see Fig. 7). Since the

conversion probability P(γ → a) ∝ |B|2, with ALPs being formed at every location, the ALP
background power spectrum will vary as Dℓ ∝ |B|4 as shown in Fig.7. A higher magnetic
field leads to a higher probability of conversion at all locations in the galaxy cluster.

5 Power spectrum estimation from sky maps

The presence of one realization of the various signals requires us to define an estimator that
takes into account the power spectrum for different components. The ALP power spectrum
can be estimated from the observed CMB power spectrum at the map level. So, we find the
following estimator for any signal power spectrum using the maximum likelihood method [1]
(explained in Appendix C):

C̃i
ℓ = B−2

ℓ

[
1

2ℓ+ 1

ℓ∑
m=−ℓ

|aobsℓm |2 −Nℓ

]
−
∑
j ̸=i

Cj
ℓ. (5.1)

The covariance of an estimator takes into account the limited information from an es-
timator at different angular scales due to the limited number of multipole modes (2ℓ + 1)
from a sky map. Also, it increases when a partial sky region is considered, as in our case of
considering cluster regions. It is given as:

Cov(C̃ℓ) = ⟨C2
ℓ ⟩ − ⟨Cℓ⟩2 =

2

(2ℓ+ 1)fsky
[
∑
i

Ci
ℓ +B−2

ℓ Nℓ]
2. (5.2)

The deviations in the CMB power spectrum due to the ALP distortion signal can be probed
against the covariance for the null map spectrum to obtain bounds on the ALP background
spectrum. The derivation of the estimator and its covariance are provided in Appendix C.

For a weighted combination of different frequency maps smoothed to common beam
resolution, (see [31]) applied in various cleaning techniques such as ILC, the estimator is
given as:

C̃i
ℓ = B−2

ℓ

[
1

2ℓ+ 1
(

l∑
m=−l

∑
ν

∑
ν′

wνwν′a
obs ∗
ℓm,νa

obs
ℓm,ν′)−

∑
ν

w2
νN

ν
ℓ

]
−
∑
j̸=i

∑
ν

∑
ν′

wνwν′⟨aj ∗ℓm,νa
j
ℓm,ν′⟩.

(5.3)
Here we have considered the independence of various components.

6 Impact of foregrounds on the ALP signal

6.1 ALP background as compared to galactic foregrounds

The presence of foregrounds such as the thermal dust and synchrotron emission from the
galactic plane impact the CMB polarization power spectrum substantially at low multipoles.
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Their effect can be mitigated by masking the galactic plane and performing a partial sky
observation. Masking is performed along the galactic plane to reduce the effect of foregrounds.
This leads to a partial sky observation at high latitudes. The weak signal from the polarized
SZ effect will be negligible of the order of tens of nano-Kelvins, hence we can neglect it [13, 30].

The thermal dust emission peaks at infrared wavelengths, hence it affects the power
spectrum at high frequencies (200 GHz and above), while the synchrotron emission peaks at
radio frequencies and its impact is maximum at low frequencies (below 70 GHz) (see Fig.8).
At frequencies 90 - 170 GHz, the effect of the foregrounds is minimal.

Synchrotron emission weakens with an increase in frequency, while dust increases with
frequencies in the microwave and radio regions of the EM spectrum (Fig.8). ALP diffused
spectrum increases with frequencies, following a Dℓ ∝ ν2Icmb(ν)

2 dependence, as compared
to dust which follows a modified black-body spectrum. Both the galactic thermal dust and
synchrotron emissions influence the power spectrum significantly at low multipoles, but at
high multipoles, they weaken out, while the ALP diffused spectrum increases with multipoles
following a Dℓ ∝ ℓ2 dependence. These spatial and spectral variations of the ALP signal
as compared to CMB and foregrounds can be used to detect the diffused ALP background
spectrum.

Figure 8: We show the spatial variation of the ALP background power spectrum
(gaγ = 10−12GeV−1) at different multipoles (ℓ) for various CMB-S4 frequency bands, as com-
pared to CMB, galactic dust and galactic synchrotron emission. The CMB stays independent
of frequency, while synchrotron weakens with an increase in frequency. Dust and ALP back-
ground spectrums increase with frequency, but they have a different multipole dependence,
with dust power weakening at high multipoles, as opposed to ALP spectrum which increases
at high multipoles. Also, dust follows the modified black-body model, while ALP spectrum
simply scales as the squared of frequency.
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6.2 SNR for different CMB surveys

The galaxy clusters are generated on the masked sky map in the unmasked regions. The sky
fraction being observed depends on the detector, with sky fraction fsky = 0.4 for SO, while
0.5 for CMB-S4 and CMB-HD. The ALP distortion signal is simulated in these clusters.
Beam smearing (denoted by Bℓ) occurs due to the resolution of the instrument and depends
on the point source function. The combined map is then smeared with a Gaussian beam
and instrument noise is added. The instrument noise for upcoming CMB surveys are taken
assuming a Gaussian distribution.

We check the detectability of the diffused spectrum using current and future detectors.
The CAMB [27] is used to generate the CMB power spectrum and map. The SNR is calculated
taking into account the contributions from the optimum multipole range, using both the
polarized maps for various frequencies of observation. Thus, the squared signal-to-noise ratio
(SNR, denoted by ρ) for the distortion signal power spectrum is found by summing over the
contributions from Q and U polarized maps for the multipole range ℓmin to ℓmax. We use
the values of ℓmin = 1000 and ℓmax corresponding to the beam resolution (multipole value at
which B2

ℓ = 1/e) to obtain the SNR:

ρ2ν =
∑

p=Q,U

ℓmax∑
ℓmin

(Cp,ν
ℓ,1h +Cp,ν

ℓ,2h)
2

2
(2ℓ+1)fsky

(Cp
ℓ,cmb +B−2

ℓ,νN
p,ν
ℓ )2

, (6.1)

where Cℓ and Nℓ are the true signal and noise power spectrums respectively.
Here signal corresponds to the sum of one-halo and two-halo contributions, while the

denominator is the covariance on the power spectrum of the observed sky. This is explained
in Sec. 5. The 2ℓ+ 1 factor accounts for the number of modes for every multipole ℓ.

Figure 9: This figure shows the SNR obtained at various frequency bands for different
CMB detectors, corresponding to a coupling constant of gaγ = 10−12GeV−1. The maxima
for each detector is obtained for frequencies around 140 - 150 GHz, due to low beam size and
instrumental noise. The presence of foregrounds reduces the SNR, but their impact is minute
at frequencies 95 and 145 GHz, due to the weakening of the foregrounds in this frequency
range.

Upcoming experiments such as the CMB-S4 and CMB-HD could be particularly useful
in estimating this power spectrum with a lower beam and instrument noise. With regards to
the current detectors, a coupling strength of 10−12GeV−1 with SO [4] configuration generates
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a maximum SNR of ∼ 0.52 (Fig. 9). The SNR achieves the highest value of 4.36 at the 145
GHz band in the presence of foregrounds for CMB-S4 [5], due to low noise and high resolution.
A SNR of ∼ 93.87 will be achievable with CMB-HD [6] in the 150 GHz band. The presence of
galactic foregrounds reduce the SNR, especially for low (impacted by synchrotron) and high
frequency channels (impacted by dust). The bands from 90 to 170 GHz face the minimum
impact as both dust and synchrotron weaken in this range of frequencies. The SNR varies as
g4aγ with the coupling constant.

7 ILC to extract axion signal from multi-frequency maps

The ALP signal, contaminated with foregrounds and noise, accompanied by beam smearing,
is difficult to extract. The spectral shape of the ALP background signal can be used to clean
contaminants like CMB and foregrounds. The standard Internal Linear Combination (ILC)
may be used to obtain a clean map as it minimizes the variance of the map and extracts a
given spectrum. The higher the number of frequencies, accompanied with a lower beam size,
the better the results obtained after ILC.

The ILC [18, 19] is applied to extract the ALP-distortion signal. The method combines
maps from different frequencies and assigns weights to them depending on the spectrum to be
obtained (Fig. 8). The weighted sum is then the ILC map with the required spectrum. The
weights are obtained using the covariance matrix which combines data at different frequencies.
The weight matrix for standard ILC is given as:

wilc = fTaγC
−1
s (fTaγC

−1
s faγ)

−1. (7.1)

Here faγ is the ALP distortion spectrum dependence on the frequency with faγ ∝ νIcmb(ν).
The ILC cleaned map is obtained as a weighted linear combination of the frequency maps
(Sν):

Silc =
∑
ν

wν
ilcSν . (7.2)

The distortion signal is simulated in galaxy clusters at different frequencies with a con-
stant coupling constant (gaγ = 1× 10−12GeV−1 here) for all clusters. The signal is then
contaminated with CMB and galactic foregrounds. We have used PySM [32] to generate fore-
ground maps. We use the synchrotron model "s-3" model which includes a curved index that
flattens or steepens with frequency and dust model "d-3", which takes into account the spatial
variation of spectral index on degree scales. The index is drawn from a Gaussian distribution.
The various frequency maps are smoothed to a common beam resolution, given by the highest
beam size among various frequency bands. The bands above 200 GHz can efficiently clean
thermal dust contribution in the cleaned map. The CMB is frequency-independent, while the
synchrotron emission is very weak above a frequency of 70 GHz. This lets us use just four
bands with a higher beam resolution at frequencies greater than 90 GHz. Masking is done in
galactic regions. The ALP signal dominates at high multipoles, owing to the one-halo term,
while the foregrounds and CMB dampen out. It is the multipole range around ℓ = 3000
that can provide the best constraints on the ALP background spectrum, because at very
high multipoles the noise takes over. Using ILC, we get the following SNRs for the various
detectors for the ALP diffused spectrum with zmin = 1: SO - 0.24; CMB-S4 - 1.20; CMB-HD
- 79.27. This SNR is the best we can achieve using ILC when the foregrounds are not well
known. If they are well modelled, we can use template matching to achieve a higher SNR at
the matched frequency bands corresponding to 140-150 GHz.
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8 Constraining the ALP coupling constant using ILC

We perform the Bayesian estimation of the photon-ALP coupling constant from diffused ALP
spectrum. The background spectrum scales as g4aγ (Fig.6). Since the electron density and
magnetic field information for the unresolved clusters is lacking, and from Sec.4.5, we know
that the background spectrum scales as n−2

e and |B|4 (Fig.7), we thus obtain bounds on
the quantity which we will call the modified coupling constant: g2aγ |B|2/ne. The fiducial
values we have used for the electron density and magnetic field strength parameters are:
n0 = 10−3 cm−3 and B0 = 0.1µG. We scale the modified coupling constant with respect to
this choice of values to obtain bounds on the scaled quantity given as:

A =
( gaγ
10−12GeV−1

)2( |B|
0.1µG

)2 ( ne
10−3 cm−3

)−1
. (8.1)

Since the ALP background spectrum depends significantly on the minimum redshift
zmin and minimum cluster mass Mmin, we obtain constraints on the modified constant for
zmin = 0.5 and zmin = 1. For a given zmin, we show the bounds for different choices of Mmin.
We vary A with the upper bound set by the values: gaγ = 10−11GeV−1, n0 = 0.5× 10−3 cm−3

and B0 = 0.5µG. We combine the posteriors from different mass ranges to obtain the bounds
for a given choice of zmin.

We compare the bounds on modified coupling constant obtained using ILC for different
CMB surveys: SO [4], CMB-S4 [5] and CMB-HD [6]. We simulate the fiducial maps at various
frequencies without ALP signal (gaγ = 0). We obtain the weights for these maps using Eq.7.1
and linearly combine them with their respective weights to obtain the ILC map. This method
extracts the ALP signal, while minimizing the variance of the ILC map. We obtain the power
spectrum of this map which gives us the term

∑ℓ
m=−ℓ |aobslm |2 in Eq.5.1 at different multipoles.

Since noise for different frequency maps is not correlated, we obtain the term Nℓ in Eq.5.1
by combining weighted noise maps at various frequencies. Also, we obtain the mean power
spectrum of different realizations of the combined fiducial ILC map (without ALP signal) by
combining the fiducial maps at different frequencies (based on their ILC weights) to obtain
the term Ccmb

ℓ +Cfg
ℓ . These give us an estimation of the ALP background spectrum Cαα

ℓ .
The beam Bℓ corresponds to the maximum beam size among the various frequency bands, as
all maps are smoothed with the highest beam size before ILC weights are obtained.

We use 50% partial sky to obtain bounds using CMB-S4 configuration, with frequency
bands 95, 145, 220 and 270 GHz with the beam 2.2 arcmin corresponding to 95 GHz band.
The bounds are stronger in case of a lower Mmin as can be seen in Fig.10. In principle
the improvement when using a lower Mmin will depend on the relation between mass and
electron density of low mass galaxy clusters, which will determine their contribution to the
ALP background.

The constraints are also tighter in the case of zmin = 0.5 as compared to zmin = 1
(Fig.10), as expected with low redshift clusters contributing to the background. Combining
the posteriors for different mass ranges, we obtain the bounds on modified coupling con-
stant using ILC with CMB-S4 configuration up to 95% confidence interval at A < 1.116 for
zmin = 0.5, while A < 1.254 for zmin = 1.

For SO bounds, we use 40% sky fraction. The frequency bands 93, 145, 225, 280 GHz are
used with the common beam 2.2 arcmin corresponding to the 93 GHz band. The constraints
are shown in Fig.11. We obtain the following bounds using ILC, up to 95% confidence interval:
A < 3.178 for zmin = 0.5; A < 3.724 for zmin = 1.
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Figure 10: Constraints from CMB-S4 using ILC for zmin = 0.5 and zmin = 1

Figure 11: Constraints from SO using ILC for zmin = 0.5 and zmin = 1

CMB-HD will have a partial sky fraction of 50%. We use the 90, 150, 220 and 280 GHz
frequency bands to obtain bounds on the modified coupling constant with the common beam
resolution of 0.42 arcmin, corresponding to the band 90 GHz. The results are shown in Fig.12.
Using ILC, the bounds on modified coupling constant upto 95% confidence interval (C.I.) are:
A < 0.115 for zmin = 0.5; A < 0.131 for zmin = 1. CMB-HD will provide bounds significantly
better than CMB-S4 and SO on the modified coupling constant due to a higher beam res-
olution and improved sensitivity. The constraints obtained using the template matching of
foregrounds are discussed in Sec.D.

The constraints on photon-ALP coupling constant gaγ can be gauged using the con-
straints on the modified coupling constant A. We convert the constraints on A to the con-
straints on gaγ using the fiducial values of the magnetic field and electron densities used to
obtain A, i.e. n0 = 10−3 cm−3 and B0 = 0.1µG. These are plotted in Fig.13 with the hor-
izontal lines representing the 95% C.I. bounds for various detectors, with the allowed coupling
strengths shaded. We expect an upper bound on ALP coupling strength of gaγ < 1.929× 10−12GeV−1

using SO and of about gaγ < 1.119× 10−12GeV−1 using CMB-S4 configurations for zmin = 1.
ILC using CMB-HD can strongly constrain the coupling to gaγ < 4.254× 10−13GeV−1.
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Figure 12: Converted ALP coupling constant constraints using ILC for various detectors
with zmin = 0.5 and zmin = 1

Figure 13: Converted bounds on ALP coupling constant for various surveys with zmin = 0.5
and zmin = 1. Also the

The constraints will also depend on the ALP masses that are being considered. For higher
mass ALPs (10−13−10−11 eV), the constraints will be weaker as compared to low mass ALPs
(10−15 − 10−13 eV). Since we have considered ALPs of masses in the range 10−15 − 10−11

eV, we have obtained the strongest constraints for the configuration using the ALP diffused
spectrum.

9 Conclusion

The galaxy clusters are the largest visible gravitationally bound structures. If ALPs exist in
the universe and weakly interact with photons, the CMB will bear the polarized distortion
spectrum from these clusters. The ALP signal from resolved clusters can be independently
studied[10, 15, 16], while the unresolved ones would create a polarized ALP background signal.

This background signal will depend on the cluster mass distribution at different redshifts,
which are biased tracers of the dark matter halos. This is taken into account using the
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distribution of these halos and the correlation between different halos. The background will
be an integrated effect of the signals from individual clusters of various masses at different
redshifts. This diffused spectrum can be modelled using the distribution of halos of various
masses at different redshifts. The two-halo or clustering component is low at high multipoles,
but may dominate over the one-halo term or the Poissonian component for low ones (20 to
200), where it is itself dominated by the CMB and is difficult to probe. The one-halo or
Poissonian component of the ALP power spectrum dominates at high multipoles and can be
probed using the upcoming high resolution experiments (CMB-S4, CMB-HD) with low noise.
The ALP background spectrum will depend on the astrophysical aspects like the electron
density and magnetic field profiles in clusters (see Figs. 7). Also, it will increase with ALP
coupling constant (∝ g4aγ) (see Fig. 6) and the frequency of observation (∝ ν2Icmb(ν)

2)(see
Fig. 8).

The background spectrum will increase as we lower zmin, as low redshift clusters con-
tribute significantly to the background spectrum (Fig. 4). With the upcoming experiments,
clusters up to redshift z = 1 will be well resolvable, thus zmin = 1 is a conservative choice for
the estimation of the ALP background spectrum. The power spectrum is almost independent
of the choice of maximum redshift zmax after a certain redshift (∼ 3.5) as the clusters at very
high redshifts contribute negligibly to the ALP background spectrum (Appendix B). The
cluster mass range that will contribute to the background will also determine the strength
of the diffused power spectrum (Fig.5). The ALP masses that may exist will also affect the
background spectrum, with a weaker power spectrum for high mass ALPs.

For a coupling constant of 10−12GeV and zmin = 1, with randomly generated cluster
profiles for cluster masses 1013 − 7× 1015M⊙, the SNR is 4.36 in the 145 GHz band of CMB-
S4, while it is around 93.87 in the 150 GHz band of CMB-HD (Fig. 9). Also, such a diffused
signal would lead to RMS fluctuations of the order of 7.5× 10−2 µK for an ALP coupling
constant of gaγ = 10−12GeV−1 at 145 GHz. The frequency channels 90 - 160 GHz provide
the best SNR for the ALP signal, owing to a decrease in foregrounds contamination and
improved beam resolution.

Techniques such as ILC (see Sec.7) can be used to mitigate the effect of foregrounds
and CMB by using the spectral variation of the ALP signal (Fig.8). Using ILC for differ-
ent detectors, we obtain the following bounds on the modified coupling constant (see Sec.8)-
SO: A < 3.724; CMB-S4: A < 1.254; CMB-HD: A < 0.181 for the case of zmin = 1. The
converted constraints on the coupling constant gaγ can be gauged using the fiducial elec-
tron density and magnetic field strength values. The conversion provides the bounds of
gaγ < 1.783× 10−12GeV−1 with SO and gaγ < 1.056× 10−12GeV−1 with CMB-S4 configura-
tion for zmin = 0.5. CMB-HD can provide much tighter bounds of gaγ < 3.912× 10−13GeV−1.
For zmin = 1, the bounds go as: SO - gaγ < 1.929× 10−12GeV−1 ; CMB-S4 - gaγ < 1.119× 10−12GeV−1;
and CMB-HD - gaγ < 4.254× 10−13GeV−1.

The template matching of foregrounds can tighten the constraints on coupling constant
as shown in Appendix D. The shape of the foregrounds power spectrum and their violation of
statistical isotropy can be used to reduce further contamination of foregrounds. This can help
in achieving a higher SNR and better constraints. The galaxy clusters, with their intracluster
medium (ICM) and galaxies make sites for numerous processes such as the SZ effects, lensing,
CIB, synchrotron, etc. The ALP power spectrum can also be cross-correlated with diffused
spectrums from these phenomena and the large scale structure to obtain better constraints
on the ALP coupling constant and masses.

In this analysis, we have neglected the effect of evolution of galaxy clusters with redshift.
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Our results depend on the consideration of random electron density and magnetic field profiles
for the clusters. Due to the low redshift clusters being way more than the high redshift clusters,
most of the contribution to the calculated background comes from low redshift clusters which
have higher halo mass function values and for which the polarization signal remains intact.
Thus, a study of the evolution of the cluster profiles with masses at different redshifts can
provide bounds on this diffused spectrum. Not only this, being able to connect the masses
of galaxy clusters and their electron density profiles would further help in constraining the
photon-ALP coupling constant. This can be done (as shown in the case of SZ effect by [33])
using hydrodynamical simulations like Romulus [34], SIMBA [35], etc.

Probing the high multipoles with improved detectors will help in obtaining bounds on
this diffused signal in the future. The background ALP sky can thus, in addition to probing
the signal from resolved clusters, act as an independent way of obtaining constraints on the
ALP coupling constant, by studying its spectral and spatial variation over a wide range of
frequencies and multipoles.

A The ALP distortion power spectrum for a single cluster |αℓ|2

. The photon-ALP conversion is confined to galaxy clusters which occupy small angular scales
on the sky. For a particular ALP mass range, the signal is formed in a spherical shell around
the cluster center for a spherically symmetric galaxy cluster. These shells are projected as a
disk in 2d. This signal disk increases the ALP power spectrum at low angular scales. It is
the higher multipoles that contain ALP signatures in the CMB spectrum as multipoles vary
inversely with the angular scales ∆θ ∝ 180o

ℓ .
The αℓ’s are the coefficients obtained from the spherical harmonics expansion of the

polarization fluctuations caused due to the photon-ALP conversion. The |αℓ|2 is the power
spectrum of these polarization fluctuations due to the ALP distortion signal. The estimation
of this power spectrum due to temperature or polarization fluctuations in a map is explained
in Appendix C.

The astrophysics of galaxy clusters affect their electron density and magnetic field pro-
files, and hence the ALP distortion spectrum |αℓ|2. For clusters with stochastic and turbulent
electron density and magnetic field profiles, the polarization information of the ALP distor-
tion will be lost as depolarization will be caused due to multiple conversions. For such cases,
hydrodynamical simulations or observations can be used that fit the data well. We consider
the case where this turbulence is negligible and model the electron density and magnetic
profiles using smooth profiles, which fit the profiles for resolved clusters well.

The electron densities can be obtained via X-ray emission and inverse-compton (Sunyaev-
Zeldovich) effect in galaxy clusters. The electron density profile used is a modified beta model
that varies radially and takes into account the slope at large radii, a cusp core that follows a
power law, and the higher electron density in the inner regions [36, 37]:

n2e = Z

[
n20

(r/rc1)
−α

(1 + r2/r2c1)
3β−α/2

1

(1 + rγ/rγs )ϵ/γ
+

n202
(1 + r2/r2c2)

3β2

]
. (A.1)

The photon-ALP resonant conversion depends on the transverse magnetic field along the line
of sight. The transverse magnetic field profile can be modelled using synchrotron emission by
studying the galaxy cluster at radio frequencies. We consider a magnetic field profile (that
models well for clusters at low redshifts) whose strength simply scales with distance from the
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cluster center [38–40]:
B(r) = B0r

−s. (A.2)

The contribution to the Q and U polarization stokes modes depends on the magnetic field
direction at the conversion location. The magnetic field direction has been assumed to be
uniformly randomly oriented. The magnetic field coherence scale is assumed to be greater
than the beam of the instrument, otherwise the signal will be depolarized by the turbulent
fields. The power spectrum |αℓ|2 is that of the combined power in the two maps for which
the polarized intensity Ipol is given as:

Ipol =
√

I2Q + I2U. (A.3)

(a) Variation in |αℓ|2 with frequency of obser-
vation (∝ ν2)

(b) Variation in |αℓ|2 with coupling constant
(∝ gaγ

4)

Figure 14: Variation in |αℓ|2 with frequency (in the microwave and radio spectrum) and
ALP coupling constant. The CMB polarization power spectrum at small scales (around the
cluster region) is also plotted.

The power spectrum |αℓ|2 will also vary for the mass range of ALPs being considered.
ALPs of masses in a particular sub-range of the mass range 10−15−10−11 eV may be assumed
to be forming in the galaxy clusters if the resonant condition is satisfied (ma = mγ). For our
analysis, we assume that if ALPs exist, all ALPs of masses in the range 10−15−10−11 eV will
be produced during conversion. Also, we assign a uniform coupling constant of 10−12GeV−1

for all ALP masses in this range.
The features of the ALP power spectrum for a single cluster |αℓ|2 depend on the host

cluster and its properties that characterize the ALP distortion signal. The variation of the
ALP power spectrum from a single cluster |αℓ|2 with the photon-ALP coupling constant and
the frequency of observation is shown in Fig. 14. The ALP distortion signal scales as g2a,γ and
νIcmb(ν) (Eq. 3.4) for frequencies of observation in the microwave and radio bands. Thus,
the power spectrum |αℓ|2 varies as g4a,γ and ν2Icmb(ν)

2, where Icmb(ν) is the Planck black-
body function (see Eq.3.7). Also shown in Fig.14 is the CMB power spectrum at small scales
around the cluster region.

The probability of conversion at a location is inversely proportional to the gradient of
electron density. An increase in the electron density (ne ∝ n0) (Fig. 15a) reduces the ALP
power spectrum strength. The electron density steepness parameter(β1) and scaling radius
(rs) control the rate at which the electron density varies with distance from cluster center. The
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(a) Variation in |αℓ|2 with Electron density
strength

(b) Variation in |αℓ|2 with Electron density
steepening

(c) Variation in |αℓ|2 with Scaling radius (d) Variation in |αℓ|2 with Magnetic field
steepening

Figure 15: Astrophysical variation in |αℓ|2 due to electron density (15a, 15b, 15c) and
magnetic field 15d profiles. The CMB polarization power spectrum at low angular scales
(around the cluster region) is also plotted.

spectrum increases at high multipoles with decreasing scaling radius and increasing steepness
parameter as the electron density reduces in the outer regions of the cluster (Fig. 15b and
15c). Also, the spectrum is directly proportional to the square of the magnetic field. So, a
steep decrease in magnetic field (parameterized by "s") leads to a weaker spectrum as the
magnetic field reduces in the outer regions of the cluster where the conversion probability is
high (Fig. 15d).

The effect of change in profiles on |αℓ|2 is dominated by the the effect in the production
of low mass ALPs. This is because the strength of the ALP distortion signal is generally
high for low mass ALPs, owing to higher conversion probabilities in the outer regions of the
cluster with low electron densities (∝ 1

|∇ne(r)|). This, in turn shows up in the effect on |α|2.
If ALPs of masses in only a sub-range of what we have considered (10−15 − 10−11 eV) are
formed, the dependence of the ALP background spectrum on these profile parameters can
change, especially in the case of formation of only high mass ALPs. This is considered in a
separate work [15].

The power spectrum |αℓ|2 also depends on the redshift of the host cluster, scaling pro-
portionally to 1+z, where z is the redshift of the cluster. This happens as the conversion
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depends on the photon frequency at the conversion location (which is within the cluster) and
this photon then gets cosmologically redshifted on its travel from the cluster to us due to
Hubble expansion [1].

The shape of |αℓ|2’s at high multipoles depends on the magnetic field orientation that
characterizes the polarization of the ALP signal. If the magnetic field orientation is uniformly
random, as in our analysis, |αℓ|2 scales as ℓ0 (Dℓ as ℓ2) at high multipoles.

Figure 16: Variation of the ALP power spectrum (solid: one-halo, dashed: two-halo) for
various maximum redshifts. The plots are overlapping due to nearly the same strength of
the signal with a change in the maximum redshift. This points towards the low contribution
to the power spectrum from high redshifts. The CMB E-mode spectrum is also plotted for
reference.

B ALP background spectrum Variation with maximum redshift

In principle, clusters from very high redshifts will contribute to the diffused spectrum. But this
contribution will be very low and the power spectrum is nearly independent of the maximum
redshift zmax up to which we consider the distribution of clusters as can be seen in Fig. 16
as the spectrums at various redshifts overlap. The halo mass function decreases significantly
with increasing redshift and hence, the number of clusters contributing at very high redshifts
(zmax > 3.5) to the one and two-halo terms decreases significantly. Also, as a polarized
photon travels from high redshifts, it may get depolarized due to multiple scatterings in
galaxy clusters. Hence, it is mainly the polarized distortion signals from low redshift clusters
that remain intact and contribute to the background ALP spectrum. This explains the choice
of zmax of 7 for our analysis as it reduces computation time.

C Power spectrum estimation from a CMB map

We follow the derivation given in [1, 41]. The fluctuations in the CMB or in any signal
(foregrounds, ALP distortion, SZ effect, etc.) can be expanded in terms of spherical harmonics
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as:

∆net =
∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓmYℓm(θ, ϕ). (C.1)

The power spectrum is given as:

⟨anet∗ℓm anetℓ′m′⟩ = Cnet
ℓ δℓℓ′δmm′ . (C.2)

Here we consider the CMB primordial fluctuations and fluctuations from ALP conversion and
foregrounds:

∆net = ∆cmb +∆ax +∆fg. (C.3)

The net power spectrum is given as the ensemble average (with i and j running over the
components):

Cnet
ℓ = ⟨aax∗ℓm aaxℓm⟩ =

∑
j

∑
i

⟨ai∗ℓma
j
ℓm⟩ = ⟨acmb∗

ℓm acmb
ℓm ⟩+ ⟨aax∗ℓm aaxℓm⟩+ ⟨afg∗ℓmafgℓm⟩. (C.4)

Here we have considered the signals to be independent of each other and neglected the cross
terms.

The finite beam resolution and instrumental noise of the experiment change the spherical
harmonic coefficient as:

aobsℓm = Bℓ(a
cmb
ℓm + aaxℓm + afgℓm) + ηℓm, (C.5)

where Bℓ = exp(−ℓ(ℓ+ 1)θ2beam/2) and ηℓm are the fourier coefficients introduced due
to instrumental noise.

The coefficients aiℓms are assumed to follow a Gaussian distribution with mean zero and
variance given by the corresponding Ci

ℓs, i.e.,

P(aiℓm|Ci
ℓ) =

1√
2πCi

ℓ

exp

(
−
|aiℓm|2

2Ci
ℓ

)
. (C.6)

The noise power spectrum is obtained as:

⟨ηℓm ∗ ηℓ′m′⟩ = Ni
ℓδℓℓ′δmm′ . (C.7)

The aobsℓm s are assumed to follow a Gaussian distribution with mean Bℓ
∑

i a
i
ℓm and vari-

ance Nℓ given as:

P(aobsℓm |{aiℓm}) =
1√
2πNℓ

exp

(
−
|aobsℓm −

∑
iBℓa

i
ℓm|2

2Nℓ

)
. (C.8)

Using Baye’s theorem, we have:

P(aobsℓm |{Ci
ℓ}) =

ℓ∏
m=−ℓ

∫ ∫ ∫ ∏
i

d aiℓmP(a
obs
ℓm |aiℓm)P(aiℓm|Ci

ℓ),

= [2π(B2
ℓ

∑
i

Ci
ℓ +Nℓ)]

−(2ℓ+1)/2exp

[
ℓ∑

m=−ℓ

−
|aobsℓm |2

2(
∑

iC
i
ℓB

2
ℓ +Nℓ)

]
.

(C.9)

We find the maximum likelihood estimator for the power spectrum of the component i
by differentiating with respect to Cax

ℓ and setting equal to zero. It can be written as:

C̃i
ℓ = B−2

ℓ

[
1

2ℓ+ 1

ℓ∑
m=−ℓ

|aobsℓm |2 −Nℓ

]
−
∑
j ̸=i

Cj
ℓ. (C.10)
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D Constraints on ALP coupling constant using template matching of fore-
grounds

Figure 17: Constraints from CMB-S4 using Template Matching at 145 GHz for zmin = 0.5
and zmin = 1

Template matching assumes the scaling of foregrounds power spectrums with frequen-
cies and can be used to obtain stronger bounds on the modified coupling constant using a
lower beam size. We perform template matching to look for the improvement in constraints.
Even after masking, the effect of these foregrounds remains even at high latitudes. Thus, a

Figure 18: Constraints from SO using Template Matching at 145 GHz for zmin = 0.5 and
zmin = 1

modelling of these foregrounds is required to account for their impact on the power spectrum.
These are modelled using high frequencies (ν > 200 GHz) for modelling of dust, while low
frequencies (ν < 70 GHz) for synchrotron emission.

We perform a template matching of foregrounds for CMB-S4 configuration to look for
any improvement on the bounds on modified coupling constant. We assume we know the
scaling of galactic synchrotron and dust emissions with frequencies in the microwave and
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Figure 19: Constraints from CMB-HD using Template Matching at 150 GHz for zmin = 0.5
and zmin = 1

radio regions of the EM spectra. To model the "s-3" synchrotron model used in our mock
data, we use the following equation to account for its curved index [32]:

Csyn
ℓ (ν) = Aℓ

(
ν

ν0

)2βs+2Cln(ν/νc)

. (D.1)

The curved spectral index shows a steepening or flattening with frequency above the
frequency νc. The fiducial values used are C = -0.052, νc = 23 GHz and βs = -3.

The modified black-body function with βd = 1.58 is used to fit the dust model "d-3":

(Cℓ)dust = Aℓν
2βdB2

ν(T). (D.2)

By modelling the foreground emissions at low (for synchrotron) and high (for dust)
frequencies, the scaling with frequency can be used to obtain the contribution of synchrotron
and dust at the frequencies 90 - 160 GHz. This method assumes the scaling of foregrounds
with frequencies for multipole range ℓ > ℓmax corresponding to the beam of the instrument
at the matched frequency of 145 GHz for CMB-S4 and SO, while 150 GHz for CMB-HD.

We find the fiducial (non-ALPs) contribution of CMB and foregrounds at the required
frequency by making different map realizations without ALP signal and calculating the mean
power spectrum of those maps. This enables us to scale the ALP diffused spectrum at
the matched frequency with respect to the residual of the mock data spectrum and fiducial
spectrum. This scaling is compared against the covariance at that frequency (Eq.5.2) to
obtain bounds on the modified ALP coupling constant.

The constraints obtained on the modified ALP coupling constant A are shown for various
CMB surveys for minimum redshifts zmin = 0.5 and zmin = 1 in Figs. 17 (CMB-S4: A <
0.654 with zmin = 0.5 and A < 0.734 with zmin = 1 ), 18 (SO: A < 2.005 with zmin = 0.5
and A < 2.325 with zmin = 1 ) and 19 (CMB-HD: A < 0.115 with zmin = 0.5 and A < 0.131
with zmin = 1 ). The constraints are expected with CMB-HD giving the tightest constraints.
The constraints from template matching are stronger, as compared to ILC for all the three
detectors (SO, CMB-S4 and CMB-HD).

The converted constraints (95% C.I.) on ALP coupling constant gaγ using template
matching are shown in Fig.20. With template matching, we will be able to get the following
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bounds with zmin = 0.5: SO - gaγ < 1.416× 10−12GeV−1 ; CMB-S4 - gaγ < 8.087× 10−13GeV−1;
CMB-HD - gaγ < 3.391× 10−13GeV−1, while the bounds with zmin = 1 go as: SO - gaγ <
1.525×10−12 GeV−1 ; CMB-S4 - gaγ < 8.567× 10−13GeV−1; CMB-HD - gaγ < 3.619× 10−13GeV−1.

Figure 20: Converted ALP coupling constant constraints for various detectors using Tem-
plate Matching for zmin = 0.5 and zmin = 1

Both template matching and ILC assume the shape of the foregrounds power spectrum
for ℓ > ℓmax, but since the beam size is larger for ILC (lower ℓmax), template matching provides
better bounds with a higher ℓmax corresponding to a lower beam size at the matched frequency
for all detectors, but is less reliable as the modelling of foregrounds at different frequencies
may not be precise leading to bias in the constraints.
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