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In the gravitational-wave analysis of pulsar-timing-array datasets, parameter estimation is usu-
ally performed using Markov Chain Monte Carlo methods to explore posterior probability densities.
We introduce an alternative procedure that relies instead on stochastic gradient-descent Bayesian
variational inference, whereby we obtain the weights of a neural-network approximation of the pos-
terior by minimizing the Kullback–Leibler divergence of the approximation from the exact posterior.
This technique is distinct from simulation-based inference with normalizing flows, since we train the
network for a single dataset, rather than the population of all possible datasets, and we require the
computation of the data likelihood and its gradient. Unlike Markov Chain methods, our technique
can transparently exploit highly parallel computing platforms. This makes it extremely fast on mod-
ern graphical processing units, where it can analyze the NANOGrav 15-yr dataset in few tens of
minutes, depending on the probabilistic model, as opposed to hours or days with the analysis codes
used until now. We expect that this speed will unlock new kinds of astrophysical and cosmological
studies of pulsar-timing-array datasets. Furthermore, variational inference would be viable in other
contexts of gravitational-wave data analysis as long as differentiable and parallelizable likelihoods
are available.

Four international pulsar-timing-array collaborations
recently reported evidence for a low-frequency back-
ground of gravitational waves [1–4], as expected from
the population of supermassive–black-hole binaries at
the centers of galaxies [5–8], but also possibly from
more exotic sources [6, 9]. The evidence was established
by testing for the gravitational-wave–specific Hellings–
Downs (HD) correlations [10] between the timing residu-
als of pulsar pairs across the arrays. The tests relied on
Bayesian model comparison [11, 12] and on the “optimal”
detection statistic [13–15]: both techniques require that
we obtain the posterior probability distributions p(θ|y)
of the gravitational-wave and pulsar-noise parameters θ
under a variety of probabilistic Gaussian-process mod-
els, which include all effects thought to significantly in-
fluence the observed residuals y. The models account for
pulsar geometry and kinematics, measurement noise, pul-
sar spin noise, dispersion in the interstellar medium, and
more (see [11, 12] and references therein). Beyond the
question of detection, the posteriors characterize the am-
plitude and spectral shape of the putative gravitational-
wave signal.

Approximating posteriors. To date, posteriors have
been approximated using variants of stochastic sampling
(i.e., Markov Chain Monte Carlo, e.g., [16]), a flexible
and powerful technique that nevertheless requires careful
tuning; possible pitfalls include slow or poor convergence
to high-probability regions of parameter space, as well
as large chain autocorrelation times, which reduce the
effective number of samples that carry independent in-
formation about the posterior. It is also difficult to eval-
uate the appropriate length for the chains [17]. Within
the NANOGrav pulsar timing array [18, 19], the typ-
ical gravitational-wave background study relied on the

PTMCMCSampler stochastic sampler [20] to explore likeli-
hoods computed with the Enterprise Python software
package [21], which uses NumPy [22] and SciPy for the
many linear-algebra operations needed for the pulsar-
timing-array likelihood. PTMCMCSampler includes a num-
ber of specialized jump proposals to aid the exploration
of parameter space.
To obtain 106 chain samples, runtimes are hours for

the “CURN” model (i.e., intrinsic pulsar red noises +
Common-spectrum Uncorrelated Red Noise across all
pulsars), with each likelihood taking tens of milliseconds;
and days for the HD model (intrinsic pulsar red noises +
a common-spectrum process with Hellings–Downs corre-
lations), with each likelihood taking a fraction of a second
[23]. These two models have particular interest because
the Bayes factor between them is the main Bayesian
statistic used to establish the presence of a gravitational-
wave–like signal. Such runtimes have been barely tol-
erable for the NANOGrav 15-yr analysis [1], but they
have significantly hindered the computation of detection-
statistic background distributions (which require large
numbers of Monte Carlo runs), and they can only grow
longer for future datasets, including the joint datasets as-
sembled by the International Pulsar Timing Array [24].
Furthermore, significantly faster parameter estimation
would unlock a new class of astrophysical and cosmo-
logical analyses that are currently very challenging (e.g.,
joint searches for the stochastic background and multiple
individual binaries; studies of background anisotropy and
non-Gaussianity with many degrees of freedom; boot-
strapping over pulsar subsets; and more).
While likelihoods and their stochastic exploration may

yet be made faster by a combination of careful cod-
ing, more powerful processors, and smarter sampling
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algorithms (such as Hamiltonian Monte Carlo [25] and
Gibbs sampling [26]), recent trends in high-performance
computing suggest that a highly parallel scheme would
yield the greatest gain. In particular, modern high-
performance graphics processing units (GPUs) have
enough resources, at least on paper, to compute hundreds
or thousands of pulsar-timing likelihoods simultaneously.
Unfortunately, stochastic sampling is a fundamentally se-
rial algorithm that cannot make use of such large paral-
lelization factors.1 Other Markov Chain Monte Carlo
variants, such as parallel tempering [30], proposal recy-
cling [31], and (trivially) computing multiple chains si-
multaneously, require smaller parallelization factors and
provide more limited performance gains.

Stochastic gradient-descent variational Bayes. In this
letter we propose an altogether different method that
is accurate, flexible, and ready for massive paralleliza-
tion. In variational Bayesian inference [32], instead
of exploring the posterior p(θ|y) we successively refine
its parametrized approximation qϕ(θ) by minimizing the
Kullback–Leibler divergence of qϕ(θ) from p(θ|y),

L(ϕ) =
∫

log
qϕ(θ)

p(θ|y)
qϕ(θ) dθ. (1)

We encode qϕ(θ) using a neural network (so that ϕ are
the network weights), and we minimize L(ϕ) using gra-
dient descent—that is, by iterating ϕ → ϕ − ϵ∇ϕL for
an appropriate small ϵ. If the neural-network represen-
tation of qϕ(θ) has sufficient capacity, the scheme will
converge to an accurate posterior approximation as L(ϕ)
asymptotes to a constant.

The neural-network architecture of choice for this ap-
plication is the normalizing flow [33, 34], in which a base
distribution q0(x) (usually the unit normal N (x; 0, I),
with dimx = dim θ) is mapped into qϕ(θ) by way of a
neural network fϕ : x → θ, so that

qϕ(θ) = q0
(
f−1
ϕ (θ)

) ∣∣∣∣∂fϕ∂x

∣∣∣∣−1

; (2)

the last term in the equation is the determinant of the
Jacobian of the map evaluated at x = f−1

ϕ (θ). To obtain
a population of samples from qϕ, Markov-chain style, we
simply draw from q0 and transform the values with f .
We then obtain a Monte Carlo approximation of the loss

1 A possible exception may be ensemble samplers [27, 28], which
however are notoriously problematic in high-dimensional param-
eter spaces such as ours [29].

gradient as

∇ϕL(ϕ) =
1

N
∇ϕ

∑
θ(i)∼qϕ

{
log qϕ(θ

(i))− log p(θ(i)|y)
}

≈ 1

N

∑
x(i)∼q0

∇ϕ

{
log qϕ

(
fϕ(x

(i))
)
− log p

(
fϕ(x

(i))|y
)}

=
1

N

∑
x(i)∼q0

∇ϕ

{
log q0(x

(i))− log

∣∣∣∣∂fϕ∂x

∣∣∣∣
x(i)

− log p
(
fϕ(x

(i))|y
)}

.

(3)
In the second line of Eq. (3) we have used the
reparametrization trick [35] to rewrite the expectation
over qϕ(θ) as a sum over samples from the base distribu-
tion, so that the gradient ∇ϕL becomes tractable, and
the sum can be parallelized trivially. Gradient descent
earns the adjective “stochastic” because at each iteration
Eq. (3) is evaluated over a finite batch {x(i)} of samples.
Normalizing flows fϕ(x) are usually expressed as the

composition of a number of simpler functions, and they
are designed carefully to have simple Jacobians.2 Sev-
eral architectures have been studied in the literature,
including real-valued non-volume preserving transforma-
tions [36], masked autoregressive flows [37], and neural
spline flows [38] which we adopt for this letter using the
flowjax library [39].
Evaluating Eq. (3) requires an efficient algorithm to

compute the likelihood and its gradient. To this pur-
pose, we have reimplemented [40] the Enterprise like-
lihood p(y|θ) using the JAX matrix library [41]. Func-
tions built with JAX primitives can be compiled on CPUs
and GPUs; they can be differentiated automatically [42];
and they can be parallelized to run in parallel on GPU
compute cores. These features have been specifically de-
veloped in JAX and similar libraries to enable the ef-
ficient training and evaluation of artificial neural net-
works. Once we have coded fϕ(x) and p(y|θ) in JAX, the
library will transparently provide ∇ϕ log |∂fϕ/∂x| and
∇ϕ log p(fϕ|y) = ∂p(θ|y)/∂θ×∂fϕ(x)/∂ϕ, and it will au-
tomatically provide for the parallel evaluation of Eq. (3)
over a batch {x(i)}. (Beyond this parallel scheme, our
JAX likelihood is faster than its Enterprise counterpart,
and the availability of gradients enables methods such as
Hamiltonian Monte Carlo, which we plan to explore in a
separate paper.).
Before we proceed to discuss a practical example of our

scheme, we note that the normalizing-flow representation
provides also an expedient importance-sampling estima-
tor of the marginal likelihood (a.k.a. Bayesian evidence)
as [43, 44]∫

p(y|θ)p(θ) dθ ≈ 1

N

∑
θ(i)∼qϕ

p(y|θ(i))p(θ(i))
qϕ(θ(i))

, (4)

where the sum can be taken over x(i) ∼ q0, and the de-

2 Analytic inverses f−1s are also desirable to evaluate qϕ(θ) via
Eq. (2), but they are not needed for stochastic gradient descent.
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FIG. 1. CURNγ γ and log10 A posteriors, as evaluated using a fully trained normalizing flow (red) and No-U-Turn Hamiltonian
Monte Carlo sampling with NumPyro (black). Agreement is excellent, with Hellinger distances ranging from 0.002 (for the
gravitational-wave parameters) to 0.01. The middle panel is representative of most pulsars in the dataset; the rightmost panel
demonstrates that the flow can successfully recover posterior tails for a “difficult” pulsar.

nominator evaluated via Eq. (2).
Examples. We perform variational inference on a sim-

ulated dataset modeled on NANOGrav’s “15-yr” data
release: 67 pulsars timed over 16 years, with ∼ 675,000
timing residuals [45, 46]. We estimate posteriors for the
CURNγ and HDγ probabilistic models of Ref. [1], which
share a common power-law Gaussian process to represent
gravitational waves, but differ in the presence of Hellings–
Downs correlations. Each model is fully parameterized
by the red-noise log amplitudes log10 Ak and spectral
slope γk (where k ranges over the array pulsars), and by
the gravitational-wave log10 Agw and spectral slope γgw,
for a total of 136 parameters. Our simulation is obtained
by using HDγ as a generative probabilistic model, setting
parameters in the vicinity of their maximum-likelihood
values in the NANOGrav data release.

Our fϕ is a neural spline flow [38] with 16 flow steps
and 8 bins, for a total of ∼ 365,000 network parame-
ters. We train the qCURN

ϕ approximant over batches of
3,584 normal draws. Each batch evaluation takes 0.4 s
on a 40-GB A100 NVIDIA GPU, using double-precision
floating-point math; after a few hundred iterations the
loss begins to flatten out and posterior contours stabi-
lize. Full convergence of the loss is reached at ∼ 2,200
iterations (about 15 minutes). Since each training batch
includes newly drawn samples from the base distribution,
overfitting is not a concern here. Convergence can be ac-
celerated (although we did not do so here) by annealing
the posterior so that it begins as a softer target for the
approximant. This is achieved in practice by multiplying
the log p term in Eq. (3) by a factor that grows from 0
to 1 over the first few hundred iterations.

The resulting CURNγ posteriors for the gravitational-
wave and red-noise parameters are shown in Fig. 1, com-
pared to 16,384 posterior sample obtained with the “No-
U-Turn” Hamiltonian Monte Carlo sampler [47] in its
NumPyro implementation [48, 49], again using our JAX
likelihood. The one-dimensional Hellinger distance [50]

between the distributions is ∼ 0.01 for most parameters
and 0.002 for the gravitational-wave parameters; the lat-
ter number is comparable to the distance between sub-
samples from Hamiltonian Monte Carlo.

On the A100, the qHD
ϕ approximant can be trained over

smaller batches of 256 normal draws, because the HDγ

likelihood is more memory intensive. Each evaluation
takes 1.2 s; training converges fully after ∼ 1,200 itera-
tions (about 25 minutes, although the JAX compilation
of the HD loss and loss gradient takes several minutes,
as opposed to seconds for CURN.) Parallel evaluation is
limited by the number of GPU compute cores and by the
available GPU memory, so training will be faster with
even more capable cards. It is likely that the network ar-
chitecture used here could be optimized further for both
speed and accuracy. Nevertheless, for both models the
normalizing-flow distributions appear to be very accurate
approximations of the true posteriors.

Several avenues are possible to verify the accuracy of
results without reference to independent stochastic runs.
In addition to confirming that the training loss has con-
verged and that the final posteriors are independent of
the pseudorandom-number seeds used in training, one
may probe whether network capacity is sufficient by com-
paring posteriors obtained by changing the number or
size of the network layers; and one may refine the con-
verged qϕ using posterior reweighting [51, 52], in which
accurate approximations would be seen to yield a small
weight variance and a large effective number of samples
[53]. We plan to perform a detailed quantitative analysis
of normalizing-flow capacity, training convergence, and
posterior accuracy in a follow-up paper.

Discussion. Stochastic gradient-descent variational
Bayes with normalizing flows seems optimally adapted
for pulsar-timing-array data analysis, in which we deal
with a single dataset, and we can now efficiently evaluate
the likelihood and its gradient in parallel on GPUs. The
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scheme provides a generative representation of the pos-
terior (i.e., it can draw posterior samples very rapidly),
but it can also evaluate the posterior at any parameter
location (with the correct normalization if the likelihood
itself is normalized), and it can approximate the marginal
likelihood.

We note that normalizing flows have been used to great
effect in gravitational-wave data analysis [52, 54–61], in-
cluding pulsar timing arrays [62], to implement ambitious
simulation-based-inference schemes whereby one approx-
imates the posterior density p(θ|y) as a function of y by
training the network using a large number of simulated
datasets {θ(i), y(i)} and a loss function different from
ours. These schemes offer amortized inference: the net-
work is trained a priori, with large computational cost,
by considering all possible presentations of noise and sig-
nal; parameter inference with the actual observed data is
then almost instantaneous. By contrast, in our scheme
the network is trained anew for each dataset; however,
given that we have to learn only one posterior, the fϕ
network can be much simpler, and can be optimized more
cheaply.

As we have shown, our algorithm can already handle
realistic datasets under the standard probabilistic mod-
els that have provided evidence for low-frequency gravi-
tational waves [1]. The scheme offers the so far unreal-
ized prospect of real-time Bayesian inference, which may
be especially beneficial as we evaluate data-reduction or
noise-modeling problems with individual pulsars, or as we
explore the design space of probabilistic models. In fact,
we expect that the networks that we have demonstrated
here would easily extend to the hierarchical Bayesian
models advocated by van Haasteren [63], which introduce
population priors for the intrinsic red-noise hyperparame-
ters. These models could also be explored by reweighting
normalizing-flow samples by the ratio of hierarchical and

original red-noise priors.

Another intriguing possibility would be representing
single-pulsar posteriors with trained normalizing flows
in a manner similar to Ref. [64], and then exploring
joint array posteriors by imposing common priors on the
single-pulsar parameters, as suggested by Lamb and col-
leagues [65]. Unlike the kernel density estimators of Ref.
[64], the normalizing-flow posteriors would account fully
for correlations. The modular machine-learning archi-
tecture of this scheme will make it possible to exper-
iment with promising innovations in normalizing flows
and more generally in neural networks, and to take ad-
vantage of machine-learning paradigms such as transfer
learning [66] (for instance, training a HDγ flow more
quickly by starting from the converged parameters of a
CURNγ flow). Last, there may be opportunities to apply
the scheme to other use cases in gravitational-wave data
analysis where we seek rapid parameter estimation under
a range of models and we can deploy differentiable and
parallelizable likelihoods [67].
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