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1 Introduction

The theory of random fields finds its origin in the combination of two deep schools of thought.
Firstly, from the kinetic theory of matter it is well understood that large scale, long range depen-
dencies arise from the interactions of individuals with only their neighbours. On the other hand,
probabilistic reasoning would conclude that each of these local interactions should be probabilistic
in nature. The upshot of these ideas is that many problems in the modern world can be modelled by
the joint distribution for some large collection of random variables that exhibit correlation with one
another derived from some underlying graph structure. The study of Markov random fields starts
with the Ising model of ferromagnetism from statistical mechanics [Bax89], but there there is also
interest in neurophysiology due to Hopfield networks for modelling addressable memory [Hop82].

Our focus of interest is on large collections of stochastic differential equations

dXu
t = bu

(
t,Xu[t],XNu [t]

)
dt+ dZu

t , u ∈ V

where V represents an index set, Nu ⊆ V and (Zu) is a collection of independent additive noises.
Such stochastic processes arise in statistical physics [Der03, RRR10], mathematical finance [NS20]
and oscillator synchronisation [Med19].

Previous works studying the Markov random field properties for such locally interacting diffu-
sions start with [Deu87] and [CRZ96] (which uses a variation of the Malliavin integration by parts
formula), continuing with [DR05] (which uses a truncation argument and convergence of the as-
sociated Hamiltonian) and later [RR14] which considers stochastic differential equations with a
confining potential and a separate locally interacting drift term.

More recently, [LRW21] establishes a 2-Markov random field property for a much broader class
of stochastic differential equations by allowing for many different drift terms bu using a Girsanov
theorem. This work was motivated by [LRW23] which showed how a Global 2-Markov Random
Field property is necessary for the derivation of an autonomous description of the dynamics of some
small neighbourhood of locally interacting SDEs as the marginal of some much larger collection.
This autonomous description takes the form of a singular McKean-Vlasov equation and this result
has powerful implications for the study of these infinite systems of locally interacting SDEs.

Our interest arose from studying the local equation in the context where the Brownian motion
was replaced by a Gaussian noise. We found that a necessary property for the Gaussian noises is that
the reproducing kernel Hilbert space needs to be appropriately large so that one can use a Girsanov
Theorem applied to the drift term to describe the changes of measure that are central to proving
the Markov Random Field property.

A Gaussian noise that proved to be a very effective choice was fractional Brownian motion since
the reproducing kernel Hilbert space is already well documented in [DÜ99] and its failure of the
semi-martingale property made it a compelling choice. While reviewing the literature, we came
across the concept of the fundamental martingale and realised this was central to our methods: a
Gaussian process is said to have a fundamental martingale if there is a Volterra kernel that trans-
forms the Gaussian process to a martingale (under the filtration generated by the Gaussian process).
In the case of fractional Brownian motion, the Volterra kernel is already known (see Equation (2.3)
below) and we consider some Gaussian processes whole Volterra kernel has a similar Sonine pair.

More specifically, we found that the property that fractional Brownian motion satisfies that we
require in this work is that the collection of reproducing kernel Hilbert spaces (Ht)t∈[0,T ] forms a
Hilbert space filtration that is isomorphic to the Hilbert space filtration of reproducing kernels for
Brownian motion. We refer to this property as securely locally non-deterministic (see Definition 3.25
below).
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We also emphasise that secure local non-determinism and the existence of the fundamental
martingale also leads to many other vital properties, including entropy estimates and a Mimicking
Theorem with important implications for distribution dependent dynamics that we explore in future
works.

Basic definitions

Let V be a finite or countably infinite set and let E ⊆
{
{u, v} : u, v ∈ V

}
. Then we say that (V,E)

is graph. For every u ∈ V , we denote the neighbourhood Nu =
{
v ∈ V : {u, v} ∈ E

}
. We say

that a graph (V,E) is locally finite if for every u ∈ V the set |Nu| < ∞. We say that two graphs
G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there exists a bijection φ : V1 → V2 such that
E2 =

{
{φ[u], φ[v]} : {u, v} ∈ E1

}
and we define the set of locally finite graph isomorphism classes

by G.
For a subset A ⊆ V , we define the first and second order boundary sets

∂A :=
{
u ∈ V : ∃v ∈ A such that {u, v} ∈ E

}
,

∂2A :=∂A ∪ ∂
(
A ∪ ∂A

)
.

Definition 1.1. A clique in a graph G = (V,E) is a complete subgraph of G, a subset A ⊆ V such that

(u, v) ∈ E for every u, v ∈ A. Equivalently, a clique is a set A ⊂ V of diameter at most 1. We define

cl1(G) to be the set of all cliques of the graph G.

Similarly, we say that any subset A ⊂ V with diameter at most 2 is a 2-clique of the graph G and

let cl2(G) denote the set of 2-cliques of G.

For a normed vector space
(
X , ‖ ·‖

)
we denote by B(X ) the Borel sets of X . For a finite index set

V and a collection of normed vector spaces
(
X u, ‖ · ‖u

)
u∈V

, we denote X V = ⊕u∈V X
u with norm

‖ · ‖V : X V → R by ∥∥(xu)u∈V
∥∥
V
=
∑

u∈V

‖xu‖u.

On the other hand, when V is countably infinite index set and (X u, ‖ · ‖u)u∈V is a collection of
normed vector spaces, we denote the locally convex topological vector space

X V =
⊕

u∈V

X u with collection of seminorms fu
(
xV
)
= ‖xu‖u.

For a locally convex topological vector space X , we denote by X ∗ the collection of continuous linear
functionals and B′(X ) to be cylindrical σ-algebra, the minimal σ-algebra with respect to which all
continuous linear functionals are measurable.

For a measure µ ∈ P
(
X V
)

and a subset U ⊆ V , we denote µU to be the pushforward of the
measure µ under the canonical projection from X V onto XU .

Definition 1.2. Let (X , d) be a metric space and let G = (V,E) be a locally finite graph. Let Y V :=
(Y v)v∈V be a collection of random variables indexed by V with probability distribution µ ∈ P(X V ).

We say that (Y v)v∈V (or equivalently µ) is a first-order local Markov random field (abbreviated

as 1-MRF) on X V if for every finite set A ⊂ V , the collection of random variables Y A = (Y v)v∈A is

conditionally independent of Y (A∪∂A)c = (Y v)v∈(A∪∂A)c given Y ∂A.

We say that (Y v)v∈V (or equivalently µ) is a second-order local Markov random field (abbreviated

as 2-MRF) on X V if for every finite set A ⊂ V the collection of random variables Y A is conditionally

independent of Y (A∪∂2A)c given Y ∂2A.
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A collection of X -valued random elements (Yv)v∈V is said to form a second-order global Markov
Random Field if for any sets A ⊂ V , B ⊂ V \ (A ∪ ∂2A), the collection of random variables Y A is

conditionally independent of Y B given Y ∂2A.

When the space X V is clear from the context, we will simply say that (X v)v∈V , or equivalently
its law µ, is a 1MRF or 2MRF.

Summary

In Section 2, we provide an accessible summary of the results we prove in this paper. These results
are specific to fractional Brownian motion, which is the canonical example of the Gaussian processes
that we use as additive noise.

In Section 3, we study the existence and properties of the fundamental martingale. In Section
3.1, we provide a discrete time justification for the existence of a Volterra kernel that transforms
Gaussian processes into a martingale and show that the existence of a fundamental martingale
is equivalent to the Gaussian process satisfying a local non-determinism condition. In Section 3.2,
we consider continuous time Gaussian Volterra processes and demonstrate under an appropriate
assumption (see Assumption 3.7) that allows us to bijectively transform this Volterra process into a
Brownian motion, and further that we can also bijectively transform stochastic processes that take
their value on the reproducing kernel Hilbert space of the Volterra process to stochastic processes
that take their values on the reproducing kernel Hilbert space of Brownian motion. In Section
3.3, we introduce the concept of “secure local non-determinism” and show that this is equivalent
to Assumption 3.7. Finally, in Section 3.4 we prove a Girsanov Theorem (see Theorem 3.28) for
Gaussian Volterra processes that are securely locally non-deterministic.

In Section 4, we consider collections of stochastic differential equations that interact locally with
one another through the drift term based on the underlying structure of a graph. In Section 4.1, we
prove weak existence and uniqueness using Theorem 3.28. This result also includes the case where
the graph (V,E) has countably infinite vertex set which we believe is a new result even when the
collection of Gaussian Volterra processes are taken to be Brownian motions. In Section 4.2, we prove
that such collections of locally interacting stochastic differential equations form a Markov random

field. The proof when the graph is finite follows from the well known 2nd-Hammersey-Clifford result,
but when the vertex set is taken to be countably infinite this becomes more challenging and we have
to adapt a truncation argument (the full details of which can be found in Appendix A.

Notation

Let Cd
T = C([0, T ];Rd) be the vector space of continuous functions on the interval [0, T ] taking their

values in Rd paired with the supremum norm ‖x‖∞,t = |x0| + sups∈[0,t] |xs|. Similarly, let Cd
0,T be

the subspace of continuous functions with x0 = 0. Using the canonical decomposition that for any
x ∈ Cd

T , we can equivalently write x ≡ (x0, x− x0) ∈ Rd × Cd
0,T .

Measure theory

For p ≥ 1, (X , d) a metric space with Borel σ-algebra B(X ) and two probability measures µ, ν ∈
P(X ) we denote the p-Wasserstein distance by

W
(p)
d

[
µ, ν

]
=

(
inf

π∈Π(µ,ν)

∫

X×X
d(x, y)pdπ(x, y)

) 1
p
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where Π(µ, ν) is the set of all measures on
(
X × X , σ

(
B(X )× B(X )

))
with marginals µ and ν. For

a measure µ ∈ P(X ) and f : X → R we denote

〈
µ, f

〉
=

∫

X
f(x)dµ(x).

For two measures µ, ν ∈ P(X ) we use ν << µ to denote that ν is absolutely continuous with
respect to µ. We denote the relative entropy functional by

H
[
µ
∣∣ν
]
=





∫

X
log

(
dµ

dν
(x)

)
dµ(x) if log

(
dµ
dν

)
∈ L1

(
X , µ;R

)
,

∞ otherwise.
(1.1)

Sometimes, H
[
µ
∣∣ν
]

is referred to as the Kullback–Leibler divergence.

2 Main results

The main contributions of this paper are the extension of Girsanov’s Theorem for a collection of
Gaussian processes and an application of this to proving that collections of locally interacting equa-
tions form a 2-Markov Random Field. We also develop many of the concepts established in this paper
to prove a Mimicking Theorem for the study of McKean-Vlasov equations in the sequel [HRS24]

2.1 Fractional Brownian motion

The focus of this work is for stochastic differential equations driven by an additive Gaussian noise,
the most intuitive of these being fractional Brownian motion:

Definition 2.1. A one dimensional fractional Brownian motion (Zt)t∈[0,T ] with Hurst parameter H ∈
(0, 1) is a centered Gaussian process with covariance defined for t, s ∈ [0, T ] by

E
[
ZtZs

]
= R(t, s) = 1

2

(
|t|2H + |s|2H − |t− s|2H

)
. (2.1)

A d-dimensional fractional Brownian motion is a centered Gaussian process with covariance

E
[〈
Zt, Zs

〉
Rd

]
= d ·R(t, s).

Where notation can be reduced, we will not write the identity matrix.

A fractional Brownian motion is a continuous time stochastic process that satisfies Z0 = 0 and is
the unique centered Gaussian process that is self-similar and has stationary increments:

Zλt ∼ |λ|H · Zt and Zt − Zs ∼ Zt−s.

The case H = 1/2 corresponds to that of Brownian motion, but otherwise Z is neither a Markov
process nor a semimartingale. However, much like Brownian motion the process is P-almost surely
α-Hölder continuous for α < H.

A fractional Brownian motion can be written as a Gaussian Volterra process

Zt =

∫ t

0
K(t, s)dWs
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where K(t, s) = 0 for t < s and for s < t

K(t, s) =





cH · s
1
2−H

∫ t

s

(u− s)H−
3
2uH−

1
2 du H > 1

2 ,

cH

((t(t− s)

s

)H−
1
2
−
(
H − 1

2

)
· s

1
2−H

∫ t

s

uH−
3
2 (u− s)H−

1
2du

)
H < 1

2

(2.2)

where

cH =





(
H(2H − 1)

β(2− 2H,H − 1
2)

) 1

2

H > 1
2 ,

(
2H

(1− 2H)β(1 − 2H,H + 1
2)

) 1

2

H < 1
2

see for example [Nua06, Chapter 5]. Through direct computation, we can verify via the Itô isometry
that

E
[
ZtZs

]
=

∫ T

0
K(t, u)K(s, u)du = R(t, s).

The fundamental Martingale

The fundamental martingale is concept first introduced in [NVV99] to understand the change of
measure for stochastic differential equations driven by a fractional Brownian motion and was sub-
sequently developed in [KLBR00a, KLBR00b] to study filtering problems for stochastic differential
equations driven by fractional Brownian motion. We use a slightly different Volterra kernel (Equa-
tion (2.3) below) to the one stated in [NVV99] which allows us to map directly onto a Brownian
motion. The Volterra kernel is somewhat more complicated, but the advantage is that we do not
need to account for additional quadratic variation terms that arise in [KLBR00a,KLBR00b].

It is commonly understood that a fractional Brownian motion is not a semimartingale; indeed
fractional Brownian motion often chosen as the go-to stochastic process that is not a semimartingale.
However, consider the following Volterra process driven by a fractional Brownian motion Z (with
Hurst parameter H ∈ (0, 1))

W ∗
t =

∫ T

0
L(t, s)dZs

where L(t, s) = 0 for t < s and for s < t

L(t, s) =





(s(t− s)

t

)1
2−H

− (H − 1
2)s

1
2−H

∫ t

s

(r − s)
1
2−HrH−

3
2dv H > 1

2 ,

s
1
2−H

∫ t

s

(r − s)−H−
1
2 rH−

1
2dr H < 1

2 .

(2.3)

The Volterra kernel L : [0, T ] → Ĥ has the unique property that

E
[
W ∗

t W
∗
s

]
= t ∧ s

so that W ∗ is a Brownian motion. We prove that the stochastic process (W ∗
t )t∈[0,T ] is a local-

martingale with respect to the filtration FZ = (FZ
t )t∈[0,T ] and further the two filtrations FZ and FW ∗

are equal. Therefore, while a fractional Brownian motion is not a semimartingale, it is a Volterra
convolution away from a Brownian motion. We prove these results not just for fractional Brownian
motion but also for a class of Gaussian processes in Section 3.
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2.2 Girsanov’s Theorem

The dynamics of a stochastic process of the form

Xt = X0 +

∫ t

0
b
(
s,X[s]

)
ds+ Zt

can be transformed via a convolution with the Volterra kernel (2.3) into the stochastic process

X†
t = X0 +

∫ t

0
L(t, s)dXs = X0 +

∫ t

0
Qb
(
s,X[s]

)
ds+W ∗

t

where for any progressively measurable function b : [0, T ]×Cd
T → Rd we define Qb : [0, T ]×Cd

T → Rd

by

Qb
(
t,X[t]

)
:=

d

dt

∫ t

0
L(t, s)b

(
s,X[s]

)
ds (2.4)

=(12 −H)tH−
1
2

∫ t

0
(t− s)−(

1
2+H)b

(
s,X[s]

)
s
1
2−Hds.

This choice of definition is motivated by the fact that for every t ∈ [0, T ]

∫ t

0
Qb
(
s,X[s]

)
ds =

∫ t

0
L(t, s)b

(
s,X[s]

)
ds and

∫ t

0
b
(
s,X[s]

)
ds =

∫ t

0
K(t, s)Qb

(
s,X[s]

)
ds

where the Volterra kernel L(t, ·) was defined in Equation (2.3).
When the integral

∫ T

0

∣∣∣Qb
(
t, x[t]

)∣∣∣
2
dt <∞ we conclude that

∥∥∥
∫ ·

0
b
(
t, x[t]

)
dt
∥∥∥
HT

<∞

where HT is the reproducing kernel Hilbert space generated by the covariances R(t, ·) defined
in Equation (2.1). As the Hilbert space of square integrable functions L2

(
[0, T ];R

)
has a natural

projection onto the Hilbert space L2
(
[0, t];R

)
by multiplying by the indicator function 1[0,t], we

define a projection operation Πt : HT → Ht defined by

Πt

[ ∫ ·

0
b
(
s,X[s]

)
ds
]
=

∫ ·∧t

0
K(·, s)Qb

(
s,X[s]

)
ds. (2.5)

Further, we establish a Girsanov type result for stochastic processes with an additive fractional
Brownian motion:

Theorem 2.2. Let d ∈ N let P0 ∈ P(Rd) and let γ ∈ P(Cd
0,T ) be the law of a fractional Brownian

motion. We denote P ∗ = P0 × γ ∈ P(Cd
T ).

Let b : [0, T ]× Cd
T → Rd be progressively measurable and suppose that

∥∥∥
∫ ·

0
b
(
s,X[s]

)
ds
∥∥∥
HT

<∞ P ∗-almost surely.

Further, suppose that on the probability space
(
Cd
T ,B

′(Cd
T ), P

∗
)

the process

t 7→ Zt

[ ∫ ·

0
b
(
s,X[s]

)
ds
]
:= exp

(
δ

(
Πt

[ ∫ ·

0
b
(
s,X[s]

)
ds
])

− 1
2

∥∥∥
∫ ·

0
b
(
s,X[s]

)
ds
∥∥∥
2

Ht

)
(2.6)
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(where δ is the Malliavin divergence) is a martingale that satisfies that

EP ∗

[
ZT

[ ∫ ·

0
b
(
s,X[s]

)
ds
]]

= 1. (2.7)

Let P be the probability measure defined by

dP

dP ∗

∣∣∣∣
Ft

= Zt

[ ∫ ·

0
b
(
s,X[s]

)
ds
]
.

Then the law of the process

Xt −

∫ t

0
b
(
s,X[s]

)
ds under P

is the same as the law of the canonical process X under P ∗.

This is a slight adaption of the well known result first proved in [DÜ99] and we emphasise that
we prove this result for a much richer class of Gaussian processes (see Theorem 3.28 and Section 3
for more details).

2.3 Locally interacting stochastic differential equations

For some (V,E) ∈ G, we are interested in studying the correlation between the collection of random
variables from the solution of the locally interacting stochastic differential equation

dXu
t = bu

(
s,Xu[s],XNu [s]

)
ds+ dZu

t , u ∈ V, (Xu
0 )u∈V ∼ µ0. (2.8)

The collection of fractional Brownian motions (Zu)u∈V will all be independent of one another.

Theorem 2.3. Let (V,E) be a countably infinite locally finite graph, let (bu)u∈V be a collection of

functions and let µ0 ∈ P
(
(Rd)V

)
.

Suppose that for every u ∈ V , the function

bu : [0, T ] × Cd
T × (Cd

T )
Nu → Rd

is progressively measurable and that there exists M ∈ L2
(
[0, T ];R

)
such that for every (Xu,XNu) ∈

Cd
T × (Cd

T )
Nu ,

∥∥∥∥
∫ ·

0
bu
(
s,Xu[s],XNu [s]

)
ds

∥∥∥∥
2

HT

<∞,

∣∣∣Qbu
(
t,Xu[t],XNu [t]

)∣∣∣ ≤Mt · Fu

(
Xu,XNu

)
and

∃ǫ > 0 such that sup
u∈V

E

[
exp

(
ǫ · Fu

(
Zu +Xu

0 , (Z +X0)
Nu
))]

<∞.





(2.9)

Then there exists a unique weak solution to the collection of stochastic differential equations

dXu
t = bu

(
t,Xu[t],XNu [t]

)
dt+ dZu

t , u ∈ V, (Xu
0 )u∈V ∼ µ0.

We prove a more general version of Theorem 2.3 in Section 4, but very briefly the proof relies
on an adaption of Theorem 2.2 to random variables defined on locally convex topological vector
spaces. To the best of our knowledge, this adaption is novel and avoids previous techniques that
rely on compact embeddings.
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Remark 2.4. We emphasise that the dynamics of stochastic differential equations of the form (2.8) are

non-Markovian in the sense that for every u ∈ V the drift term bu(t, ·) is dependent on the path of the

stochastic process up to time-t. We denote a path by X[t] while the time marginal by Xt.

There are a couple of reasons for this choice of generality: Firstly, as we shall see below the paths of

these locally interacting SDEs form a 2-Markov Random Field as a measure on pathspace in part due to

the drift term being expressible as a clique functional. This would also be the case if the drift term was

only dependent on time marginals, but it is more interesting to consider the most general setting.

Another good reason is that the Volterra transformation of the drift term, which we denote by

Qb(t, ·), is by definition a functional on the entire path up to time-t even when b is only dependent on

the time marginals of the path. By considering b(t, ·) as a path functional, the bijective nature of the

transformation b ⇐⇒ Qb becomes more natural.

Example 2.5. Let K : [0, T ] → L2([0, T ];R) as in Equation (2.2) be the Volterra kernel for fractional

Brownian motion. Let b : [0, T ]× Cd
T → Rd be a progressively measurable and denote

Qb
u : [0, T ] × Cd

T → Rd defined by Qb
u

(
t, x[t]

)
:=

d

dt

∫ t

0
L(t, s)b

(
s, x[s]

)
ds

where L : [0, T ] → Ĥ is defined in (2.3).
Further, suppose that there exists ǫ > 0 such that

sup
u∈V

E

[
exp

(
ǫ|X0|

2
)]

<∞. (2.10)

First consider the case where H < 1
2 . Suppose that there exists M : [0, T ] → R such that

∣∣∣b
(
t,X[t]

)∣∣∣ ≤Mt ·
(
1 +

∥∥X
∥∥
∞,t

)
and

∫ T

0

∫ t

0
(t− s)−(

1
2+H)|Ms|ds|Mt|dt <∞. (2.11)

In particular, if b satisfies a uniform in time linear growth condition then Equation (2.11) follows. By

adapting the techniques first detailed in [NO02], we observe that

∣∣∣Qb
(
s,X

)∣∣∣ =
∣∣∣sH−

1
2 ·

∫ s

0
(s− r)−(

1
2+H)r

1
2−Hb

(
r,X

)
dr
∣∣∣

≤

(
sH−

1
2

∫ s

0
(s− r)−

1
2−Hr

1
2−H |Mr|dr

)
·
(
1 +

∥∥X
∥∥
∞,s

)
.

Further, by direct calculation we obtain that

∫ T

0

∣∣∣∣s
H−

1
2

∫ s

0
(s− r)−

1
2−Hr

1
2−H |Mr|dr

∣∣∣∣
2

ds =

∫ T

0
s2H−1

(∫ s

0
(s− r)−

1
2−Hr

1
2−H

∣∣Mr

∣∣dr
)2

ds

≤

∫ T

0
s2H−1

∫ s

0

∫ s

0
(s− r)−(

1
2+H)r

1
2−H |Mr|(s− u)−(

1
2+H)u

1
2−H |Mu|dudrds

≤

∫ T

0

∫ T

0

(∫ T

u∨r
s2H−1(s− r)−(

1
2+H)(s− u)−(

1
2+H)ds

)
· r

1
2−H |Mr|u

1
2−H |Mu|dudr

≤

∫ T

0

∫ T

0
(u ∨ r)H−

1
2 (T − u ∨ r)

1
2−H(u ∨ r − u ∧ r)−(

1
2+H)(u ∧ r)

1
2−H |Mr| · |Mu|dudr

≤

∫ T

0

∫ r

0
(r − u)−(

1
2+H)|Mu||Mr|dudr <∞.

9



To conclude, we remark by Ferniques Theorem and Equation (2.10) that for some choice of ǫ > 0,

E

[
exp

(
ǫ
(
1 + ‖Z +X0‖

2
))]

<∞.

As such, we conclude that Equation (2.9) follows.

Example 2.6. Now suppose that H > 1
2 but we still have Equation (2.10). Consider a function of the

form

b
(
s, x[s]

)
:= b̂

(
s, xs

)
where b̂ : [0, T ]× Rd → Rd and∣∣∣b̂

(
s, x
)
− b̂
(
t, y
)∣∣∣ ≤ C

(
|t− s|γ + |x− y|α

)
for α ∈ (1− 1

2H , 1), γ > H − 1
2 .



 (2.12)

Again, by adapting the techniques first detailed in [NO02] we have that

∣∣∣Qb
(
s, x[s]

)∣∣∣ =b̂(s, xs)s
1
2−H + (H − 1

2)s
H−

1
2 b̂(s, xs)

∫ s

0

(
s
1
2−H − r

1
2−H

)
(s− r)−(

1
2+H)dr

+ (H − 1
2)s

H−
1
2

∫ s

0

(
b̂(s, xs)− b̂(r, xs)

)
r
1
2−H(s− r)−(

1
2+H)dr

+ (H − 1
2)s

H−
1
2

∫ s

0

(
b̂(r, xs)− b̂(r, xr)

)
(s− r)−(

1
2+H)r

1
2−Hdr.

By applying Equation (2.12), we conclude that

∣∣∣Qb
(
s, x[s]

)∣∣∣ ≤s
1
2−H

(∣∣b̂(0, 0)
∣∣ +C

(
|s|γ + |xs|

α
))

+ (H − 1
2)s

H−
1
2

(
|b̂(0, 0)| +C

(
|s|γ + |xs|

α
)
s1−2H

)

+ (H − 1
2)s

H−
1
2

∫ s

0
(s − r)γ−H−

1
2 r

1
2−Hdr

+ (H − 1
2)s

H−
1
2

∫ s

0

∣∣xs − xr
∣∣α(s − r)−(

1
2+H)r

1
2−Hdr.

Next, by evaluation we obtain that for some ε > 0 chosen small enough that

∣∣∣Qb
(
s, x[s]

)∣∣∣ ≤CT s
1
2−H

(
|x0|+

∥∥x‖α∞ + |s|γ +
∣∣b̂(0, 0)

∣∣ +
∥∥x
∥∥α
H−ε

sα(H−ε)
)
.

Notice that this choice of the function F from Equation (2.9) is not necessarily finite for every choice

of (Xu,XNu) ∈ Cd
T × (Cd

T )
Nu and yet the expectation is finite because paths for which F is not defined

occur on a null set of the Gaussian measure.

Now we remark that since a fractional Brownian motion Z with Hurst parameter H has that for

any choice of ε ∈ (0,H), there exists some ǫ > 0 such that

E

[
exp

(
ǫ
∥∥Z
∥∥2
H−ε

)]
<∞,

we conclude for ǫ > 0 chosen small enough that

E

[
exp

(
ǫ
(
|X0|+

∥∥X0 + Z‖α∞ +
∥∥X0 + Z

∥∥α
H−ǫ

))]
<∞.
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Quenched 2-Markov Random Fields

As each stochastic differential equation is strongly correlated with its neighbours via the drift term
and we restrict ourselves to the case where the number neighbours of any vertex is finite, we
should not expect to observe any statistical decoupling that one would hope for in a mean-field
setting. Therefore, the correlation between the processes marking any two vertices will be highly
challenging to compute, even when those two vertices are far from one another.

We prove that the collection of stochastic differential equations considered in this work form a
2-Markov Random Field:

Theorem 2.7. Let (V,E) be a countably infinite locally finite graph, let (bu)u∈V be a collection of

functions and let µ ∈ P
(
(Rd)V

)
. Let M ∈ L1

(
[0, T ];R

)
.

Suppose that:

1. for every u ∈ V , let bu : [0, T ] × Cd
T × (Cd

T )
Nu → Rd be progressively measurable and satisfies

Equation (2.9);

2. the measure µ0 is a 2-Markov Random Field and there exists a collection of measures (λu)u∈V
such that for any finite set A ⊂ V , the marginal measure µA0 is equivalent to the product measure

µ∗,A0 =
∏

v∈A

λv

and the initial law µ0 satisfies

sup
v∈V

∫

Rd

|xv|2dµ0(x
V ) <∞;

Then the collection of random variables
(
V,E, (Xv [t])v∈V

)
is a quenched 2-MRF.

The first thing to note is that we do not require that the graph is finite, only that every vertex has
a finite neighbourhood. Secondly, as has already been explained in detail in [LRW21], the law of
the process forms a 2-MRF as a measure on pathspace and it is not the case that the time marginals
of the stochastic processes form a 2-MRF. In a sentence, this is because one needs to condition on
the entire path of the collection of processes in the separating set and the σ-algebra generated by
only the time marginals is not large enough.

To prove Theorem 2.7, which follows from Theorem 4.8, we first consider the finite graph set-
ting. In this setting, we can write down an explicit Radon-Nikodym derivative between the law of
the law of the solution and a reference measure (which we choose to be the product law the col-
lection of independent fractional Brownian motions). This has a natural 2-clique factorisation, so
by Proposition 4.6 we conclude. The extension to the infinite graph setting is more technical, but
the techniques are similar to those used in [LRW21] and we include an adaption of them here for
completeness.

3 The fundamental martingale and Girsanov’s Theorem

The fundamental martingale is a concept that was first introduced in [NVV99] and further developed
in [KLBR00a, KLBR00b] as a tool for studying fractional Brownian motion. While results that rely
on the existence of the fundamental martingale of fractional Brownian motion are often well cited
in the literature, the concept has not received much study in recent years. It is widely known that

11



a fractional Brownian motion is not a martingale (under the canonical filtration), nor indeed a
semimartingale; this is often cited as a reason for the study of such processes. It is also well known
that fractional Brownian motion admits a representation as a Volterra process driven by a Brownian
motion. What is less often used in the literature is that there is a Volterra kernel (defined in Equation
2.3) that transforms a fractional Brownian motion into a Brownian motion.

A stochastic process that has a fundamental martingale is one which can be transformed into a
martingale via convolution with a Volterra kernel. While the motivating example that we consider is
a fractional Brownian motion, we emphasise that we also consider a much larger class of Gaussian
processes.

3.1 Discrete time intuition

In order to provide some intuition to the purpose of the fundamental martingale, consider the
following discrete time Gaussian process:

Let Z = (Zn)n∈N be a sequence of Gaussian random variables on a probability space (Ω,F ,P)
and for each n ∈ N let the cumulative vector Zn = (Zi)i=1,...,n be an n-dimensional centred Gaussian
vector with covariance matrix

Rn = E
[
Zn · ZT

n

]
=
(
E
[
Zi · Zj

])
i,j=1,...,n

.

Suppose (for the moment) that for each n ∈ N the covariance matrix Rn is invertible. Then for each
n ∈ N the Gaussian vector Zn has density

pn(x) =
1√

(2π)n · det(Rn)
· exp

(
−

1

2
xT (Rn)

−1x
)
.

By inductively defining the matrices, row vectors and scalars such that

Rn+1 =

(
Rn, Rn1

R1n, rn+1

)
and (Rn+1)

−1 =

(
Sn, Sn1

S1n, sn+1

)
,

we get the identities

Sn ·Rn + Sn1 ·R1n =In and S1n ·Rn + sn+1 ·R1n = 0

Sn + Sn1 ·R1n · (Rn)
−1 =(Rn)

−1 and S1n + sn+1 ·R1n · (Rn)
−1 = 0.

(3.1)

We define the sequence of random variables

(
Mn

)
n∈N

where Mn := 1T
n · (Rn)

−1 · Zn, (3.2)

where 1n is a column vector with all values equal to 1.

Lemma 3.1. Let Z = (Zn)n∈N be a sequence of Gaussian random variables on a probability space

(Ω,F ,P) and suppose that for each n ∈ N the covariance matrix Rn is invertible.

Then the sequence of random variables (Mn)n∈N is a Martingale.

We refer to
(
Mn

)
n∈N

as the fundamental martingale.

Proof. First consider the sequence of σ-algebras
(
σ(Mn)

)
n∈N

. Since for each n ∈ N we have the
matrix Rn is invertible, we have that σ(Mn) = σ(Zn) ⊆ F .

12



Courtesy of classical results for conditional Gaussian measures, we have that

E
[
Zn+1

∣∣∣σ
(
Zn

)]
= Rn1 · (Rn)

−1 · Zn.

Combining this with Equation (3.1), we get

E
[
Mn+1

∣∣∣σ
(
M1, ...,Mn

)]
= E

[
1T
n · (Rn+1)

−1 · Zn+1

∣∣∣σ
(
M1, ...,Mn

)]

=E

[ (
1T
n 1

)
·

(
Sn, Sn1

S1n, sn+1

)
·

(
Zn

Zn+1

) ∣∣∣∣σ
(
Zn

)]

=
(

1T
n · Sn + S1n

)
· Zn +

(
1T
n · Sn1 + sn+1

)
· E
[
Zn+1

∣∣∣σ
(
Zn

)]

=1T
n · (Rn)

−1Zn =Mn

In particular, this means that

E
[
Mn ·

(
Mn+1 −Mn

)]

= E

[
1T
n · (Rn)

−1 · Zn ·
(

1T
n+1 · (Rn+1)

−1 · Zn+1 − 1T
n+1 · (Rn)

−1 · Zn

)]

= E

[
1T
n · Sn · Zn ·

(
1T
n · Sn1 · Zn+1 + S1n · Zn + sn+1 · Zn+1

)]

= 1T
n · Sn ·

(
Rn · Sn1 +Rn1 · S1n · 1n +Rn1 · sn+1

)
= 0.

As first described in [NVV99], we can interpret Mn as the (discrete time) stochastic integral of
the kernel L(n, i) =

(
1T
n · (Rn)

−1
)
i

with respect to the cumulative process Zn =
∑n

i=1 Zi.

Local non-determinism and the fundamental martingale (discrete time)

The sequence of matrices (Rn)n∈N need not be invertible, but for the martingale Mn to exist, we
require that each inverse exists. With this in mind, we introduce the following:

Definition 3.2. Let Z = (Zn)n∈N be a sequence of Gaussian random variables and for each n ∈ N let

the sumulative vector Zn = (Zi)i=1,...,n be an n-dimensional centred Gaussian vector with covariance

matrix

Rn = E
[
Zn · ZT

n

]
=
(
E[Zi · Zj ]

)
i,j=1,...,n

.

We say that Z is locally non-deterministic if for every choice of n ∈ N we have that

E

[(
Zn+1 − E

[
Zn+1

∣∣σ(Zn)
])2]

> 0 (3.3)

Lemma 3.3. Let Z = (Zn)n∈N be a sequence of Gaussian random variables and suppose that Z is

locally non-deterministic. Then for every choice of n ∈ N we have that the matrix Rn is invertible.

Proof. We proceed via induction: suppose that the matrix Rn is invertible and consider the matrix

Rn+1 =

(
Rn R+n

Rn+ R++

)
where R+n ∈ Rd×1,R+n ∈ R1×d and R++ ∈ R.

13



Then our primary hypothesis (3.3) can be rewritten as

λn = R++ −Rn+ · (Rn)
−1 ·R+n > 0.

Consider the matrix

Qn+1 =
1

λn

(
λn(Rn)

−1 + (Rn)
−1 ·R+n ·Rn+ · (Rn)

−1 , −(Rn)
−1 ·R+n

−Rn+ · (Rn)
−1 , 1

)
.

By direct calculation we obtain that,

Rn+1 ·Qn+1 =

(
In , 0
0 , 1

)
and Qn+1 ·Rn+1 =

(
In , 0
0 , 1

)

so that the matrix Rn+1 has an explicit inverse.

This means that the fundamental martingale

Mn = 1T
n · (Rn)

−1 · Zn

satisfies the identity

Mn+1 =

[
1T
n −

(
1− 1T

n · (Rn)
−1 ·R+n

)
·Rn+

λn

]
· (Rn)

−1 · Zn

+

(
1− 1T

n · (Rn)
−1 ·R+n

)

λn
Zn+1

Example 3.4 (Fractional Brownian motion). Let
{
[ti,n, ti+1,n] : i = 1, ..., n

}
be a uniform partition

of [0, 1], so that ti,n = i
n

. Let Zt be a fractional Brownian motion on [0, 1] with Hurst parameter

H ∈ (0, 1). We denote the increments of the stochastic process Z = (Zn
i )i=0,...,n by Zn

0 = 0 and

Zn
i := Zti,n − Zti−1,n

, (3.4)

for i ∈ {1, . . . , n}. Thanks to Equation (2.1), the covariance matrix

Rn =

(
E
[
Zn
i · Zn

j

])

i,j=1,...,n

where

E
[
Zn
i Z

n
j

]
=

1

2

(
|ti,n − tj−1,n|

2H + |ti−1,n − tj,n|
2H − |ti,n − tj,n|

2H − |ti−1,n − tj−1,n|
2H
)

=
1

2n2H

(
|i− j − 1|2H + |i− j + 1|2H − 2|i− j|2H

)
=: A

(
|i− j|

)
.

where A : N0 → R satisfies

A(k) =
1

2

(
|k − 1|2H + |k + 1|2H − 2|k|2H

)
. (3.5)

Hence the covariance matrix takes the form

Rn =
1

n2H
An =

1

n2H
Toeplitz

({
A(k)

}
k=0,...,n−1

)
.
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When H < 1
2 , we have that A(k) < 0 for all k ≥ 1 so that

n−1∑

k=1

∣∣A(k)
∣∣ =

{
−
∑n−1

k=1 A(k) when H < 1
2∑n−1

k=1 A(k) when H > 1
2

and by a telescoping argument

n−1∑

k=1

∣∣A(k)
∣∣ =





1
2

(
|n|2H − |n− 1|2H − |1|2H

)
when H < 1

2 ,

1
2

(
|n− 1|2H − |n|2H + |1|2H

)
when H > 1

2 .

When H < 1
2 ,

n−1∑

k=1

∣∣A(k)
∣∣ ≤ 1

2
< 1 = A(0)

and the Gershgorin Circle Lemma (see [HJ13]) tells us that this is sufficient to ensure the invertibility

of a Toeplitz matrix Rn.

Remark 3.5. We have shown that the discrete time fractional Brownian motion admits a fundamental

martingale, but this is does not necessarily ensure that the fractional Brownian motion admits a funda-

mental martingale (although at this point we know that it does) . Further, it is not clear how we define

the operator (Rn)
−1 in the continuous time limit.

3.2 Volterre processes

Let H ⊆ Cd
T be a Hilbert space of continuous functions over [0, T ] and let i : H → Cd

T be a compact
linear operator. By the structure theorem for Gaussian measures [Bog98], we have that there exists a
unique centred positive Gaussian measure with support equal to H the closure of H in the supremum
norm. We interchangeably refer to this Gaussian measure and the abstract Wiener space (Cd

T ,H, i).

Definition 3.6. Let d ∈ N and let (Ω,F ,F,P) be a complete filtered probability space carrying a

d-dimensional Brownian motion.

Let K : [0, T ] → L2
(
[0, T ]; Lin(Rd,Rd)

)
be a Volterra kernel (that is K(t, s) = 0 for s > t). We say

that a stochastic process is a Gaussian Volterra process if it can be expressed as

Zt =

∫ t

0
K(t, s)dWs (3.6)

where W is a Brownian motion and K is a Volterra kernel.

In particular, the covariance function for a Gaussian Volterra processes satisfies

R(s, t) =

∫ t∧s

0

〈
K(t, u),K(s, u)

〉
Lin(Rd,Rd)

du =

∫ t∧s

0
Tr
(
K(t, u) ·K∗(s, u)

)
du. (3.7)

In order to illustrate the key properties of the Gaussian processes that we consider for driving
signals, we need to consider three distinct Hilbert spaces:
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(i) The reproducing kernel Hilbert space is the closure of the collection of covariance functions

HT := span

{
E
[
〈Zt, u〉RdZ·

]
: t ∈ [0, T ], u ∈ Rd

}

with inner product
〈
E
[
〈Zt, u〉Z·

]
,E
[
〈Zs, v〉Z·

]〉
HT

= E
[
〈Zt, u〉 · 〈Zs, v〉

]
.

(ii) The first Wiener-Ito chaos is the closure of the collection of step functions

ĤT := span

{
1[0,t](·)ei,i : t ∈ [0, T ], i ∈ {1, ..., d}

}

with inner product
〈
1[0,t]ei,i,1[0,s]ej,j

〉
ĤT

= E
[
〈Zt, ei〉 · 〈Zs, ej〉

]
.

(iii) The Volterra space is the closure of the collection of Volterra kernels

VT := span
{
K(t, ·) : t ∈ [0, T ]

}
with inner product

〈
K(t, ·),K(s, ·)

〉
VT

= R(t, s).

We have the following Hilbert space isometric isomorphisms

I : ĤT → HT , J : VT → ĤT , K : VT → HT ,

defined by

I
[
1[0,t](·)ei,i

]
(s) = E

[
〈Zt, ei〉Zs

]
, J

[
K(t, ·)

]
(s) = 1[0,t](s)Id, K

[
K(t, ·)

]
(s) = E

[ d∑

i=1

〈Zt, ei〉Zs

]
,

and I ◦ J = K. Further, using Equation (3.7) we conclude that

VT ⊆ L2
(
[0, T ]; Lin(Rd,Rd)

)
since

〈
K(t, ·),K(s, ·)

〉
VT

=

∫ T

0

〈
K(t, r),K(s, r)

〉
dr.

ĤT HT

VT

J K

I

(3.8)

Isonormal Gaussian processes

Given a probability space (Ω,F ,P) carrying a Gaussian process (Z)t∈[0,T ], we define the mapping

Z : Ĥ → L2
(
Ω,P;Rd

)
by

Z
(
1[0,t]

)
= Zt so that E

[〈
Z(g), Z(h)

〉
Rd

]
=
〈
g, h
〉
ĤT

Then Z is an isonormal Gaussian process. Similarly, the isonormal Gaussian process of Itô integration

W : L2
(
[0, T ];Rd

)
→ L2

(
Ω,P;Rd

)
defined by W (f) =

∫ T

0
fsdWs.
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Then we conclude that P-almost surely the random variables

Z(h) =

∫ T

0
J∗
[
h
]
s
dWs. (3.9)

In particular, Id1[0,t] ∈ Ĥ, J∗
[
1[0,t]Id

]
= K(t, ·) and

Zt = Z
(
1[0,t]Id

)
=

∫ t

0
K(t, s)dWs.

Further, due to Equation (3.7) we observe that the inner product on VT is equivalent to the inner
product on L2

(
[0, T ];Rd

)
so that VT ⊆ L2

(
[0, T ];Rd

)
and the dual operator J∗ : ĤT → VT satisfies

〈
J∗
[
f
]
,J∗
[
g
]〉

L2([0,T ])
=
〈
f, g
〉
Ĥ
. (3.10)

The fundamental martingale

Now, we extend our framework the continuous time setting. First of all, we introduce the following
condition for the kernel of a Gaussian Volterra process:

Assumption 3.7. Let d ∈ N and let K : [0, T ] → L2
(
[0, T ]; Lin(Rd,Rd)

)
be a Volterra kernel. Let the

d-dimensional Gaussian Volterra process defined by

Zt =

∫ t

0
K(t, s)dWs with covariance R(t, s) =

∫ t∧s

0

〈
K(t, r),K(s, r)

〉
Lin(Rd,Rd)

dr.

Suppose that there exists a Volterra kernel L : [0, T ] → Ĥ such that for any s, t ∈ [0, T ],

J∗
[
L(t, ·)

]
(s) = 1[0,t](s)Id (3.11)

where Id ∈ Lin(Rd,Rd) is the identity matrix.

We are interested in choices of K for which the Volterra space

VT is isometrically isomorphic to L2
(
[0, T ]; Lin(Rd,Rd)

)
.

Lemma 3.8. Let (Ω,F ,F,P) be a complete filtered probability space carrying a Brownian motion, let

K : [0, T ] → L2
(
[0, T ]; Lin(Rd,Rd)

)
be a Volterra kernel that satisfies Assumption 3.7 and let Z be a

Gaussian Volterra process of the form (3.6).

Then for any t ∈ [0, T ] the reproducing kernel Hilbert space is isometrically isomorphic to

Ht =

{∫ ·

0
K(·, s)hsds : h ∈ L2

(
[0, t];Rd

)}
⊆ Cd

0,T

Proof. For any element

h ∈ span
{
E
[
〈Zt, u〉 · Z

]
: t ∈ [0, T ], u ∈ Rd

}
⇐⇒

ht = E
[∑

i∈I

ai〈Zsi , ui〉Zt

]
=

∫ T

0
K(t, r) ·

(∑

i∈I

aiK(si, r) · ui

)
dr,
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where I is a finite set and ai ∈ R, si ∈ [0, T ] and ui ∈ Rd. Thus we have a bijection between the sets

span

{
t 7→ E

[
〈Zs, u〉Rd · Zt

]
: s ∈ [0, T ], u ∈ Rd

}
and

{
t 7→

∫ T

0
K(t, r)frdr : f ∈ span

{
〈K(s, ·), u〉 : s ∈ [0, T ], u ∈ Rd

}}
.

Further
〈∑

i∈I

aiE
[
〈Zsi , ui〉Z·

]
,
∑

j∈J

bjE
[
〈Zrj , vj〉Z·

]〉

HT

=

∫ T

0

〈∑

i∈I

aiK(si, r) · ui,
∑

j∈J

bjK(rj , r) · vj

〉

Rd

dr (3.12)

=

〈∑

i∈I

aiK(si, ·) · ui,
∑

j∈J

bjK(rj, ·) · vj

〉

L2

(
[0,T ];Rd

). (3.13)

so that the topology induced by the inner product 〈·, ·〉H is equivalent to the topology induced by
the L2

(
[0, T ];Rd

)
inner product on V. Hence

HT = span
{
R(s, ·) : s ∈ [0, T ]

}HT

=

{
t 7→

∫ T

0
K(t, r)frdr : f ∈ span

{
K(s, ·) · u : s ∈ [0, T ], u ∈ Rd

}L2

(
[0,T ];Rd

)}
. (3.14)

Next, recall that the isometry J : V → Ĥ defined by J
[
K(t, ·)

]
= 1[0,t]Id is an isomorphism.

Assumption 3.7 implies that for every t ∈ [0, T ], there exists some L(t, ·) ∈ Ĥ such that the adjoint
operator J∗ : Ĥ → V satisfies Equation (3.11). In particular, this means that for every t ∈ [0, T ] and
i ∈ {1, ..., d},

1[0,t]ei,i ∈ VT .

As the step functions form a dense subset of L2
(
[0, T ];R

)
, we conclude that

span
{
K(s, ·) · u : s ∈ [0, T ], u ∈ Rd

}L2
(
[0,T ];Rd

)

= L2
(
[0, T ];Rd

)

and the final conclusion follows from Equation (3.14).

Example 3.9. Recalling the Volterra kernel defined in Equation (2.2), we recall the result originally

proved in [DÜ99] that the reproducing kernel Hilbert space for fractional Brownian motion can be

written as

HT =





{
t 7→

∫ t

0

(∫ s

0
u
1
2−H(s− u)H−

3
2 fudu

)
sH−

1
2ds : f ∈ L2

(
[0, T ];R

)}
, H > 1

2

{
t 7→

(
tH−

1
2

∫ t

0
s
1
2−H(t− s)H−

1
2 fsds

−
(
H − 1

2

) ∫ t

0

( ∫ s

0
u
1
2−H(s− u)H−

1
2 fudu

)
sH−

3
2ds
)
: f ∈ L2

(
[0, T ];R

)}
, H < 1

2
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The existence of such a Volterra kernel provided by Assumption 3.7 introduces a new Gaussian
process via the stochastic integral with respect to Z:

Lemma 3.10. Let
(
Ω,F ,F,P

)
be a filtered probability space carrying a Brownian motion. Let K :

[0, T ] → L2
(
[0, T ]; Lin(Rd,Rd)

)
be a Volterra kernel that satisfies Assumption 3.7 and let Z be the

Gaussian Volterra process of the form Equation (3.6).

We define

W ∗
t =

∫ t

0
L(t, s)dZs. (3.15)

Then W ∗
t is a d-dimensional F-Brownian motion.

Proof. Firstly, for each t ∈ [0, T ] the random variable W ∗
t is FZ

t -measurable. Further, the random
variable Zt is Ft-measurable so that W ∗

t is also Ft-measurable.
By calculating the covariance operator, we get that for any s, t ∈ [0, T ] that

R(t, s) = E
[〈
W ∗

t ,W
∗
s

〉
Rd

]
=E

[〈 ∫ t

0
L(t, u)dZu,

∫ s

0
L(s, u)dZu

〉
Rd

]

=

∫ T

0

〈
J∗
[
L(t, ·)

]
(r),J∗

[
L(s, ·)

]
(r)
〉
Lin(Rd,Rd)

dr

= d

∫ T

0
1[0,t](r) · 1[0,s](r)dr = d · (t ∧ s).

Therefore, W ∗ has the same covariance relationship as a d-dimensional Brownian motion.

Drift transformations

Given two Hilbert spaces G and H, we define the set of Bilinear forms BiLin(G,H) to be the collection
of bilinear forms from G and H to R.

Lemma 3.11. Let K : [0, T ] → L2
(
[0, T ]; Lin(Rd,Rd)

)
be a Volterra kernel that satisfies Assumption

3.7 and for every t ∈ [0, T ] let Ht and Ĥt be the associated reproducing kernel Hilbert space and the

first Wiener-Ito chaos.

We denote the functional Λ : [0, T ] → BiLin(HT , ĤT ) defined by

Λt

[
φ,ψ

]
:=

∫ t

0

〈
J∗
[
φ
]
(s),K∗

[
ψ
]
(s)
〉
Rd
ds.

For every t ∈ [0, T ], we define Λt

[
L(t, ·), ·

]
: HT → R. Then for every ψ ∈ HT ,

t 7→ Λt

[
L(t, ·), ψ

]
(3.16)

is absolutely continuous.

Proof. Let ψ ∈ HT . Then thanks to Lemma 3.8, there exists some h ∈ L2
(
[0, T ];Rd

)
such that

ψt =

∫ t

0
K(t, s)hsds.

Then J∗
[
L(t, ·)

]
(s) = 1[0,t](s) and K∗

[
ψ
]
(s) = hs so that

t 7→ Λt

[
L(t, ·), ψ

]
=

∫ t

0
hsds. (3.17)

Therefore, by construction this map is absolutely continuous.
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Having established that the existence of a Volterra kernel that transforms our Gaussian Volterra
process back to a Brownian motion, our next result explores how elements of the Reproducing
Kernel Hilbert space can also be transformed bijectively to L2

(
[0, T ];Rd

)
:

Proposition 3.12. Let K : [0, T ] → L2
(
[0, T ]; Lin(Rd,Rd)

)
be a Volterra kernel that satisfies Assump-

tion 3.7 and for every t ∈ [0, T ] let Ht be the associated reproducing kernel Hilbert space.

Let b : [0, T ] → Rd and suppose for any choice of t ∈ [0, T ] that

∥∥∥
∫ ·

0
bsds

∥∥∥
Ht

<∞. (3.18)

Let L : [0, T ] → Ĥ be the Volterra kernel from Assumption 3.7. Then the function

t 7→

∫ t

0
L(t, s)bsds

is contained in W 1,2
(
[0, T ];Rd

)
the Sobolev space of functions with square integrable derivatives. We

define Qb ∈ L2
(
[0, T ];Rd

)
by

Qb
t :=

d

dt

∫ t

0
L(t, s)bsds and

∫ t

0
Qb

sds =

∫ t

0
L(t, s)bsds. (3.19)

Then
∫ t

0
bsds =

∫ t

0
K(t, s)Qb

sds and
∥∥∥
∫ ·

0
bsds

∥∥∥
Ht

=

(∫ t

0

∣∣Qb
s

∣∣2ds
)1

2

Proof. Firstly thanks to Lemma 3.8, for any

h ∈ L2
(
[0, T ];Rd

)
⇐⇒

∫ ·

0
K(·, s)hsds ∈ HT

and by construction
n∑

i=1

ai1[ti,ti+1]Id ∈ ĤT

so that

ΛT

[ n∑

i=1

ai1[ti,ti+1]Id,

∫ ·

0
K(·, s)hsds

]
=

n∑

i=1

ai

(∫ ti+1

0
K(ti+1, s)hsds−

∫ ti

0
K(ti, s)hsds

)
. (3.20)

Assumption 3.7 implies that

∥∥∥
∫ ·

0
bsds

∥∥∥
Ht

<∞ ⇐⇒

∫ t

0
bsds =

∫ t

0
K(t, s)hsds for some h ∈ L2

(
[0, T ];Rd

)

and
∥∥∥
∫ ·

0
bsds

∥∥∥
2

Ht

=

∫ t

0

∣∣hs
∣∣2ds.

Therefore, our goal is to show that for t-Lebesgue almost everywhere that ht = Qb
t as defined in

Equation (3.19).
More specifically, Equation (3.20) means that

ΛT

[ n∑

i=1

ai1[ti,ti+1]Id,

∫ ·

0
bsds

]
=

n∑

i=1

ai

∫ ti+1

ti

bsds =

∫ T

0

( n∑

i=1

ai1[ti,ti+1]Id

)
bsds
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and more generally that for every t ∈ [0, T ],

Λt

[ n∑

i=1

ai1[ti,ti+1]Id,

∫ ·

0
bsds

]
=

∫ t

0

( n∑

i=1

ai1[ti,ti+1](s)
)
bsds.

Taking appropriate limits on Ĥt, we conclude that

Λt

[
L(t, ·),

∫ ·

0
bsds

]
=

∫ t

0
L(t, s)bsds

and from Lemma 3.11 we know that

t 7→

∫ t

0
L(t, s)bsds is absolutely continuous.

Therefore, we define Qb : [0, T ] → Rd according to Equation (3.19) and observe that

∫ t

0
Qb

sds = Λt

[
L(t, ·),

∫ ·

0
bsds

]
.

Finally, thanks to Equation (3.17), we observe that

Λt

[
L(t, ·),

∫ ·

0
bsds

]
=

∫ t

0
hsds

where h ∈ L2
(
[0, T ];Rd

)
was defined above. This leads us to our conclusion.

With Proposition 3.12 established, we now provide a slightly more general definition for the
element Qb:

Definition 3.13. Let
(
Ω,F ,F,P

)
be a complete filtered probability space supporting an F-Brownian

motion W . Let K : [0, T ] → L2
(
[0, T ]; Lin(Rd,Rd)

)
be a Volterra kernel that satisfies Assumption 3.7.

Let b : [0, T ]× Ω → Rd be progressively measurable and suppose that

∥∥∥∥
∫ ·

0
bsds

∥∥∥∥
HT

<∞ P-almost surely.

Then we define Qb : [0, T ]× Ω → Rd by

Qb
t :=

d

dt

∫ t

0
L(t, s)bsds. (3.21)

Hilbert space projections

Assumption 3.7 also allows us to define a project from the Hilbert space HT onto Ht for any t ∈
[0, T ].

Definition 3.14. Let K : [0, T ] → L2
(
[0, T ];Rd

)
be a Volterra kernel that satisfies Assumption 3.7.

Then for any t ∈ [0, T ], we define Πt : HT → Ht for ḣ ∈ L2
(
[0, T ];Rd

)
by

Πt

[ ∫ ·

0
K(·, r)ḣrdr

]
(s) =

∫ s

0
K(s, r)1[0,t](r)ḣrdr
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Such a projection exists because by Assumption we necessarily have that 1[0,t] ∈ VT for any
choice of t ∈ [0, T ].

Remark 3.15. It is worth emphasising here that for every choice of t ∈ [0, T ], the reproducing kernel

Hilbert space Ht ⊆ Cd
0,T . In words, while Ht is a smaller Hilbert space than HT , each element of

Ht remains a function defined on the interval [0, T ]. When the Gaussian Volterra process is chosen

(trivially) to be Brownian motion, this point is lost because

Ht =
{∫ ·

0
hr1[0,t](r)dr : h ∈ L2

(
[0, T ];Rd

)}

so that any element of the reproducing kernel Hilbert space is constant for any value s ∈ [t, T ]. This is

emphatically not the case for other Gaussian Volterra processes.

These next results, which build on some of the techniques first used in [DÜ99], allow us to link
the projection operator that arises naturally from our Volterra kernel satisfying Assumption 3.7 with
conditional expectations which provide a natural sense of projection on filtered probability spaces:

Lemma 3.16. Let (Ω,F ,F,P) be a filtered probability space carrying a Brownian motion. Let K :
[0, T ] → L2

(
[0, T ]; Lin(Rd,Rd)

)
be a Volterra kernel that satisfies Assumption 3.7 and let (Zt)t∈[0,T ] be

a Gaussian process of the form (3.6). Then

E

[
exp

(
δ
(
h)−

‖h‖2
HT

2

)∣∣∣∣F
Z
t

]
= exp

(
δ
(
Πt[h]) −

‖h‖2
Ht

2

)

where δ is the Malliavin divergence and F = (FZ
t )t∈[0,T ] is the filtration generated by the Gaussian

Volterra process (3.6).

Proof. Let F be a smooth random variable that is FZ
t -measurable, so that it can be expressed as

F = f
(
Zti1

, ..., Ztim

)

for some continuously differentiable function f : Rm → R that has at most polynomial growth and
ti1 , ..., tim ∈ [0, t]. As we have that the random variables Ztij

= δ
(
K(tij , ·)

)
(where δ is the Malliavin

divergence), we obtain that

FZ
t = σ

(
δ
(
K(s, ·)

)
: s ∈ [0, t]

)
⊗FZ

0 = σ
(
δ
(
h
)
: h ∈ Ht

)
⊗FZ

0 . (3.22)

Let (hn)n∈N is an orthogonal basis of Ht. Equation (3.22) means that any smooth random variable
can be expressed as

F = f̂
(
δ(hi1), ..., δ(him )

)

where f̂ : Rm → R is continuously differentiable that has at most polynomial growth.
Let h ∈ HT . Applying the Cameron-Martin Theorem and using that

〈hij , h〉HT
= 〈hij ,Πt[h]〉HT

= 〈hij ,Πt[h]〉Ht ,

we obtain

E

[
F exp

(
δ(h) −

‖h‖2
HT

2

)]
=E

[
f̂
(
δ(hi1), ..., δ(him )

)
exp

(
δ(h) −

‖h‖2
HT

2

)]
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=E

[
f̂
(
δ(hi1) + 〈hi1 , h〉HT

, ..., δ(him ) + 〈him , h〉HT

)]

=E

[
f̂
(
δ(hi1) + 〈hi1 ,Πt[h]〉HT

, ..., δ(him) + 〈him ,Πt[h]〉HT

)]

=E

[
F exp

(
δ
(
Πt[h]

)
−

‖h‖2
Ht

2

)]
.

Therefore

E

[
E
[
exp

(
δ(h) −

‖h‖2
HT

2

)∣∣∣FZ
t

]
F

]
= E

[
exp

(
δ
(
Πt[h]

)
−

‖h‖2
Ht

2

)
F
]

and by density of smooth random variables that are FZ
t -measurable in the space of square integrable

random variables that FZ
t -measurable, we obtain that

E

[
exp

(
δ(h) −

‖h‖2
HT

2

)∣∣∣∣F
Z
t

]
= exp

(
δ
(
Πt[h]

)
−

‖h‖2
Ht

2

)
.

Lemma 3.17. Let (Ω,F ,F,P) be a filtered probability space carrying a Brownian motion. Let K :
[0, T ] → L2

(
[0, T ]; Lin(Rd,Rd)

)
be a Volterra kernel that satisfies Assumption 3.7 and let (Zt)t∈[0,T ] be

a Gaussian process of the form (3.6).

Let F : Ω → R such that F is Malliavin differentiable with Malliavin derivative

DF ∈ L2
(
Ω,P;HT

)
.

Then F is FZ
t -measurable if and only if DF = Πt

[
DF

]
.

Proof. First, we fix t ∈ [0, T ] and let F be a smooth random variable such that F is FZ
t -adapted. Let

(hn)n∈N be an orthogonal basis of Ĥt and let

σn = σ
(
Z(hi) : i = 1, ..., n

)
where Z(hi) =

∫ T

0
hi(s)dZs.

Then the sequence of σ-algebras satisfies that

σn ⊆ σn+1 and FZ
0 ⊗

⋃

n∈N

σn = FZ
t .

For each i ∈ {1, ..., n}, we have that Z(hi) is FZ
t measurable and we define

Fn := E
[
F
∣∣σn
]
= fn

(
Z(h1), ..., Z(hn)

)

where fn : Rn → R is a smooth function. Then Fn → F is L2(Ω,P;R) and the Malliavin derivative
is

DsFn =

n∑

i=1

∂fn
∂xi

(
Z(h1), ..., Z(hn)

)
It[hi](s) s ∈ [0, t]

where It : Ĥt → Ht is an isometric isomorphism. As F ∈ D1,2, we additionally have that DsFn →
DsF in L2(Ω,P;HT ).
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Thanks to Assumption 3.7, Πt

[
I[h]
]
= I[h] for any choice of h ∈ Ĥt and we obtain that

DFn =

n∑

i=1

∂f

∂xi

(
Z(h1), ..., Z(hn)

)
Πt

[
It[hi]

]
= Πt

[
DFn

]
.

Taking the limit as n→ ∞, we obtain DF = Πt[DF ].
On the other hand, suppose that F is a smooth random variable that satisfies DF = Πt[DF ].

Then, for any choice of h ∈ HT we have that P-almost surely

F (·+ h)− F (·) =

∫ 1

0

〈
DF

(
·+λh

)
, h
〉
HT

dλ. (3.23)

We define
H∗

t =
{
h ∈ HT : Πt[h] = 0

}

so that HT = Ht ⊕ H∗
t and we can express P = Pt × P∗

t . By Assumption 3.7 and Proposition 3.12,
we can write

H∗
t =

{∫ ·

0
K(·, s)hsds : h ∈ L2

(
[t, T ];Rd

)}
.

In particular, for any h1 ∈ Ht and h2 ∈ H∗
t , we have that 〈h1, h2〉HT

= 0. Let (hn)n∈N be an
orthogonal basis of Ĥt and let (h′n)n∈N be an orthogonal basis of Ĥ∗

t . We denote the σ-algebra

F∗
t = σ

(
Z(h′n) : n ∈ N

)

so that any random variable G that is FZ
t -measurable must satisfy that

E
[
G
∣∣∣F∗

t

]
= E

[
G
]
.

Thus, for any h ∈ H∗
t , we have that P-almost surely

〈
DF, h

〉
HT

=
〈
Πt

[
DF

]
,Π
[
h
]〉

HT

= 0.

Hence, by the Cameron-Martin formula,

E

[〈
DF (·+ λh), h

〉
HT

]
= E

[〈
DF, h

〉
HT

exp
(
δ
(
λh
)
−

‖λh‖2
HT

2

)]
= 0

and we conclude that

E
[
F (·+ h)− F (·)

]
=

∫ 1

0
E

[〈
DF (·+ λh), h

〉
HT

]
dλ = 0.

Therefore, applying the Cameron-Martin Theorem again we obtain for any h ∈ H∗
t that

E

[
F exp

(
δ
(
h
)
−

‖h‖2
HT

2

)]
= E

[
F
]
.

In particular,

E

[
E
[
F
∣∣∣F∗

t

]
exp

(
δ
(
h
)
−

‖h‖2
HT

2

)]
= E

[
E
[
F
]
exp

(
δ
(
h
)
−

‖h‖2
HT

2

)]
.
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As the collection of random variables
{
exp

(
δ(h) −

‖h‖2
HT

2

)
: h ∈ H∗

t

}

form a dense subset of the square integrable random variables generated by polynomials of the
collection of random variables

{
Z(h) : h ∈ Ĥ∗

t

}
, we obtain that

E
[
F
∣∣∣F∗

t

]
= E

[
F
]

P-almost surely.

Proposition 3.18. Let (Ω,F ,F,P) be a filtered probability space carrying a Brownian motion. Let K :
[0, T ] → L2

(
[0, T ]; Lin(Rd,Rd)

)
be a Volterra kernel that satisfies Assumption 3.7 and let (Zt)t∈[0,T ] be

a Gaussian process of the form (3.6).

Let h ∈ L2(Ω,P;HT ) such that h ∈ Dom(δ) so that

E
[∥∥h

∥∥2
HT

]
<∞. (3.24)

Then the stochastic process t 7→ δ
(
Πt(h)

)
is an FZ = (FZ

t )t∈[0,T ]-martingale and

E
[∣∣δ
(
Πt(h)

)∣∣2
]
= E

[∥∥h
∥∥2
Ht

]
. (3.25)

Proof. First of all, we want to show that δ
(
Πt[h]

)
is FZ

t -measurable. To see this, let v ∈ HT such
that Πt[v] = 0 and observe that

〈
D
(
δ
(
Πt(h)

))
, v
〉
=
〈
Πt

[
h
]
, v
〉
HT

+ δ
(
Dv
(
Πt[h]

))

=0 + δ(0) = 0 P-almost surely.

Hence

D
(
δ
(
Πt(h)

))
= Πt

[
D
(
δ
(
Πt(h)

))]

so that by Lemma 3.17 the random variable δ
(
Π(h)

)
is FZ

t -measurable.
Next, observe that for any smooth random variable F ∈ S such that F is FZ

t -measurable, we
can apply [Nua06, Proposition 1.3.1] to get for any v ∈ HT such that Πt[v] = 0 that

E
[
E
[
δ(h)

∣∣Ft

]
F
]
=E
[
δ(h)F

]
= E

[〈
h,DF

〉
HT

]

=E
[〈
h,DΠt[F ]

〉
HT

]
= E

[〈
h,Πt[DF ]

〉
HT

]

=E
[〈
Πt[h],Πt[DF ]

〉
HT

]
= E

[
δ
(
Πt[h]

)
· F
]
.

By density of smooth random variables, we conclude that for any t ∈ [0, T ],

δ
(
Πt(h)

)
= E

[
δ(h)

∣∣∣FZ
t

]

and thus t 7→ δ
(
Πt(h)

)
is an FZ

t -martingale. To compute the second moments, let F ∈ S be a
smooth random variable that is FZ

s -measurable for some s ∈ [0, t) and notice that

E

[(∣∣δ
(
Πt(h)

)∣∣2 −
∥∥h
∥∥2
Ht

)
F

]
=E

[
DΠ(h)

(
δ
(
Πt(h)

)
· F
)]

− E
[∥∥h

∥∥2
Ht
F
]
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=E
[(
DΠt(h)F

)
· δ
(
Πt(h)

)]
+ E

[
δ
(
DΠt(h)Pit(h)

)
· F
]
− E

[∥∥h
∥∥2
Ht
F
]

=E
[
DΠt(h)F · δ

(
Πt(h)

)]
+ E

[
δ
(
DΠt(h)Πt(h)

)
· F
]

=E
[
DΠt(h) ◦DΠt(h)F

]
+ E

[〈
DΠt(h)Πt(h),DF

〉
HT

]

Thanks to Lemma 3.17, since F is FZ
s -measurable we have that

〈
DF, v

〉
HT

=
〈
DF,Πs[v]

〉
HT

so that

E

[(∣∣δ
(
Πt(h)

)∣∣2 −
∥∥h
∥∥2
Ht

)
F

]
=E
[
DΠs(h) ◦DΠs(h)F

]
+ E

[〈
DΠs(h)Πs(h),DF

〉
HT

]
.

Now, reversing the argument implies that for any F ∈ S such that F is FZ
s -measurable, we obtain

E

[(∣∣δ
(
Πt(h)

)∣∣2 −
∥∥h
∥∥2
Ht

)
F

]
= E

[(∣∣δ
(
Πs(h)

)∣∣2 −
∥∥h
∥∥2
Hs

)
F

]

and we conclude that

E
[∣∣δ
(
Πt(h)

)∣∣2 −
∥∥h
∥∥2
Ht

∣∣∣FZ
s

]
= E

[∣∣δ
(
Πs(h)

)∣∣2 −
∥∥h
∥∥2
Hs

]
.

From this, we conclude Equation (3.25).

We conclude that the Doléans-Dade exponential of the martingale constructed in Proposition
3.18

t 7→ exp

(
δ
(
Πt(h)

)
−

‖h‖Ht

2

)

is a local martingale under the assumption that h ∈ Dom(δ) and satisfies Equation (3.24).

3.3 Secure local non-determinism and the fundamental martingale

We wish to explore a framework for the reproducing kernel Hilbert space that is equivalent to As-
sumption 3.7 (upon which the results of this work rely). Following on from Section 3.1 where we
saw that the invertibility of each covariance matrix implied the existence of a fundamental mar-
tingale and that this was equivalent to local non-determinism as defined in Equation (3.3). In this
section, we will explore how these concepts adapt to the continuous time setting:

Definition 3.19. Let (I,≤) be a totally ordered set and suppose that for every i ∈ I we have that(
Hi,+, 〈·, ·〉i

)
is a Hilbert space over a common field F. We say that (Hi)i∈I is a filtration of Hilbert

spaces if

for every i ≤ j Hi ⊆ Hj and ∀f, g ∈ Hi 〈f, g〉j = 〈f, g〉i.

Two Hilbert space filtrations (Hi)i∈I and (Gi)i∈I are said to be isomorphic if for every j ∈ I there

exists a Hilbert space isomorphism

Ψj :
(
Hj, 〈·, ·〉j

)
→
(
Gj, 〈, ·, ·〉j

)
such that ∀i ≤ j Ψj

∣∣
Hi

= Ψi.
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We contrast Definition 3.19 with the concept of a filtration of σ-algebras. The purpose of the
σ-algebra is to describe the event space, so that a filtration of σ-algebras allows mathematicians
to capture the ordered nature of events. When working with Gaussian processes, all information
necessary to compute the probability of events can be derived from the reproducing kernel Hilbert
space so that we only need to keep track of the time-ordered nature of covariances.

Example 3.20. Let
(
[0, T ],≤

)
be the totally ordered compact time interval and for every t ∈ [0, T ]

consider the vector space

L2
(
[0, T ];R

)
⊇
{
f · 1[0,t] : f ∈ L2

(
[0, T ];R

)}
:= L2

t,T (R)

Pair each of these vector spaces with the inner product

〈
·, ·
〉
t
: L2

(
[0, T ];R

)
× L2

(
[0, T ];R

)
→ R,

〈
f, g
〉
t
=

∫ T

0

(
fs · 1[0,t](s)

)
·
(
gs · 1[0,t](s)

)
ds.

Then (
L2
t,T ,
〈
·, ·
〉
t

)
t∈[0,T ]

is an example of a filtration of Hilbert spaces.

Next, for every t ∈ [0, T ] the reproducing kernel Hilbert space for fractional Brownian motion Ht as

expressed in Example 3.9 with the inner product

〈∫ ·

0
K(·, s)fsds,

∫ ·

0
K(·, s)gsds

〉

t

=

∫ t

0
〈fs, gs〉Rdds

form a Hilbert space filtration. Finally, the Hilbert space filtrations

(
L2
t,T (R),

〈
·, ·
〉
t

)
t∈[0,T ]

and
(
Ht,

〈
·, ·
〉
t

)
t∈[0,T ]

are isomorphic.

Example 3.21. Let (Zt)t∈[0,T ] be a Gaussian process with covariance function R : [0, T ]×2 → R defined

by

R(t, s) = E
[〈
Zt, Zs

〉
Rd

]

Recall that for any t ∈ [0, T ] the collection of reproducing kernel Hilbert spaces, the closure of the

linear span

Ht = span

{
E
[
f(Z)Z·

]
: f ∈ (Cd

t )
∗

}

with inner product
〈
E
[
f(Z)Z·

]
,E
[
g(Z)Z·

]〉
Ht

= E
[
f(Z) · g(Z)

]

form a filtration. Similarly, the collection of first Wiener-Ito chaos, the closure of the linear span

Ĥt := span

{
1[0,s](·)ei,i : s ∈ [0, t], i ∈ {1, ..., d}

}

with inner product
〈
1[0,s]ei,i,1[0,r]ej,j

〉
Ĥt

= E
[
〈Zs, ei〉 · 〈Zr, ej〉

]
.
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form a filtration. Further, the two Hilbert space filtrations

(
Ht, 〈·, ·〉Ht

)
t∈[0,T ]

and
(
Ĥt, 〈·, ·〉Ĥt

)
t∈[0,T ]

are isomorphic

due to the Hilbert space isomorphism I : ĤT → HT satisfying that I
∣∣
Ĥt

= Ht.

Proposition 3.22. Let K : [0, T ] → L2
(
[0, T ]; Lin(Rd,Rd)

)
be a Volterra kernel and let HT , ĤT and

VT be the isometrically isomorphic Hilbert spaces defined in Equation (3.8).

Suppose that for every t ∈ [0, T ]

Ht =

{∫ ·

0
K(·, s)fsds : f ∈ L2

(
[0, t];Rd

)}
⊆ Cd

0,T . (3.26)

Then for every t ∈ [0, T ], there exists L(t, ·) ∈ Ĥt such that

J∗
[
L(t, ·)

]
(s) = 1[0,t](s)Id. (3.27)

In particular, a Volterra kernelK : [0, T ] → L2
(
[0, T ]; Lin(Rd,Rd)

)
satisfies Assumption 3.7 if and only

if the Hilbert space filtration

(
Ht,

〈
·, ·
〉
Ht

)
t∈[0,T ]

is isomorphic to
(
L2
t,T (R

d),
〈
·, ·
〉
t

)
t∈[0,T ]

Proof. First, we suppose that the Hilbert space filtrations
(
Ht, 〈·, ·〉Ht

)
t∈[0,T ]

is isomorphic to
(
L2
t,T (R

d),
〈
·, ·
〉
t

)
t∈[0,T ]

.

Next, we remark that the Hilbert space filtration

(
Ĥt, 〈·, ·〉Ĥt

)
t∈[0,T ]

=

(
span

{
1[0,s]Id : s ∈ [0, t]

}
,
〈
·, ·
〉
Ĥt

)

t∈[0,T ]

is isomorphic to
(
Ht, 〈·, ·〉Ht

)
t∈[0,T ]

thanks to the Hilbert space isomorphism It : Ĥt → Ht defined

by

IT

[
1[0,s]Id

]
(r) = R(s, r)

satisfying that IT
∣∣
Ĥt

= It. Hence, by the transitivity of isomorphisms,

(
Ĥt, 〈·, ·, 〉Ĥt

)
t∈[0,T ]

is isomorphic to
(
L2
t,T (R

d),
〈
·, ·
〉
t

)
t∈[0,T ]

.

Hence, for every t ∈ [0, T ], there exists an elementL(t, ·) ∈ ĤT such that Equation (3.27) is satisfied.
Lemma 3.8 proves the reverse implication and we conclude.

Example 3.23. The filtration (Ht)t∈[0,T ] associated to the reproducing kernel Hilbert space of a Brow-

nian bridge with termination time T is not isomorphic to

(
L2
t,T (R

d),
〈
·, ·
〉
t

)
t∈[0,T ]
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To see this, first note that

HT
T =

{∫ ·

0
fsds : f ∈ L2

(
[0, T ];Rd

)
and

∫ T

0
fsds = 0

}

with inner product
〈∫ ·

0
fsds,

∫ ·

0
gsds

〉
HT

T

=

∫ T

0

〈
ft, gt

〉
Rddt

On the other hand, the reproducing kernel Hilbert space generated by the Brownian bridge with termi-

nation time T running over the sub-interval [0, t] where t < T is

HT
t =

{∫ ·∧t

0
fsds : f ∈ L2

(
[0, T ];Rd

)}
with

〈∫ ·∧t

0
fsds,

∫ ·∧t

0
gsds

〉
HT

t

=

∫ t

0

〈
fs, gs

〉
Rdds.

Therefore, the Hilbert space filtration

(
HT

t ,
〈
·, ·
〉
HT

t

)
t∈[0,T )

is isomorphic to
(
L2
(
[0, T ];Rd

)
, 〈·, ·〉

)
t∈[0,T )

with isomorphism Ψt,

but it is not the case that under the associated mapping

ΨT

[
HT

T , 〈·, ·〉HT
T

]
is not equal to

(
L2([0, T ];Rd), 〈·, ·〉

)
.

In particular, there is no way to bijectively transform a Brownian bridge into a Brownian motion

without enhancing the underlying σ-algebra.

Theorem 3.24. Let (Zt)t∈[0,T ] be a d-dimensional Gaussian process with covariance R : [0, T ]×2 → R.

Let

Ht := span
{
E
[
〈Zs, u〉Rd · Z·

]
: s ∈ [0, t], u ∈ Rd

}

with inner product
〈
E
[
〈Zs, u〉Rd · Z·

]
,E
[
〈Zr, v〉Rd · Z·

]〉
Ht

= E
[
〈Zs, u〉Rd · 〈Zr, v〉Rd

]
.

Then the following are equivalent:

1. The Hilbert space filtration

(
Ht, 〈·, ·〉Ht

)
t∈[0,T ]

is isomorphic to
(
L2
t,T (R

d),
〈
·, ·
〉
t

)
t∈[0,T ]

;

2. There exists a Volterra kernel K : [0, T ] → L2
(
[0, T ]; Lin(Rd,Rd)

)
such that

Zt =

∫ t

0
K(t, s)dWs

and K satisfies Assumption 3.7;

Proof. Proposition 3.22 proves that 2 implies 1 so we focus on proving 1 implies 2.
Therefore, we start by assuming that the filtration of reproducing kernel Hilbert spaces satisfies

1. Following on from Example 3.21, we conclude that this is equivalent to
(
Ĥt, 〈·, ·〉Ĥt

)
t∈[0,T ]

being isomorphic to
(
L2
t,T (R

d),
〈
·, ·
〉
t

)
t∈[0,T ]

.
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In particular, this means that for every t ∈ [0, T ] there exists L(t, ·) ∈ Ĥ such that

W ∗
t :=

∫ t

0
L(t, s)dZs and E

[〈
W ∗

t ,W
∗
s

〉
Rd

]
= d ·

〈
1[0,t],1[0,s]

〉
L2

(
[0,T ];R

)

and we conclude that the Gaussian process (W ∗
t )t∈[0,T ] has the same covariance as a Brownian

motion.
Similarly, we also obtain that for every t ∈ [0, T ] there exists a K(t, ·) ∈ L2

(
[0, T ]; Lin(Rd,Rd)

)

such that

E
[〈
Zt, Zs

〉
Rd

]
= R(t, s) =

∫ T

0

〈
K(t, r),K(s, r)

〉
Lin(Rd,Rd)

dr.

Further, since 1[0,t] ∈ Ĥt and the restriction of 1[0,t] to Ĥs is just 1[0,s], we conclude that

K(t, ·) ∈ L2
(
[0, t]; Lin(Rd,Rd)

)
and

∫ T

t

K(t, s)ds = 0.

Hence, we conclude that K is a Volterra kernel.
As W is a Brownian motion, we define the new Gaussian process (Z∗

t )t∈[0,T ] where

Z∗
t :=

∫ t

0
K(t, s)dW ∗

s .

By direct calculation, we conclude that

E
[〈
Z∗
t , Z

∗
t

〉
Rd

]
= R(t, s)

so that (Z∗
t )t∈[0,T ] has the same covariance as the Gaussian process (Zt)t∈[0,T ]. Hence, we conclude

that (Zt)t∈[0,T ] admits a Volterra representation.

Definition 3.25. We say that a Gaussian measure γ associated to the abstract Wiener space

(Cd
0,T ,HT , iT )

is securely locally non-deterministic if the filtration of Hilbert spaces

(
Ht,

〈
·, ·
〉
t

)
t∈[0,T ]

is isomorphic to
(
L2
t,T (R

d),
〈
·, ·
〉
t

)
t∈[0,T ]

.

Remark 3.26. The authors endeavoured to find a direct connection between Definition 3.25 and more

common definitions of Local Non-determinism such as for every s ∈ [0, T ] and t ∈ (s, T ],

E

[(
Zt − E

[
Zt

∣∣Fs

])2]
> 0. (3.28)

For a more detailed exploration of some non-equivalent definitions of local non-determinism, we refer

the reader to [Xia06]. We conjecture that (3.28) is not equivalent to 3.25, but we leave this as an open

problem. The local non-determinism of fractional Brownian motion has found a lot of interest recently

in the context of regularisation by noise, see for example [GG20, GG22]. These techniques rely on a

scaling property for estimates of the form (3.28) which is quite different from our setting. None the less,

we do feel that it is worth exploring this connection in more detail.
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3.4 Girsanov’s Theorem

Having established a class of Gaussian processes that can be transformed via a Volterra kernel into
a Brownian motion bijectively, our next goal is to understand how the existence of the fundamental
martingale allows us to prove additional properties for such Gaussian measures using martingale
techniques that would otherwise only apply to the law of Brownian motion.

The following classical result can be found in [Bog98]:

Theorem 3.27 (Cameron Martin Theorem). Let (X ,B, γ) be a probability space with a Gaussian

measure and let H be the reproducing kernel Hilbert space. Then for any h ∈ H,
∫

X
F (x+ h)dγ(x) =

∫

X
F (x) exp

(
δ(h) −

‖h‖2
H

2

)
dγ(x).

Theorem 3.27 allows us to study the linear translation of Gaussian measures, in this case by a
Hilbert space element h. However, it is much more practical to want to consider non-linear trans-
formations of a Gaussian measure. We refer the interested reader to [Nua06, Chapter 4] for an
impressive collection of results on the translation of the Wiener measure. Our focus is instead on es-
tablishing a Girsanov-type result for Gaussian processes that are securely locally non-deterministic.

For every t ∈ [0, T ], we denote Pt : Cd
T → Cd

t to be the canonical projection and denote the
σ-algebra filtration on Cd

T by

Ft := σ
(
(Pt)

−1[A] : A ∈ Cd
t

)
.

We now come to the first main result of this work:

Theorem 3.28. Let K : [0, T ] → L2
(
[0, T ]; Lin(Rd,Rd)

)
be a Volterra kernel that satisfies Assumption

3.7 and let (Ht)t∈[0,T ] be a filtration of Hilbert spaces defined as in Equation (3.26). Let it : Ht → Cd
0,T

be a compact embedding and let γ be the Gaussian measure associated with the abstract Wiener space

(Cd
0,T ,HT , iT ). Let P0 ∈ P2(R

d) and let denote P ∗ = P0 × γ.

Let b : [0, T ]× Cd
T → Rd be progressively measurable and suppose that

∥∥∥
∫ ·

0
b
(
s,X[s]

)
ds
∥∥∥
HT

<∞ P ∗-almost surely.

Further, suppose that on the filtered probability space
(
Cd
T ,B(C

d
T ), (Ft)t∈[0,T ], P

∗
)

the process

(t,X) 7→ Zt

[ ∫ ·

0
b
(
s,X[s]

)
ds
]
:= exp

(
δ

(
Πt

[ ∫ ·

0
b
(
s,X[s]

)
ds
])

− 1
2

∥∥∥
∫ ·

0
b
(
s,X[s]

)
ds
∥∥∥
2

Ht

)
(3.29)

(where δ is the Malliavin divergence) is a martingale that satisfies that

EP ∗

[
ZT

[ ∫ ·

0
b
(
s,X[s]

)
ds
]]

= 1. (3.30)

Let P be the probability measure defined by

dP

dP ∗

∣∣∣∣
Ft

= Zt

[ ∫ ·

0
b
(
s,X[s]

)
ds
]
.

Then the law of the process

Xt −

∫ t

0
b
(
s,X[s]

)
ds under P

is the same as the law of the canonical process X under P ∗.
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Notice that Theorem 2.2 follows as an example of Theorem 3.28. Further, note that the statement
of Theorem 2.2 relies on the projection mapping Π defined in Definition 3.14. Without the Volterra
kernel K satisfying Assumption 3.7, this projection mapping would not be ’rich enough’ for this
result to hold.

Proof of Theorem 3.28. Let us start by observing that since for every t ∈ [0, T ] we have that
∫ ·

0
b(s,X[s])ds ∈ Ht for P ∗-almost everywhere,

we can write
∫ ·∧t

0
K(·, s)Qb

s

(
X[s]

)
ds = Πt

[ ∫ ·

0
b
(
s,X[s]

)
ds
]

and

∥∥∥
∫ ·

0
K(·, s)Qb

s

(
X[s]

)
ds
∥∥∥
Ht

=

∥∥∥∥Πt

[ ∫ ·

0
b
(
s,X[s]

)
ds
]∥∥∥∥

HT

Therefore, to align notation with the previous results we henceforward write h(X) =
∫ ·
0 b(s,X[s])ds.

Thus Equation (3.29) can be rewritten as

t 7→ Zt[h] = exp
(
δ
(
h
)
−

‖h‖Ht

2

)

and thanks to Equation (3.30) we conclude that Zt[h] is a P ∗-martingale.
Thanks to Assumption 3.7, the process

t 7→W ∗
t (X) := X0 +

∫ t

0
L(t, s)dXs

is a Brownian motion so that under P the process

t 7→W ∗
t (X)−

∫ t

0
Qb

s

(
X[s]

)
ds

is a Brownian motion. Finally, thanks to Proposition 3.12, we conclude that the process

t 7→ Xt −X0 −

∫ t

0
b
(
s,X[s]

)
ds =

∫ t

0
K(t, s)dW ∗

s −

∫ t

0
K(t, s)Qb

s

(
X[s]

)
ds

is a fractional Brownian motion under P .

In practice, proving that the local martingale defined in Equation (3.29) is in fact a martingale is
as challenging as it is in the classical setting. In the next result, we provide an adaption of Novikov’s
famous condition from [KS91, Corollary 3.5.14]:

Proposition 3.29 (Novikov’s Condition). LetK : [0, T ] → L2
(
[0, T ]; Lin(Rd,Rd)

)
be a Volterra kernel

that satisfies Assumption 3.7 and let (Ht)t∈[0,T ] be a filtration of Hilbert spaces defined as in Equation

(3.26). Let b : [0, T ]×Cd
T → Rd be progressively measurable suppose there exists a monotone increasing

sequence (tn)n∈N taking values in [0, T ] such that tn ↑ ∞ and for every n ∈ N

EP ∗

[
exp

(∥∥∥Πtn,tn+1

[ ∫ ·

0
b
(
s,X[s]

)
ds
]∥∥∥

2

HT

)]
<∞ (3.31)

where Πtn,tn+1
= Πtn+1

−Πtn and Πt is the operator defined in Definition 3.14.

Then

t 7→ Zt

[ ∫ ·

0
b
(
s,X[s]

)
ds
]

is an Ft-martingale.
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Proof. Firstly, on the interval [0, t1] Equation (3.31) implies that

E
P ∗
t1

[
exp

(∥∥∥
∫ ·

0
b
(
s,X[s]

)
ds
∥∥∥
2

Ht1

)]
<∞

so that we conclude that for any t ∈ [0, t1] the process

t 7→ Zt

[ ∫ ·

0
b
(
s,X[s]

)
ds
]

is a martingale and EP ∗

[
Zt

[ ∫ ·

0
b
(
s,X[s]

)
ds
]]

= 1.

Next, for any choice of n ∈ N we denote

hn(X) = Πtn,tn+1

[ ∫ ·

0
b
(
s,X[s]

)
ds

]

and we conclude that on the interval [0, tn+1] Equation (3.31) implies that

t 7→ Zt

[
hn(X)

]
is a martingale and

EP ∗
[
Zt

[
hn(X)

]∣∣∣FZ
s

]
=

{
1 for any s ∈ [0, tn],

Zs

[
hn(X)

]
for any s ∈ [tn, tn+1].

Next, using the orthogonality of the Hilbert spaces projections Πtn and Πtn,tn+1
we obtain that for

any h ∈ HT ∥∥h
∥∥2
Htn+1

2
=

∥∥Πtn [h]
∥∥2
Htn+1

2
+

∥∥Πtn,tn+1
[h]
∥∥2
Htn+1

2

so that we obtain that for t ∈ [t1, t2]

t 7→Zt

[
h(X)

]
= exp

(
δ
(
Πt[h]

)
−

∥∥Πt[h]
∥∥2
HT

2

)

= exp
(
δ
(
Πt1∧t[h]

)
−

∥∥Πt1∧t[h]
∥∥2
HT

2

)
· exp

(
δ
(
(Πt2∧t −Πt1∧t)[h]

)
−

∥∥(Πt2∧t−Πt1∧t)[h]
∥∥2

HT

2

)

= Zt

[
h1(X)

]
· Zt

[
h2(X)

]

is a martingale. By induction on n and using that tn ↑ ∞, we conclude that Zt[h] is a martingale
over the whole interval t ∈ [0, T ].

3.5 Examples of Gaussian processes

The following was first observed in [MSS20] and includes fractional Brownian motion:

Example 3.30. Motivated by the case H > 1
2 , let K : [0, T ] → L2

(
[0, T ];R

)
be a Volterra kernel of the

form

K(t, s) = a(s) ·

∫ t

s

b(u) · c(u− s)du (3.32)

where a, b, c : [0, T ] → R satisfy that

1. The functions a ∈ Lp([0, T ]), b ∈ Lq([0, T ]) and c ∈ Lr([0, T ]) for p ∈ [2,∞], q ∈ [1,∞] and

r ∈ [1,∞] such that
1
p
+ 1

q
+ 1

r
≤ 3

2 .
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2. The function c ∈ L1([0, T ]) forms a Sonine pair with h ∈ L1([0, T ]), that is

∫ t

0
c(s) · h(t− s)ds = 1 ∀t ∈ (0, T ].

3. The functions a and b are positive almost everywhere on [0, T ].

4. The functions a−1 ∈ C1([0, T ]), d := b−1 ∈ C2([0, T ]) and either

(a) We have that d(0) = d′(0) = 0.

(b) The function a−2 · h ∈ C1([0, T ]).

Then the Volterra kernel K satisfies Assumption 3.7 and the Volterra kernel L : [0, T ] → Ĥ is equal

to

L(t, s) =
h(t− s)

a(t)b(s)
+

1

b(s)

∫ t

s

a′(v)h(v − s)

a(v)2
dv.

In particular

J∗
[
1[0,t]

]
(s) =K(t, s) = K(t, s)−K(s, s) =

∫ T

s

∂K

∂u
(u, s)1[0,t](u)du

so that

J∗
[
L(t, ·)

]
(s) =

∫ t

s

∂K

∂u
(u, s) · L(t, u)du (3.33)

=J∗

[
1[0,t] ·

p(t) · h(t− ·)

b(·)

]
(s)− J∗

[
1

b(·)

∫ t

·
p′(v) · h(v − ·)ds

]
(s)

=

∫ t

s

a(s) · b(u) · c(u− s) ·
p(t) · h(t− u)

b(u)
du−

∫ t

s

a(s) · c(u− s) ·

∫ t

u

p′(v) · h(v − u)dvdu

=a(s)p(t)

∫ t

s

c(u− s)h(t− u)du−

∫ t

s

a(s)p′(v)

∫ v

s

c(u− s)h(v − u)dudv

=a(s) · p(t)1[0,t](s)− a(s) ·
[
p(t)− p(s)

]
1[0,t](s) = 1[0,t](s).

Example 3.31. Extending the ideas of [MSS20] and motivated by the case H < 1
2 , consider a Volterra

kernel of the form

K(t, s) = a(s)

(
c(t− s)b(t)−

∫ t

s

c(u− s)
d

du

[
b(u)

]
du

)

Observe that

J∗
[
1[0,t]

]
(s) = K(t, s) =

∫ T

0
K(u, s)δt(u)du = −

∫ T

s

K(u, s)
∂1[0,t]

∂u
(u)du

so that

J∗
[
L(t, ·)

]
(s) = −

∫ T

s

K(u, s)
∂L

∂u
(t, u)du = 1[0,t](s) (3.34)

Equation (3.33) and (3.34) can equally be interpreted as the existence of a Sonine kernel for the
Volterra kernel, see [Son84].
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4 Locally interacting processes and the 2-MRF property

Our next goal it to study stochastic differential equations of the form

dXu
t = bu

(
t,Xu[t],XNu [t]

)
dt+ dZu

t , u ∈ V, (Xu
0 )u∈V ∼ µ0 (4.1)

where (V,E) ∈ G and recall Nu = {v ∈ V : {u, v} ∈ E}. We want to study the existence and
uniqueness of such countably infinite collections of processes, along with their Markov Random
Field properties.

Firstly, in Section 4.1 we prove a weak existence and uniqueness result for such collections of
stochastic differential equations driven by additive Gaussian processes. The key challenge here is
that each equation is strongly correlated with its neighbours and the number of equations is taken
to be countably infinite. This relies on Theorem 3.28 which we established previously.

In Section 4.2, we prove the Markov Random Field property for collections of stochastic differ-
ential equations of the form (4.1). Firstly, we consider the finite graph case and prove Theorem 4.8
via a clique factorisation. When the graph is countably infinite, this approach does not work and
instead we need to consider appropriate truncation and convergence arguments where we prove
Theorem 4.11.

4.1 Weak existence and uniqueness

We commence by defining in what sense we establish our solution:

Definition 4.1. Let (V,E) ∈ G. We say that

(
(Ω,F ,P),

(
Xu

0 , Z
u, bu,X

u
)
u∈V

)

is a weak solution to the stochastic differential equation (4.1) when (Ω,F ,P) is a probability space and

(
Xu

0 , Z
u,Xu[t]

)
u∈V

: Ω →
(
Rd × Cd

0,T × Cd
T

)V

is a random variable such that:

1. The random variable (XV
0 ) has distribution µ0 ∈ P

(
(Rd)V

)
;

2. The expectation

sup
u∈V

E
[∥∥Xu

∥∥2
∞

]
<∞;

3. For every u ∈ V the function bu : [0, T ]× Cd
T × (Cd

T )
Nu → Rd is progressively measurable and the

random variable

ω 7→

(∫ T

0

∣∣∣bu
(
t,Xu[t],XNu [t]

)∣∣∣dt
)

u∈V

∈ (Rd)V P-almost surely;

4. The random variables

(XV ) and
(
Xu

0 +

∫ ·

0
bu
(
t,Xu[t],XNu [t]

)
dt+ Zu

·

)
u∈V

are P-almost surely equal.
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We work under the following set of assumptions:

Assumption 4.2. Let (V,E) ∈ G, let M ∈ L1
(
[0, T ];R

)
and let µ0 ∈ P((Rd)V

)
. Let (γu, bu)u∈V and

suppose that:

(X.1) For every u ∈ V , let γu ∈ P(Cd
0,T ) be a Gaussian measure with abstract Wiener space (Eu,Hu

T , i
u)

where Eu ⊆ Cd
0,d. Further, suppose that the filtration of reproducing kernel Hilbert spaces

(
Hu

t ,
〈
·, ·
〉
Ht

)
t∈[0,T ]

is isomorphic to
(
L2
t,T (R

d),
〈
·, ·
〉
t

)
t∈[0,T ]

.

(X.2) For every u ∈ V , the function bu : [0, T ] × Cd
T × (Cd

T )
Nu → Rd is progressively measurable and

suppose for any (Xu,XNu) ∈ Cd
T × (Cd

T )
Nu that

∥∥∥∥
∫ ·

0
bu
(
s,Xu[s],XNu [s]

)
ds

∥∥∥∥
HT

<∞. (4.2)

Further, suppose for every s, t ∈ [0, T ] and (X,XNu) ∈ (Rd × Eu)× (Rd × Ev)Nu that

∥∥∥∥Πs,t

[ ∫ ·

0
bu
(
s,Xu[s],XNu [s]

)
ds
]∥∥∥∥

2

HT

≤

∫ t

s

Mrdr ·
(
1 +

∥∥Xu
∥∥2
Eu +

1

|Nu|

∑

v∈Nu

∥∥Xv
∥∥2
Ev

)
<∞ (4.3)

where the operator Πt : HT → Ht is defined in Definition 3.14;

Remark 4.3. Let us take a moment to compare Equation (4.3) and (2.9): thanks to Proposition 3.12

we conclude that for every (Xu,XNu) ∈ Cd
T × (Cd

T )
Nu ,

∥∥∥∥Πs,t

[ ∫ ·

0
bu
(
r,Xu[r],XNu [r]

)
dr
]∥∥∥∥

2

HT

=

∫ t

s

∣∣∣Qbu
(
r,Xu[r],XNu [u]

)∣∣∣
2
dr

where Qbu is defined in Equation (3.19).

Therefore, if Equation (4.3) holds for some function M ∈ L1
(
[0, T ];R

)
then the function F from

Equation (2.9) is simply

Fu

(
Xu,XNu

)
=
(
1 +

∥∥Xu
∥∥2
Eu +

1

|Nu|

∑

v∈Nu

∥∥Xv
∥∥2
Ev

)

As we saw in Examples 2.5 and 2.6, the norm of the abstract Wiener space can by ‖ ·‖∞,T when H < 1
2 ,

but when H > 1
2 we need the larger norm ‖ · ‖H−ε-Hölder norm.

Theorem 4.4. Let (V,E) ∈ G, M ∈ L1
(
[0, T ];R

)
, µ0 ∈ P((Rd)V

)
and (γu, bu)u∈V satisfy Assumption

4.2. Then there exists a unique in law solution to Equation (4.1).

Proof of Theorem 4.4 when |V | <∞: We use the techniques of [KS91, Proposition 5.3.6]:

We rewrite (Cd
T )

V = C
d×|V |
T and denote d′ = d× |V |.

Since the collection of measures (γu)u∈V satisfies (X.1), we conclude from Theorem 3.24 that
the product measure

∏
u∈V γ

u ∈ P
(
Cd′

0,T

)
is the law of a d′-dimensional Gaussian Volterra process

that satisfies Assumption 3.7.
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Using that Cd′

T ≡ Rd′ × Cd′

0,T , we can define the measure

P ∗ := µ0 ×
∏

u∈V

γu ∈ P
(
Rd′ × Cd′

0,T

)
≡ P

(
Cd′

T

)
(4.4)

Thanks to (X.2), we conclude that for every u ∈ V

∥∥∥∥
∫ ·

0
bu
(
s,Xu[s],XNu [s]

)
ds

∥∥∥∥
HT

<∞ P ∗-almost surely.

Further, Equation (4.3) in particular means that we can choose a monotone increasing sequence
(tn)n∈N taking values in [0, T ] such that tn ↑ ∞ and for every n ∈ N

EP ∗

[
exp

(∑

u∈V

∥∥∥Πtn,tn+1

[ ∫ ·

0
bu
(
s,Xu[s],XNu [s]

)
ds
]∥∥∥

2

HT

)]

=EP ∗

[
exp

(∫ tn+1

tn

Mrdr ·
∑

u∈V

(
1 +

∥∥Xu
∥∥2
Eu + 1

|Nu|

∑

v∈Nu

∥∥Xv
∥∥2
Ev

))]
<∞

thanks to Ferniques Theorem. Therefore, we can apply Proposition 3.29 to conclude that

t 7→ Zt

[⊕

u∈V

∫ ·

0
bu

(
s,Xu[s],XNu [s]

)
ds

]
is an Ft-martingale.

We apply Theorem 3.28 to conclude that there is a measure P ∈ P
(
Cd′

T

)
defined by

dP

dP ∗

∣∣∣∣
Ft

= Zt

[⊕

u∈V

∫ ·

0
bu

(
s,Xu[s],XNu [s]

)
ds

]

and under P the law of the process

(Zu)u∈V :=
⊕

u∈V

(
Xu

· −

∫ ·

0
bu

(
s,Xu[s],XNu [s]

)
ds

)

is the same as the law of the canonical process under P ∗. Therefore, our weak solution to Equation
(4.1) is the probability space

(
Cd′

T ,B(C
d′

T ), P
)

paired with the collection (Xu
0 , Z

u, bu,X
u)u∈V .

Measure theory recap

Suppose now that |V | ≮ ∞: then the vector space (Cd
T )

V is no longer a Banach space but a locally

convex topological vector space and we need to take additional care when we define our measure
change.

The following well known Theorem which can be found in [Tao11] shall be used to extend
Theorem 3.28 to countably infinite collections of Gaussian processes:

Theorem 4.5 (Kolmogorov’s measure extension Theorem). Let
(
(Cd

T )
N,B′

(
(Cd

T )
N
))

be a measurable

space for every n ∈ N let Pn ∈ P
(
(Cd

T )
×n
)
. We say that the sequence of measures (Pn)n∈N is consistent

if for every n ∈ N and every A ∈ B
(
(Cd

T )
×n
)
,

Pn+1

[
A× Cd

T

]
= Pn

[
A
]
. (4.5)

37



Then there exists a unique probability measure P ∈ P
(
(Cd

T )
V
)

such that for every n ∈ N and A ∈
B
(
(Cd

T )
×n
)
, the cylinder sets

Cn(A) :=
{
(x1, x2, ...) ∈ (Cd

T )
N : (x1, ..., xn) ∈ (Cd

T )
×n
}

satisfy that

P
[
Cn(A)

]
= Pn[A]. (4.6)

Proof of Theorem 4.4 when |V | ≮ ∞: As the set of vertices is countably infinite, let φ : V → N be an
enumeration and denote V n :=

{
v ∈ V : φ[v] ≤ n

}
.

For every n ∈ N, we denote the canonical projection πn : (Rd)V → (Rd)V
n

and µn := µ0 ◦
(πn)

−1 ∈ P
(
(Rd)×n

)
. For every u ∈ V , we have the Gaussian measure γu ∈ P(Cd

T ) and we define
the product measure

P ∗,n := µn ×
n∏

i=1

γφ
−1[i] ∈ P

(
(Rd)V

n

× (Cd
0,T )

V n
)
≡ P

(
(Cd

T )
V n
)

Then the sequence of measures Pn,∗ satisfies Equation (4.5) and we conclude from Theorem 4.5
that there exists a measure P ∗ ∈ P

(
(Cd

T )
V
)

that satisfies Equation (4.6).
Thanks to (X.2), we conclude that for every n ∈ N

∑

u∈V n

∥∥∥∥
∫ ·

0
bu
(
s,Xu[s],XNu [s]

)
ds

∥∥∥∥
HT

<∞ P ∗,n-almost surely.

Further, Equation (4.3) in particular means that we can choose a monotone increasing sequence
(tm)m∈N taking values in [0, T ] such that tm ↑ ∞ and for every n ∈ N

EP ∗,n

[
exp

( ∑

u∈V n

∥∥∥Πtm,tm+1

[ ∫ ·

0
bu
(
s,Xu[s],XNu [s]

)
ds
]∥∥∥

2

HT

)]
<∞

as above. Therefore, we can apply Proposition 3.29 to conclude that

t 7→ Zt

[ ⊕

u∈V n

∫ ·

0
bu

(
s,Xu[s],XNu [s]

)
ds

]
is an Ft-martingale.

We apply Theorem 3.28 to conclude that there is a measure Pn ∈ P
(
(Cd

T )
V n)

defined by

dPn

dP ∗,n

∣∣∣∣
Ft

= Zt

[ ⊕

u∈V n

∫ ·

0
bu

(
s,Xu[s],XNu [s]

)
ds

]

We can also verify that the sequence of measures Pn satisfies Equation (4.5) and we conclude from
Theorem 4.5 that there exists a measure P ∈ P

(
(Cd

T )
V
)

that satisfies Equation (4.6). Under P , for
any choice of n ∈ N the law of the collection of processes

(
Zu
)
u∈V n :=

⊕

u∈V n

(
Xu

· −

∫ ·

0
bu
(
s,Xu[s],XNu [s]

)
ds

)

is the same as the law of the
(
Xu
)
u∈V n under P ∗. Therefore, our weak solution to Equation (4.1) is

(
(Cd

T )
V ,B′

(
(Cd

T )
V
)
, P
)

paired with the collection (Xu
0 , Z

u, bu,X
u)u∈V .
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4.2 Markov Random Field property

We start by recalling the Second-order Hammersley-Clifford Theorem (a proof of which can be
found in [LRW21]):

Proposition 4.6 (2nd-order Hammersley-Clifford). Let G = (V,E) be a finite graph and let (X , d) be

a metric space. Suppose that ν ∈ P(X V ) is absolutely continuous with respect to a product measure

ν∗ = PV for some P ∈ P(X ).

(i) The measure ν is a 2-Markov Random Field.

(ii) The Radon–Nikodym derivative of the measure ν with respect to the measure ν∗ factorises of the

form
dν

dν∗
(x) =

∏

K∈cl2(G)

fK(x), x ∈ X V (4.7)

for some measurable function fK : X V → R+ for any K ∈ cl2(G).

Then (ii) implies (i). Further, if dν
dν∗

(x) is strictly positive then (i) implies (ii).

Curiously, Hammersley and Clifford never published their original work on the link between
Gibbs random fields and Markov random fields as they considered it incomplete given the - now
known to be essential - requirement of positive definite probabilities, but subsequent publications
were accepted along with new adaptions of the proof [Gri73,Bes74].

This actually points us to a vital detail of our technique: when the graph (V,E) has a vertex set
that is countably infinite, we are not able to write down a Radon-Nikodym derivative that is strictly
positive so that we must use alternative truncation methods:

Finite graphs

We start by considering a system of interacting equations with interactions described by a finite
graph.

Assumption 4.7. Let (V,E) be a finite graph, let M ∈ L1
(
[0, T ];R

)
and let µ0 ∈ P((Rd)V

)
. Let

(γu, bu)u∈V satisfy Assumption 4.2 and additionally that:

(X.3) For every u ∈ V , there exist probability measures λu ∈ P(Rd) such that µ0 ∈ P2

(
(Rd)V

)
is

absolutely continuous with respect to the product measure

µ∗0 =
∏

v∈V

λv and the density
dµ0
dµ∗0

(x) =
∏

K∈cl2(G)

fK(xK), x ∈ (Rd)V . (4.8)

Theorem 4.8. Let (V,E) ∈ G, M ∈ L1
(
[0, T ];R

)
, µ0 ∈ P((Rd)V

)
and (γu, bu)u∈V satisfy Assumption

4.7. Then for any t ∈ [0, T ], the unique in law solution to Equation (4.1)

P ◦
(
XV [t]

)−1
∈ P

(
(Cd

t )
V
)

is a 2-MRF.

39



Proof. Let P ∗ ∈ P
(
(Cd

T )
V
)

be defined as in Equation (4.4) and let P be the unique law to the weak
solution to Equation (4.1).

For each u ∈ V , since bu is dependent only on (Xu,XNu) ∈ Cd
T × (Cd

T )
Nu and the set {u} ∪Nu ∈

cl2(G), we can conclude that for any K ∈ cl2(G) there exists measurable functions f̃K : (Cd
T )

K → R

such that
dP

dP ∗

(
XV [t]

)
=

∏

K∈cl2(G)

f̃
(
XK

)
(4.9)

where

f̃
(
XK [t]

)
=

{
Zt

[ ∫ ·
0 bu
(
s,XK

)
ds
]

if K = {u} ∪Nu

0 otherwise.

Secondly, by Assumption 4.7

d(µ0 × γV )

d(µ∗0 × γV )
(xV0 ) =

dµ0
dµ∗0

(xV0 ) =
∏

K∈cl2(G)

fK
(
xK0
)

so that

dP

d(µ∗0 × γV )

(
XV [t]

)
=

dP ∗

d(µ∗0 × γV )
·
dP

dP ∗

(
XV [t]

)
=

∏

K∈cl2(G)

f̃K
(
XK [t]

)
· fK

(
XK

0

)
.

Thus for each t ∈ [0, T ] the Radon–Nikodym derivative dP
d(µ∗

0
×γV )

(
x[t]
)

has a 2-clique factorisation of

the form Equation (4.7) and courtesy of Proposition 4.6 we conclude that P is a 2-Markov Random
Field over the graph (V,E).

Infinite graphs

The argument used in the proof of Theorem 4.8 relies on the underlying graph (V,E) being finite,
but we also want to consider the case where the graph is countably infinite:

Assumption 4.9. Let (V,E) be a countably infinite locally finite graph, let M ∈ L1
(
[0, T ];R

)
and let

µ0 ∈ P
(
(Rd)V

)
. Let (γu, bu)u∈V satisfy Assumption 4.2 and additionally that:

(X.3’) Suppose that the measure µ0 ∈ P
(
(Rd)V

)
is a 2-Markov Random Field and further that there

exists a collection of measures (λu)u∈V such that for any finite set A ⊂ V , the marginal measure

µA0 is equivalent to the product measure

µ∗,A0 =
∏

v∈A

λv

and the initial law µ0 satisfies

sup
v∈V

∫

(Rd)V
|xv |2dµ0(x

V ) + sup
v∈V

∫

Eu

∥∥X
∥∥2
Eudγ

u(X) <∞; (4.10)

Building on Lemma A.4 and [LRW21, Proposition 4.4], we obtain the following:
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Proposition 4.10. Let G̃ = (Ṽ , Ẽ) and Ḡ = (V̄ , Ē) be finite graphs and suppose that V ∗ ⊂ Ṽ ∩ V̄
satisfies (A.1). Let A ⊂ V ∗ satisfying ∂2

G̃
A ⊂ V ∗ and ∂2

Ḡ
A ⊂ V ∗.

Suppose
(
µ̃0, (b̃u, γ̃

u)u∈Ṽ
)

and
(
µ̄0, (b̄u, γ̄

u)u∈V̄
)

both satisfy Assumption 4.7 and let P̃ ∈ P
(
(Cd

T )
Ṽ
)

and P̄ ∈ P
(
(Cd

T )
V̄
)

be the corresponding unique laws of SDE (4.1). Additionally, suppose that:

∀v ∈ A ∪ ∂2A, b̃v ≡ b̄v and ∀v ∈ Ṽ ∩ V̄ , γ̃v = γ̄v. (4.11)

Further, for each v ∈ Ṽ ∪ V̄ there exists λv ∈ P(Rd) such that the product measure

µ∗0 =
∏

v∈Ṽ ∪V̄

λv ∈ P
(
(Rd)Ṽ ∪V̄

)
such that (4.12)

dµ̃0

dµ∗,Ṽ0

(
xṼ
)
=

∏

K∈cl2(G̃)

f̃K
(
xK
)
, and

dµ̄0

dµ∗,V̄0

(
xV̄
)
=

∏

K∈cl2(V̄ )

f̄K
(
xK
)
, (4.13)

for some measurable functions (f̃K : (Rd)K 7→ R+)K∈cl2(G̃) and (f̄K : (Rd)K 7→ R+)K∈cl2(Ḡ) and

∀K ∈ KA f̃K ≡ f̄K

where KA are defined as in Equation (A.2). Then P̃A
t

[
·
∣∣∂2A

]
= P̄A

t

[
·
∣∣∂2A

]
for each t > 0, both in

the sense of P̃ ∂2A
t -almost sure and P̄ ∂2A

t -almost sure.

Proof. Using that (Cd
T )

Ṽ ∪V̄ ≡ (Rd)Ṽ ∪V̄ × (Cd
0,T )

Ṽ ∪V̄ , we denote P ∗ ∈ P
(
(Cd

T )
Ṽ ∪V̄

)
to be the product

measure

P ∗ = µ0 ×

( ∏

u∈Ṽ

γ̃u ·
∏

u∈V̄ \Ṽ

γ̄u
)
.

Working on the canonical probability space
(
(Cd

T )
Ṽ ∪V̄ ,B′

(
(Cd

T )
Ṽ ∪V̄

)
, P ∗

)

and recalling Equation (3.29), for t ∈ [0, T ] we denote:

for each u ∈ Ṽ

t 7→ Z̃u
t

(
XV
)
= exp

(
δ

(
Πt

[ ∫ ·

0
b̃u
(
s,Xu,XNu

)
ds
])

− 1
2

∥∥∥∥
∫ ·

0
b̃u
(
s,Xu,XNu

)
ds

∥∥∥∥
2

Ht

)
;

for each u ∈ V̄

t 7→ Z̄u
t

(
XV
)
= exp

(
δ

(
Πt

[ ∫ ·

0
b̄u
(
s,Xu,XNu

)
ds
])

− 1
2

∥∥∥∥
∫ ·

0
b̄u
(
s,Xu,XNu

)
ds

∥∥∥∥
2

Ht

)
.

Then by Theorem 3.28 and Equation (4.13), we have

dP̃t

dP ∗,Ṽ
t

=
∏

K∈cl2(G̃)

f̃K
(
XK

0

)
·
∏

v∈Ṽ

Z̃v
t and

dP̄t

dP ∗,V̄
t

=
∏

K∈cl2(Ḡ)

f̄K
(
XK

0

)
·
∏

v∈V̄

Z̄v
t .

Finally, due to (A.1) we have that u ∈ A ∪ ∂A implies Ñv = N̄u so that Z̃u
t = Z̄u

t for u ∈ A ∪ ∂A.
Applying Lemma A.4, it follows that P̃A

t

[
·
∣∣∂2A

]
= P̄A

t

[
·
∣∣∂2A

]
holds in the sense of P ∗

t [∂
2A]-

almost sure equality. Since both PH
t [∂2A] and PG

t [∂2A] are absolutely continuous with respect to
P ∗
t [∂

2A], the claim follows.
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Theorem 4.11. Let (V,E), M ∈ L1
(
[0, T ];R

)
, µ0 ∈ P((Rd)V

)
and (γu, bu)u∈V satisfy Assumption

4.9. Then for any t ∈ [0, T ], the unique in law solution to Equation (4.1)

P ◦
(
XV [t]

)−1
∈ P

(
(Cd

T )
V
)

is a 2-MRF.

Notice that Theorem 2.7 follows immediately from Theorem 4.11.

Proof. Let (V,E) be a countably infinite locally finite connected graph, fix
(
µ0, (bu, γ

u)u∈V
)

and let
XV = (Xv)v∈V ∈ (Cd

T )
V be the weak solution to Equation (4.1). For n ≥ 4, let Gn = (Vn, En) be the

sequence of finite graphs defined in Definition A.1 below.
First note that by Assumption 4.9 and Lemma A.3, the marginal µVn

0 is a 2MRF with respect to
the graph Gn. Moreover, the Radon-Nikodym derivative

dµVn

0

dµ∗,Vn

0

is strictly positive by Assumption (4.9) and Proposition 4.6 demonstrates that µVn

0 admits a 2-clique
factorization with respect to the product measure µ∗,Vn

0 for each n. Further, courtesy of Equation
(A.4) we conclude that

(
µVn

0 , (bnu,H
u)u∈Vn

)
satisfy Assumption 4.7. As Pn,Vn is the law of the SDE

(A.3) on the finite graph Gn, by Theorem 4.8 it is a 2-MRF.
Now, fix two finite sets A,B ⊂ V with B disjoint of A ∪ ∂2A. Let n0 denote the smallest integer

greater than or equal to 4 for which A ∪ ∂2GA ∪ B ⊂ Vn0−3, and let n ≥ n0. Then, Lemma A.3

implies that µVn
0 and µ

Vn0

0 admit 2-clique factorisation which are consistent in the sense that the

corresponding measurable functions fGn

K and f
Gn0

K agree for every K ∈ cl2(Gn0
) that intersects A

(equivalently, for every K ∈ cl2(G) that intersects A).
Following Equation (A.4), for all v ∈ A ∪ ∂2GA we have bnv = bn0

v = bv so we apply Proposition
4.10, with G̃ = Gn, Ḡ = Gn0

and V ∗ = Vn0−3,

for k ∈ {n0, ..., n} µGk
0 = µVk

0 , for
(
bkv)v∈Gk

=
(
bkv
)
v∈Gk

,

to deduce that for all n ≥ n0, P
n,A
t

[
·
∣∣∂2A

]
= Pn0,A

t

[
·
∣∣∂2A

]
.

Thus, given a bounded continuous function f : (Cd
T )

A → R, there exists a measurable function
ϕ (that does not depend on n) such that for n ≥ n0

ϕ
(
X∂2A[t]

)
= EPn

[
f(XA[t])

∣∣∣X∂2A[t]
]

Pn-almost surely. (4.14)

Now, fix additional bounded continuous functions g : (Cd
T )

∂2A → R and h : (Cd
T )

B → R. For t > 0,
taking the conditional expectation with respect to XVn\A[t] inside the expectation on the left-hand
side below and using the 2-MRF property of Pn and Equation (4.14), we have

EPn
[
f
(
XA[t]

)
g
(
X∂2A[t]

)
h
(
XB [t]

)]
= EPn

[
EPn

[
f
(
XA[t]

)∣∣∣X∂2A
]
g
(
X∂2A[t]

)
h
(
XB [t]

)]

= EPn
[
ϕ
(
X∂2A[t]

)
g
(
X∂2A[t]

)
h
(
XB [t]

)]

Applying Lemma A.6, for the finite set A′ = A ∪ ∂2A ∪B and for

ψ
(
yA

′)
:=f

(
yA
)
g
(
y∂

2A
)
h
(
yB
)
= ϕ

(
y∂

2A
)
g
(
y∂

2A
)
h
(
yB
)
,
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we pass to the limit n→ ∞ to get

EP
[
f
(
XA[t]

)
g
(
X∂2A[t]

)
h
(
XB [t]

)]
= EP

[
ϕ
(
X∂2A[t]

)
g
(
X∂2A[t]

)
h
(
XB [t]

)]
.

This at once shows both that

EP
[
f
(
XA[t]

)∣∣∣X∂2A[t]
]
= ϕ

(
X∂2A[t]

)
= EPn

[
f
(
XA[t]

)∣∣∣X∂2A[t]
]
,

for all bounded continuous f and n ≥ n0, which proves that

PA
t

[
·
∣∣∂2A

]
= Pn,A

t

[
·
∣∣∂2A

]
.

and also that XA[t] and XB [t] are conditionally independent given X∂2A[t] under P .
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A Approximations of locally interacting equations

A.1 Graph truncation

Firstly, we include a result from [LRW21] which we shall use to establish that the 2-MRF property
is retained under limits.

Definition A.1. Let G = (V,E) be a graph, fix ø ∈ V to be the root and let n ≥ 4. We define

Vn :={v ∈ V : dG(v, ø) ≤ n}, Un := Vn\Vn−2 and

En :=
{
(u, v) ∈ Vn × Vn : (u, v) ∈ E

}
∪
{
(u, v) ∈ Un × Un, u 6= v

}
.

Example A.2. In order to illustrate the graph truncation described in Definition A.1, consider the graph

V = Z and E =
{
(i, i+ 1) : i ∈ Z

}
. Choosing n = 5 and ø = 0, we obtain that

Vn =
{
− 5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5} Un =

{
− 5,−4, 4, 5

}
,

En =
{
(−5,−4), (−4,−3), (−3,−2), (−2,−1), (−1, 0), (0, 1), (1, 2), (2, 3), (3, 4), (4, 5)

}

∪
{
(−5, 4), (−5, 5), (−4, 4), (−4, 5)

}
.
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We can visualise this as the following

0 1 2 3 4 5-1-2-3-4-5

For any A ⊂ Vn−3, it holds that ∂2GA = ∂2Gn
A. Further, for any A′ ⊂ Vn−2, ∂2GA

′ = ∂2Gn
A′.

Further, if K ∈ cl2(G) satisfies that K ⊂ Vn, then K ∈ cl2(Gn).

Lemma A.3 ([LRW21, Lemma 4.2]). Let G = (V,E) be a locally finite graph and let (X , d) be a

metric space. Suppose that a X V -valued random variable Y V = (Y v)v∈V is a 2-MRF with respect to G.

Then Y Vn is a 2-MRF with respect to Gn = (Vn, En) as defined in Definition A.1.

Secondly, suppose that V is finite and the law ν ∈ P(X V ) admits the following 2-clique factorisation

with respect to a product measure ν∗ =
∏

v∈V µv ∈ P(X V ) for some sequence of measures (µv)v∈V ,

dν

dν∗
(
xV
)
=

∏

K∈cl2(G)

fK
(
xK
)

for some measurable functions fK : XK → R+ and for K ∈ cl2(G).
Then for any n > 4, the marginal measure νVn ∈ P(X Vn) admits a 2-clique factorisation

dνVn

dν∗,Vn

(
xVn
)
=

∏

K∈cl2(Gn)

f0K
(
xK
)
,

for some measurable functions f0K : XK → R+ and K ∈ cl2(G).
In particular, f0K ≡ fK for any K ∈ cl2(G) such that K ⊂ Vn−3.

Let us briefly recall a notation we introduced more carefully: For ν ∈ P(X V ) and A,B ⊂ V we
write νA

[
·
∣∣B
]

for the conditional law of the A-coordinates given the B-coordinates.

Lemma A.4 ([LRW21, Lemma 4.3]). Let G̃ = (Ṽ , Ẽ) and Ḡ = (V̄ , Ē) be finite graphs and assume

that V ∗ ⊂ Ṽ ∩ V̄ satisfies

Ẽ ∩ (V ∗ × V ∗) = Ē ∩ (V ∗ × V ∗). (A.1)

Further, let A ⊂ V ∗ and suppose that ∂2
G̃
A ⊂ V ∗ and ∂2

Ḡ
A ⊂ V ∗.

Next, let ν̃ ∈ P
(
X Ṽ
)

and ν̄ ∈ P
(
X V̄
)

and let ν∗ =
∏

v∈Ṽ ∪V̄ θv ∈ P
(
X Ṽ ∪V̄

)
where for each

v ∈ VG ∪ VH we have that θv ∈ P(X ). Suppose that the densities factorise as

dν̃

dν∗,Ṽ

(
xṼ
)
=

∏

K∈cl2(G)

f̃K
(
xK
)

and
dν̄

dν∗,V̄

(
xV̄
)
=

∏

K∈cl2(Ḡ)

f̄K
(
xK
)
,

for measurable functions (f̄K : XK 7→ R+)K∈cl2(Ḡ) and (f̃K : XK 7→ R+)K∈cl2(G), and

∀K ∈ KA fHK ≡ fGK where

KA :=
{
K ∈ cl2(G̃) : K ∩A 6= ∅

}
=
{
K ∈ cl2(Ḡ) : K ∩A 6= ∅

}
(A.2)

Then ν̃A
[
·
∣∣∂2A] = ν̄A

[
·
∣∣∂2A

]
, almost surely with respect to ν∗[∂2A].
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Given 2-MRFs on two overlapping graphs, Lemma A.4 provides conditions under which the
conditional distributions of a subset in the intersection (given its complement) coincide for both
2-MRFs.

A.2 Entropy estimates and convergence of truncation

For a collection of locally interacting equations of the form Equation (4.1) and n ∈ N, we define the
sequence of collections of stochastic differential equations

dXn,u
t = bnu

(
t,Xn,u[t],

(
Xn,v[t]

)
v∈Nu

)
dt+ dZu

t , u ∈ V, (Xn,u
0 )u∈V ∼ µV0 . (A.3)

where for any u ∈ Vn, we define bnu : [0, T ]× Cd
T × (Cd

T )
Nu → Rd to be the progressively measurable

function such that

bnu

(
t, xu, (xv)v∈Nu

)
=

{
bu

(
t, xu, (xv)v∈Nu

)
if u ∈ Vn−2

0 if u ∈ Un.
(A.4)

Proposition A.5. Let (V,E) be a countably infinite locally finite graph, let M ∈ L1([0, T ]) and let(
(bu, γ

u)u∈V , µ0
)

satisfy Assumption 4.9. Then for any n ≥ 4, we denote Pn to be the law of the

solution to Equation (A.3) and for every finite set A ⊂ V and t ∈ [0, T ] there exists a constant Ct > 0
such that

sup
n

(
H
[
Pn,A
t

∣∣∣P ∗,A
t

]
∨H

[
P ∗,A
t

∣∣∣Pn,A
t

])
≤ Ct · |A|. (A.5)

Proof. Let
(
(Cd

T )
V ,B′

(
(Cd

T )
V
)
, P ∗

)
be the canonical measure space and denote

(Xu)u∈V : (Cd
T )

V → (Cd
T )

V

be the canonical process. Fix n ∈ N such that n ≥ 4.
Consider the function ZV ∈ (Cd

0,T )
V of the canonical process

Zu
t = Xu

t −Xu
0 −

∫ t

0
bnu

(
s,Xu[s],XNu [s]

)
ds, u ∈ V. (A.6)

For any choice of t ∈ [0, T ] and XV ∈ (Cd
T )

V we denote Zn
t : [0, T ]× (Cd

T )
V → R by

t 7→ Zn
t

(
XV ) :=

∏

u∈V




Zt

[ ∫ ·

0
bnu
(
s,Xu[s],XNu [s]

)
ds
]

u ∈ A ∩ Vn−2

1 otherwise.
(A.7)

Thanks to Equation (4.2) we have for every u ∈ V that
∫ ·

0
bu
(
s,Xu[s],XNu [s]

)
ds ∈ HT

so that by Proposition 3.18 the stochastic process t 7→ Zn
t is an Ft-local martingale. Further, by

Equation (4.3) we have for every for any u ∈ Vn−2 and s, t ∈ [0, T ] that

∥∥∥∥Πs,t

[ ∫ ·

0
bu
(
r,Xu[r],XNu [r]

)
dr
]∥∥∥∥

2

HT

≤

∫ t

s

Mrdr ·

(
1 +

∥∥Xu
∥∥2
Eu + 1

|Nu|

∑

v∈Nu

∥∥Xv
∥∥2
Ev

)
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≤

∫ t

s

Mrdr ·

(
1 + 2 sup

v∈Vn−1

∥∥Xv
∥∥2
Ev

)
.

so that

EP ∗

[
exp

(∥∥∥Πs,t

[ ∫ ·

0
bu
(
r,Xu[r],XNu [r]

)
dr
]∥∥∥

2

HT

)]

≤EP ∗

[
exp

(∫ t

s

Mrdr ·
(
1 + 2 sup

v∈Vn

∥∥Xv
∥∥2
Ev

))]

≤ exp
( ∫ t

s

Mrdr
)
· EP ∗

[
sup
u∈Vn

exp
(
2

∫ t

s

Mrdr ·
∥∥Xv

∥∥2
Ev

)]

≤ exp
( ∫ t

s

Mrdr
)
·
∑

u∈Vn

EP ∗

[
exp

(
2

∫ t

s

Mrdr ·
∥∥Xv

∥∥2
Ev

)]

By choosing |t− s| small enough so that

2

∫ t

s

Mrdr ≤
1

2
inf
u∈Vn

1

EP ∗
[
‖Xv‖2Ev

] (A.8)

we obtain by Fernique’s Theorem that

EP ∗

[
exp

(∥∥∥Πs,t

[ ∫ ·

0
bu
(
r,Xu[r],XNu [r]

)
dr
]∥∥∥

2

HT

)]
<∞.

Therefore, we apply Proposition 3.29 to conclude that Zn
t is an FZ

t -martingale and Theorem 3.28
applies. Hence, we conclude that for every t ∈ [0, T ] the measure P ∈ P

(
(Cd

t )
V
)

defined by

dP

dP ∗

∣∣∣
FZ

t

(
XV

)
= Zn

t

(
XV [t]

)

is a unique weak solution to Equation (A.3). What is more, the Vn-marginal Pn,Vn is equal to the
law of the system of interacting equations

dXu
t = bnu

(
t,Xu[t],XNn

u [t]
)
dt+ dZu

t , (Xu
0 )u∈Vn ∼ µVn

0 , u ∈ Vn

on the finite graph (Vn, En). Given a normed subspace E ⊆ Cd
T , we also denote Et ⊆ Cd

t to be the
canonical projection. Next, for u ∈ Vn−2 and t ∈ [0, T ], the expectation

EPn
[∥∥Xu

∥∥2
Eu
t

]
≤3EPn

[∣∣Xu
0

∣∣2 +
∥∥Zu‖2Eu +

∥∥∥
∫ ·

0
bnu
(
s,Xu[s],XNu [s]

)
ds
∥∥∥
2

Ht

]

≤3

(
Eµ0

[∣∣xu0
∣∣2
]
+ Eγu

[∥∥Xu
∥∥2
Eu

]
+

∫ t

0
Msds

+ 2

∫ t

0
Ms · sup

v∈B1(u)
EPn

[∥∥Xv
∥∥2
Ev
s

]
ds

)

and for u ∈ Un

EPn
[∥∥Xu

∥∥2
Eu

]
≤ 2

(
Eµ0

[∣∣Xu
0

∣∣2
]
+ EPn

[∥∥Zu
∥∥2
Eu

])
.

47



In particular, this means that for any choice of t ∈ [0, T ]

sup
u∈Vn

EPn
[∥∥Xu

∥∥2
Eu
t

]

≤3

(
sup
u∈Vn

∫

(Rd)Vn

∣∣Xu
0

∣∣2dµ0
(
XVn

0

)
+ sup

u∈Vn

∫

(Eu)Vn

∥∥Xu
∥∥2
Eudγ

Vn
(
XVn

)
+

∫ t

0
Msds

)

+ 6

∫ t

0
Ms · sup

v∈Vn

EPn
[∥∥Xv

∥∥2
Ev
s

]
ds

and an application of the Grönwall inequality yields

sup
u∈Vn

EPn
[∥∥Xu

∥∥2
∞,T

]

≤3

(
sup
u∈Vn

∫

(Rd)Vn

∣∣Xu
0

∣∣2dµ0
(
XVn

0

)
+ sup

u∈Vn

∫

(Eu)Vn

∥∥Xu
∥∥2
∞,T

dγVn
(
XVn

)
+

∫ T

0
Msds

)

· exp

(
6

∫ T

0
Msds

)
.

Finally, we take a supremum in n ∈ N and apply Equation (4.10) in order to conclude that

sup
u∈V

E
[∥∥Xu

∥∥2
Eu

]
<∞.

To conclude, we ecall Equation (1.1) and Proposition 3.18 we conclude that for any finite subset
A ⊆ Vn that

H
[
Pn,A
t

∣∣∣P ∗,A
t

]
=

∫

(Cd
T
)Vn∩A

log

( ∏

u∈Vn∩A

Zt

[ ∫ ·

0
bu
(
s,Xu[s],XNu [s]

)
ds
])
dP
(
XVn∩A[t]

)

=
1

2

∑

u∈A∩Vn

EPn

[∥∥∥
∫ ·

0
bnu
(
s,Xu[s],XNu [s]

)
ds
∥∥∥
2

Ht

]

≤
1

2

∑

u∈A∩Vn

∫ t

0
Msds ·

(
1 + E

[∥∥Xu
∥∥2
Eu
t

]
+ 1

|Nu|

∑

v∈Nu

E
[∥∥Xv

∥∥2
Ev
t

])

≤|A| ·

∫ t

0
Msds · sup

u∈Vn

E
[∥∥Xu

∥∥2
Eu
t

]
<∞

which implies (A.5).

The next lemma will be used to show both that the existence of a weak solution to the infinite
SDE system (2.8) holds automatically and also that it arises as the limit of finite-graph systems.
Recall that P ∈ P(CV ) denotes the law of the solution of (2.8).

Lemma A.6. Let (V,E) be a locally finite graph, let
(
µ0, (bu,H

u)u∈V
)

satisfy Assumption 4.9 Then for

any finite set A ⊂ V and any bounded measurable function ψ : (Cd
T )

A → R, we have

lim
n→∞

EPn
[
ψ
(
XA
)]

= E
[
ψ
(
XA
)]
.

In particular, Pn → P weakly on (Cd
T )

V .
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Proof. Firstly, we recall that for any ν ∈ P(X ) and any c > 0 the set

{
µ ∈ P(X ) : H

[
µ
∣∣ν
]
< c
}

is compact in the weak-∗ topology (see [DZ10, Lemma 6.2.16]) so that the entropy bound from
Equation (A.5) implies that for any t ∈ [0, T ] the sequence of measures (Pn,A

t )n∈N is tight. Further,
since this holds for every finite set A ⊆ V and every t ∈ [0, T ] we deduce that the entire sequence
(Pn)n∈N is tight in (Cd

T )
V .

Note also that for sufficiently large n it holds that under Pn the processes

Xv
s −Xv

0 −

∫ s

0
bv
(
r,Xv [r],XNv [r]

)
dr, s ≥ 0, v ∈ Vn−2, (A.9)

are independent Gaussian processes with distribution γu, due to the consistency condition for the
(bnu)u∈V and the identity that NGn

u = NG
u for any v ∈ Vn−2.

Now let Q ∈ P(CV ) and suppose that there exists a subsequence nk such that Pnk → Q weakly.
In particular, this implies that for any finite set A ⊂ V and any bounded measurable function
ψ : (Cd

T )
A → R,

lim
k→∞

EPnk
[
ψ
(
XA
)]

= EQ
[
ψ
(
XA
)]
,

We conclude that, under Q, the processes in (A.9) are independent Gaussian distributed pro-
cesses with distribution γu and hence Q = P .
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