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LOWER BOUNDS FOR SHIFTED MOMENTS OF THE RIEMANN ZETA FUNCTION

MICHAEL J. CURRAN

ABSTRACT. In previous work [8], the author gave upper bounds for the shifted moments of the zeta

function

Mα,β(T ) =

∫ 2T

T

m
∏

k=1

|ζ(1
2
+ i(t+ αk))|

2βkdt

introduced by Chandee [5], where α = α(T ) = (α1, . . . , αm) and β = (β1 . . . , βm) satisfy

|αk| ≤ T/2 and βk ≥ 0. Assuming the Riemann hypothesis, we shall prove the corresponding

lower bounds:

Mα,β(T ) ≫β T (logT )β
2

1
+···+β2

m

∏

1≤j<k≤m

|ζ(1 + i(αj − αk) + 1/ logT )|2βjβk .

1. INTRODUCTION

This paper is concerned with the shifted moments

Mα,β(T ) =

∫ 2T

T

m
∏

k=1

|ζ(1
2
+ i(t + αk))|

2βkdt, (1)

where α = α(T ) = (α1, . . . , αm) and β = (β1 . . . , βm) satisfy |αk| ≤ T/2 and βk ≥ 0. These

were first studied in general by Chandee [5]. In [8], the author proved the upper bound

Mα,β(T ) ≪β T (log T )β
2

1
+···+β2

m

∏

1≤j<k≤m

|ζ(1 + i(αj − αk) + 1/ log T )|2βjβk

assuming the Riemann hypothesis. The goal of this paper is to obtain the corresponding lower

bound, showing that these bounds are of the correct order or magnitude.

Theorem 1.1. Assume the Riemann hypothesis. If βk ≥ 0 and |αk| ≤ T/2 for k = 1, . . . , m, then

Mα,β(T ) ≫β T (log T )β
2

1
+···+β2

m

∏

1≤j<k≤m

|ζ(1 + i(αj − αk) + 1/ log T )|2βjβk

for T sufficiently large in terms of β.

Note that the order of magnitude in this bound is consistent with the formula for the shifted mo-

ments predicted by the famous work of Conrey Farmer Keating Rubenstein and Snaith [7]. The

reader may consult [8] for more background on the shifted moments and a discussion of the previ-

ous estimates for Mα,β(T ).
The method of proof is similar to a principle pioneered in the works of Heap and Soundararajan

[14] and Radziwiłł and Soundararajan [25]. These works demonstrate that if one can asymptoti-

cally evaluate the twisted 2kth moment of a family of L-functions for some integer k, then one can

obtain sharp lower bounds for the 2β th moments for all β ≥ 0. We will need a more elaborate
1
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argument in our setting since there are more parameters for the shifted moments. To explain the

method, we will first introduce some notation. Set

β∗ :=
∑

k≤m

max(1, βk).

We will choose a sequence of parameters Tj = T cj , where

c0 = 0 and cj =
ej

(log2 T )
2

for j > 0, where throughout this paper we will use logj to denote the j-fold iterated logarithm.

Let L be the largest integer such that TL ≤ T δ where 0 < δ < e−1000β∗ is some small constant

depending on β to be chosen later. For any X let

P1,X(s) =
∑

p≤T1

1

ps+1/ logX

logX/p

logX
+
∑

p≤logT

1

2p2s
,

and given any 2 ≤ j ≤ L define

Pj,X(s) =
∑

p∈(Tj−1,Tj ]

1

ps+1/ logX

logX/p

logX
.

Remark. In our proof, we could have also used the simpler Dirichlet polynomial

∑

p∈(Tj−1,Tj ]

1

ps

in place of Pj,X(s) for all 1 ≤ j ≤ L. However the Pj,X will appear when using the Riemann

hypothesis, and using the Pj,X from the onset will reduce the total number of mean value calcula-

tions.

If Pj,X(s) is not too large, then (see lemma 2.2) we will be able to efficiently approximate

exp(βPj,X(s)) with the following Dirichlet polynomial

Nj,X(s; β) :=
∑

m≤100β2
∗
Kj

βmPj,X(s)
m

m!
,

where Kj = c
−3/4
j for j ≥ 1. The set

G :=
{

t ∈ [T/2, 5T/2] : |Pj,TL
(1
2
+ it)| ≤ Kj for all 1 ≤ j ≤ L

}

.

consists of the t ∈ [T/2, 5T/2] for which Nj,TL
(s; β) is a good approximation to exp(βPj,TL

(s)).
We will be computing moments over the set

Gm := {t ∈ [T, 2T ] : t+ αk ∈ G for all 1 ≤ k ≤ m} .

Fix a smooth function w such that 1[5/4,7/4](t) ≤ w(t) ≤ 1[1,2], and suppose for a moment that

we could compute the integral

I0 =

∫

Gm

∏

k≤m

ζ(1
2
+ i(t + αk))

×
∏

j≤L

exp
(

(βk − 1)Pj,TL
(1
2
+ i(t+ αk)) + βkPj,TL

(1
2
− i(t+ αk))

)

w(t/T ) dt.

2



Then Hölder’s inequality implies

|I0| ≤ Mα,β(T )
1/p × |J |1/q ×

∏

k≤m

|Ik|
1/rk ,

where
1

p
=

1

4β∗
,

1

rk
=

1

2m
−

βk

4mβ∗
,

1

q
= 1−

1

p
−
∑

k≤m

1

rk

are conjugate exponents,

Ik =

∫

Gm

|ζ(1
2
+ i(t+ αk))|

2m
∏

j≤L

exp
(

2(βk −m)Re Pj,TL
(1
2
+ i(t + αk))

)

×
∏

ℓ≤m
ℓ 6=k

∏

j≤L

exp
(

2βℓRe Pj,TL
(1
2
+ i(t + αℓ))

)

w(t/T )dt,

and

J =

∫

Gm

∏

k≤m

∏

j≤L

exp
(

2βkRe Pj,TL
(1
2
+ i(t + αk))

)

w(t/T )dt.

Therefore, Theorem 1.1 will follow from the following three propositions.

Proposition 1.2. For large T

J ≪β T (log T )β
2

1
+···+β2

m

∏

1≤j<k≤m

|ζ(1 + i(αj − αk) + 1/ log T )|2βjβk .

Proposition 1.3. Assuming the Riemann hypothesis, for large T

|I0| ≫β T (log T )β
2

1
+···+β2

m

∏

1≤j<k≤m

|ζ(1 + i(αj − αk) + 1/ logT )|2βjβk .

Proposition 1.4. Assuming the Riemann hypothesis, for large T and 1 ≤ k ≤ m

Ik ≪β T (log T )β
2

1
+···+β2

m

∏

1≤j<k≤m

|ζ(1 + i(αj − αk) + 1/ log T )|2βjβk .

To prove Propositions 1.2 and 1.4, we will use the definition of Gm to show that

J ≪

∫ 2T

T

∏

k≤m

|NTL
(1
2
+ i(t + αk); βk)|

2dt

and

Ik ≪

∫

Gm

|ζ(1
2
+ i(t + αk))|

2m|NTL
(1
2
+ i(t + αk); βk −m)|2

∏

ℓ≤m
ℓ 6=k

|NTL
(1
2
+ i(t+ αℓ); βℓ)|

2dt,

where

NX(s; β) :=
∏

j≤L

Nj,X(s; β).

Therefore J can be controlled by computing the mean value of a Dirichlet polynomial, and the Ik

can be bounded by computing twisted 2mth moments of the zeta function. Both of these quantities

can be controlled as NTL
(s; β) is a short Dirichlet polynomial. For the latter task, we will need to

invoke the Riemann hypothesis when m > 2.
3



The proof of Proposition 1.3 is a bit more difficult. The first step is to show that I0 is approxi-

mately equal to
∫

Gm

∏

k≤m

ζ(1
2
+ i(t+ αk))NTL

(1
2
+ i(t + αk);

1
2
(βk − 1))2NTL

(1
2
+ i(t+ αk);

1
2
βk)

2
w(t/T ) dt

using the definition of Gm and the Riemann hypothesis. To compute this quantity, we will write
∫

Gm

=

∫ 2T

T

−

∫

[T,2T ]\Gm

.

The integral over the entire interval [T, 2T ] is a shifted pure mth moment of zeta twisted by a

Dirichlet polynomial, which we can calculate unconditionally because NTL
(s; β) is a short Dirich-

let polynomial. To bound the integral over [T, 2T ] \Gm, we will first decompose this set according

to which subsum Pj,X(
1
2
+ i(t + αℓ); β) is unusually large for some ℓ, and then bound the contri-

bution of such t by

1

K2r
j

∫ 2T

T

∏

k≤m

|ζ(1
2
+ i(t+ αk))| · |NTL

(1
2
+ i(t+ αk);

1
2
(βk − 1))NTL

1
2
+ i(t+ αk);

1
2
βk)|

2

× |Pj,X(
1
2
+ i(t + αℓ))|

2r dt

for some large integer r. To bound this quantity we are again forced to use the Riemann hypothesis,

at least when m > 2. We can estimate this integral using the same method in [8].

We now have all the necessary tools to begin our proof of Theorem 1.1. To help simplify the

notation going forward, we will omit subscripts depending on β from all big-O or Vinogradov as-

ymptotic notation. The reader should keep in mind that all of the implicit constants in this notation

can, and usually will, depend on β. We will also implicitly assume that T is sufficiently large in

terms of β. After covering some preliminary results, we will prove Proposition 1.2, followed by

Proposition 1.3, and we will conclude the proof by establishing Proposition 1.4.
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2. PRELIMINARY RESULTS

To control the size of zeta on the half line, we will use the following lemma due to Soundararajan

[27] and Harper [12].

Lemma 2.1. Assume RH, let t ∈ [T, 2T ], and |α| ≤ T/2. Then for 2 ≤ X ≤ T 2

log |ζ(1
2
+ i(t + α))| ≤ Re

∑

p≤X

1

p1/2+1/ logX+i(t+α)

logX/p

logX

+
∑

p≤min(
√
X,log T )

1

2p1+2i(t+α)
+

log T

logX
+O(1).

We will often Taylor expand exponentials of the Pj,X in order to turn moment generating function

calculations into computing mean values of short Dirichlet polynomials– a much simpler task. The

following lemma will be used frequently to accomplish this task.
4



Lemma 2.2. If β ≤ β∗ and |Pj,X(s)| ≤ Kj for some 1 ≤ j ≤ L, then

exp(βPj,X(s)) = (1 +O(e−50β2
∗
Kj ))−1Nj,X(s; β).

Proof. Since |Pj,X(s)| ≤ 2Kj , Taylor expansion gives

Nj,X(s; β) = exp(βPj,X(s)) +O(e−100β2
∗
Kj).

By assumption exp(−2Kjβ∗) ≤ | exp(βPj,X(s))| ≤ exp(2Kjβ∗), so the claim follows. �

Once we have reduced the proof to a number of mean value calculations, we will use a few

standard results to compute these averages. The first result is due to Montgomery and Vaughan

(see for example theorem 9.1 of [16]).

Lemma 2.3. Given any complex numbers an
∫ 2T

T

∣

∣

∣

∣

∣

∑

n≤N

an
nit

∣

∣

∣

∣

∣

2

dt = (T +O(N))
∑

n≤N

|an|
2.

We will also make use of the property that Dirichlet polynomials supported on distinct sets of

primes are approximately independent in the mean square sense. The precise formulation we will

use is the following splitting lemma which appears in equation (16) of [14].

Lemma 2.4. Suppose for 1 ≤ j ≤ J we have j disjoint intervals Ij and Dirichlet polynomials

Aj(s) =
∑

n aj(n)n
−s such that aj(n) vanishes unless n is composed of primes in Ij . Then if

∏

j≤J Aj(s) is a Dirichlet polynomial of length N
∫ 2T

T

∏

j≤J

|Aj(
1
2
+ it)|2dt = (T +O(N))

∏

j≤J

(

1

T

∫ 2T

T

|Aj(
1
2
+ it)|2dt

)

Finally, the following result due to Soundararajan [27, lemma 3] will simplify calculations for high

moments of Dirichlet polynomials supported on primes.

Lemma 2.5. Let r be a natural number and suppose N r ≤ T/ log T . Then given any complex

numbers ap
∫ 2T

T

∣

∣

∣

∣

∣

∑

p≤N

ap
pit

∣

∣

∣

∣

∣

2r

dt ≪ Tr!

(

∑

p≤N

|ap|
2

)r

.

To compute all the mean values that will arise, we will need two more ingredients. The first is

a special case of lemma 3.2 of [18], which will let us estimate a sum over primes that will appear

frequently throughout the paper.

Lemma 2.6. Given δ ∈ R and X ≥ 2
∑

p≤X

cos(δ log p)

p
= log |ζ(1 + 1/ logX + iδ)|+O(1).

The second and final ingredient we will need is a good estimate for the coefficients of the Dirichlet

polynomials
∏

k≤m

Nj,X(s+ iαk; βk) :=
∑

n

bj,X,α,β(n)

ns
.

5



To this end, denote aX(p) := log(X/p)p−1/ logX/ logX and define multiplicative functions gX and

hX by

gX(p
r; β) :=

βraX(p)
r

r!

and

hX(p
r; β) := gX(p

r; β) + 1p≤logT

r/2
∑

t=1

βr−taX(p)
r−t

2tt!(r − 2t)!
.

Next define c1(n) to be 1 if n can be written as n = n1 · · ·nr where r ≤ 100β2
∗K1 and each ni is

either a prime ≤ T1 or a prime square ≤ log T . Finally for 2 ≤ j ≤ L set cj(n) to be 1 if n is the

product of at most 100β2
∗Kj not necessarily distinct primes in (Tj−1, Tj ]. In proposition 3.1 of [8]

it was shown that

Proposition 2.7. For 2 ≤ j ≤ L

Nj,X(s; β) =
∑

p|n⇒p∈(Tj−1,Tj ]

gX(n; β)cj(n)

ns
.

If

N1,X(s; β) =
∑

p|n⇒p∈(Tj−1,Tj ]

fX(n; β)

ns

then fX(n; β) ≤ hX(n; β)c1(n) and fX(p; β) = gX(p; β).

Therefore b1,X,α,β(n) is the m-fold Dirichlet convolution of fX(n; βk)n
−iαk and bj,X,α,β(n) is the

m-fold convolution of gX(n; βk)cj(n)n
−iαk for 2 ≤ j ≤ L. We will make use of two more

sets of coefficients. Let b′j,X,α,β(n) be the m-fold convolution of hX(n; βk)n
−iαk1p|n⇒p∈(T0,T1]

when j = 1 and the m-fold convolution of gX(n; βk)n
−iαk1p|n⇒p∈(Tj−1,Tj ] when 2 ≤ j ≤ L.

Finally, let b′′1,X,α,β(n) be the m-fold convolution of hX(n; βk)1p|n⇒p∈(T0,T1] when j = 1 and the

m-fold convolution of gX(n; βk)1p|n⇒p∈(Tj−1,Tj ] when 2 ≤ j ≤ L. Note b′j,X,α,β and b′′j,X,α,β

are multiplicative, and |bj,X,α,β(n)|, |b′j,X,α,β(n)| ≤ b′′j,X,α,β(n). All the information we will need

about these coefficients is contained in lemma 3.2 of [8].

Lemma 2.8. For 1 ≤ j ≤ L and p ∈ (Tj−1, Tj]

bj,X,α,β(p) = aX(p)

m
∑

k=1

βkp
−iαk ,

and b′′j,X,α,β(p) ≤ β∗. If r ≥ 2

b′′j,X,α,β(p
r) ≤

βr
∗m

r

r!

holds whenever 2 ≤ j ≤ L or p > log T , and otherwise

b′′1,X,α,β(p
r) ≤ mβr

∗r
2me−r log(r/m)/2m+2r .

6



3. PROOF OF PROPOSITION 1.2

We will begin with the evaluation of

J =

∫

Gm

∏

k≤m

∏

j≤L

exp
(

2βkRe Pj,TL
(1
2
+ i(t + αk))

)

w(t/T )dt,

which is the simplest computation. To compute this mean value, we apply lemma 2.2 and then

extend the integral over the entire set [T, 2T ] to find

J ≪

∫ 2T

T

∏

k≤m

|NTL
(1
2
+ i(t+ αk); βk)|

2dt.

Here we have used that
∏

j≤L(1 + O(e−50β2
∗
Kj))2 = O(1). Note Nj,X(s; β) is a Dirichlet polyno-

mial of length ≤ T
100mβ2

∗
Kj

j when j > 1 and of length ≤ T
200mβ2

∗
K1

1 when j = 1, so
∏

k≤m

NX(s+ iαk; βk)

has length at most T
200mβ2

∗
K1

1 T
100mβ2

∗
K2

2 · · ·T 100mβ2
∗
KL

L ≤ T 1/10 by choice of Tj , Kj and L. There-

fore using lemma 2.4 in tandem with proposition 3.3 of [8] we find

J ≪ T
∏

j≤L





∏

p∈(Tj−1,Tj ]

(

1 +
|bj,TL,α,β(p)|2

p
+O

(

1

p2

))

+O(e−50β2
∗
Kj)





≪ T (log T )β
2

1
+···+β2

m

∏

1≤j<k≤m

|ζ(1 + i(αj − αk) + 1/ logT )|2βjβk ,

where the latter bound follows from an application of lemma 2.6. This concludes the proof of

Proposition 1.2. �

4. PROOF OF PROPOSITION 1.3

Recall

I0 =

∫

Gm

∏

k≤m

ζ(1
2
+ i(t + αk))

×
∏

j≤L

exp
(

(βk − 1)Pj,TL
(1
2
+ i(t+ αk)) + βkPj,TL

(1
2
− i(t+ αk))

)

w(t/T ) dt.

To compute this, we will first need to replace the exponential by a Dirichlet polynomial. To accom-

plish this, we will write I0 as a telescoping sum and control the size of the intermediate increments.

For 0 ≤ J ≤ L denote

I(J)
0 =

∫

Gm

∏

k≤m

ζ(1
2
+ i(t+ αk))

×
∏

j≤J

Nj,TL
(1
2
+ i(t + αk);

1
2
(βk − 1))2Nj,TL

(1
2
+ i(t+ αk);

1
2
βk)

2

×
∏

J<j≤L

exp
(

(βk − 1)Pj,TL
(1
2
+ i(t + αk)) + βkPj,TL

(1
2
− i(t+ αk))

)

w(t/T ) dt.

7



Since I0 = I(0)
0 , we may decompose

I0 = I(L)
0 −

∑

J≤L

(

I(J)
0 − I(J−1)

0

)

To prove Proposition 1.3 we will give a lower bound for |I(L)0 | and then show that

∑

J≤L

|I(J)
0 − I(J−1)

0 | ≤
|I(L)0 |

2
.

To control these differences, we will use the following consequence of lemma 2.2 and the definition

of Gm.

Lemma 4.1. For 0 ≤ J ≤ L

|I(J)
0 − I(J−1)

0 |

≪e−50β2
∗
KJ

∫

Gm

∏

k≤m

|ζ(1
2
+ i(t + αk))| · |NTL

(1
2
+ i(t + αk);

1
2
(βk − 1))NTL

1
2
+ i(t + αk);

1
2
βk)|

2dt.

To prove Proposition 1.3, we will now just need the following two estimates.

Proposition 4.2.

|I(L)
0 | ≫ T

∏

p≤TL

(

1 +
∑

1≤j,k≤m

βjβk

p1+i(αj−αk)

)

.

Proposition 4.3. Assuming the Riemann hypothesis
∫

Gm

∏

k≤m

|ζ(1
2
+ i(t+αk))| · |NTL

(1
2
+ i(t+ αk);

1
2
(βk − 1))NTL

1
2
+ i(t + αk);

1
2
βk)|

2dt

≪ T
∏

p≤TL

(

1 +
∑

1≤j,k≤m

βjβk

pi(αj−αk)

)

.

Before proving these two statements, let us briefly see how they imply Proposition 1.3.

Proof of Proposition 1.3. Combining Propositions 4.3 and 4.2 with lemma 4.1, we see that
∑

J≤L

|I(J)
0 − I(J−1)

0 | ≪ |I(L)0 |
∑

J≤L

e−50β2
∗
KJ .

By definition of KJ , the sum on the right hand side is equal to

∑

J≤L

exp

(

−50β2
∗
(log2 T )

3/2

e3J/4

)

.

Because TL ≤ T δ, it also follows that L ≤ 2 log3 T + log δ. Therefore by summing in reverse

starting at J = L, we see that this sum is bounded by
∑

j≥1

exp
(

−50β2
∗e

−3 log δ/4e3j/4
)

≤
∑

j≥1

exp
(

−50β2
∗e

−3 log δ/4j
)

≪ exp
(

−50β2
∗e

−3 log δ/4
)

.

8



Therefore if we choose δ > 0 sufficiently small in terms of β we may ensure that

∑

J≤L

|I(J)
0 − I(J−1)

0 | ≤
|I(L)0 |

2
.

Therefore it follows that

|I0| ≫ T
∏

p≤TL

(

1 +
∑

1≤j,k≤m

βjβk

p1+i(αj−αk)

)

.

�

4.1. Proof of Proposition 4.2. To estimate I(L)
0 , we will first write I(L)

0 = J1 −J2, where

J1 =

∫ 2T

T

∏

k≤m

ζ(1
2
+ i(t+αk))NTL

(1
2
+ i(t+αk);

1
2
(βk−1))2NTL

(1
2
+ i(t+ αk);

1
2
βk)

2
w(t/T ) dt

and

J2 =

∫

[T,2T ]\Gm

∏

k≤m

ζ(1
2
+i(t+αk))NTL

(1
2
+i(t+αk);

1
2
(βk−1))2NTL

(1
2
+ i(t+ αk);

1
2
βk)

2
w(t/T ) dt.

We will evaluate J1 first. We will make use of the following approximate functional equation.

Lemma 4.4. Let

V (x, t) =
1

2πi

∫

(1)

es
2

s

(

t3m

x

)s

ds

and τα(n) =
∑

n1···nm=n n
−iα1

1 · · ·n−iαm
m . For αj ≤ T/2 and t ∈ [T, 2T ]

∏

k≤m

ζ(1
2
+ it + iαk) =

∑

n

τα(n)

n1/2+it
V (n, t) +O(1/T ).

Proof. We will evaluate the integral

I =
1

2πi

∫

(1)

es
2

s
t3ms

∏

k≤m

ζ(1
2
+ it+ iαk + s)ds

in two ways. Expanding
∏

k≤m ζ(1
2
+ it+ iαk + s) into its Dirichlet series and simplifying shows

I =
∑

n

τα(n)

n1/2+it
V (n, t).

Alternatively, by shifting the contour to Re s = −1, we pass over poles at s = 0 and s = −1
2
−

it − iαk. Only the residue at s = 0 contributes because of the rapid decay of es
2

and because

|t+ αk| ≥ T/2. Therefore

I =
∏

k≤m

ζ(1
2
+ it+ iαk) +

1

2πi

∫

(−1)

es
2

s
t3ms

∏

k≤m

ζ(1
2
+ it+ iαk + s)ds+OA(T

−A).

To conclude, by the standard estimate ζ(−1
2
+ it) ≪ 1 + |t|, we may bound this final integral by

≪

∫

R

e−y2

y + 1
T−3m

∏

j≤s

(1 + |t+ αj + y|)dy.

9



The integral over the region |y| ≤ T can be bounded by

≪

∫ T

0

e−y2

y + 1
T−3m × Tm dy ≪ T−1,

and the integral over the region |y| ≥ T is

≪

∫ ∞

T

e−y2

y
T−2m × ym dy ≪ T−1.

�

Next we will need to understand the coefficients of the Dirichlet polynomials

∏

k≤m

Nj,TL
(1
2
+ i(t + αk);

1
2
(βk − 1))2 =

∑

n

qj(n)

n1/2+it
,

∏

k≤m

NTL
(1
2
+ i(t + αk);

1
2
(βk − 1))2 =

∑

n

q(n)

n1/2+it
,

and
∏

k≤m

Nj,TL
(1
2
+ i(t + αk);

1
2
βk)

2 =
∑

n

rj(n)

n1/2+it
,

∏

k≤m

NTL
(1
2
+ i(t + αk);

1
2
βk)

2 =
∑

n

r(n)

n1/2+it
.

Notice that each qj(n) is the twofold Dirichlet convolution of b
j,TL,α,

1
2
(β−1)

(n) with itself and each

rj(n) is the twofold Dirichlet convolution of b
j,TL,α,

1
2
β
(n) with itself, where 1

2
(β − 1) and 1

2
β

denote the vectors with j th element 1
2
(βj − 1) and 1

2
βj respectively. As before, we will define two

more sets of coefficients: Let q′j(n) be the twofold Dirichlet convolution of b′
j,TL,α,

1
2
(β−1)

(n) with

itself and let r′j(n) be the twofold Dirichlet convolution of b′
j,TL,α,

1
2
β
(n) with itself. Finally define

q′′j (n) and r′′j (n) in an analogous fashion. As before, the key point is that q′j and r′j are multiplica-

tive approximations of qj and rj and that q′′j and r′′j are non-negative multiplicative coefficients

satisfying |qj |, |q′j| ≤ q′′ and |rj|, |r′j| ≤ r′′. Before proceeding further, we will need the following

estimate.

Lemma 4.5. For p ∈ (Tj−1, Tj]

qj(p
l), rj(p

l) ≪ m2βl
∗l

4me−l log(l/2m)/4m+2l.

Proof. The bound for qj follows by combining the formula

qj(p
l) =

∑

x+y=l

b
j,TL,α,

1
2
(β−1)

(px)b
j,TL,α,

1
2
(β−1)

(py)

with the bound for b
j,TL,α,

1
2
(β−1)

(px) given in lemma 2.8 and noting that either x ≥ l/2 or y ≥ l/2.

The argument for rj is the same. �
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We can now compute

J1 =
1

2πi

∑

n

∑

h,k<T 1/2

τα(n)q(h)r(k)

n1/2h1/2k1/2

∫

(1)

es
2

s

∫ 2T

T

(

nh

k

)−it
t3ms

ns
w(t/T ) dt ds

+O

(

1

T

∫ 2T

T

∏

k≤m

|NTL
(1
2
+ i(t + αk);

1
2
(βk − 1))NTL

(1
2
+ i(t+ αk);

1
2
βk)|

2dt

)

.

Because
∏

k≤m

NTL
(1
2
+ i(t + αk);

1
2
(βk − 1))NTL

(1
2
+ i(t + αk);

1
2
βk)

is a short Dirichlet polynomial whose coefficients c(n) satisfy c(n) ≪ε n
ε, it follows that the error

term is ≪ε T
ε by lemma 2.3. Returning now to the main term, the next step is to discard the terms

where nh 6= k. An exercise in contour integration shows that

tj
∂j

∂tj
V (x, t) ≪A,j

(

1 + |x/t3m|
)−A

.

Therefore repeated integration by parts implies that

∫ 2T

T

w(t/T )

(

nh

k

)−it

V (x, t) dt ≪j,A
(1 + n/T 3m)−A

| log(nh/k)|jT j
.

Because h and k are at most T 1/2, it follows that log(nh/k) ≫ T−1/2 if nh 6= k. Therefore the

contribution to the sum of terms with hn 6= k is OA(T
−A) because h, k < T 1/2.

Now by shifting the contour to Re s = −1/4 and simplifying the diagonal terms, we find that

J1 = T‖w‖1
∑

h,k≤T 1/2

h|k

τα(k/h)q(h)r(k)

k
+O(T 1−ε).

By multiplicativity, we may factor the inner sum as

∑

h,k≤T 1/2

h|k

τα(k/h)q(h)r(k)

k
=
∏

j≤L

∑

p|h,k⇒p∈(Tj−1,Tj ]
h|k

τα(k/h)qj(h)rj(k)

k
.

Next notice if qj(h) 6= q′j(h), then it must be that Ω(h) ≥ 100β2
∗Kj . So replacing qj and rj with q′j

and r′j respectively incurs an error of order

e−100β2
∗
Kj

∑

p|h,k⇒p∈(Tj−1,Tj ]
h|k

eΩ(h)|τα(k/h)|q′′j (h)r
′′
j (k)

k

≪ e−100β2
∗
Kj

∏

p∈(Tj−1,Tj ]

(

1 +
2eβ2

∗
p

+O

(

1

p2

))

≪ e−50β2
∗
Kj .

for each j. Here we have used the divisor bound |τα(py)| ≪ε pεy and lemma 4.5 to bound the

contribution of the terms of order smaller than 1/p2. Therefore, suppressing terms of order T 1−ε,
11



we see that

J1 = T‖w‖1
∏

j≤L





∏

p∈(Tj−1,Tj ]

(

∑

0≤x≤y

τα(p
y−x)qj(p

x)rj(py)

py

)

+O(e−50β2
∗
Kj)





= T‖w‖1
∏

j≤L





∏

p∈(Tj−1,Tj ]

(

1 +
qj(p)rj(p) + τα(p)rj(p)

p
+O

(

1

p2

)

)

+O(e−50β2
∗
Kj)



 .

A quick computation shows that

qj(p) + τα(p) = aTL
(p)
∑

k≤m

βkp
−iαk = rj(p).

Therefore, recalling aTL
(p) = p−1/ log TL(1− log p/ logTL), we deduce

J1 = T‖w‖1
∏

j≤L





∏

p∈(Tj−1,Tj ]

(

1 +
1

p

∣

∣

∣

∣

∑

k≤m

βkp
−iαk

∣

∣

∣

∣

2

+O

(

log p

p log TL

+
1

p2

)

)

+O(e−50β2
∗
Kj)



 ,

and we may readily conclude

Proposition 4.6.

J1 ≫ T
∏

p≤TL

(

1 +
∑

1≤j,k≤m

βjβk

p1+i(αj−αk)

)

.

We will now show, for δ sufficiently small, that |J2| ≤ |J1|/2. To do this we will need to

decompose the set [T, 2T ] \ Gm into many pieces. First recall the definition

G :=
{

t ∈ [T/2, 5T/2] : |Pj,TL
(1
2
+ it)| ≤ Kj for all 1 ≤ j ≤ L

}

.

Now given a subset A of [m] := {1, . . . , m}, we will define

GA := {t ∈ [T, 2T ] : t+ αk ∈ G if and only if k ∈ A} ,

and for each 1 ≤ j ≤ L let

Bj := {t ∈ [T/2, 5T/2] : |Pr,Ts(
1
2
+ it)| ≤ Kj for all 1 ≤ r < j and r ≤ s ≤ L

but |Pj,Ts(
1
2
+ it)| > Kj for some j ≤ s ≤ L}.

To evaluate J2, we must evaluate an integral over all of the GA with A ranging over all proper

subsets of [m]. Without loss of generality we will write A = [m] \ [a]. For each t ∈ GA, there is a

function Ft : [a] → [L] such that t+ αj ∈ Bf(j). We will further partition GA into the sets

BA,n = {t ∈ GA : min
j∈[a]

Ft(j) = n}.

With this new notation, we may write

[T, 2T ] \ Gm =
⊔

n≤L

⊔

A([m]

BA,n.
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When n > 1, we may proceed in a similar manner to [8]. Using Lemma 2.1 with X = Tn−1 and

the definition of BA,n we find
∫

BA,n

∏

k≤m

|ζ(1
2
+ i(t + αk))||NTL

(1
2
+ i(t + αk);

1
2
(βk − 1))NTL

(1
2
+ i(t + αk);

1
2
βk)|

2w(t/T ) dt

≪

∫

BA,n

m
∏

k=1

exp

(

Re

(

∑

j<n

Pj,Tn−1
(1
2
+ i(t+ αk)) + 1/cn−1

)

× |NTL
(1
2
+ i(t + αk);

1
2
(βk − 1))NTL

(1
2
+ i(t + αk);

1
2
βk)|

2 dt

≪ e1/cn−1

∫

BA,n

m
∏

k=1

∏

j<n

exp
(

Re Pj,Tn−1
(1
2
+ i(t + αk))

)

× |NTL
(1
2
+ i(t + αk);

1
2
(βk − 1))NTL

(1
2
+ i(t + αk);

1
2
βk)|

2 dt

≪ e1/cn−1 max
ℓ∈[a]
s∈[L]

∫ 2T

T

|Pn,Ts(
1
2
+ i(t + αℓ))/Kn|

2⌈1/20cn⌉
m
∏

k=1

∏

j<n

|Nj,Tn−1
(1
2
+ i(t+ αk);

1
2
)|2

× |NTL
(1
2
+ i(t + αk);

1
2
(βk − 1))NTL

(1
2
+ i(t + αk);

1
2
βk)|

2 dt.

So by lemma 2.4 we need the following mean value calculations.

Proposition 4.7. For j < n
∫ 2T

T

m
∏

k=1

|Nj,Tn−1
(1
2
+ i(t+ αk);

1
2
)Nj,TL

(1
2
+ i(t+ αk);

1
2
(βk − 1))Nj,TL

(1
2
+ i(t + αk);

1
2
βk)|

2dt

≤ T
∏

p∈(Tj−1,Tj ]

(

1 +
1

p

∑

1≤j,k≤m

βjβk

pi(αj−αk)
+O

(

log p

p log Tn−1

+
1

p2

)

)

+O(e−50β2
∗
Kj).

Proof. All of the following calculations are similar to earlier computations, so we will just sketch

their proofs. The coefficients of the Dirichlet polynomial
m
∏

k=1

Nj,Tn−1
(1
2
+ i(t+ αk);

1
2
)Nj,TL

(1
2
+ i(t + αk);

1
2
(βk − 1))Nj,TL

(1
2
+ i(t + αk);

1
2
βk)

are given by the triple convolution

a(n) := bj,Tn−1,α,1/2 ∗ bj,TL,α,
1
2
(β−1)

∗ b
j,TL,α,

1
2
β
(n),

where 1/2 is a vector of m copies of 1/2. Using Rankin’s trick, one can replace these with the

multiplicative coefficients

a′(n) := b′j,Tn−1,α,1/2 ∗ b
′
j,TL,α,

1
2
(β−1)

∗ b′
j,TL,α,

1
2
β
(n)

at a cost of O(e−50β2
∗
Kj). Using lemma 2.8, one may then show that

|a′(p)|2 =
∑

1≤j,k≤m

βjβk

pi(αj−αk)
+O

(

log p

log Tn−1

)

and
∑

r≥2

|a(pr)|2

pr
≪

1

p2
.

13



The claim now follows by multiplicativity and lemma 2.3. �

Proposition 4.8. For 1 < n ≤ L

∫ 2T

T

|Pn,Ts(
1
2
+ i(t+ αℓ))/Kn|

2⌈1/20cn⌉
m
∏

k=1

|Nn,TL
(1
2
+ i(t+ αk);

1
2
(βk − 1))Nn,TL

(1
2
+ i(t+ αk);

1
2
βk)|

2 dt

≪ Te− log(1/cn)/40cn .

Proof. By Cauchy Schwarz, the relevant mean value is at most

(∫ 2T

T

|Pn,Ts(
1
2
+ i(t + αℓ))/Kn|

2⌈1/20cn⌉ dt

)1/2

×

(

∫ 2T

T

m
∏

k=1

|NTL
(1
2
+ i(t + αk);

1
2
(βk − 1))NTL

(1
2
+ i(t+ αk);

1
2
βk)|

2 dt

)1/2

.

By Proposition 4.2 of [8], the first integral is ≪ Te− log(1/cn)/20cn . Using the same reasoning in the

previous proof, one may show that the second integral is

≪
∏

p∈(Tn−1,Tn]

(

1 +O

(

1

p

))

≪ 1

because log Tn/ log Tn−1 = e for n > 1. The claim now follows.

�

Proposition 4.9. For j > n

∫ 2T

T

m
∏

k=1

|Nj,TL
(1
2
+ i(t + αk);

1
2
(βk − 1))Nj,TL

(1
2
+ i(t + αk);

1
2
βk)|

2dt

≤ T
∏

p∈(Tj−1,Tj ]

(

1 +O

(

1

p

))

+O(e−50β2
∗
Kj).

Proof. The proof is a simpler version of the proof of Proposition 4.7. One now has a double

convolution instead of a triple convolution, and uses a cruder bound for the Dirichlet polynomial

coefficients. The details are omitted. �

The previous three propositions and Mertens’ estimate now imply that

∫

BA,n

∏

k≤m

|ζ(1
2
+ i(t+ αk))||NTL

(1
2
+ i(t+ αk);

1
2
(βk − 1))NTL

(1
2
+ i(t + αk);

1
2
βk)|

2w(t/T ) dt

≪ T
∏

j<n





∏

p∈(Tj−1,Tj ]

(

1 +
1

p

∑

1≤j,k≤m

βjβk

pi(αj−αk)
+O

(

log p

p log Tn−1

+
1

p2

)

)

+O(e−50β2
∗
Kj )
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× e1/cn−1−log(1/cn)/40cn
∏

n<j≤L





∏

p∈(Tj−1,Tj ]

(

1 +O

(

1

p

))

+O(e−50β2
∗
Kj)





≪ T exp
(

1/cn−1 − log(1/cn)/40cn +O
(

(log2 T )
2e−n

))

∏

p≤Tn−1

(

1 +
1

p

∑

1≤j,k≤m

βjβk

pi(αj−αk)

)

≪ T exp
(

1/cn−1 − log(1/cn)/40cn +O
(

(log2 T )
2e−n + L− n

))

∏

p≤TL

(

1 +
1

p

∑

1≤j,k≤m

βjβk

pi(αj−αk)

)

.

When n = 1, we will instead use the estimate

Proposition 4.10. Assuming the Riemann hypothesis, for any A ( [m]
∫

BA,1

∏

k≤m

ζ(1
2
+ i(t + αk))NTL

(1
2
+ i(t + αk);

1
2
(βk − 1))2NTL

(1
2
+ i(t + αk);

1
2
βk)

2
w(t/T ) dt

≪A T (log T )−A.

Proof. By Hölder’s inequality, the integral over BA,1 is at most

(meas BA,1)
1/3

(

∫ 2T

T

∏

k≤m

|ζ(1
2
+ i(t + αk))|

3 dt

)1/3

×

(∫ 2T

T

|NTL
(1
2
+ i(t + αk);

1
2
(βk − 1))NTL

(1
2
+ i(t + αk);

1
2
βk)|

6 dt

)1/3

By the same reasoning used in the proof of Proposition 4.7, one may show the final integral is

≪ T (log T )O(1). By the main theorem in [8], the first integral is also ≪ T (log T )O(1). The claim

now follows by using lemma 2.7 of [8] to bound meas BA,1. �

We now have all the necessary tools to show

Proposition 4.11. Assuming the Riemann hypothesis, if δ is sufficiently small in terms of β

|J2| ≤ |J1|/2.

Proof. The preceding calculations in tandem with Proposition 4.6 imply that for n > 1
∫

BA,n

∏

k≤m

|ζ(1
2
+ i(t + αk))||NTL

(1
2
+ i(t + αk);

1
2
(βk − 1))NTL

(1
2
+ i(t + αk);

1
2
βk)|

2w(t/T ) dt

≪ exp
(

1/cn−1 − log(1/cn)/40cn +O
(

(log2 T )
2e−n + L− n

))

|J1|.

Therefore by summing over all A ( [m] and applying Proposition 4.10 we see that

|J2| ≪ |J1|
∑

2≤n≤L

exp
(

1/cn−1 − log(1/cn)/40cn +O
(

(log2 T )
2e−n + L− n

))

+OA

(

T (log T )−A
)

.

(2)
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The T (log T )−A term is negligible. To bound the sum over n, we use the definition of the cn to

find
∑

2≤n≤L

exp
(

1/cn−1 − log(1/cn)/40cn +O
(

(log2 T )
2e−n + L− n

))

=
∑

2≤n≤L

exp
(

e−n(log2 T )
2(O(1) + 1

40
n− 1

20
log3 T )

)

+O(L− n)).

Because TL ≤ T δ it follows that L ≤ 2 log3 T + log δ so the sum is at most
∑

2≤n≤L

exp
(

e−n(log2 T )
2(O(1) + 1

40
log δ)

)

+O(L− n)).

By summing in reverse, we may bound this sum by
∑

j≥0

exp
(

ej(O(1) + 1
40
log δ) +O(j)

)

≤
∑

j≥1

exp
(

(O(1) + 1
40
log δ)j

)

≤ exp
(

O(1) + 1
40
log δ

)

.

Therefore by taking δ sufficiently small in terms of β, we can ensure that this sum times the implicit

constant in (2) is at most 1/3, so the claim follows. �

Combining this with Proposition 4.6 completes the proof of Proposition 4.2 �

4.2. Proof of Proposition 4.3. Now only Proposition 4.3 is needed to complete the proof of

Proposition 1.3. To accomplish this, we will now use Lemma 2.1 with X = TL and the defi-

nition of Gm to deduce

∫

Gm

∏

k≤m

|ζ(1
2
+ i(t+ αk))||NTL

(1
2
+ i(t+ αk);

1
2
(βk − 1))NTL

(1
2
+ i(t+ αk);

1
2
βk)|

2w(t/T ) dt

≪

∫

Gm

m
∏

k=1

∏

j≤L

exp
(

Re Pj,TL
(1
2
+ i(t + αk))

)

× |NTL
(1
2
+ i(t + αk);

1
2
(βk − 1))NTL

(1
2
+ i(t + αk);

1
2
βk)|

2 dt

≪

∫ 2T

T

m
∏

k=1

|NTL
(1
2
+ i(t+ αk);

1
2
)|2

× |NTL
(1
2
+ i(t + αk);

1
2
(βk − 1))NTL

(1
2
+ i(t + αk);

1
2
βk)|

2 dt.

So all that remains to is compute the mean square of the Dirichlet polynomial

m
∏

k=1

NTL
(1
2
+ i(t+ αk);

1
2
)NTL

(1
2
+ i(t + αk);

1
2
(βk − 1))NTL

(1
2
+ i(t + αk);

1
2
βk).

Proposition 4.7 with n = L+ 1 and lemma 2.4 imply that this mean value is

≪ T
∏

p≤TL

(

1 +
1

p

∑

1≤j,k≤m

βjβk

pi(αj−αk)

)

.

This now concludes the proof of Proposition 4.3, and therefore also the proof of Proposition 1.3.

�
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5. PROOF OF PROPOSITION 1.4

All that remains is to bound the quantities

Ik =

∫

Gm

|ζ(1
2
+ i(t+ αk))|

2m
∏

j≤L

exp
(

2(βk −m)Re Pj,TL
(1
2
+ i(t + αk))

)

×
∏

ℓ≤m
ℓ 6=k

∏

j≤L

exp
(

2βℓRe Pj,TL
(1
2
+ i(t + αℓ))

)

w(t/T )dt.

This is very similar to the proof of Proposition 4.3. By applying lemma 2.1 with X = TL and

lemma 2.2 it follows that

Ik ≪

∫ 2T

T

|NTL
(1
2
+ i(t+ αk);m)NTL

(1
2
+ i(t + αk); βk −m)|2

×
∏

ℓ≤m
ℓ 6=k

|NTL
(1
2
+ i(t + αℓ); βℓ)|

2 dt.

Before proceeding it may be helpful to review the definitions made preceding Proposition 2.7.

When j > 1, the coefficients aj(n) of the Dirichlet polynomial

Nj,TL
(1
2
+ i(t + αk);m)Nj,TL

(1
2
+ i(t + αk); βk −m)

∏

ℓ≤m
ℓ 6=k

Nj,TL
(1
2
+ i(t + αℓ); βℓ)

are given by the m+1 fold Dirichlet convolution of gTL
(n;m)n−iαkcj(n) and gTL

(n; βk−m)n−iαkcj(n)
with gTL

(n; βℓ)n
−iαℓcj(n) for all ℓ ≤ m not equal to k. When j = 1 a similar formula holds with

fTL
in place of gTL

. As before, one may replace cj(n) with 1p|n⇒p∈(Tj−1,Tj ] at a cost of O(e−50β2
∗
Kj)

to obtain multiplicative coefficients a′j(n) which

|a′j(p)|
2 =

∑

1≤j,k≤m

βjβk

pi(αj−αk)
+O

(

log p

log TL

)

and
∑

r≥2

|a(′pr)|2

pr
≪

1

p

for Tj−1 < p ≤ Tj . As before, this allows us to conclude that

Ik ≪ T
∏

p≤TL

(

1 +
∑

1≤j,k≤m

βjβk

pi(αj−αk)

1

p

)

.

Proposition 1.4, and therefore Theorem 1.1, readily follows.
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