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Since the release of ChatGPT and GPT-4, large language models (LLMs) and multimodal large language models (MLLMs) have garnered
significant attention due to their powerful and general capabilities in understanding, reasoning, and generation, thereby offering
new paradigms for the integration of artificial intelligence with medicine. This survey comprehensively overviews the development
background and principles of LLMs and MLLMs, as well as explores their application scenarios, challenges, and future directions in
medicine. Specifically, this survey begins by focusing on the paradigm shift, tracing the evolution from traditional models to LLMs and
MLLMs, summarizing the model structures to provide detailed foundational knowledge. Subsequently, the survey details the entire
process from constructing and evaluating to using LLMs and MLLMs with a clear logic. Following this, to emphasize the significant
value of LLMs and MLLMs in healthcare, we survey and summarize 6 promising applications in healthcare. Finally, the survey discusses
the challenges faced by medical LLMs and MLLMs and proposes a feasible approach and direction for the subsequent integration of
artificial intelligence with medicine. Thus, this survey aims to provide researchers with a valuable and comprehensive reference guide
from the perspectives of the background, principles, and clinical applications of LLMs and MLLMs.
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Fig. 1. The process of constructing and evaluating medical LLMs and MLLMs.
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1 INTRODUCTION

Since the introduction of Transformer [203], there has been a paradigm shift in the fields of Natural Language Processing
(NLP) and Computer Vision (CV). Transformer’s robust parallel computing capability and self-attention mechanism
enable the integration of vast amounts of training data, laying the foundation for the development of LLMs and MLLMs
[160]. To date, a series of Transformer-based LLMs and MLLMs have emerged (this survey primarily focuses on the
vision-language modality), such as the PaLM series [6, 34], GPT series [16, 149], and LLaMA series [192, 193] belonging
to LLMs, as well as Gemini [185], GPT-4 [1], and Claude 3 [7] belonging to MLLMs. Due to their powerful capabilities
in understanding, reasoning, and generation, they have achieved state-of-the-art results in various downstream tasks,
including text generation, machine translation and visual question answering (VQA). LLMs and MLLMs demonstrate
increasingly powerful generalization abilities, with their impact extending to the medical domain, accelerating the
integration of artificial intelligence and medicine [186, 188]. Particularly, Google’s Med-PaLM 2 [171] achieved a
score of 86.5 in the United States Medical Licensing Examination (USMLE) [83], reaching the level of medical experts
[267], further showcasing the enormous potential of LLMs in the medical field. In addition, more medical LLMs and
MLLMs, such as ChatDoctor [116], LLaVA-Med [107] and XrayGLM [211], represent new avenues provided by artificial
intelligence for the medical field, offering potential solutions for subsequent medical report generation [201, 202, 217],
clinical diagnosis [168, 195, 212], mental health services [30, 126], and a range of other clinical applications.

Despite the academic breakthrough of LLMs and MLLMs in the medical field, there are still certain challenges for
hospitals to train their own medical LLMs and MLLMs and deploy them into practical clinical applications. Firstly,
training requires a substantial amount of medical data, which is often costly to acquire and necessitates annotation by
medical experts, while also raising concerns regarding data privacy [257], all of which will pose particular challenges to
model development. Secondly, the immense parameters and computation of LLMs and MLLMs demand substantial
computational resources for their training and deployment [143, 157], significantly raising the threshold for hospitals
to adopt LLMs and MLLMs. Thirdly, unlike traditional deep learning models, medical LLMs and MLLMs, as a form of
interactive generative models, not only require consideration of their medical expertise, but also need to consider their
instruction-following ability [123, 149, 251], safety, and ethical issues [38], which require additional training strategies
Manuscript submitted to ACM
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to improve the performance of the models in these aspects. Fourthly, due to the powerful general capabilities of LLMs
and MLLMs, they no longer target single tasks like traditional models [64, 264], thus requiring a more comprehensive
evaluation, apart from evaluating their accuracy on benchmark datasets, it is also crucial to evaluate their performance
in aspects such as ethics, bias, and toxicity [38]. Furthermore, the development of LLMs and MLLMs in the medical
field is still in its early stage, with their application scenarios remaining unclear. Moreover, they also face a series of
challenges such as hallucinations [81, 165, 198], lack of recency [188], which significantly hinder the practical clinical
application of LLMs and MLLMs.

To address the aforementioned issues, this survey begins by examining the background of LLMs and MLLMs from
the perspective of paradigm shifts. Subsequently, it summarizes the mainstream architectures of current medical
LLMs and MLLMs, and collects the medical LLMs and MLLMs that currently exist. Following this, the survey collects
medical-related datasets and elucidates the entire process of medical LLMs and MLLMs from construction to evaluation
in a clear and logical manner, as shown in Fig.1. To maximize the role of LLMs and MLLMs in clinical settings, the
survey provides some practical tips for using LLMs and MLLMs. Furthermore, to emphasize the potential significant
impact of LLMs and MLLMs in medicine, this survey summarizes their applications in clinical medicine and analyzes
their current limitations along with possible solutions.

In comparison with the articles relevant to this survey, they tend to classify MLLMs into LLMs and predominantly
focus on discussing LLMs, lacking a detailed investigation of MLLMs [64, 267]. Additionally, more articles concentrates
on the applications and impacts of LLMs in medicine, while lacking in-depth discussions on the technical aspects
[14, 148, 157, 186, 188], such as datasets, model structures, and construction methods, among others. In contrast, this
survey not only covers the background and principles of LLMs and MLLMs but also discusses their applications and
impacts in medicine, presenting clear logical structure and substantive depth and breadth in content. In summary, our
contributions can be summarized as follows:

• We have conducted an investigation not only on LLMs in the medical domain but also extensively summarized
MLLMs in the medical field, providing an overview and summary of the development background and struc-
ture of both. This furnishes medical professionals and researchers with detailed foundational knowledge for
understanding LLMs and MLLMs.

• We have elucidated the entire process from training, evaluation, to the utilization of both LLMs and MLLMs in a
clear and logical manner, including pre-training methods, fine-tuning methods, evaluation methods, and usage
tips, along with relevant medical datasets. This furnishes medical professionals and researchers with a detailed
instruction guide for constructing and utilizing medical LLMs and MLLMs.

• We have summarized the applications of LLMs and MLLMs in medicine, along with the current limitations
and potential solutions in clinical practice. This provides medical professionals and researchers with a valuable
reference guide for subsequent application development.

Through the comprehensive details in this survey, our aim is to accelerate the development of LLMs and MLLMs in
clinical medicine related products, further fostering the integration of artificial intelligence and the medical domain. The
overall structure of this survey is depicted in Fig. 2: Section 2 provides an overview of the development background of
LLMs and MLLMs. Section 3 introduces the model structures of existing LLMs and MLLMs, and explains the differences
among various structures. Section 4 summarizes the methods for constructing medical LLMs and MLLMs. Section 5
presents the evaluation methods and usage tips for LLMs and MLLMs to fully leverage their potential. Section 6 explores
possible applications of medical LLMs and MLLMs at the current stage. Section 7 focuses on discussing the challenges
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Fig. 2. The overall structure of the survey. Section 2 to Section 5 are biased toward principles; Section 6 and Section 7 are biased
toward applications and impacts.
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and limitations of LLMs and MLLMs in clinical applications, along with potential solutions. Finally, Section 8 provides
the conclusion of this survey. In summary, for those seeking to understand the professional knowledge and principles
of medical LLMs and MLLMs, it is advisable to read Section 2 to Section 5; for those interested in current applications,
challenges, and future feasible directions of medical LLMs and MLLMs in medicine, it is recommended to read Section 6
and Section 7.

2 BACKGROUND OF LLMS AND MLLMS

In this section, we divide the entire development of the NLP field into four stages centered on paradigm shifts:
(1) Supervised Learning; (2) Unsupervised Pre-training and Fine-tuning; (3) Unsupervised Pre-training and Prompt;
(4) Text-only to Multimodal. We will review the development of LLMs and MLLMs in terms of the above four stages from
Section 2.1 to Section 2.4. Additionally, recent research [265] has demonstrated the influence of high-quality datasets
on LLMs and MLLMs, so we will analyze the recent trend of transitioning from large-scale datasets to high-quality
datasets in Section 2.5.

2.1 Supervised Learning

Supervised learning [21] is a common paradigm in machine learning, where the strategy involves optimizing the loss
function as depicted below:

argmin
𝜽

1
𝑛

𝑛∑︁
𝑖=1

L (𝑓 (𝒙𝑖 ;𝜽 ) , 𝑦𝑖 ) + 𝜆Ω(𝜽 ) (1)

where the first term represents the empirical risk, and the second term represents the regularization term. Specifically,
supervised learning entails training a model to learn the mapping 𝑓 between input variables 𝑥 and output variables 𝑦,
aiming to minimize the discrepancy between 𝑓 (𝒙 ;𝜽 ) and 𝑦, where 𝜃 denotes the model parameters, 𝑥 can be manually
extracted features or raw text, and 𝑦 serves as the supervision information which can be category labels, text, or other
forms.

Before pre-training methods became prevalent, supervised learning paradigm was the mainstream in the NLP domain.
Early NLP relied heavily on feature engineering [127], where researchers needed to extract and select features from
datasets, and then utilize these features to accomplish specific tasks such as text classification [124] and machine
translation [147]. With the rise of deep learning [101], models can be trained end-to-end, and the focus of research
has shifted from feature engineering to model architecture design, among which the models based on CNN [259] and
LSTM [178] being prominent. During the era of supervised learning in NLP, we witnessed a shift in research focus from
feature selection to model architecture design, namely, a transition from feature engineering to structure engineering.

2.2 Unsupervised Pre-training and Fine-tuning

Supervised learning relies on annotated datasets for training, which provide explicit standards for model optimization
[39]. However, for certain tasks, especially in medical domains, it may be challenging to acquire a sufficient amount
of annotated data due to the scarcity of specialized annotators and the complexity of the annotation process [257].
After the introduction of Transformer [203] in 2017, the learning paradigm in NLP has changed dramatically, with the
supervised learning paradigm becoming increasingly marginalized [127].

Based on Transformer architecture, GPT [160] and BERT [46] achieved state-of-the-art results at the time by
performing unsupervised pre-training on a large amount of unlabeled text, followed by supervised fine-tuning by
designing the appropriate objective function for the downstream task. The proposal of GPT and BERT ushered in a
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new paradigm in NLP, i.e., unsupervised pre-training & fine-tuning [46, 160, 237]. In this paradigm, leveraging the
highly scalable nature of Transformer, models are initially trained in an unsupervised manner on large-scale unlabeled
data using tasks such as masked language modeling (MLM) or next sentence prediction (NSP) (detailed in Section 4.2),
and subsequently adapted to target tasks using corresponding supervised objectives [160]. The advantages of this
paradigm lie in: (1) the pre-training data can be drawn from any unlabeled text corpus, thus getting rid of the limitation
that supervised learning requires sufficient annotated data [264]; (2) training the model on large-scale unlabeled data
allows it to learn more general and abstract language representations, enhancing its generalization ability; (3) during
fine-tuning, specific to downstream tasks, only the corresponding objective functions need to be designed, without the
need for extensive task-specific architectural modifications, which facilitates the shift from structure engineering to
objective engineering.

2.3 Unsupervised Pre-training and Prompt

Although models such as GPT and BERT have achieved state-of-the-art results in downstream tasks like machine
translation, sentiment analysis, and question-answer (QA), they still require task-specific fine-tuning for different
downstream tasks. In order to construct a general language model capable of handling various tasks without specific
fine-tuning, Radford et al. [161] collected over 8 million documents from the internet, totaling 40 GB of text data,
containing examples from various domains and tasks, and trained GPT-2 on this dataset. GPT-2 achieved state-of-
the-art results on 7 out of 8 language modeling benchmarks and without any task-specific fine-tuning. In addition to
language modeling tasks, GPT-2 demonstrated the ability to perform various tasks in a zero-shot setting, confirming
the substantial improvement in language model performance brought about by both model and dataset scale.

GPT-3 is a self-regressive language model with 175 billion parameters.

GPT-3 est un modèle de langage auto-régressif avec 175 milliards de paramètres.

GPT-3 is a powerful few-shot learner.

GPT-3 est un puissant apprenant à faible nombre d'échantillons.

GPT-3 marks the beginning of large language models.

GPT-3 marque le début des grands modèles de langage.


Fig. 3. Example of a few-shot demonstration using the English-French translation task.

In order to further improve the language model generalization capability, Brown et al. [16] expanded the model size
to 175B based on GPT-2, and the dataset was expanded even more, including the filtered Common Crawl [161], two
Internet-based book corpora, and the English Wikipedia. Through continuous scaling of both model and dataset size,
the trained GPT-3 exhibited a qualitative leap in capability, demonstrating powerful few-shot ability without fine-tuning.
As depicted in Fig. 3, GPT-3 could accomplish unknown tasks solely based on provided task examples, sometimes even
reaching the competitive level of previous state-of-the-art fine-tuned models. Thus, GPT-3 is often regarded as the
beginning of LLMs [106, 186]. The proposal of GPT-3 once again revolutionized the paradigm of NLP, shifting from
unsupervised pre-training & fine-tuning to unsupervised pre-training & prompt [127]. Such models, although powerful
enough for most NLP tasks, are sensitive to user-supplied prompts, the quality of which will directly affect the quality
of the model’s response, which has given rise to researchers’ investigations on prompts [141, 209, 221], and has initiated
the shift from objective engineering to prompt engineering.
Manuscript submitted to ACM
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2.4 Text-only to Multimodal

Influenced by GPT-3, more researchers have delved into the research and development of LLMs, leading to the emergence
of a series of outstanding works such as GLM-130B [246], PaLM [6, 34], and LLaMA [192, 193]. However, these LLMs
are only capable of understanding text, although there have been advancements in multimodal work during this period,
they often require fine-tuning on new tasks [68, 245] or are unable to generate text [111, 158]. Inspired by few-shot
learners like GPT-3, Alayrac et al. [3] collected a large-scale multimodal dataset from the web, primarily consisting
of text-image pairs and video-image pairs, and used this dataset to train a MLLM named Flamingo. Flamingo can
directly adapt to visual tasks through simple few-shot learning without the need for task-specific fine-tuning. The
powerful multimodal in-context learning ability and few-shot ability of Flamingo establish it as the GPT-3 moment
in the multimodal domain [106], thus we consider Flamingo as the beginning of MLLMs [249]. Subsequently, more
prominent works emerged in the multimodal domain, such as BLIP-2 [110], LLaVA [123], MiniGPT-4 [269], all of which
share the same point of adding a visual encoder to LLMs and using additional modules to connect LLMs and visual
encoders to bridge the gap between modalities. These MLLMs leverage LLMs as cognitive engines, not only retaining
the inherent capabilities of LLMs [249], but also endowing powerful visual support, which provides a possible direction
towards artificial general intelligence.

2.5 High-quality Data

One of the remarkable aspects contributing to the excellence of LLMs and MLLMs is their utilization of large-scale
training data, enabling them to acquire universal representations transferable to nearly any language understanding
or generation task [265]. However, the vast majority of this training data is sourced from the web, such as WebText
[161] and Common Crawl, and it is inevitable that there are some toxicities and biases in these large amounts of web
data, which are also carried over to LLMs and MLLMs [143]. To mitigate the negative impact of training on large-scale
datasets and further enhance model performance, it’s common to use a number of high-quality datasets to fine-tune the
model.

For instance, InstructGPT [149] employs manually generated and curated high-quality datasets for supervised
fine-tuning (SFT) and reinforcement learning (RL), enabling the model to produce outputs more aligned with user
expectations and demands, thereby avoiding inaccuracies, irrelevance, or harmful content generation. InstructBLIP [41]
collects datasets in the instruction format to fine-tune the model, enhancing ability of model to understand and follow
user instructions, thereby improving zero-shot capability on new tasks. LLaVA uses GPT-4 to generate high-quality
instruction-following data for instruction fine-tuning, bringing its multimodal capabilities closer to GPT-4. Particularly,
LIMA [265], after fine-tuning based on LLaMA by using only 1,000 meticulously curated prompts and responses with
standard supervised loss, surpassed Alpaca [182] and Bard in both human preference and GPT-4 preference scores.
Ablation experiments conducted on LIMA revealed that the benefits of improving data quality outweigh those of
increasing data quantity when expanding the dataset size without increasing prompt diversity [265]. Thus, it can be
observed and predicted that data engineering is emerging as one of the new focal points of research.

In this section, we delineate the development background of LLMs, focusing on the transition from supervised
learning, unsupervised pre-training & fine-tuning to unsupervised pre-training & prompt. Inspired by LLMs, the
multimodal domain has experienced rapid growth, resulting in the emergence of MLLMs built upon LLM foundations.
Particularly, owing to the robust few-shot capability of GPT-3 and Flamingo, we regard GPT-3 and Flamingo as the
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beginnings of LLM and MLLM, respectively. With recent studies exploring the impact of high-quality datasets on LLMs
and MLLMs, we predict that data engineering will become a focus of research in the future. Therefore, throughout
the elucidation of the developmental background of LLMs and MLLMs, we contend that the focus of the development
of LLMs and MLLMs has shifted from initial feature engineering to structure engineering, objective engineering, and
presently, prompt engineering and data engineering.

3 STRUCTURE OF LLMS AND MLLMS

Existing LLMs are all built on the Transformer architecture, which is an encoder-decoder framework. Consequently,
these LLMs have evolved into three structures based on the Transformer architecture [233, 267]: (1) Encoder-only,
represented by models such as BERT; (2) Decoder-only, represented by models such as the GPT series; (3) Encoder-
Decoder, represented by models like T5 [163]. Current MLLMs typically build on LLMs by adding a visual encoder
for understanding visual information and a modal alignment module [243, 249] between the visual encoder and the
LLMs to bridge the vision-text modalities gap. To provide a comprehensive summary of existing medical LLMs and
MLLMs, in this section, we will separately discuss the model architectures of medical LLMs and MLLMs. Specifically, in
Section 3.1, we will summarize medical LLMs based on the three aforementioned structures. In Section 3.2, we will
discuss common vision encoders, LLM backbones, and modality alignment methods in medical MLLMs. For clarity,
detailed information on existing medical LLMs and MLLMs is provided in Table 1 and Table 2.

3.1 Structure of LLMs

3.1.1 Encoder-only. Encoder-only language models (LMs) are composed of multiple encoder layers of Transformer,
among which BERT is the earliest and most representative encoder-only LM. Inspired by BERT, more encoder-only LMs
have emerged, such as DeBERTa [66], ALBERT [99], and RoBERTa [132]. These encoder-only LMs typically employ the
masked language modeling (MLM) task for pre-training, wherein random tokens in sentences are masked, prompting
the model to predict these masked tokens as accurately as possible. Such pre-training task endow encoder-only LMs with
remarkable natural language understanding capability, so researchers have also endeavored to develop encoder-only
LMs in the medical domain [58, 80, 102, 140]. For instance, BioBERT [102] was pre-trained on biomedical corpora and
achieved state-of-the-art results in biomedical named entity recognition, biomedical relation extraction, and biomedical
QA tasks. MentalBERT [80], on the other hand, was trained on various datasets of mental disorders (such as depression,
anxiety, and suicidal ideation) collected from popular social platforms like Reddit and Twitter, enabling LMs utilization
in the field of mental health research.

Despite the existence of numerous encoder-only LMs in the medical domain, if they are strictly categorized, the
aforementioned models belong to pre-trained language models (PLMs) [64, 205] rather than LLMs, because most of
these LMs are based on BERT as the base model, employing MLM task for pre-training, and subsequently fine-tuning
for various downstream tasks, and they lack the robust ICL and few-shot capability demonstrated by models like GPT-3.
Therefore, such PLMs will not be further discussed in subsequent sections.

3.1.2 Decoder-only. Decoder-only is currently the mainstream architecture for LLMs, constructed by multiple decoder
layers of Transformer. The earliest decoder-only LM was GPT, and subsequently, GPT-3 ushered in a new era of LLMs,
followed by the emergence of several outstanding decoder-only works [6, 34, 149, 192, 193]. These decoder-only LLMs
typically employ next token prediction (NTP) as the pre-training task. During training, the model is tasked with
predicting the next token in the sequence given all preceding tokens. This pre-training task endows decoder-only
Manuscript submitted to ACM
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Table 1. Detailed information on existing medical LLMs.

Model Name Architecture (Sec.3.1) Base Model Para.(B) Data Source (Sec.4.1) Construction Method (Sec.4.2) Evaluation Method (Sec.5.1) Date

Med-PaLM [170] Decoder-Only Flan-Palm 540 MultiMedQA IFT AEM, Human 2022/12
ChatDoctor [116] Decoder-Only LLaMA 7 Alpaca-52K, HealthCareMagic-100k IFT AI 2023/03
DoctorGLM [227] Encoder-Decoder ChatGLM-6B 6 ChatDoctor, HearlthcareMagic, MedDialog, CMD. IFT Human 2023/04
Baize-Healthcare [228] Decoder-Only LLaMA 7 Quora, MedQuAD SFT AI 2023/04
BenTsao [207] Decoder-Only LLaMA 7 CMeKG SFT Human 2023/04
MedAlpaca [60] Decoder-Only LLaMA 7 / 13 Medical Meadow IFT AEM 2023/04
PMC-LLaMA [222] Decoder-Only LLaMA 7 / 13 MedC-K, MedC-I CPT, IFT AEM 2023/04
Med-PaLM 2 [171] Decoder-Only PaLM 2 340 MultiMedQA IFT AEM, Human 2023/05
Clinical Camel [191] Decoder-Only LLaMA 2 13 / 70 ShareGPT, PubMed, MedQA SFT AEM 2023/05
HuatuoGPT [250] Decoder-Only BLOOMZ 7 Hybrid Data SFT, RLAIF AEM, Human, AI 2023/05
GatorTronGPT [155] Decoder-Only GPT-3 5 / 20 Clinical Text from UF Health, Pile PT AEM 2023/06
ClinicalGPT [206] Decoder-Only BLOOM 7 cMedQA2, cMedQA-KG, MD-EHR, MEDQA-MCMLE, MedDialog SFT, RLHF AEM 2023/06
Zhongjing [234] Decoder-Only Ziya-LLaMA 13 CMtMedQA, ChatMed, CMeKG CPT, SFT, RLHF Human, AI 2023/08
Radiology-Llama2 [133] Decoder-Only LLaMA 2-7b-chat 7 MIMIC-CXR, OpenI IFT AEM, Human 2023/08
MedChatZH [180] Decoder-Only Baichuan 7 Books, med-mix-2M CPT, IFT AEM, AI 2023/09
ChatCounselor [126] Decoder-Only Vicuna 7 Psych8k IFT AI 2023/09
Qilin-Med [242] Decoder-Only Baichuan 7 ChiMed CPT, SFT, DPO AEM 2023/10
AlpaCare [255] Decoder-Only LLaMA 7 / 13 MedInstruct-52k IFT AI 2023/10
BianQue [29] Encoder-Decoder ChatGLM 6 BianQueCorpus IFT AEM 2023/10
SoulChat [30] Encoder-Decoder ChatGLM 6 SoulChatCorpus IFT AEM, Human 2023/11
TCM-GPT [232] Decoder-Only BLOOM 7 TCM-Corpus-1B, TCM-EXAM, TCM-EHR CPT, SFT AEM 2023/11
MEDITRON [31] Decoder-Only LLaMA 2 7 / 70 GAP-Replay, MedMCQA, PubMedQA, MedQA CPT, SFT AEM 2023/11
AMIE [195] Decoder-Only PaLM 2 340 MedQA, MultiMedBench, MIMIC-III, RealWorld Dialogue IFT Human, AI 2024/01

1 There is no encoder-only LLMs in the table because most encoder-only based language models belong to PLM, not LLM.
2 "CPT" means continuous pre-training, "IFT" means instruction fine-tuning, "SFT" means supervised fine-tuning, "RLHF" means reinforcement learning from human feedback, "RLAIF" means reinforcement learning from AI feedback, "DPO"
means direct preference optimization.

3 "AEM" means automatic evaluation metrics.

LLMs with excellent generative capability. Due to the remarkable performance of decoder-only LLMs like GPT-3 in
general domains, researchers have also attempted to apply such powerful decoder-only LLMs to the medical domain.
For instance, Med-PaLM 2 [171], derived from fine-tuning PaLM 2 [6] on medical datasets, achieved a score of 86.5 in
the USMLE [83], reaching the level of medical experts. Some studies have expanded medical LLMs to other languages
[29, 207, 234, 242, 250], or extended them to traditional medicine [232], further broadening the application scope and
impact of LLMs in the medical domain.

Compared to encoder-only LMs, these decoder-only LLMs utilize NTP as the pre-training task, making them more
proficient in text generation [264]. Moreover, researches [40, 213] have demonstrated that decoder-only LLMs exhibit the
best few-shot and zero-shot performance on various downstream tasks, which is one of the reasons why decoder-only
has become the predominant framework for LLMs at present.

3.1.3 Encoder-Decoder. Encoder-decoder LLMs directly utilize the Transformer structure, consisting of a stack of
Transformer encoders and decoders. The encoder processes the input sequence and outputs representations with
contextual information, which the decoder utilizes for text generation [267]. Representative encoder-decoder LLMs
include UL2 [183], T5 [163] and GLM [49]. Similar to encoder-only and decoder-only architecture, encoder-decoder
LLMs have also been extended to the medical domain. For example, SoulChat [30] leverages the empathy dialogue
dataset SoulChatCorpus, fine-tuning on the foundation of ChatGLM, and it demonstrates strong empathetic ability,
which can guide users to express themselves and provide rational advice in psychological counseling.

Although encoder-decoder LLMs combine the advantages of encoder-only and decoder-only structure, balancing text
understanding and generation, Wang et al. [213] has demonstrated that decoder-only LLMs perform best in zero-shot
scenarios without any fine-tuning, while encoder-decoder LLMs require multitask fine-tuning on a certain amount of
annotated data to achieve optimal performance. Given that current LLM training paradigm is still to do unsupervised
learning on large-scale corpus, it is evident that decoder-only architecture, which excel in zero-shot performance, can
better utilize such unlabeled data. Therefore, decoder-only remains the mainstream architecture for LLMs at present.
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The heart size and pulmonary vascularity appear within normal limits. A large
hiatal hernia is noted. The lungs are free of focal airspace disease ...

Vision EncoderExpert Models
Expert Models

Expert Models
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Structured
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Fig. 4. The core modules and pipeline of MLLMs. On the far right are three types of modality alignment modules. We consider the
method of leveraging expert models to construct MLLMs as a form of prompt augmentation method, categorized under the modality
alignment modules for further explanation.

3.2 Structure of MLLMs

As shown in Fig. 4, in this section, we will provide a detailed discuss of three crucial modules of MLLMs: Vision Encoder,
LLM Backbone and Modality Alignment Module. We will treat the method of leveraging expert models to construct
MLLMs as a prompt augmentation method [168] and discuss it alongside other modality alignment modules. To facilitate
researchers in building their own medical MLLMs, we provide implementation choices of three modules in Table 2.

3.2.1 Vision Encoder. MLLMs is based on LLMs by adding a vision encoder, thereby endowing LLMs with visual
capability. Specifically, the role of the vision encoder 𝑉 is to encode visual input 𝐼𝑥 into visual features 𝑍𝑥 , as shown
below:

𝑍𝑥 = 𝑉 (𝐼𝑥 ) (2)

There are various options for the vision encoder V, such as ResNet [65], a landmark work in CV that achieved state
of the art in various downstream tasks at the time, and serves as the vision encoder for the pioneering MLLM work,
Flamingo [3]. However, in recent years, researchers have preferred to Transformer-based models like ViT [48] instead
of ResNet. For instance, Qilin-Med-VL [125] utilized the original ViT as its vision encoder, while Med-PaLM M [195]
employed ViT-e [28] and ViT-22B [43] as vision encoder. Chen et al. [27] pointed out that pre-trained visual model based
on contrastive learning outperform based on classification in various tasks, especially in localization and visual-text
understanding, when serving as vision encoder for MLLMs, and thus, more MLLMs opt to utilize visual models trained
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Table 2. Detailed information on existing medical MLLMs.

Model Name Vision Encoder (Sec.3.2.1) LLM Backbone (Sec.3.2.2) Modality Alignment (Sec.3.2.3) Data Source (Sec.4.1) Evaluation Method (Sec.5.1) Date

ChatCAD [212] Expert models ChatGPT Prompt Augmentation MIMIC-CXR, CheXpert AEM 2023/02
Visual Med-Alpaca [168] Expert models Med-Alpaca Prompt Augmentation ROCO, BigBIO / 2023/04
CLIP-ViT w/ GPT2 [200] CLIP-ViT GPT2-XL MLP Slake, PathVQA, OVQA AEM 2023/05
MedVInt [256] PMC-CLIP-ViT PMC-LLaMA MLP, Transformer PMC-VQA AEM 2023/05
MedBLIP [25] EVA-CLIP-ViT BioMedLM Q-Former ADNI, NACC, OASIS AEM 2023/05
XrayGLM [211] ViT-G ChatGLM Q-Former MIMIC-CXR, OpenI / 2023/05
PathAsst [177] CLIP-ViT Vicuna Linear PathCap, PathInstruct / 2023/05
ChatCAD+ [261] Expert models ChatGPT Prompt Augmentation CheXpert, MIMIC-CXR AEM 2023/05
LLaVA-Med [107] BioMed CLIP-ViT Vicuna, LLaMA Linear PMC-15M, VQA-RAD, SLAKE, PathVQA AEM, AI 2023/06
PCLmed [231] EVA-CLIP-ViT ChatGLM Q-Former ImageCLEF 2023 caption prediction AEM 2023/06
OphGLM [55] Expert models ChatGLM Prompt Augmentation Web data, MedDialog AEM 2023/06
XrayGPT [187] MedCLIP-ViT Vicuna Linear MIMIC-CXR, OpenI AEM, AI 2023/06
Med-Flamingo [144] CLIP-ViT LLaMA Cross-Attention Layers MTB, PMC-OA AEM, Human 2023/07
Med-PaLM M [195] ViT-e, ViT-22B PaLM MLP MultiMedBench AEM, Human 2023/07
RadFM [223] 3D ViT MedLLaMA-13B Concat MedMD, RadMD AEM, Human 2023/08
R2GenGPT [217] Swin Transformer LLaMA 2 Linear IU-Xray, MIMIC-CXR AEM 2023/09
Qilin-Med-VL [125] ViT Chinese-LLaMA2-13B-Chat Linear ChiMed-VL / 2023/10
PeFoM-Med [63] EVA-CLIP-ViT LLaMA2-Chat Linear ROCO, VQA-RAD AEM, Human 2024/01

via contrastive learning as their vision encoder. For example, LLaVA-Med [107] utilized CLIP ViT-L/14 [158] as the
vision encoder, and XrayGLM [211] used EVA-CLIP ViT-G/14 [52] as the vision encoder.

In summary, ResNet, as an excellent convolutional neural network, is a good choice for the vision encoder, but
Transformer-based ViT models are more favored by researchers. Moreover, contrastive learning-based ViT models,
such as CLIP-ViT and EVA-CLIP ViT, are typically superior to classification pre-trained ViT models when serving as
vision encoders for MLLMs. Therefore, these ViT models trained via contrastive learning are currently the mainstream
choice for vision encoder.

3.2.2 LLM Backbone. The LLM backbone is the core part of the three important modules of MLLMs and the one with
the largest number of parameters, which endows MLLMs with capabilities such as text interaction, ICL, and reasoning.
The principle of LLM backbone in MLLMs is shown below:

𝑅 = 𝐿(𝐻𝑥 ,𝑇𝑥 ) (3)

Where 𝑅 denotes the response output of the LLM, 𝐿 represents the LLM backbone, 𝑇𝑥 signifies the embedded tokens of
the text input, and 𝐻𝑥 are visual representations that LLM can understand. The specific meaning of 𝐻𝑥 is explained in
Equation (4).

Although powerful LLMs like ChatGPT and PaLM 2 have not been publicly released, there is still a large number of
excellent open-source LLMs in the community for researchers to choose. Among these, LLaMA and LLaMA 2 developed
byMeta are the most popular open-source LLMs, often serving as the LLM backbone for MLLMs. Additionally, fine-tuned
models based on LLaMA are also the choices for the LLM backbone, such as Alpaca and Vicuna [32], with Vicuna-13B
achieving performance exceeding 90% of ChatGPT and Bard. Furthermore, Baichuan 2 [230], as a general LLM, exhibits
robust performance in medical task even without fine-tuning on specialized medical data, consequently, it stands as a
favorable choice for an LLM backbone.

3.2.3 Modality Alignment. While adding a vision encoder to LLMs allows them to process visual input, LLMs trained
solely on text datasets are incapable of comprehending the output features 𝑍𝑥 from the vision encoder. Therefore,there
is a need for modal alignment, which converts 𝑍𝑥 into a format understandable by LLMs, as illustrated in Equation (4):

𝐻𝑥 = 𝑓 (𝑍𝑥 ) (4)
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Where 𝑓 denotes the modal alignment method and 𝐻𝑥 are visual representations understandable by LLMs. Modality
alignment is crucial for MLLMs to understand visual information, significantly influencing the multimodal capability
of MLLMs. In the following sections, we will introduce four existing modality alignment methods: Additional Cross-
Attention Layers, Query-Based, Projection-Based, and Prompt Augmentation .

Additional Cross-Attention Layers were proposed in Flamingo, where the approach involves interleaving dense
cross-attention layers into a pre-trained LLM that is frozen. The input of these cross-attention layers comes from the
output of the vision encoder, which is usually passed a Perceiver Resampler [78], thereby reducing the computational
complexity of vision-text cross-attention. Through Additional Cross-Attention Layers, the LLM generates text responses
conditioned on visual representations. Subsequent works such as Med-Flamingo [144], which are based on Flamingo,
also utilize these cross-attention layers for modality alignment.

Query-Based method, which can be regarded as a multimodal perceiver [173], involves extracting information from
visual representations using a set of learnable query vectors. For example, Q-Former proposed in BLIP-2 [110] extracts
visually relevant features from a frozen vision encoder to facilitate LLMs in generating text responses aligned with
visual information. Based on this, Jian et al. [82] introduced P-Former, specifically trained for language data, bypassing
the need for image-text pairs, thus offering a modality-agnostic and more flexible approach. Similarly influenced by
BLIP-2, in the medical domain, Chen et al. [25] proposed MedBLIP, extending this query mechanism to 3D medical
images and text.

Projection-Based method can be considered a form of multimodal converter [173], which is simpler compared to
Query-Based method, as it involves mapping visual representations from the output of the vision encoder to the word
embedding space using a simple projection layer, enabling LLMs to comprehend images. For instance, LLaVA-Med,
Qilin-Med-VL, and XrayGPT [187] utilize a simple linear layer to map visual representations, while MedVIntTE [256]
and LLaVA-1.5 [122] use MLP for this purpose. These mapped visual representations, along with textual representations,
serve as inputs to the LLM backbone.

Prompt Augmentation typically involves processing images with expert models and combining the processed
results with prompt templates to convert them into general text, serving as input prompts for LLMs, thereby linking
visual information with text. For instance, VideoChat-Text [113] utilizes perception models to explicitly encode video
information into textual descriptions. Specifically, it utilizes InternVideo [216] to analyze the target actions, T5 to refine
their descriptions for clarity, and Whisper [159] to further enhance the richness of video descriptions. After generating
detailed textual descriptions of the video, these descriptions are combined with prompt templates as input to LLMs.
In the medical field, OphGLM [55] extracts information from fundus images using classification and segmentation
models, integrates this information into structured text templates to form diagnostic reports, which serve as input to
LLMs. Similarly, in ChatCAD [212], X-ray images are first fed into trained Computer-aided Diagnosis (CAD ) models
to obtain outputs, which are then transformed into natural language using prompt templates and serve as input to
LLMs. Compared to Query-Based and Projection-Based method, Prompt Augmentation method leverages expert models,
eliminating the need for additional modality alignment training, but its effectiveness depends on the performance of
the expert models.

Despite the differences among the above four approaches, their ideas are all text-centered, i.e., they utilize the
unique property of text as a modality space to transform visual information into textual space, thus enabling LLMs to
understand the visual input [194]. Such methods not only achieve vision-text alignment but also enable broader modal
alignment. For instance, OneLLM [59] employs a unified framework to map 8 modalities to the textual space, achieving
alignment across multiple modalities. This also provides a feasible approach for developing new medical MLLMs by
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utilizing medical data from more modalities, such as 3D-CT, 2D-X-ray, 1D-ECG data, to train a more comprehensive
medical MLLM.

4 CONSTRUCTION OF MEDICAL LLMS AND MLLMS

In Section 2 and Section 3, we provided a clear exposition of the development background and model architectures
of LLMs and MLLMs. Based on this, to facilitate researchers and medical professionals to develop their own medical
LLMs and MLLMs, this section summarizes the available medical datasets for training purposes and elaborates on the
methods for constructing medical LLMs and MLLMs in detail.

4.1 Training Datasets

Foundation models [106, 264], such as GPT-3, LLaMA, and PaLM, typically gather training data from various sources
such as web pages, books, research papers, and code repositories to enhance the model’s general capability. Similarly, in
the medical domain, there are various forms of datasets, primarily including electronic health records (EHRs), scientific
literature, QA, dialogue, medical knowledge bases, web data, medical image-text pairs, and high-quality data generated
by AI models like ChatGPT or GPT-4. This section provides a brief overview of these types of medical datasets, and
more information of the datasets can be found in Table 3.

Electronic Health Records: EHRs contain personal health records, including basic information, summaries of major
diseases and health problems, and primary health service records. The Medical Information Mart for Intensive Care III
(MIMIC-III) [87] is one of the largest, publicly available, and most commonly used EHRs datasets, which comprises
approximately 2M de-identified notes covering 13 types of specialties such as cardiology, respiratory, and radiology. The
MIMIC-III dataset provides significant convenience for building medical LLMs, as demonstrated by works like AMIE
[196] and GatorTron [235], both of which utilized MIMIC-III for training. In addition to MIMIC-III, other commonly
used EHRs datasets include the Clinical Practice Research Datalink (CPRD) [69] and the updated version of MIMIC-III,
MIMIC-IV [85].

Scientific Literature: Scientific literature containing accurate and authoritative medical knowledge, serves as one
of the sources of medical datasets. PubMed is the most commonly used repository for biomedical and life science
literature, providing access to major resources such as MEDLINE, PubMed Central (PMC), and NCBI Bookshelf. It
indexes citations from over 34M biomedical literature articles. PubMed abstracts comprise approximately 4.5B words,
making it a high-quality medical training dataset. PubMedQA [84] is an example of a biomedical QA dataset collected
from PubMed abstracts. In addition to PubMed, PMC is a popular scientific literature resource that provides free full-text
access to PubMed, with full-text articles containing approximately 13.5B words. PubMed and PMC offer high-quality
medical literature, often used as sources for other datasets. For instance, PMC-OA [119], PMC-VAQ [256], and PMC-15M
[252] are three biomedical multimodal datasets extracted from PMC, significantly facilitating the development of
medical LLMs [31, 191, 222] and MLLMs [107, 144].

Question-Answer: QA datasets consist of two types: discriminative QA [83, 150] and generative QA [256]. Discrim-
inative QA datasets mostly comprise multiple-choice questions, while generative QA involves open-ended questions.
Typical QA datasets include PubMedQA [84], MedQA [83], PMC-VQA [256], and MultiMedQA [170], etc., among which
MultiMedQA is a comprehensive medical QA dataset contains 7 medical QA datasets, covering both multiple-choice
and open-ended questions, to comprehensively evaluate the authenticity, helpfulness, accuracy, and potential harm of
LLMs’ responses. Because QA datasets not only contain specialized medical knowledge but also possess characteristics
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Table 3. Summary of medical datasets for pre-training and fine-tuning.

Datasets Type Description AI Synthesis

MIMIC-III [87] EHR Approximately 2M de-identified notes. %

MIMIC-IV [85] EHR About 300K patients, 430K admissions. %

CPRD [69] EHR Anonymized medical records for over 11.3M patients. %

OpenI [44] EHR & Multimodal 7,470 images and 3,955 reports. %

PubMed Literature Over 34M citations and abstracts of biomedical literature, about 4.5B words. %

PMC Literature Provides free full-text access to PubMed, about 13.5B words. %

CORD-19 [210] Literature More than 140K papers, with more than 72K full text. %

PubMedQA [84] QA 1K labeled, 612K unlabeled and 211.3K manually generated QA. %

MedQA (USMLE) [83] QA 61,097 multiple-choice QA pairs. %

MedMCQA [150] QA 194K multiple-choice QA pairs. %

cMedQA2 [253] QA 100K questions and 200k answers. %

MultiMedQA [170] QA Includes six existing datasets and one new dataset. %

MedQuAD [13] QA 47,457 question-answer pairs from trusted medical sources. %

Medical Meadow [60] QA Over 160K QA pairs. !

Huatuo-26M [112] QA 26M QA pairs. %

Psych8k [126] QA 8,187 query-answer pairs. !

PMC-VQA [256] QA & Multimodal Contains 149K images, 227K VQA pairs. !

VQA-RAD [100] QA & Multimodal 315 radiology images and 3515 QA pairs generated by clinicians. %

Slake [120] QA & Multimodal 642 radiology images and over 7000 diverse QA pairs. %

PathVQA [67] QA & Multimodal 4,998 pathology images with 32,799 QA pairs. %

ChiMed-VL-Instruction [125] QA & Multimodal 469,441 question-answer pairs. %

MedC-I [222] QA & Instructions 202M tokens. !

CMtMedQA [234] QA & Dialogue 70K multi-round conversation datasets from real doctor-patient conversations. !

MedInstruct-52k [255] Instructions 52K instruction-response pairs generated by GPT-4. !

ChiMed [242] Multiple Composed of various data such as QA, books, dialogues, etc. %

GAP-REPLAY [31] Multiple Includes data from clinical practice guidelines, abstracts, and original articles. %

MedDialog [247] Dialogue 3.4M Chinese conversations and 0.6 million English conversations. %

HealthCareMagic-100k [116] Dialogue 100K authentic patient-doctor conversations. %

GenMedGPT-5k [116] Dialogue 5K generated conversations between patients and physicians from ChatGPT. !

UMLS [15] Knowledge Base 2M entities for 900K concepts. %

CMeKG [17] Knowledge Base Chinese medical knowledge graph. %

COMETA [12] Web Data consisting of 20K English biomedical entity mentions. %

TCM-Corpus-1B [232] Web Data 20GB dataset collected from Baidu Baike, Wikipedia and other sources. %

MIMIC-CXR [86] Multimodal 227,835 imaging studies for 65,379 patients. %

ROCO [153] Multimodal Contains more than 81K radiologic images, each with a corresponding title, keywords. %

OpenPath [75] Multimodal 208,414 pathology images paired with natural language descriptions. %

MedICaT [176] Multimodal 160K images with captions and inline references. %

CheXpert [77] Multimodal 224,316 chest X-rays with reports. %

PathCap [177] Multimodal 142K high quality pathology image-caption pairs. !

MedMD [223] Multimodal 15.5M 2D scans, 180k 3D scans, with corresponding captions or diagnosis labels. !

PMC-OA [119] Multimodal 1.6M image-caption pairs. %

PMC-15M [252] Multimodal 15M figure-caption pairs from over 3M articles. %

ChiMed-VL-Alignment [125] Multimodal 580,014 images and context information or descriptions. %

PathInstruct [177] Multimodal & Instructions 180K instruction-following data. !

LLaVA-Med-Instruct [107] Multimodal & Instructions 600K image-text pairs and converted to instruction-following data. !

1 "EHR" means electronic health record; "QA" means question-answer; "Multiple" means that the dataset is a mixture of multiple types of data.
2 "Instructions" denotes instruction-tuning data or instruction-following data, see Section 4.2.2 or Fig. 5 for details.
3 "AI Synthesis" indicates that generative AI such as chatGPT and GPT-4 were used during the development of the dataset to assist in generating the data.

such as conciseness and relevance to clinical QA scenarios, they are primarily used not only as training datasets for
model learning but also as benchmarks to test the medical capabilities of medical LLMs and MLLMs.

Dialogue: High-quality pre-training corpus such as EHRs, scientific literature, can significantly enhance the medical
performance of LLMs and MLLMs. However, these datasets only provide fundamental theoretical knowledge, training
models solely on these datasets may result in models lacking interactive capability. Fine-tuning these models on dialogue
data can enhance their ability to interact and understand patient queries and needs [116], and thus, researchers are
dedicated to constructing high-quality dialogue datasets to fine-tune themodel. For instance, HealthCareMagic100k [116]
comprises approximately 100K authentic patient-doctor conversations collected from the online medical consultation
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website HealthCareMagic, both ChatDoctor [116] and DoctorGLM [227] utilized this dataset for fine-tuning. To avoid the
tedious process of collecting such real dialogue datasets, including large-scale filtering and de-duplication, researchers
have attempted to use ChatGPT or GPT-4 to simulate real dialogue scenarios and generate dialogue datasets. For
example, GenMedGPT-5k [116] is a 5K doctor-patient dialogues generated by ChatGPT.

Medical Knowledge Bases: Medical knowledge bases, such as medical libraries, also contain medical data for model
training, among which Unified Medical Language System (UMLS) [15] is one of the most popular knowledge bases,
which is a giant medical terminology system developed by the U.S. National Library of Medicine for more than 20 years
and contains about 900K medical concepts and 2M medical entities. Furthermore, Chinese medical knowledge graph
(CMeKG) [17] provides medical knowledge about diseases, drugs, symptoms. Although it contains some structured data
that do not conform to the training data format, it can be processed into general text form using ChatGPT or GPT-4. For
example, BenTsao [207] utilized the OpenAI API to process the CMeKG, resulting in the generation of 8K instruction
data for SFT.

Web Data: General foundation models like LLaMA and GPT-3 extensively utilize web data for training. Similarly, in
the medical domain, there exists a large amount of web medical data suitable for training, with Reddit, Twitter and
Wikipedia being the sources of these data. For instance, TCM-Corpus-1B [232] is a traditional medicine dataset collected
from Baidu Baike and Wikipedia. After undergoing data cleaning processes, TCM-Corpus-1B contains approximately
20GB of textual information and serves as one of the training datasets for TCM-GPT [232].

MultimodalMedical Image-Text Pairs: Medical image-text pairs are primarily utilized for training medical MLLMs.
For instance, the PMC-OA dataset, as previously mentioned, consists of 1.65M medical image-text pairs collected from
PMC, which are employed for training models such as PMC-CLIP [119] and Med-Flamingo. PMC-VAQ builds upon
PMC-OA by leveraging ChatGPT to generate a large number of diverse and high-quality questions, after filtering, it
culminates in 227K VQA pairs. PMC-15M, also derived from PMC articles, contains 15M figure-caption pairs, surpassing
the scale of MIMIC-CXR [86] by two orders of magnitude. Additionally, there exist several other multimodal medical
datasets such as ChiMed-VL [125], RadMD [223], and Open-I [44], which have contributed to the development of
medical MLLMs.

AI-Generated Datasets: It has been demonstrated that fine-tuning models with a large quantity of high-quality
synthetic data generated by ChatGPT can significantly enhance the performance of models in downstream tasks [181].
Similarly, in the medical domain, there are also efforts underway to explore the use of powerful general models like
ChatGPT or GPT-4 for generating medical data. These data encompass various formats including dialogues, QA pairs,
instruction-tuning data [107, 255], etc., and the data modality is not limited to text, but also includes multimodality. For
instance, the Psych8k [126] was created by converting 260 real-life counseling recordings into text and then extracting
query-answer pairs from this text using GPT-4, which also generates a summary of important information for each
conversation to provide more contextual information, thus helping the model to generate better responses. Llava-Med-
Instruct [107] is a biomedical multimodal instruction-following dataset generated by GPT-4 based on image-text pairs
from PMC-15M, which is utilized by LLaVA-Med for fine-tuning to achieve SOTA on multiple benchmarks.

4.2 Construction Methods

While a small portion of medical LLMs [155] and MLLMs are trained from scratch using large-scale medical datasets,
such an approach requires extensive computational resources, costs, and time, especially considering that medical
MLLMs involve not only an LLM backbone but also additional components such as vision encoder and alignment
module, making the training costs even higher. Therefore, the mainstream approach to constructing medical LLMs
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or MLLMs is to use medical datasets to fine-tune the general foundation model. To provide a detailed overview of
the entire process of constructing medical LLMs and MLLMs, this subsection first reviews the classic pre-training
methods of general foundation models, then summarizes the fine-tuning methods for transferring general foundation
models to the medical domain. Finally, considering the significant computational costs associated with pre-training,
we additionally introduce the scaling law [89] to assist researchers in designing and training LLMs and MLLMs more
efficiently, thus avoiding unnecessary waste of computational resources.

4.2.1 Pre-Training Methods. For LLMs, all pre-training methods aim to equip the model with excellent abilities in
comprehension, reasoning, generation, etc.; For MLLMs, the goal of pre-training is to align vision features with text
features [18] to bridge the gap between modalities. Next, we will proceed to introduce the pre-training methods for
LLMs and MLLMs respectively.

Masked Language Modeling: Masked language modeling (MLM) was first introduced in BERT, where the idea is
to randomly mask a certain percentage of input tokens and then have the model to predict these masked tokens. This
training method enables the model to learn token-level representations and inherently makes the model bidirectional,
as the representation of masked tokens can be learned from both surrounding words. Additionally, the MLM task is
also applicable in the multimodal domain, where, given an image-text pair, a portion of the text tokens are randomly
masked, and the model is tasked with reconstructing the masked tokens based on the image representations and the
unmasked tokens.

Next Sentence Prediction: Next sentence prediction (NSP) was initially introduced in BERT, and the idea is to have
the model predict whether two segments follow each other in the original text. This training method enables the model
to learn sentence-level representations and understand the relationship between two sentences. Although experiments
with BERT demonstrated the effectiveness of the NSP task in QA and natural language inference tasks, Liu et al. [132]
demonstrated that removing the NSP could slightly improve the performance in the downstream task, while the NSP
task was gradually replaced in the development of subsequent LLMs.

Next Token Prediction: Next token prediction (NTP) is the core task in the GPT series and is currently the
mainstream pre-training task for LLMs.The idea of NTP is that the model predicts the next token based on the context
of the input, specifically, when given the input text, the model assigns probabilities to all tokens in the vocabulary
and selects the token with the highest probability as the predicted output. Because NTP has been shown to be more
efficient [64], as well as more helpful in improving model’s generative capacity, researchers prefer to use NTP as the
pre-training task rather than MLM.

Image-Text Matching: Image-text matching (ITM) is a binary classification task that requires the model to predict
whether an image and text match, aiming to force the model to learn fine-grained alignment between image and
text representations [110]. The key to this task is to fuse image features and text features into a single vector, that is
convenient as an input to the classifier. In order to achieve this, BLIP-2 employs bidirectional self-attention masks,
where all queries and texts can attend to each other, so that the output query embeddings integrate information from
both the image and text and are fed into the classifier to obtain the matching probability.

Image-Text Contrastive Learning: The purpose of image-text contrastive learning (ITCL) is to align image
representations with text representations to maximize information interaction. Specifically, the main idea of ITCL is to
input multiple image-text pairs into a vision encoder and a text encoder, respectively, and then compute the similarity
between them after obtaining the corresponding visual and textual representations, with the goal of maximizing the
similarity of the paired positive samples, and minimizing the similarity of the rest of the unpaired negative samples [158].
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BLIP-2 introduces the ITCL task in Q-Former to assist Q-Former in forcing queries to extract visual representations
most relevant to the text.

Image-Text Generation: Image-text generation (ITG) is a mainstream multimodal pre-training task, where the core
idea is to introduce images as contextual conditions for text generation based on the NTP task. For instance, Flamingo
utilizes cross-attention layers to pass visual representations from the Perceiver Resampler to the LLM, incorporating
visual information into the NTP task. In BLIP-2, the multimodal causal self-attention mask is used to pass the query
vectors with visual representations to text tokens, enabling text generation combined with image information. The
purpose of pre-training MLLMs is to achieve feature alignment, so in the pre-training phase, the ITG task usually only
requires simple image descriptions. For example, during pre-training of LLaVA, the model is given an image and a
instruction prompt, and it is required to provide a brief description of the image, with the predicted answer being the
original caption.

4.2.2 Fine-Tuning Methods. Although large models pre-trained on large-scale datasets perform well in general domains,
they do not perform well in the medical field due to the lack of domain-specific knowledge. However, the cost of training
medical LLMs or MLLMs from scratch is prohibitively high, so fine-tuning is a key technique for constructing such
models [56, 107, 170]. Next, we will introduce several typical fine-tuning methods. Particularly, since the emphasis of
the fine-tuning methods in this subsection is on how to adapt general foundation models to the medical domain, we
classify continuous pre-training (CPT) as a fine-tuning method.

Continuous Pre-Training: CPT [205, 224] refers to the continuation of pre-training of pre-trained foundation
models on medical datasets using methods such as NTP and ITG. Because these foundation models already exhibit
good performance, CPT achieves satisfactory results with less data and training time. In the medical domain, classic
models utilizing CPT include MEDITRON-70B [31], which builds upon LLaMA 2 by employing a medical hybrid dataset
consisting of Clinical Guidelines, PubMed papers and abstracts for CPT. In the multimodal domain, Med-Flamingo
conducts CPT using an image-text interleaved dataset MTB and an image-text paired dataset PMC-OA on the basis of
OpenFlamingo [8]. Additionally, medical MLLMs such as LLaVA-Med, XrayGPT, XrayGLM, and Qilin-Med-VL undergo
CPT on biomedical datasets to expand the vocabulary of aligned image-text tokens to the biomedical domain or inject
biomedical knowledge into base models.

Instruction

Summarize the following report in
under ten words.

Please translate the following report
into plain and easy-to-understand

language for the patient to
comprehend their condition.

You have a large hiatal hernia, which means that some of your internal
organs (like the stomach) have moved through the diaphragm and into the

chest cavity. As for your spine, we observed some degenerative changes,
indicating that certain parts of your spine have aged and suffered damage.

The heart size and pulmonary vascularity appear within normal limits. A
large hiatal hernia is noted. The lungs are free of focal airspace disease. No
pneumothorax or pleural effusion is seen. Degenerative changes are present

in the spine.

Input

Heart, lungs and chest  normal. Large hiatal hernia. Spinal degeneration.

Output

A large hiatal hernia is noted. Degenerative changes are present in the
spine.

Fig. 5. Example of instruction data.

Instruction Fine-Tuning: Although LLMs and MLLMs are able to understand and output biomedically relevant
knowledge after CPT on biomedical datasets, these models often lack instruction-following capability [107, 218] or
exhibit uncontrolled behavior. The purpose of instruction fine-tuning (IFT) [218] is to enhance the ability of LLMs
or MLLMs to follow various human instructions by fine-tuning them on instruction data. The instruction data, as
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I have been experiencing lower abdominal pain for 2 hours now. What should I do?

Input






You may be suffering from acute enteritis. You can try taking anti-inflammatory medication.

Output

LLMs / MLLMs without SFT

Fig. 6. Example of models that have not gone through SFT that produce unsafe responses.

illustrated in Fig. 5, consists of three key components: the instruction, input and output, with the input being optional.
These instruction data are usually generated by using ChatGPT or GPT-4 based on manually curated seed instruction
data [215, 255] or instruction templates [218]. Fine-tuning on these instruction data can significantly improve the
model’s ability to comprehend and follow instructions, thereby enhancing zero-shot performance [107, 170, 218]. For
instance, Flan-PaLM, fine-tuned with instruction datasets, outperforms the baseline PaLM on MedQA, MedMCQA and
PubMedQA.

Supervised Fine-Tuning: Although the LLMs and MLLMs can significantly improve their ability to follow user
instructions after IFT, they may still generate useless, unsafa or biased responses, as shown in Fig. 6. Therefore, it is
necessary to use high-quality datasets for SFT of the model, while ensuring that these datasets are both useful and
harmless. Here, it is essential to emphasize the distinctions among CPT, IFT and SFT: CPT focuses on further training
the foundation model on large-scale medical datasets to incorporate medical knowledge into the model. SFT and IFT
are not strictly differentiated [64], but subtle differences between SFT and IFT can be found in several literatures
[64, 107, 123, 230]. IFT emphasizes fine-tuning the model using instruction data to strengthen its ability to follow user
instructions, while considering the diversity of medical tasks and medical scenarios, each of which also has different
instructions, so the instruction data should to be versatile [267]. SFT, on the other hand, emphasizes fine-tuning the
model using high-quality human-annotated datasets to further enhance its professional capability, most importantly, to
drive the model to align with human preferences and ethical norms. In summary, CPT emphasizes injecting medical
expertise into the model, IFT emphasizes strengthening the model’s ability to follow instructions, and SFT focuses on
aligning the model with human preferences and ethical norms.

Reinforcement Learning fromHuman Feedback: Reinforcement learning from human feedback (RLHF) [22, 149]
is a method that further aligns the model’s behavior with human preferences and instructions. Compared to the previous
three fine-tuning methods, RLHF is more complex and can be divided into three specific steps [22, 149, 174]: collecting
human feedback, training the reward model, and policy optimization, as illustrated in Fig. 7. In the stage of collecting
human feedback, the main task is to collect comparison data . Typically, a pre-trained model or a supervised baseline
model is given a prompt, and after generating multiple outputs, these outputs are evaluated and annotated by expert
labelers based on their relative quality [174], and these prompts and annotated outputs constitute the comparison data.
For instance, Zhongjing [234] employed 6 medical graduate students or clinical doctors as labelers to rank the model’s
outputs based on dimensions such as safety, professionalism, and fluency, forming a comparison dataset. In the training
the reward model phase, a reward model needs to be trained on the collected comparison data, the output of which is a
scalar reward that numerically corresponds to the human preference. In the policy optimization phase, a new prompt
is typically used as the input for the model to be optimized, and based on the response of the model to be optimized,
the reward model outputs a scalar reward, and finally the model is fine-tuned based on these scalar rewards through
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Collecting Human Feedback

Pre-trained model or supervised baseline model

What are the symptoms of stomach ulcers?

D ＞ C ＞ B ＞ A

What are the symptoms of stomach ulcers?

D ＞ C ＞ B ＞ A

What are the
symptoms of stomach

ulcers?

What are the
symptoms of stomach

ulcers?

Stomach ulcers refer
to...

D 




Severe stomach...

A

RM

RD RA

Loss = log(σ(RD - RA))

Training The Reward Model Policy Optimization

How to prevent HIV/AIDS?

Model after SFT

Using safe sexual practices...

RM

R

What are the symptoms of stomach ulcers?






Indigestion and ...

C

Stomach ulcers refer
to ...

D






Severe stomach ...

A





Long-term 
stomach ...

B

CD B＞ ＞ ＞ A

Fig. 7. Pipeline of RLHF. Left is the Collect Human Feedback phase: Given the model a prompt at a time, the labeler ranks multiple
responses from the model and collects the promt and the labeled responses.Mid is phase of training the reward model: A prompt
and two responses are randomly sampled from the collected dataset, and they are utilized for training the reward model. Right is the
policy optimization phase: Given a new prompt, the reward model outputs a scalar reward based on the model’s response, which is
then used for policy optimization.

Proximal Policy Optimization (PPO). It is worth noting that the data quality of reward model is lower than that of the
data used for SFT [64], thus RLHF is usually performed after IFT and SFT [22, 193], if jumping directly from pre-training
to RLHF, relying on these relatively low quality data may not be sufficient to achieve the desired fine-tuning results.

Reinforcement Learning from AI Feedback: Reinforcement learning from AI feedback (RLAIF) can be seen as a
cost-effective alternative to the RLHF, its reward model learns from AI feedback without the need for human annotation
[9]. In the medical domain, Zhang et al. [250] sampled multiple responses from the fine-tuned model after IFT and SFT,
and uses ChatGPT to rate the responses based on the dimensions of informativeness, coherence, adherence to human
preferences, and accuracy, and then uses this comparison data with ratings to train a reward model. This way of training
reward models through AI feedback solves the trouble of needing to label data manually in RLHF and significantly
reduces labor costs.

Direct Preference Optimization: Although RLHF and RLAIF enable models to align with human preferences
and ethical norms, they typically require fitting a reward model that reflects human preferences and then combining
reinforcement learning to fine-tune LLMs and MLLMs, which is a complex and often unstable process. Direct preference
optimization (DPO) [162] is a simpler and more efficient training paradigm for aligning human preferences, which skips
fitting a reward model and optimizes the model directly using preference data. The core idea of DPO is to leverage an
analytical mapping from the reward function to the optimal policy, converting the loss on the reward function into a
loss on the policy, thereby skipping the explicit reward modeling step. For instance, Qilin-Med [242], after SFT, directly
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employs two publicly available preference datasets to optimize the model through DPO, ensuring stable and efficient
training while aligning the model with human preferences.

Parameter-Efficient Fine-Tuning: The aim of methods such as CPT, IFT, SFT, RLHF, RLAIF, and DPO introduced
above is to transfer general foundation models into the medical domain while aligning with user instructions and
human preferences. Although the amount of training data required by these methods is much less than that required
for pre-training of the foundation model, they still require high computational cost and overhead for full parameter
fine-tuning. To alleviate this issue, a series of parameter-efficient fine-tuning (PEFT) methods have been proposed,
which update only a small portion of model parameters while keeping the majority of pre-training weights frozen,
thereby reducing computational costs. Some mainstream PEFT approaches are described next.

Prefix-tuning [115] involves adding learnable tokens to the input sequence as a prefix and freezing other pre-
training parameters. Adapter-tuning [72, 74] inserts the neural network module into Transformer blocks and freezes
the remaining pre-training parameters during fine-tuning, training only the inserted module. LoRA [73] employs
low-rank matrix approximation of full-rank weight matrices for parameter updates, which not only has fewer training
parameters and higher training throughput, but also solves the problem of inference delay that exists in adapter- tuning.
Prompt-tuning [105] is similar to prefix-tuning, but it only adds learnable tokens before the input tokens of the first
Transformer layer. LayerNorm-tuning [260] adjusts LayerNorm within each attention block, significantly reducing
trainable parameters. In comparison to LoRA, models using LayerNorm-tuning achieved an average performance
improvement of over 20% across five multimodal tasks [260]. P-tuning [131] is also similar to prefix-tuning, but it only
incorporates learnable virtual tokens in the sequence of the input layer, and the location of token insertion is optional
and not limited to prefixes. These PEFT methods focus on efficiently updating model parameters, while previously
discussed IFT, SFT, and other methods focus on effectively enhancing model performance, and they do not conflict with
each other. Typically, PEFT methods are combined with IFT, SFT, and similar methods to fine-tune models, achieving
better performance under economic efficiency constraints.

4.2.3 Scaling Law. The scaling law [89] is the Moore’s Law of the era of LLMs, first proposed by OpenAI in 2020. It
describes the relationship between a model’s performance and three factors: model size, dataset size, and the amount of
compute used for training. Specifically, the scaling law states that model performance increases smoothly with model
size, data size, and training computation, and empirical performance has a power-law relationship with each individual
factor when not bottlenecked by the other two [89]. To achieve optimal performance, these three factors need to scale
simultaneously, and research [71] has demonstrated that both model and dataset size should increase in proportion. By
adhering to the scaling law, researchers can initially train smaller-scale models and then extrapolate performance to
larger models [1, 6, 16, 230]. For instance, OpenAI used the scaling law to predict and validate the final loss of GPT-4 at
a cost of less than one-ten-thousandth. Meanwhile, the scaling law reveals the relationship between performance and
model size, dataset size, and training computation, aiding researchers in designing and training large models more
effectively and allocating resources sensibly.

5 EVALUATION METHODS AND USAGE TIPS

With the emergence of the capabilities of medical LLMs and MLLMs, the question of how to comprehensively evaluate
their performance has become a key issue. And considering the various ethical and safety issues of generative models
[45], there is an urgent need for more comprehensive benchmarks and evaluation methods to evaluate the various
capabilities of medical LLMs and MLLMs that are not limited to the quality of the generated text. Furthermore,
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researchers are continuing to explore the hidden capabilities of LLMs and MLLMs, such as using a series of prompting
methods [137, 214, 220, 240, 266] to enhance model performance. To further assist researchers and medical practitioners
in understanding the entire process of developing medical LLMs and MLLMs, we will discuss the final and indispensable
step, which is evaluating medical LLMs and MLLMs, in Section 5.1. Additionally, to help users unleash the deeper
professional capabilities of medical LLMs and MLLMs and utilize them in clinical settings, we will introduce some
practical usage tips in Section 5.2.

5.1 Evaluation Methods

Due to the diversity of tasks and capabilities of medical LLMs and MLLMs, benchmark datasets [83, 112, 256] and
evaluation methods for medical LLMs and MLLMs have become increasingly diverse. For discriminative tasks (including
single and multiple-choice questions) [83, 84], accuracy is commonly used to measure model performance. For generative
tasks, automatic evaluation metrics [109, 118, 151] are often employed to evaluate aspects such as the accuracy, fluency,
and diversity of the responses generated by the model. Nevertheless, this approach overlooks additional concerns in
the medical domain, such as reliability, safety, and consistency with human values. Therefore, in addition to using
automatic evaluation metrics to evaluate medical LLMs and MLLMs, researchers have also introduced human evaluation
and AI evaluation. It is important to note that this section does not involve the introduction of benchmark datasets but
emphasizes the three evaluation paradigms: automatic evaluation metrics, human evaluation, and AI evaluation.

5.1.1 Automatic Evaluation Metrics. For medical LLMs and MLLMs, accuracy is commonly utilized to evaluate their
performance on choice question datasets such as MedQA [83] and MedMCQA [150]. However, accuracy is not a measure
of the generative capacity of medical LLMs and MLLMs and therefore needs to rely on the following metrics for a
comprehensive evalution.

Bilingual Evaluation Understudy (BLEU) [151] metric evaluates the quality of generated text by computing the
similarity of n-grams (sequences of consecutive words of length 𝑛) between the generated text and reference text.
Depending on the value of 𝑛, BLEU is divided into BLEU-1, BLEU-2, BLEU-3 and BLEU-4, which measure the n-
grams similarity of different lengths, e.g., BLEU-1 measures the word-level accuracy, and BLUE-4 focuses more on the
continuity of the text. Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [118] include ROUGE-N, ROUGE-L,
ROUGE-W, and ROUGE-S. Similar to BLEU, ROUGE-N measures the similarity of n-grams between the generated text
and reference text, but ROUGE-N computes n-gram recall, BLEU focuses more on the accuracy. ROUGE-L measures the
similarity between the generated text and reference text by calculating the length of the longest common subsequence,
emphasizing textual coherence. ROUGE-W builds upon ROUGE-L by incorporating a weighted method for computing
common subsequences, assigning larger weight to continuous matching text that is correct. ROUGE-S is an extension
of ROUGE-N that allows non-contiguous words in n-grams. Google BLEU (GLEU) [225] is a variant of BLEU that
considers factors such as lexical overlap and order between generated and reference text, providing a better reflection
of the fluency and naturalness of generated text. The Distinct-n [109] metric measures the diversity of generated text
by calculating the proportion of unique n-grams to total n-grams. CIDEr [204] is designed specifically to evaluate the
quality of image captions which considers both n-gram recall and precision, weighting rare n-grams to assess whether
the model captures key information when generating image descriptions. BERTScore [254] utilizes pre-trained BERT
context embeddings to compute similarity scores between each token in a sentence and each token in a reference
sentence. Compared to n-gram-based evaluation metrics, BERTScore better measures vocabulary and combination
diversity.
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In the medical domain, most models such as HuaTuoGPT, ClinicalGPT [206], SoulChat and BianQue [29] utilize the
aforementioned metrics to evaluate the performance of models in terms of generative ability. Although these automatic
evaluation metrics partially reflect the accuracy and fluency of model-generated text, they fail to capture the clinical
quality of dialogue [196] and cannot evaluate whether the generated text aligns with human values consistently, and
therefore human evaluation is introduced.

5.1.2 Human Evaluation. Human evaluation is a crucial method for assessing the performance of medical LLMs and
MLLMs, as it can consider aspects that automatic evaluation metrics may overlook. For instance, Tu et al. [196] argued
that metrics like BLEU and ROUGE fail to capture the clinical quality of medical consultations, and therefore invited 23
medical experts from the United States, the United Kingdom, and India to evaluate the model-generated responses in
terms of accuracy, appropriateness, and comprehensiveness. Similarly, Yang et al. [234] employed human experts to
evaluate the safety, accuracy, and ethical implications of the model responses. Chen et al. [30] requested evaluators to
evaluate generated responses based on content naturalness, level of empathy, helpfulness, and safety.

It is evident that human evaluation can encompass various aspects such as safety and helpfulness, which are crucial
for medical LLMs and MLLMs. Although human evaluation can evaluate various capabilities of medical LLMs and
MLLMs, they are inherently subjective due to the lack of standardized evaluation criteria among experts, additionally,
hiring medical experts incurs extra costs, so AI evaluation is a feasible alternative to human evaluation.

5.1.3 AI Evaluation. Using a high-performing AI model which aligns with human values, such as ChatGPT and GPT-4,
to evaluate the response of medical LLMs andMLLMs is currently the dominant evaluation method [135, 208]. Wang et al.
[208] conducted experiments on five natural language generation evaluation datasets, demonstrating that ChatGPT, as
an evaluation tool, outperformed automatic evaluation metrics in most cases and was comparable to human evaluation.
In the medical field, Li et al. [107] presented medical questions to GPT-4 and LLava-Med and then asked GPT-4 to rate
responses from GPT-4 and LLava-Med based on helpfulness, relevance, accuracy, and level of detail. Liu et al. [126]
prompted GPT-4 to consider whether responses from LLMs are acceptable and if their tone resembles that of human
counselors.

Although AI evaluation offers scalability and reduces the need for human involvement, it still has limitations.
Researches [228, 263] have shown that as an evaluation tool, GPT-4 tends to prefer the first answer, meaning that
when multiple answers are presented in sequence, GPT-4 often considers the first answer to be superior. Additionally,
GPT-4 also favors longer answers and answers generated by itself [126]. Therefore, to address the issues associated
with the aforementioned three methods, combining multiple evaluation methods may yield more reliable results.
Moreover, leveraging reinforcement learning or other methods to train specialized LLMs or MLLMs that align with
human judgment criteria as evaluation tools may be able to overcome the limitations of AI evaluation.

5.2 Usage Tips

Researches have found that by simply adjusting the form and structure of input, deeper professional capabilities of
medical LLMs can be unlocked [146]. Thus, a new research field emerged, Prompt Engineering [70, 141], which aims at
enhancing the quality of model responses through various efficient prompt strategies, which do not require further
training and can be flexibly integrated into any medical LLMs and MLLMs. To maximize the medical expertise of models
when researchers and medical practitioners utilize medical LLMs and MLLMs to handle relevant medical tasks, this
subsection combines the ICL ability and prompt engineering of LLMs and MLLMs, and summarizes seven commonly
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used and efficiently usage tips as shown in Fig. 8: zero-shot, few-shot, chain of thought, self-consistency, tree of thoughts,
self-refine, and last-to-most, which are referred to as prompting methods in the field of LLMs and MLLMs.

Zero and Few-Shot Prompting: Zero-shot prompting is the simplest prompt strategy, aiming to instruct models
on how to perform tasks through a single instrution. Although zero-shot prompting is straightforward, requiring only
a brief description of the task instruction, the lack of information in these instructions limits the extent to which the
model’s capabilities can be exploited. Few-shot prompting builds upon zero-shot prompting by providing additional
context instances as demonstrations, addressing the issue of insufficient information in zero-shot prompting. Through
few-shot prompting, the model can engage in analogical learning from instance demonstrations to accurately execute
new tasks [117], effectively improving the model’s performance across various tasks. It is worth noting that this few-shot
capability emerges as a novel ability only when the model exceeds a certain scale and does not exist in smaller models
[219]. Therefore, the standard few-shot prompting strategy was introduced in GPT-3, precisely due to GPT-3’s powerful
ICL and few-shot capability, we consider GPT-3 as the beginning of LLMs.

Chain of Thought Prompting: Chain of thought (CoT) prompting is a method used to enhance the accuracy and
interpretability of responses generated by LLMs or MLLMs by prompting them to generate a series of intermediate
reasoning steps [220], which aims to simulate the cognitive and reasoning processes of humans when solving new
problems. CoT, as a prompting strategy, does not conflict with zero and few-shot prompting and is often combined with
them. For example, zero-shot CoT prompting significantly improves model performance by adding "Let’s think step by
step" to the instruction without providing example demonstrations [93]. Few-shot CoT prompting provides examples
with reasoning steps to facilitate the model in learning reasoning methods and thereby improving accuracy on new
tasks. In the medical field, CoT prompting is employed in models such as Med-PaLM, Med-PaLM 2, and MEDITRON-70B
to request LLMs to think step by step and provide reasoning processes, thus offering more explanatory diagnostic
results. Additionally, the concept of CoT can be extended to the training phase, such as introducing CoT datasets during
model fine-tuning [134], fundamentally enhancing the model’s logical reasoning abilities. Unfortunately, such CoT
datasets have not yet been discovered in the medical domain.

Self-Consistency Prompting: Based on CoT Prompting,Wang et al. [214] proposed self-consistency (SC) prompting,
which involves sampling a set of different reasoning paths and then selecting themost consistent answer bymarginalizing
out the sampled reasoning paths. During the reasoning process, the correct answer may be derived from multiple
reasoning paths, and the goal is to select the consistent answer among all the paths, even if there is a wrong reasoning
path, it does not affect the final consistent answer. SC prompting is particularly suitable for tasks with complex reasoning
paths, such as mathematics [214] and medicine [146], and has been demonstrated to be effective. In the medical domain,
for instance, the utilization of SC prompting resulted in MEDITRON-70B achieving the highest average accuracy, and
Flan-PaLM also exhibited significant improvements compared to standard few-shot prompting.

Tree of Thoughts Prompting: Tree of thoughts (ToT) prompting [240] extends CoT prompting to a thought tree
containing multiple thought paths, where each path can be seen as a thought and serves as an intermediate step in
problem-solving, with the potential for further subdivisions. The ToT prompting allows the model to look ahead or
backtracking when necessary to make global choices, thus addressing the problem of poor model performance during
reasoning due to the constraints of a left-to-right decision-making process in tasks that require exploration, strategic
lookahead, or where the initial decisions play a pivotal role.

Self-Refine Prompting: Humans constantly refine themselves through continuous self-feedback, while neural
networks improve their performance by iteratively backpropagating errors and updating parameters. Drawing on this
idea of continuous feedback and improving itself, Madaan et al. [137] proposed self-refine prompting, which aims to
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Q: Chris is 10 years old, and his grandfather is 70. How many years
later will his grandfather 's age be four times Chris's?

Zero-shot Prompting

A: 7.5 years  

Q: Chris is 8 years old, and his father is 34. How many years later
will his father's age be three times Chris's?

A: 5 years


Q: Chris is 10 years old, and his grandfather is 70. How many years
later will his grandfather 's age be four times Chris's?

Few-shot Prompting

A: 10 years  

Q: Chris is 8 years old, and his father is 34. How many years later
will his father's age be three times Chris's?

A: x years later, Chris'age will be 8+x, and his father's age will be
34+x. Setting up the equation: 34 + x = 3 * (8 + x). Solving the
equation: x = 5.The answer is 5 years.


Q: Chris is 10 years old, and his grandfather is 70. How many years
later will his grandfather 's age be four times Chris's?

Chain of Thought Prompting

A: x years later, Chris'age will be 10+x, and his grandfather's age
will be 70+x. Setting up the equation: 70 + x = 4 * (10 + x). Solving
the equation: x = 10.The answer is 10 years.

Q: Chris is 8 years old, and his father is 34. How many years later
will his father's age be three times Chris's?

A: 34 + x = 3 * (8 + x). Solving the equation: x = 5.The answer is 5
years.


Q: Chris is 10 years old, and his grandfather is 70. How many years
later will his grandfather 's age be four times Chris's?

Self-Consistency Prompting


A: 70 = 4 * (10 + x). Solving the
equation: x = 7.5.The answer is 7.5
years.

A: 70 + x = 4 * (10 + x). Solving the
equation: x = 10.The answer is 10
years.


A: 70 + x = 4 * (10 + x). Now Solving
the x.70 + x = 40 + 4x, 

70 - 40 = 4x - x, 30 = 3x, x = 10. 

The answer is 10 years.

Q: Chris is 10 years old, and his grandfather is 70. How many years
later will his grandfather 's age be four times Chris's?

Tree of Thoughts Prompting


70 = 4 * (10 + x)… 70 + x = 4 * (10 + x)

A: 10 years  

70 + x = 40 + x 70 + x = 40 + 4x …

30 = 3x… …

Please write down the equation for the
problem.


Propose Prompt


70 = 4 * (10 + x)


Thought Generation

Evaluate if the equation fits the problem.


Evaluation Prompt


No, the equation should also add x to the
left side.


Thought Evaluation


Q: Chris is 8 years old, and his father is 34. How many years later
will his father's age be three times Chris's?

A: 5 years


Q: Chris is 10 years old, and his grandfather is 70. How many years
later will his grandfather 's age be four times Chris's?

Self-Refine Prompting


A: 70 = 4 * (10 + x). Solving the equation: x = 7.5.The answer is 7.5
years.

The answer is incorrect. X years later, the grandfather's age will also
increase by x. So, x should be added to both sides of the equation.


Feedback


You are correct. X should be added to both sides of the equation. The
final equation is:70 + x = 4 * (10 + x). x = 10. The answer is 10
years.

Refined Output


Q: Chris is 10 years old, and his grandfather is 70. How many
years later will his grandfather 's age be four times Chris's?

Least-to-Most Prompting

Stage One: Problem Decomposition
 A: To solve "How many years
later will his grandfather 's age be
four times Chris's?", we need to
firstsolve: "What is the equation
for the problem"?


Chris is 10 years old, and his grandfather is 70. How many
years later will his grandfather 's age be four times Chris's?

Q: What is the equation for the problem?

Step Two: Solve Sub-Problems


A: The equation for the problem is
:70 + x = 4 * (10 + x)

Chris is 10 years old, and his grandfather is 70. How many
years later will his grandfather 's age be four times Chris's?

Q: What is the equation for the problem?

A: The equation for the problem is :70 + x = 4 * (10 + x)

Q: How many years later will his grandfather 's age be four
times Chris's?

Step Two: Solve Sub-Problems


A: Solving the equation: x =
10.The answer is 10 years.

Fig. 8. Examples of the 7 prompting methods. We conclude that these methods were inspired by Kaddour et al. [88].

prompt the model to provide feedback for its own response and improve the previously generated response based on
the feedback, and improve it through several iterations to get the final response.

Least-to-Most Prompting:While CoT prompting provides reasoning examples to assist models in learning reasoning
methods and efficiently solving problems, it often struggles when faced with problems more challenging than those
presented in the prompts. To solve this problem, Zhou et al. [266] proposed least-to-most prompting, which is based on
the idea of decomposing a complex problem into a series of simpler sub-problems, and generating the final output step
by step by solving these sub-problems sequentially and using the answers of the solved sub-problems as prompts for
the subsequent sub-problems. Experimental results have shown that least-to-most prompting enables models to tackle
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Fig. 9. Applications, challenges and future directions of LLMs and MLLMs in medicine.

more difficult problems than those presented in the prompts and significantly outperforms CoT prompting in some
tasks [266].

6 APPLICATIONS OF LLMS AND MLLMS IN MEDICINE

The excellent performance of GPT-4 and Med-PaLM 2 in medical tasks highlights the immense potential of these
powerful general or medical LLMs and MLLMs in medical applications [103, 145, 171]. In order to help relevant
practitioners to quickly understand the developmental orientation of LLMs and MLLMs in medicine, in this secion, we
primarily summarize the current potential applications of LLMs and MLLMs in medicine and healthcare, as shown in
Fig. 9, and briefly discuss how these models can be leveraged to perform various medical tasks.

6.1 Medical Diagnosis

The development of AI in medical diagnosis has been several decades [10, 94, 179], and despite achieving some
breakthroughs, its role has primarily been limited to assisting tasks within the diagnostic process, such as medical
image segmentation [226, 268], lesion detection and classification [4, 190]. Until recent years with the development of
LLMs and MLLMs, doctors and patients are expected to rely on these large models for end-to-end diagnosis. Specifically,
doctors or patients can provide the models with subjective descriptions of the disease symptoms [116, 207, 227] or
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medical images such as X-rays [107, 187, 211], and the models can rely on this information and embedded medical
knowledge to directly make a diagnosis which would greatly increase the flexibility of diagnosis.

Currently, Med-PaLM 2, as one of the top-performing medical LLMs, generates answers to consumer medical
questions and adversarial questions that outperform physician-generated answers on multiple assessment axes [171],
demonstrating the viability of medical LLMs as medical diagnostic assistants. To further broaden the application scope
of LLMs as medical diagnostic assistants, researchers have fine-tuned these models on Chinese datasets [29, 206, 207,
227, 232, 234, 250], enhancing diagnostic performance in Chinese contexts. Particularly, TCM-GPT [232] excels in
traditional Chinese medicine, outperforming other models in tasks related to traditional Chinese medical examinations
and diagnostics, contributing to the advancement of traditional medicine. Additionally, inspired by general MLLMs
[1, 123, 269], researchers have developed multimodal medical diagnostic assistants [107, 121, 168, 187, 195, 211, 212],
expanding diagnostic basis from text to medical images, thereby improving diagnostic reliability. Furthermore, to
enhance the diagnostic accuracy of medical LLMs and MLLMs as diagnostic assistants, researchers have attempted to
incorporate retrieval mechanisms [116, 261], enabling models to retrieve reference information from medical websites,
Wikipedia, or offline medical knowledge bases.

Medical LLMs and MLLMs as medical diagnostic assistants offer users remote consultation and diagnosis, providing
a more flexible approach to medical diagnosis. However, due to some limitations of LLMs and MLLMs themselves
[45, 165], now currently these medical LLMs and MLLMs can only be used as an auxiliary way for doctors’ diagnosis,
and the generated diagnosis results can only be used as a reference, not as a final diagnosis result.

6.2 Clinical Report Generation

Clinical reports are various standardized documents written by doctors for patients. Manual drafting of clinical reports
is typically a tedious, time-consuming but crucial task, undeniably increasing the workload of clinicians and diminishing
work efficiency. Medical LLMs and MLLMs, possess extensive medical knowledge and excel at generative tasks, stand
as efficient tools for clinical report generation.

For example, during medical diagnosis, doctors usually record important information in their communication with
patients so as to serve as a basis for judging the condition or as a source of other report contents, and medical LLMs
and MLLMs can be used as a clinical note-taking tool to do this job instead of doctors [191]. Specifically, doctors merely
need to provide the model with recordings of interactions with patients, and after brief processing of the recordings,
the model can generate medical notes for the doctors [103], while the doctors can also prompt the model to simplify
medical notes, removing intricate details and generating summaries for easy review and analysis [202]. Subsequent to
medical diagnosis, doctors typically write a corresponding diagnostic report, such as a radiology report. Leveraging
medical LLMs and MLLMs, doctors only need to provide the template for the diagnostic report and patient diagnostic
information, and the model automatically generates the corresponding diagnostic report [201, 223, 231]. During the
patient’s treatment, doctors will explain the cause of the disease and the treatment process, as well as a variety of more
detailed clinical information to the patient through clinic letters. By generating clinic letters with the help of LLMs,
clinicians can eliminate this tedious process, and the clinic letters generated by LLMs are similar to human-generated
clinic letters in terms of coherence, accuracy, and humaneness [5]. After the patient has recovered, clinicians will spend
a lot of time writing discharge summaries for the patient, which may lead to delayed discharge. By utilizing LLMs,
clinicians can obtain complete discharge summaries in seconds by simply providing a template and some necessary
requirements [152], and the quality of summaries generated by these LLMs even exceeds the quality of summaries
generated by junior doctors to some extent [37].
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By utilizing powerful LLMs and MLLMs, various clinical reports from patient admission to discharge can be
automatically generated, and they are more comprehensive and accurate than reports generated by humans [37, 202],
this significantly alleviates the workload of doctors, allowing them to dedicate more time to patient care [152]. However,
we expect these powerful LLMs and MLLMs to serve solely as auxiliary tools for generating clinical reports. They
can draft, modify, and summarize reports, but the final reports still need to be reviewed, edited and approved by the
clinicians and held accountable for the reports [143, 188].

6.3 Medical Education

The GPT-4 and Med-PaLM 2 passed the USMLE with scores of over 86% [145], and the GPT-4V [238] reached 90.7%,
outperforming most medical students on medical image-related questions [239]. This indicates that some LLMs and
MLLMs are equipped to provide knowledge services to medical students, which provides an important opportunity to
enhance medical education [90, 96].

For example, Khanmigo [91] and Duolingo [184]] are considering the utilization of tools such as GPT-4 to optimize
online teaching, which not only addresses medical students’ questions but also offers explanations and novel insights.
Apart from simply answering questions, medical LLMs and MLLMs can create more complex scenarios for medical
students to practice, such as generating diverse exam content, simulating clinical scenarios, and creating digital patients
[42, 90], thereby enhancing students’ professional competence and practical skills. Additionally, based on students’
performance in simulated exercises, medical LLMs and MLLMs can tailor personalized learning plans for them, which
is typically time-consuming in reality, but LLMs and MLLMs can achieve this more economically and efficiently [90]. In
summary, leveraging powerful LLMs and MLLMs can provide medical students with rich medical content, create highly
realistic and diverse medical scenarios, broaden students’ horizons in the medical field, thus laying a solid foundation
for students to enter clinical practice.

The potential of powerful LLMs and MLLMs in medical education surpasses that of some regular medical training
courses, as teachers in these courses often cannot interact with students at all times, or provide personalized learning
plans. Although such models hold significant potential in medical education, they can only serve as auxiliary tools
in teaching and cannot replace medical educators, because the inherent biases and hallucinations within LLMs and
MLLMs make it difficult for students to assess the accuracy of the content generated by the models [2, 61], if the models
consistently provide medical students with wrong content that are difficult to detect over time, they may easily misguide
students. Therefore, LLMs and MLLMs can only play a supportive role in medical education, and students need to
utilize these tools under the guidance and supervision of teachers.

6.4 Mental Health Services

With increasing societal pressures, there is a growing demand for mental health services globally [156], while there is a
severe shortage of mental health specialists in some regions due to limited development and resources [189, 199]. In
mental health services, the main focus is on conversation-driven psychological counseling, so chatbots based on LLMs
[30, 126] may serve as one of the ways to provide mental health services in the future.

Due to the particularity of patients with mental illnesses, who tend to be more vulnerable and psychologically
sensitive, so these mental health service chatbots usually also need to be empathetic, trusting, understanding, and
comfortable during conversations, rather than just providing advice [30]. Compared to professional mental health
experts, such LLMs serving as mental health chatbots offer better accessibility and can provide mental health services to
remote areas or areas with a shortage of mental health professionals. Additionally, a characteristic of these LLM-based
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chatbots is that they can provide more personalized interaction styles based on patients’ historical conditions and
interaction records, such as specific emotional patterns, styles, or tones [42]. Furthermore, the high cost of psychological
counseling and therapy may deter many individuals from seeking mental health services, but LLM-based mental health
chatbots can significantly reduce the cost of patients receiving mental health services [175, 267], thereby lowering the
threshold for accessing services. Moreover, research has shown that people are more likely to disclose their negative
emotions when interacting with chatbots, as some topics might be awkward to discuss with humans but may feel more
comfortable to share with a robot [23]. Therefore, LLM-based mental health chatbots, in terms of convenience, cost,
and acceptability, outperform mental health professionals, which may motivate more individuals with mental illnesses
to seek mental health services [42].

Mental health services are characterized by trust, mutual respect and emotional connection, and although research
is improving the empathy of LLMs [30], they still lack in empathy compared to humans. Moreover, despite efforts to
align LLMs with human concepts and ethical norms through approaches such as SFT and RLHF, they may still generate
content that is aggressive or psychologically harmful [45], which is unacceptable for psychologically vulnerable mental
health patients. Before integrating LLMs as mental health chatbots into practical applications, more work is needed to
address these issues, and greater control measures need to be implemented for such products.

6.5 Medical Language Translation

The language barrier is a key obstacle to global cultural exchange, as it is in medicine, but with the help of LLMs,
this barrier will be overcome, because LLMs are usually trained on a large corpus containing multiple languages,
and therefore can master multiple languages with a power translation capability [79]. In addition to cross-language
translation, LLMs also enable the translation of texts containing medical terms into understandable plain texts [136, 267].

In recent years, machine translation has been an important tool for addressing language barriers in the medical field,
which has been shown to be 7% more accurate than traditional services [90], and powerful LLMs such as ChatGPT and
GPT-4 have raised the level of machine translation to a higher level [172]. With the support of such LLMs, medical
professionals from diverse regions can engage in medical communication in a more inclusive environment, thereby
fostering the advancement of global medicine [90]. Additionally, medical LLMs possess extensive medical knowledge,
enabling them to translate reports containing numerous medical terms into plain texts to facilitate patient to further
understand their condition and promote their compliance [136]. Moreover, translating medical texts containing medical
terms into plain language, such as translating traditional Chinese medicine texts, aids in disseminating valuable medical
knowledge within societal communities, thus contributing to its preservation and popularization.

Using LLMs as medical language translation tools is a promising application, but they still have some limitations. For
instance, translating reports may overlook key points, resulting in incompleteness. Another issue is the uncertainty in
the model’s responses, even with the same prompts, LLMsmay provide inconsistent translations and present information
in variable formats [136]. Therefore, before deploying LLMs as medical language translation tools, certain works need to
be implemented, such as further fine-tuning to enhance the completeness of model translations and reduce uncertainty.

6.6 Surgical Assistance

Medical robots have seen rapid development in the past few decades, particularly playing a significant role in enhancing
the capabilities of surgeons and expanding the potential for minimally invasive surgery [11]. In recent years, medical
robots has entered a new phase with the development of MLLMs, which can not only endow medical robots with visual
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capability, but also provide better interactivity and a more friendly interaction environment compared to traditional
medical robots.

Currently, efforts have begun to explore the application of MLLMs in surgical procedures [167], and integrating
MLLMs into surgical robots can enable them to perform crucial auxiliary tasks during surgery, such as assisting in
endoscopic examinations [143], where the powerful visual capability and specialized knowledge of MLLMs can provide
valuable diagnostic conclusions and feasible surgical solutions based on endoscopic images. In addition, when surgeons
are performing surgical procedures, MLLMs can combine video streams to annotate the surgical process, analyze and
summarize the steps taken during the procedure, as well as record non-compliant operations to facilitate the surgeon’s
post-surgical review and examination.

Although medical MLLMs show promising potential in surgical assistance and they may play a role in certain medical
scenarios, they are not suitable for emergency surgeries yet. This is because erroneous information provided by MLLMs
could adversely affect the surgeon’s judgment, leading to irreversible consequences. Additionally, current MLLMs
research predominantly focuses on the vision-text modality, and we anticipate future work to explore other modalities,
such as audio and time series, to enable surgical robots to perform more comprehensive and accurate auxiliary tasks
and provide more flexible interaction methods.

In this section, we combine the characteristics of LLMs and MLLMs to discuss their potential applications in the
medicine and healthcare. No matter which task LLMs and MLLMs are applied to in the medicine, we want to emphasize
that these models can only be used as assistants of medical practitioners to complete some auxiliary tasks, rather than
as the final decision maker. The content generated by LLMs and MLLMs requires scrutiny and modification by medical
practitioners before it can be applied in clinical settings, and that the medical practitioners need to be responsible for
the final content.

7 CHALLENGES AND FUTURE DIRECTIONS OF LLMS AND MLLMS IN MEDICINE

Although LLMs and MLLMs have caused a wave in the AI community and made initial achievements in medicine, the
unique characteristics of the medicine pose numerous challenges and risks to the development and deployment of LLMs
and MLLMs. In this section, we will discuss and analyze the current challenges of LLMs and MLLMs in the medical
field in detail, and provide some possible solutions to these challenges.

7.1 Hallucinations

Hallucinations refer to the generation of seemingly plausible but unverified or incorrect information by LLMs andMLLMs
[81, 165], which will lead to issues such as the generation of radiology reports containing misleading information and the
dissemination of incorrect medical knowledge in medical education [103]. These false responses due to hallucinations
can be difficult to distinguish because the model is often present in a convincing way and the response seems reasonable
[103]. Therefore, hallucinations pose a key challenge to the practical application of LLMs and MLLMs in medicine.
The hallucination problem of LLMs and MLLMs may arise from various factors, such as unclear instructions from
users, a lack of relevant knowledge in the training data, etc., while autoregressive models such as ChatGPT predict the
subsequent tokens based on the previous content, which may lead to the phenomenon of cumulative propagation of
hallucinations [258]. Considering the particularity of the medical domain, misdiagnoses caused by hallucinations could
result in severe medical incidents, solving the hallucination problem of LLMs and MLLMs is a key step to accelerate the
landing of the application of medical LLMs and MLLMs.
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To address this challenge, some efforts have proposed a new benchmark dataset for medical LLMs and MLLMs for
hallucination testing [198]. However, such benchmark datasets can only be used to detect hallucination phenomena in
models and do not directly mitigate the hallucination problem. Other research has pointed out that the knowledge of
LLMs is primarily acquired during the pre-training phase [265], and the presence of noisy data such as error messages
in the training dataset may encourage hallucinations, so the most fundamental approach to reducing hallucinations is to
manually or automatically clean unreliable data from the pre-training corpus [81]. However, the pre-training corpus of
LLMs and MLLMs typically consist of vast amounts of data, including data crawled directly from the web, which is very
difficult to clean and requires the design of effective selection and filtering strategies. Therefore, it may be advisable to
use high-quality medical datasets to reduce hallucinations in LLMs and MLLMs during fine-tuning stage such as SFT and
RLHF [50, 258]. The amount of data needed for the fine-tuning phase is much less than that needed for the pre-training
phase, making it more feasible to manually design and clean these datasets, and by fine-tuning on these high-quality
datasets, LLMs and MLLMs can exhibit higher levels of authenticity and factual accuracy [19, 24]. To further reduce the
cost of mitigating hallucinations, existing efforts have attempted to address hallucinations during the inference stage.
For example, prompting LLMs or MLLMs to verify their own responses has been proved to be effective in alleviating
hallucinations [103, 104], where Chain-of-Verification(CoVe) [47] is an efficient validation method where the model
first drafts an initial response, then plans verification questions based on the response and answers these verification
questions to check the draft, and finally generates an optimized answer. Experiments have shown that self-verification
methods like CoVe can reduce hallucinations in various tasks. Additionally, retrieval-augmented generation (RAG) has
also proven to be an effective approach to reducing hallucinations [169], which allows the model to retrieve relevant
knowledge from external webpages or knowledge bases for reference during the response generation phase [116, 177],
thus significantly solving the hallucination problem.

7.2 Visual Perception Limitations

Although MLLMs possess visual ability, their visual perception ability is still limited, particularly in distinguishing
spatial localization [269]. The limited visual perception ability of MLLMs may be caused by two factors. One is the loss
of visual information during the modality alignment process, e.g., mapping visual features directly to word embedding
space using simple linear layers [107, 125] or MLP [256] will lose information. Additionally, approaches like Q-former,
which only utilize 32 learnable vectors to represent an image, may also lead to information loss. Second, MLLMs are
trained on relatively simplistic tasks, often in the form of VQA, lacking more challenging training tasks such as object
detection and image segmentation.

To address the aforementioned factors, a possible solution is to introduce large vision models like SAM [92], which
can not only captures visual information more effectively but also excels at more challenging tasks such as image
segmentation. For instance, LISA [98], building upon LLaVA, incorporates ViT-H SAM [92] as its visual backbone and
introduces additional vision decoder for generating masks, which not only inherits the language generation capability
of MLLMs but also enhances visual perception ability to output segmentation masks given complex and implicit query
texts. Building upon this foundation, GLaMM [164] can provide denser pixel-wise object grounding, i.e., it is capable of
accomplishing multi-target segmentation, further enhancing visual perception ability. Additionally, u-LLaVA [229]
utilizes Vicuna and CLIP ViT-L/14 as the LLM backbone and visual encoder, respectively, and also incorporates ViT-H
SAM, Grounding DINO [130], and Stable Diffusion [166] as the segmentation, grounding, and in-painting modules,
respectively, which unifies the multimodal task while improving the visual perception of the model.
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All of the above models are based on MLLM and add additional visual modules to improve visual perception ability
and accomplish diverse visual tasks, which perfectly solves the problem of limited perception ability and difficulty in
distinguishing spatial localization in current MLLMs. However, LISA, GLaMM and u-LLaVA are all general models, and
we expect medical MLLMs with multiple capabilities such as segmentation, grounding and in-painting to appear in the
medical field in the future.

7.3 Training and Deployment Challenges

Although large-scale datasets and model parameters endow LLMs and MLLMs with powerful capabilities, they likewise
increase the requirement for computational resources, which leads to high computational costs, such as LLaMA-65B
was trained on 2048 A100 GPUs for 21 days. While the common strategy for medical LLMs and MLLMs is to fine-tune
the general foundation model, it still necessitates a substantial amount of computational resources. For example,
MEDITRON-70B utilized 128 A100 GPUs, and the smaller LLaVA-Med employed 8 A100 GPUs, rendering it difficult for
general hospitals to independently undertake the training and fine-tuning of medical LLMs andMLLMs, and they usually
need to rely on additional computing support. Furthermore, even upon the completion of training and fine-tuning
medical LLMs and MLLMs, deployment and inference remain costly due to the larger model scales [157], making it
extremely challenging for most hospitals to locally deploy and apply medical LLMs and MLLMs in practical applications.
To enable the training and deployment of medical LLMs and MLLMs in hospitals with limited computational resources,
this section proposes four solutions: optimizing the training process, reducing model parameters, modifying model
architectures, and optimizing hardware devices.

The series of PEFT [72–74, 105, 115, 131, 260] methods mentioned in Section 4.2.2 address the problem of the
high training cost and overhead of medical LLMs and MLLMs by using a number of strategies that keep most of the
pre-training parameters frozen and update only a small number of them. However, the PEFT methods only achieve
efficient training and cannot solve the problem of deployment difficulties, for this problem, lightweighting is a feasible
solution [26, 35, 36, 244]. For example, MobileVLM [35] is a customized MLLM for mobile scenarios, which reduces the
training and inference budget by reducing the size of LLaMA and designing an efficient projector, while being able to
run on mobile devices, and also remaining competitive with other MLLMs on most tasks. Additionally, medical LLMs
and MLLMs fine-tuned from general foundation models typically retain some medically irrelevant knowledge, which is
stored in different parameters of the model. Knowledge distillation can distill the medical knowledge of medical LLMs
and MLLMs into a more compact model [128], discarding medically irrelevant knowledge, thus reducing the model
parameter count, which is more conducive to deployment.

Currently, all LLMs and MLLMs are built based on the Transformer architecture, which inevitably leads to a
quadratic increase in computational complexity with sequence length, resulting in low computational efficiency for long
sequences. To fundamentally address the challenges of training and deploying medical LLMs and MLLMs, choosing
model architectures that are more efficient in computation and inference is a viable option [57, 154]. For example,
RWKV [154] combines Transformer’s efficient parallel training with effective inference from RNN, ensuring a constant
computational and memory complexity during inference while maintaining comparable performance to the similarly
scaled Transformer models. Furthermore, Mamba [57], based on the State Space Model (SSM), outperforms Transformer
models in terms of both performance and inference speed, surpassing Transformer by five times in inference speed
while being comparable in scale. Extending these computationally and inference-efficient model architectures to general
or medical LLMs and MLLMs will help overcome the current deployment difficulties of medical LLMs and MLLMs.
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In addition to improving computational and inference efficiency at the model level, further advancements in
specialized hardware accelerators are desired within the community [142]. For example, NVIDIA’s Hopper GPU [33],
coupled with NVIDIA Grace CPU [51] through NVLink-C2C interconnect, enhances communication speed between
CPU and GPU by more than 7 times compared to PCIe 5.0, thus hardware-wise enhancing the computational and
inference efficiency of models.

7.4 Lack of Recency

Once medical LLMs and MLLMs are trained, the knowledge they acquire becomes fixed. However, since the knowledge
of medicine is constantly being updated, the lack of new medical concepts and knowledge will exacerbate the inaccuracy
and hallucination problems of the models, especially when encountering new terms that do not exist in the training
corpus, the models will be unable to comprehend this knowledge [188]. Therefore, the lack of recency will seriously
hinder the landing of the medical LLMs and MLLMs in the real-world applications.

In order to address the lack of recency due to offline learning of medical LLMs and MLLMs, continual parameter
updates through fine-tuning methods to keep them synchronized with human knowledge is a feasible solution [224].
While fine-tuning is able to inject new medical concepts and knowledge into the model, it also introduces two challenges
while updating the parameters, one is catastrophic forgetting, where the model forgets previously learned knowledge
after acquiring new knowledge [54, 248]. The second is negative forward transfer, wherein the performance on unseen
tasks deteriorates when learning new tasks [262]. To address the above issues, researchers have introduced model
editing [241], such as introducing additional trainable parameters to correct erroneous responses due to outdated
knowledge while keeping the original parameters of the model unchanged [62, 76], or locating the parameters related
to certain knowledge in the model and updating them accordingly to integrate and edit the relevant new knowledge
[114, 138, 139]. In addition to model editing, RAG can also be used as a means of updating the knowledge of a medical
LLMs and MLLMs by connecting the model to an information retrieval component, enabling the model to retrieve
relevant content from external knowledge bases as a reference [116, 177], and thus generating a more reliable response.

7.5 Privacy and Security

Medical LLMs and MLLMs are trained on a large-scale medical corpus, where some of the data, such as EHRs, doctor-
patient dialogues, and other data may involve patient privacy, such as name, phone number, and email address, which
can be retrieved from LLMs or MLLMs by using direct prompt [20], leading to serious privacy and security concerns.
Despite the extra efforts made by developers in modeling conversational security, such as specialized SFT and RLHF
for security, however, it is still possible to use tactics such as multi-step jailbreaking prompt [108] to obtain personal
privacy data from training data.

To facilitate the practical implementation of medical LLMs and MLLMs, protecting patients’ personal privacy is
crucial. Currently, to enhance the protection of patients’ personal privacy, it is common practice to either remove
personal information from datasets [116, 126] or add controlled noise or randomness to the data to safeguard privacy
without compromising data analysis [197]. In addition, the use of high-quality synthetic data generated by ChatGPT or
GPT-4 for training [181] ensures both the controllability and diversity of the training datasets while mitigating the risk
of privacy breaches. Furthermore, we expect to further refine relevant legal regulations, strengthen oversight of the
acquisition and usage of training datasets, and prohibit users from accessing patient privacy data from models through
any means.
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7.6 Bias and Toxicity

Large-scale corpora, especially data obtained from the internet, inevitably contain a variety of biased viewpoints, and
LLMs and MLLMs may learn any biases [53, 157] from these corpora, such as biases in race [236], gender [95], politics
[129]. At the same time, language models may produce toxic responses, such as aggressive and hurtful views, and
specific groups are more likely to be targeted due to the presence of biases [45]. These biases and toxicities extend to
the LLMs and MLLMs, with potential implications and threats to patients, and may have serious consequences for
patients with mental illness.

Reducing bias in training data is essentially a way to address the presence of bias in models. Specifically, careful
curation and screening of more diverse, balanced, and representative training data ensure that models learn from a
broader range of perspectives and experiences, leading to a more comprehensive understanding and reduced biases in
various aspects [53]. And for model toxicity, utilizing empathetic data has been shown to reduce the output of toxic
content from models [97]. However, re-screening the pre-training datasets and re-training a model with less biases and
toxicities is expensive, so screening some high-quality datasets with anti-bias and anti-toxicity to reduce medical LLMs
and MLLMs’ bias and toxicity in the SFT and RLHF phases is a much more cost-effective approach. Apart from training,
there is a need for further enhancement in evaluating model bias and toxicity. Designing a comprehensive benchmark
for model bias and toxicity facilitates the detection of these issues, enabling developers to regularly review models
[38, 53].

8 CONCLUSION

In recent years, the development of LLMs has led to breakthroughs in the NLP, and then researchers have taken a
significant step towards AGI by extending LLMs to the multimodal domain and forming MLLMs. Meanwhile the rapid
development and strong performance of LLMs and MLLMs have facilitated the birth of a large number of medical
LLMs and MLLMs. To aid researchers and medical practitioners in understanding the current technological details and
developmental status of medical LLMs and MLLMs, this survey centers on the paradigm shift of LLMs and MLLMs,
delineates the entire development background, emphasizing the evolution from initial feature engineering to structure
engineering, objective engineering, and now, the focus of the research is prompt engineering and data engineering.
To furnish comprehensive foundational knowledge of medical LLMs and MLLMs, this survey has summarized the
mainstream architectures of current LLMs and MLLMs and has assembled a list of existing medical LLMs and MLLMs.
Furthermore, this survey offers a comprehensive guide, encompassing existing medical datasets, model construction
methods, evaluation methods, and usage tips to assist relevant researchers and medical practitioners in developing,
deploying, and utilizing their own medical LLMs and MLLMs. Moreover, this survey explores the application prospects
of medical LLMs and MLLMs in medical diagnosis, clinical report generation, medical education, mental health
services, medical language translation, and surgical assistance, and analyze the great potential of medical LLMs and
MLLMs in various clinical applications. Despite the notable achievements of medical LLMs and MLLMs in the medical
domain, several significant challenges and limitations persist, hindering their practical deployment in clinical settings.
Consequently, this survey discusses these challenges faced by current medical LLMs and MLLMs, such as hallucinations,
visual perception limitations, training and deployment challenges, lack of recency, privacy and security, bias and toxicity,
and provides potential solutions to address these issues, thus facilitating the practical application of subsequent medical
LLMs and MLLMs.
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In conclusion, this survey provides a comprehensive analysis of medical LLMs and MLLMs, from background,
principles to applications, aiming to accelerate the development of LLMs and MLLMs in clinical medicine-related
products and further promote the integration of AI and the medical field. We expect that there will be more intelligent
AI products based on LLMs and MLLMs in the future, such as medical agent and embodied intelligence, to further
promote the innovation of AI in medicine. Finally, we emphasize that the advent of medical LLMs and MLLMs is
intended to enhance the quality of medical services and physician efficiency, alleviate workload, rather than replace
healthcare professionals.
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