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Abstract We propose a novel digital backpropagation (DBP) technique that combines perturbation
theory, subband processing, and splitting ratio optimization. We obtain 0.23 dB, 0.47 dB, or 0.91 dB
gains w.r.t. dispersion compensation with only 74, 161, or 681 real multiplications/2D-symbol, improving
significantly on existing DBP techniques. ©2024 The Author(s)

Introduction

Nonlinear propagation effects limit the perfor-
mance of coherent fiber-optic communications sys-
tems[1]–[3]. A possible solution is offered by digital
backpropagation (DBP), which can ideally com-
pensate for deterministic intrachannel nonlinear
interactions[4],[5].

The implementation of DBP, though possible in
theory, is practically limited by the complexity of
the available algorithms. Indeed, the naive ap-
proach of describing fiber propagation with suffi-
ciently small steps in which linear and nonlinear
effects act independently—the split step Fourier
method (SSFM)—requires a large computational
complexity, making its use for DBP impractica-
ble. Consequently, in the past years, several low-
complexity DBP techniques have been proposed[6].
Among these, there are some improved versions
of the SSFM, which use a modified nonlinear step
to account for the interaction between nonlinear-
ity and dispersion, e.g., the filtered DBP[7],[8] and
the enhanced SSFM (ESSFM)[9],[10]. Furthermore,
several approaches based on machine learning
have been recently proposed[11], either in combina-
tion with subband processing[12], or using carrier
phase recovery[13].

In this work, we improve the ESSFM by em-
ploying subband processing and using asymmet-
ric steps with optimized splitting ratio. The sub-
bands are jointly processed as in the multi-channel
DBP algorithm proposed in[14],[15], which allows in-
creasing the step size while still accounting for the
cross-phase-modulation (XPM)-like part of intra-
band nonlinear interactions. The optimization of
the splitting ratio further improves the accuracy of
the algorithm by accounting for the asymmetry of
long steps due to attenuation. By using numeri-
cal simulations, we show that in a 15x80 km link
the proposed algorithm needs only 74 real multi-

plications per 2D symbol (RMs/2D) to achieve a
signal-to-noise ratio (SNR) gain of about 0.23 dB
with respect to electronic dispersion compensation
(EDC). The gain increases to 0.47 dB and 0.91 dB
with 161 and 681 RMs/2D, respectively.

Coupled-Band ESSFM
The coupled-band ESSFM (CB-ESSFM) is a novel
technique for single-channel DBP, which combines
logarithmic perturbation, subband processing, and
splitting ratio optimization to improve the trade-
off between performance and complexity. The
CB-ESSFM structure is sketched in Fig. 1. The
received channel (in a WDM scenario, after de-
multiplexing the channel of interest) is digitally
demultiplexed into Nsb equally spaced subbands.
Next, the subbands are processed by an alternate
cascade of Nst + 1 linear steps and Nst nonlin-
ear steps, as in an SSFM-like structure with step
size L. The linear step, applied independently on
each band, accounts for group velocity dispersion
(GVD) in the frequency domain, as in the conven-
tional SSFM. The nonlinear step processes the
subbands jointly. Each subband undergoes a non-
linear phase rotation (NLPR) in time domain that
accounts for intra- and inter-band nonlinearity and
their interaction with GVD. The NLPRs depend lin-
early on the intensity of the subbands, from which
they are obtained through a MIMO filter, following
the same simplified logarithmic-perturbation ap-
proach used in the multi-channel DBP algorithm
described in[15].1 The coefficients of the MIMO
filter can be optimized numerically or obtained,
with good approximation, from perturbation theory.
The results in this paper have been obtained by
using the first approach. In the typical symmetric

1The full complexity algorithm proposed in[14] could also be
employed. However, since it provides a similar performance,
we prefer the reduced-complexity algorithm in[15].
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Fig. 1: CB-ESSFM processing scheme with Nsb = 3 bands.

SSFM configuration, each nonlinear step of size
L is sandwiched between two half linear steps of
size L/2. However, when a small number of steps
is employed, the resulting configuration is not ac-
tually symmetric due to attenuation, which makes
the nonlinear interactions in the first half (of the
backward link) weaker than those in the second
half. Therefore, we also optimize the position of
the nonlinear step according to the splitting ratio
0 ≤ ρ ≤ 1, such that it is placed between a linear
step of size (1− ρ)L and another one of size ρL.
Adjacent linear steps can be combined together,
so that the overall configuration changes only in
the first linear step, of size (1 − ρ)L, and in the
last linear step, of size ρL, while all the remain-
ing Nst − 1 linear steps have size L. Finally, the
subbands are digitally multiplexed back together
to obtain the backpropagated signal.

The main advantage of the CB-ESSFM is that it
allows processing the signal in smaller bandwidths,
hence reducing the number of steps required to
account for GVD-induced walk-off and to achieve
a certain accuracy. However, a naive subband pro-
cessing would neglect all inter-band interactions,
thus strongly hampering the overall performance.
By contrast, CB-ESSFM accounts for XPM-like in-
teractions, while neglecting four-wave-mixing-like
ones. As a result, CB-ESSFM provides the largest
advantages when the number of steps is small,
though it cannot achieve exactly the same perfor-
mance as ideal DBP at a very large number of
steps. The optimal number of bands, which de-
pends on the number of steps (when Nst is large,
one band is optimal), is the one that optimizes
the trade-off between intra- and interband accu-
racy: larger Nsb improves intraband compensation
(as each band is narrower), smaller Nsb improves
interband compensation (as less nonlinear inter-
actions are neglected).

The CB-ESSFM can be implemented by means
of the overlap and save technique, by pro-
cessing all signal’s samples—defined with n

samples/symbols—arranging them in blocks of N
samples, with a partial overlap of Nov samples be-
tween blocks[16]. For each block, each linear step
is implemented in the frequency domain, and each

NLPR in the time domain. The whole processing
(including subband MUX and DEMUX) requires 4

(direct or inverse) complex FFTs (CFFT) of size N ,
4NsbNst CFFTs of size N/Nsb, Nst + 1 GVD com-
pensations, and Nst NLPRs (based on frequency-
domain MIMO filtering and requiring 2NsbNst ad-
ditional real FFTs of size N/Nsb). Implementing
each complex multiplication with three real mul-
tiplications (RMs) and five real additions[17], and
using the split-radix algorithm[18] to implement the
FFTs, the overall number of RMs/2D required by
the CB-ESSFM algorithm is

CRM =
n
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System setup and performance
We test the performance of the proposed DBP
technique by means of simulations. The transmit-
ted WDM signal is composed of 5 channels, each
with baud rate Rs = 93GBd and 100GHz spacing,
and uses a dual-polarization uniform 64 quadra-
ture amplitude modulated (QAM) constellation to
modulate a root-raised-cosine pulse with rolloff
r = 0.05. The link consists of 15 spans of 80 km
single mode fiber (attenuation αdB = 0.2 dB/km,
dispersion D = 17ps/nm/km, and nonlinear pa-
rameter γ = 1.27W−1km−1). The loss is compen-
sated after each span by an erbium-doped fiber
amplifier with a noise figure of 4.5 dB. The receiver
demultiplexes the central channel and applies ei-
ther EDC or DBP with n = 1.125 samples/symbol
and block length N = 16384. Finally, matched filter-
ing, sampling at symbol time, and mean phase ro-
tation removal are applied. Performance is shown
in terms of received SNR at optimal launch power.

Fig. 2 shows the performance of CB-ESSFM
with 1 band (dashed)—equivalent to ESSFM when
ρ = 0.5—and 2 subbands (solid) as a function
of the splitting ratio ρ for Nst = 1, 15, 30. In all
considered cases, the use of subband process-
ing with two bands turns out to be advantageous
with respect to single-band ESSFM. In fact, though
not shown here, the optimal number of bands is 2

when Nst ≤ 30. Next, the figure shows that when
a single-step DBP is considered (Nst = 1) the
symmetric configuration (with ρ = 0.5) is optimal.
Conversely, for 15 or 30 steps, besides an obvi-
ous increase of the overall SNR, the figure shows
that using asymmetric configurations with smaller
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Fig. 2: SNR versus splitting ratio with CB-ESSFM with 1 and 2
bands for different number of steps Nst.

splitting ratios can improve the performance, both
with 1 or 2 subbands. In particular, with respect
to the symmetric case with Nsb = 2, a gain of
0.26dB is obtained with ρ = 0.12 for Nst = 15,
and a gain of 0.1dB is obtained with ρ = 0.23 for
Nst = 30. We conjecture that the optimal configu-
ration is obtained when each step is divided into
two portions with similar accumulated nonlinear
interactions. Due to fiber attenuation, this is ob-
tained for ρ ≈ 0.5 for Nst ≪ Nsp (e.g., Nst = 1 in
Fig. 2) or for Nst ≫ Nsp (not shown here since too
complex for a practical implementation), but possi-
bly for smaller ρ when Nst and Nsp are comparable.
For instance, with Nst = 15 there is exactly one
step per span, so that most nonlinear interactions
take place in the first portion of each (forward)
span, corresponding to the last portion of each
DBP step. Thus, a better balance is obtained with
a small ρ. A similar reasoning can be done for
Nst = 30, which uses exactly 2 steps per span. In
this case, the impact of attenuation on each step
is smaller than for Nst = 15 (but still significant).
This results in a higher optimal splitting ratio (but
still lower than 0.5). In the following, we will always
consider the CB-ESSFM with optimized splitting
ratio and Nsb = 2.

Fig. 3 compares the performance of different
DBP techniques and EDC as a function of the
complexity (1). The single-channel and 2-band
ideal DBP curves show, respectively, the maxi-
mum performance achievable by applying ideal
DBP to the whole channel or by dividing it into two
subbands and applying ideal DBP separately to
each of them. While the former provides perfect
intrachannel nonlinearity compensation, the latter
neglects nonlinear interactions between the two
subbands. The two limits are numerically obtained
by considering the conventional SSFM algorithm
and increasing the number of steps until the per-
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formance saturates to its maximum value. The
corresponding complexity exceeds by more than
one order of magnitude the range considered in
the figure and is totally unfeasible for a practical
implementation. The CB-ESSFM is shown here
for the optimal number of bands Nb = 2, and with
optimal splitting ratio ρ, while ESSFM is shown in
the conventional symmetric configuration (ρ = 0.5).
Overall, the figure shows that CB-ESSFM outper-
forms ESSFM and saturates to its maximum per-
formance with just 681 RMs/2D (corresponding to
Nst = 15), achieving a gain of 0.91 dB compared to
EDC—better than 2-band ideal DBP and close to
single-band ideal DBP, with a gap of only 0.12dB.
This small gap is due to the fact that CB-ESSFM
can compensate exactly for intraband nonlinearity,
but only approximately for interband nonlinearity.
Moreover, CB-ESSFM provides significant gains
even at much lower complexity, e.g., 0.23 dB at
74 RMs/2D (Nst = 1), 0.47 dB at 161 RMs/2D
(Nst = 3), and 0.6 dB at 248 RMs/2D (Nst = 5).

Conclusion

We have proposed a novel method for single-
channel DBP, improving our previously proposed
ESSFM by means of subband processing and by
optimizing the splitting ratio of the propagation
steps. Subband processing allows reducing the
number of steps (hence the complexity) required to
achieve a desired performance, while the optimiza-
tion of the splitting ratio improves the performance
with a given number of steps. In a 15x80 km link
with 5 WDM channels, by properly selecting the
number of steps, we obtain effective SNR gains
ranging from 0.23 dB to 0.91 dB compared to EDC,
with a corresponding complexity ranging from 74
to 681 real multiplications per 2D-symbol.
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cient multi-step nonlinearity compensation with machine
learning: An experimental demonstration,” Journal of
Lightwave Technology, vol. 38, no. 12, pp. 3114–3124,
2020.
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