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Abstract—In the realm of quantum information, entanglement
stands as a cornerstone phenomenon. It underpins a vast array
of quantum information processes, offering significant potential
for advancements in quantum computing, communication, and
sensing. This paper introduces a novel multi-photon entangled
state, which generalizes the maximally entangled single-photon
state and exhibits remarkable resilience to signal attenuation
in photonic applications. We demonstrate the novelty of the
proposed state through a simplified target detection model
and illustrate its superior performance over traditional single-
photon protocols, attributed to its higher entanglement level and
enhanced noise suppression capabilities. Our findings suggest that
the proposed multi-photon state holds significant promise for
enhancing the efficiency and reliability of photonic applications
subject to loss. This work lays the groundwork for future explo-
ration into the practical applications of multi-photon entangled
states in quantum technologies, potentially revolutionizing our
approach to quantum sensing and beyond.

I. INTRODUCTION

Described by Einstein as "spooky action at a distance,"
entanglement represents a unique and counter-intuitive aspect
of quantum mechanics, playing a crucial role in quantum infor-
mation. Two quantum systems are considered entangled if their
respective quantum states cannot be described independently.
In such cases, the systems exhibit non-classical correlations,
even when separated by significant distances [1]. This phe-
nomenon can be harnessed in various engineering applications,
including quantum computing [2], quantum communication
and key distribution [3], quantum sensing [4], among others
[5].

A class of quantum states of particular interest for their
entanglement properties are the high-dimensional Bell states
[6]. In this paper, we look at the simplest such two-partite,
M -qudit state:

|ψ1⟩ =
M∑
k=1

|k⟩A |k⟩B (1)

where A and B represent two distinct quantum systems, and
|k⟩ denotes the system being in the kth state (out of M
possible states). The case of M = 2 corresponds to one
of the four Bell states, which are the maximally entangled
qubit states. This state’s entanglement level increases with
an increase in the dimension of each Hilbert space M [6]
[7] and it has been studied for enhancing channel capacity
in communications [8], improving noise resilience in target
detection and LIDAR [4], and for quantum key distribution [9].

In photonics, this state is typically generated by entangling two
photons across M modes, including orbital angular momentum
modes [10], time-bin modes [11], frequency modes [12], or
even spatial modes [13].

A notable challenge with using the state |ψ1⟩ in photonic
applications is its nature as a single photon state. Many
applications involve transmitting one set of spatial modes
through a lossy channel, where the single photon is either
transmitted or lost entirely. This contrasts with classical pro-
tocols where multiple photons are transmitted simultaneously,
and the attenuated light suffices to achieve the desired result.
While this issue can be mitigated by sending multiple copies
of |ψ1⟩, it either requires multiple sequential runs, consuming
considerable time, or the use of many sets of M orthogonal
modes, which could instead be used to increase entanglement.

Most studies on multi-photon entangled states, often involve
NOON states, where all photons occupy the same mode [14],
or the use of additional orthogonal modes without directly
taking multiple copies of a single entangled photon [15]. With
NOON states, losing a single photon due to attenuation (math-
ematically equivalent to applying an annihilation operator)
disrupts all entanglement between the systems, while using
additional orthogonal again waste modes which could be used
for increased entanglement.

Quantum sensing states that are resilient to loss have been
studied and shown to exist [16] and are of great interest for
both sensing and fault-tolerant quantum communication. In
this paper, we propose and explore the theoretical properties
of a novel multi-photon generalization of the state |ψ1⟩, em-
ploying M orthogonal modes and retaining the entanglement
properties of any returning photons, even if many photons are
absorbed. Utilizing this state enables leveraging some of the
entanglement properties of the high-dimensional Bell state,
even in scenarios where the transmitted signal may be heavily
attenuated.

II. MULTI-PHOTON ENTANGLED STATE

Before diving into the core of our discussion, we establish
some notation to pave the way for a smoother understanding.
In dealing with M modes of photons, we use the notation
|n⟩ to represent the photon number basis state, where the
boldface n signifies a vector. For n = (n1, ..., nM ), the state
|n⟩ represents a state with ni photons in mode i. The operators
â†i and âi will represent the quantum creation and annihilation
operator respectively for the i-th mode. These operators act on
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the photon number states as follows: â†i |n1, ..., ni, ..., nM ⟩ =√
ni + 1 |n1, ..., ni + 1, ..., nM ⟩ and âi |n1, ..., ni, ..., nM ⟩ =√
ni |n1, ..., ni − 1, ..., nM ⟩. Whenever we mention a vector

n, the corresponding non-bold variable will represent a sum
of the elements n = |n| = n1 + n2 + ... + nM (This is the
l1 norm when all elements are positive as is the case in this
paper). Extending this to multiple spatial modes, each with
M modes, we use |n,m⟩ to denote the basis states for two
spatial modes, where n and m are photon numbers for each
set of spatial modes.

With this in mind, we consider the N photon state across
two sets of M modes which we refer to as the signal and the
idler:

|ψN ⟩ = 1√
CN

(
M∑
i=1

â†Ii â
†
Si

)N

|vac⟩ (2)

=

(
N +M − 1

N

)− 1
2 ∑
|NS|=N

|NS,NS⟩ (3)

Here, CN is a normalization constant (refer to appendix A)
and â†Ii and â†Si

are the creation operators for the i-th idler
and signal modes. The sum in (3) extends over all vectors NS

with total photon number N . The number of such vectors is
equal to

(
N+M−1

N

)
which gives the normalization constant in

(3). In the case of N = 0, we simply have the vacuum state
while the case of N = 1 gives us the high-dimensional Bell
state |ψ1⟩.

We begin by noting that |ψN ⟩ spans a larger Hilbert space
than |ψ1⟩, suggesting a potential for higher entanglement
gains. However, these states become particularly intriguing
when we explore the effects of attenuation. To delve into
their distinctive properties, we introduce the operator Â† =∑M

i=1 â
†
Si
â†Ii . Employing this operator enables the recursive

generation of the states |ψN ⟩ via the relation:
√
N
√
N +M − 1 |ψN ⟩ = Â† |ψN−1⟩ (4)

With a straightforward computation, we can also show that the
following commutation relations hold:[

âSj , Â
†
]
= â†Ij

[
âIj , Â

†
]
= â†Sj

(5)

Considering the scenario where a photon from the signal data
is lost, modeled by the annihilation operator âSj , we can use
the recursive relationship and the commutator to show by
induction that the state evolves as follows:

âSj |ψN ⟩ =
√
N√

N +M − 1
â†Ij |ψN−1⟩ (6)

Equation (6) establishes the novelty of the state |ψN ⟩. In the
case where we send N photons and lose a single photon, the
returning (N − 1) photons maintain their entanglement struc-
ture but the idler has an extra photon compared to |ψN−1⟩.
One can interpret this with a simple thought experiment where
Alice sends out the N signal photons to Bob who then
measures and identifies a single photon and determines the
mode it occupies. By doing so, Bob collapses one of the N

idler photons that Alice is holding to the same mode the single
signal photon was found in. The remaining (N − 1) photons
stay entangled, unaffected by the interaction of the lost photon
with Bob, who represents the environment in this scenario.

This behavior is highly atypical of photons (and bosons
in general) since their indistinguishability properties prevent
us from thinking of them as independent particles unless
they occupy disjoint Hilbert spaces. Yet, in this scenario, the
photons behave as identical yet independent particles, almost
as if each photon resides in its unique Hilbert space.

In practical terms, photon loss through attenuation intro-
duces uncertainty in the number and modes of the lost photons.
The transmitted state thus becomes a statistical mix of states∏M

i=1(â
†
Ii
)NAi |ψN−k⟩ for all combinations of NA1

, ..., NAM
,

where k = NA1
+ ...+NAM

≤ N . These states are mutually
orthogonal, allowing for measurements of the final state to
account for all possible incoming states and still exploit the
entanglement present in the N − k returning photons.

III. QUANTUM TARGET DETECTION

To demonstrate the potential of this state for sensing ap-
plications, we explore the problem of target detection, where
the goal is to discern the presence or absence of a target with
reflectivity 0 < η < 1 by probing with a light source. In
our model, we assume that there exists background noise that
could falsely signal the target’s presence. In this simplified sce-
nario, we assume that the receiver picks up either background
noise or the partially reflected signal but not both at the same
time (where the attenuated version of |ψN ⟩ mixes with the
noise) akin to the approach in foundational target detection
work [4]. This model holds practical value when the average
incoming noise and average reflected photons (MPB and ηN )
are both much less than one or in sensing applications where
the goal is security and deterring bad actors from sending false
reflections.

In the case where the target is present, the loss is modeled
with a beamsplitter of reflectivity η where one input is the
signal and the other one is the vacuum (excluding noise
mixing). In the Heisenberg picture, the creation operator
evolves as â†Si

→ √
ηâ†Si

+
√
1− ηâ†Bi

. Evolving the signal,
idler, and background modes as in equations (7) to (10) on the
bottom of the page 3 and tracing out the background modes,
we derive the collected state in the case of target present:

ρpres =
∑

|NA|≤N

∣∣∣ϕ̃NA

〉〈
ϕ̃NA

∣∣∣ (8)

where∣∣∣ϕ̃NA

〉
=

√
η
N−NA

√
1− η

NA

M∏
i=1

1√
NAi !

(âSi
)
NAi |ψN ⟩

(9)

Thus the collected light comes back as a mixture of
∣∣∣ϕ̃NA

〉
which is the un-normalized version of the state where NA

photons remain in the environment. The norm of these states
⟨ϕNA

|ϕNA
⟩ gives the probability of measuring NA photons



in the environment as evident by equation (8) and the orthog-
onality of the states |ϕNA

⟩. Given the unknown number of
photons that remain in the environment, our measurement must
account for all possibilities. Fortunately the normalized states

|ϕNA
⟩ =

|ϕ̃⟩√
⟨ϕ̃NA |ϕ̃NA⟩

are orthonormal, facilitating the use

of the projective measurement
{
P̂ , 1− P̂

}
where:

P̂ =
∑

|NA|≤N−1

|ϕNA
⟩ ⟨ϕNA

| (10)

This measurement scheme excludes scenarios where |NA| =
N , indicating total photon absorption. The probability of a
positive detection, in the presence of a target, is given by:

1− PMD = Tr
[
P̂ ρpres

]
(11)

=
∑

NA≤N−1

〈
ϕ̃NA

∣∣∣ϕ̃NA

〉
(12)

= 1− (1− η)N (13)

This indicates that a missed detection occurs solely when all
N photons are absorbed, with even a single returning photon
indicating target presence. However, this approach’s efficacy
hinges on whether utilizing |ψN ⟩ alongside P̂ enhances noise
resilience.

In the case that the detector picks up only environmental
noise, the idler mode is simply the starting state traced out
and the signal is replaced with the environment. The returning
state is:

ρabs =

(
N +M − 1

M − 1

)−1 ∑
|NS|=N

∑
NB

pNB |NS,NB⟩ ⟨NS,NB|

(14)

where pNB
is the probability of having NB photons in the

environment. Typically, this is taken to be the probability
distribution given by identical thermal states in each mode.
The only assumption we make here is that this probability
solely depends on the total number of noise photons so
pNB

= p̃NB
(which is indeed the case for thermal noise).

We highlight that this is the probability of having NB pho-
tons in a particular arrangement while the overall probability

of having NB photons accounting for all arrangements is(
NB+M−1

NB

)
p̃NB

.
The probability of getting a false alarm can be computed as
in the appendix:

PFA = p̃1
N

N +M − 1
+ p̃2

N(N − 1)

(N +M − 1)(N +M − 2)
+

...+ p̃N

(
M +N − 1

N

)(−1)

(15)

Each term in this result corresponds to a different number
of photons picked up by the detector. All terms go to zero
as M → ∞ demonstrating that the state |ψN ⟩ has the same
noise suppression property as |ψ1⟩ which is characterized by
P 1
FA ∼ 1

M .
In comparison to the single-photon protocol using |ψ1⟩ as

in [4], the first term which corresponds to a single incoming
noise photon has worse performance for all N > 1. However,
all other terms in (15) eventually surpass 1

M for large enough
M as can be seen in figure 1. The last term corresponds to
receiving all the N transmitted photons in which case the error
scales inversely to the number of terms in (3) and is always
lower than 1

M . With an increase in the number of photons
returned error probabilities diminish more rapidly with M ,
leading to lower error rates due to increased entanglement.

Furthermore, if we factor in attenuation (which was the
initial motivation for |ψN ⟩), a protocol using |ψ1⟩ necessi-
tates sending N copies to match the energy expenditure and
expected number of reflected photons with that of a protocol
using |ψN ⟩. As a result, the probability of a false alarm in
the single photon case goes up to N

M , in the N << M
approximation, and thus every term in (15) outperforms the
single-photon protocol. Intuitively, this is because transmitting
a single photon across N trials necessitates more frequent
detector activation compared to transmitting all N photons
simultaneously, thus increasing noise susceptibility.

It’s also important to recognize that p̃i might vary with M .
In most practical scenarios, including those involving thermal
noise, increasing M tends to result in greater noise pickup.
This works in our favor, as it pushes the distribution of p̃i
towards higher values of i. This effect, in turn, shifts the false

|ψN ⟩I,S ⊗ |0⟩B=
(
N +M − 1

M − 1

)− 1
2 ∑
|NS|=N

M∏
i=1

1√
NSi

!
(â†Si

)NSi |NS,0,0⟩I,S,B (7)

→
(
N +M − 1

M − 1

)− 1
2 ∑
|NS|=N

M∏
i=1

1√
NSi

!
(
√
ηâ†Si

+
√
1− ηâ†Bi

)NSi |NS,0,0⟩I,S,B (8)

=

(
N +M − 1

M − 1

)− 1
2 ∑
|NS|=N

∑
|NA|≤N

√
η
N−NA

√
1− η

NA

(
M∏
i=1

√(
NSi

NAi

))
|NS,NS −NA,NA⟩I,S,B (9)

=
∑

|NA|≤N

√
η
N−NA

√
1− η

NA

M∏
i=1

1√
NAi

!
(âSi

)
NAi |ψN ⟩I,S ⊗ |NA⟩B (10)



(a) N = 10 (b) N = 100 (c) N = 1000

Fig. 1: Comparison of the Probability of false alarm for a varying number of incoming photons. The blue dashed curve is
PFA = 1

M which is the probability of a false alarm when one photon in the state |ψ1⟩ is transmitted. The orange dashed curve
is PFA = N

M which is the N << M approximation of the probability of a false alarm if N copies of the |ψ1⟩ are transmitted.
The overall probability of error depends highly on how the noise is distributed.

alarm probability in equation (15) to the higher-order terms,
which have better noise suppression.

The overall probability of error is heavily dependent on
the noise profile and p̃i. With a preliminary understanding
of the expected photon return in the presence of a target,
we can refine the projector P̂ to focus on a narrower photon
range, thereby reducing false alarm rates, especially when the
anticipated number of photons due to target reflectivity, ηN ,
is different from the expected noise photons.

IV. CONCLUSION

In conclusion, we have introduced a multi-photon entangled
state that extends the concept of the maximally entangled
single-photon Bell state |ψ1⟩. This innovative state possesses
a remarkable property: even when the signal undergoes atten-
uation, the entanglement structure of the returning photons is
largely preserved, as though a smaller number of photons were
dispatched without any loss.

Our exploration into a simplified target detection scenario
highlights the unique advantages of this multi-photon state.
Not only does it maintain its integrity in the face of attenuation,
but it also surpasses the single-photon protocol, thanks to a
higher level of entanglement and diminished noise interference
due to fewer detection events.

The characteristics of the |ψN ⟩ state, as examined in this
study, indicate potential benefits across a range of photonic ap-
plications that utilize the two-partite Bell state and are prone to
loss. Although further investigation is necessary to determine
whether |ψN ⟩ exhibits similar advantages in other contexts,
particularly where noise mixing or alternative channels play a
role, the increased photon count and expanded Hilbert space
suggest that its susceptibility to external disturbances should
be equal to or less than that of multiple copies of |ψ1⟩.
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V. APPENDIX

A. The states and their recursive relations

Starting from our proposed definition (2), we have:

|ψN ⟩ = 1√
CN

(
M∑
i=1

â†Ii â
†
Si

)N

|vac⟩ (16)

=
1√
CN

 ∑
|NS|=N

(
N

NS1
, ..., NSM

)(
â†I â

†
S

)NS

 |vac⟩ (17)

=
1√
CN

∑
|NS|=N

N ! |NS,NS⟩ (18)

Equation (17) follows from the multinomial theorem where
(

N
NS1

,...,NSM

)
= N !

NS1
!...NSM

! is the multinomial coefficient. The
normalization constant can be computed as:

1 =
∑

|NS|=N

1

CN
(N !)2 (19)

=
(N !)2

CN

∑
|NS|=N

1 (20)

=
(N !)2

CN

(
N +M − 1

M − 1

)
(21)

CN =
N !(N +M − 1)!

(M − 1)!
(22)

Here, equation (21) follows from a standard combinatorics formula for the number of vectors with element by element sum
equal to N . Furthermore, we have that:

CN

CN−1
= N !

(N +M − 1)!

(M − 1)!

1

(N − 1)!

(M − 1)!

(N +M − 2)!
(23)

= N(N +M − 1) (24)

Which we can use to construct a recursive formula as:

|ψN ⟩ = 1√
CN

(
M∑
i=1

â†Ii â
†
Si

)N

|vac⟩ (25)

=
1√
CN

(
M∑
i=1

â†Ii â
†
Si

)(
M∑
i=1

â†Ii â
†
Si

)N−1

|vac⟩ (26)

=

√
CN−1√
CN

(
M∑
i=1

â†Ii â
†
Si

)
|ψN−1⟩ (27)

=
1√

N
√
N +M − 1

(
M∑
i=1

â†Ii â
†
Si

)
|ψN−1⟩ (28)

√
N
√
N +M − 1 |ψN ⟩ =

(
M∑
i=1

â†Ii â
†
Si

)
|ψN−1⟩ (29)

√
N
√
N +M − 1 |ψN ⟩ = Â† |ψN−1⟩ (30)

where we let Â† =
∑M

i=1 â
†
Si
â†Ii .



Now to study the behavior of the state |ψN ⟩ as a photon is removed, we first compute the commutator:[
âSj

, Â†
]
=

M∑
i=1

[
âSj

, â†Si
â†Ii

]
(31)

=
[
âSj

, â†Sj
â†Ij

]
(32)

=

M∑
i=1

(
âSj â

†
Sj
â†Ij − â†Sj

â†Ij âSj

)
(33)[

âSj
, Â†

]
= â†Ij likewise:

[
âIj , Â

†
]
= â†Sj

(34)

So applying an annihilation to the state, we claim that:

âSj
|ψN ⟩ =

√
N√

N +M − 1
â†Ij |ψN−1⟩ (35)

We can prove this by induction on N . For N = 1, this is easy to verify:

âSj
|ψN ⟩ = 1√

M
âSj

M∑
i=1

|ei, ei⟩ (36)

= |ej , 0⟩ (37)

=

√
1√

1 +M − 1
â†Ij |ψ0⟩ (38)

Now for the induction step, assume (35) holds for N − 1

√
N
√
N +M − 1âSj

|ψN ⟩ = âSj
Â† |ψN−1⟩ (39)

=
(
â†Ij + Â†âSj

)
|ψN−1⟩ (40)

= â†Ij |ψN−1⟩+ Â†âSj |ψN−1⟩ (41)

= â†Ij |ψN−1⟩+
√
N − 1√

N +M − 2
Â†â†IJ |ψN−2⟩ use inductive hypothesis (42)

= â†Ij |ψN−1⟩+
√
N − 1√

N +M − 2
â†IJ Â

† |ψN−2⟩ the idler operators commute with Â† (43)

= â†Ij |ψN−1⟩+
√
N − 1

√
N +M − 2

√
N − 1√

N +M − 2
â†IJ |ψN−1⟩ (44)

√
N
√
N +M − 1âSj

|ψN ⟩ = (1 + (N − 1)) â†Ij |ψN−1⟩ (45)

âSj |ψN ⟩ =
√
N√

N +M − 1
â†Ij |ψN−1⟩ (46)

B. Constructing the Projector

The state
∣∣∣ϕ̃NA

〉
is:

∣∣∣ϕ̃NA

〉
=

√
η
N−NA

√
1− η

NA

M∏
i=1

1√
NAi

!
(âSi)

NAi |ψN ⟩I,S (47)

=

(
N +M − 1

M − 1

)− 1
2 ∑

NS

√
η
Ns−NA

√
1− η

NA
(âS)

NA |NS,NS⟩ (48)

=
1√
NA!

√
η
N−NA

√
1− η

NA
(âS)

NA |ψN ⟩ (49)

=
1√
NA!

√
η
N−NA

√
1− η

NA

(
N∏

n=N−NA+1

√
n√

n+M − 1

)(
â†I

)NA

|ψN−NA
⟩ (50)



=
1√
NA!

√
η
N−NA

√
1− η

NA

√
N !

(N −NA)!

(N −NA +M − 1)!

(N +M − 1)!

(
â†I

)NA

|ψN−NA
⟩ (51)

=
1√
NA!

√
η
N−NA

√
1− η

NA

√(
N −NA +M − 1

N −NA

)(
N +M − 1

N

)−1 (
â†I

)NA

|ψN−NA
⟩ (52)

=
1√
NA!

√
η
N−NA

√
1− η

NA

√(
N +M − 1

N

)−1 (
â†I

)NA ∑
|NS|=N−NA

|NS,NS⟩ (53)

=
1√
NA!

√
η
N−NA

√
1− η

NA

√(
N +M − 1

N

)−1 ∑
|NS|=N−NA

√
(NS +NA)!√

NS!
|NS +NA,NS⟩ (54)

Before we construct the projector, we need to compute the norm and inner products. The norm is:
〈
ϕ̃NA

∣∣∣ϕ̃NA

〉
=

1

NA!
η
N−NA (1 − η)

NA
(N + M − 1

N

)−1 ∑
|NS|=N−NA
|N′

S|=N−NA

√
(NS + NA)!√

NS!

√
(N′

S
+ NA)!√
N′

S
!

〈
N

′
S + NA,N

′
S

∣∣∣NS + NA,NS

〉
(55)

=
1

NA!
η
N−NA (1 − η)

NA
(N + M − 1

N

)−1 ∑
|NS|=N−NA

√
(NS + NA)!√

NS!

√
(NS + NA)!√

NS!

〈
NS + NA

∣∣NS + NA
〉

(56)

= η
N−NA (1 − η)

NA
(N + M − 1

N

)−1 ∑
|NS|=N−NA

(NS + NA)!

NS!NA!
(57)

Thus the normalized version is:

|ϕNA
⟩ = 1√〈

ϕ̃NA

∣∣∣ϕ̃NA

〉 ∣∣∣ϕ̃NA

〉
(58)

=
1√
NA!

√(
N −NA +M − 1

N −NA

) ∑
|NS|=N−NA

(NS +NA)!

NS!NA!

− 1
2 (

â†I

)NA

|ψN−NA
⟩ (59)

Now for the mutual inner product:〈
ϕ̃NA

∣∣∣ϕ̃N′
A

〉
∝

∑
|NS|=N−NA

|N′
S|=N−N ′

A

√
(NS +NA)!√

NS!

√
(N′

S +N′
A)!√

N′
S!

⟨N′
S +N′

A,N
′
S|NS +NA,NS⟩ (60)

= δNA,N ′
A

∑
|NS|=N−NA

√
(NS +NA)!√

NS!

√
(NS +N′

A)!
√
NS!

⟨NS +N′
A|NS +NA⟩ (61)

= δNA,N′
A

(62)

Therefore the states |ϕNA
⟩ are mutually orthonormal and projector is:

P̂ =
∑

|NA|≤N−1

|ϕNA
⟩ ⟨ϕNA

| (63)

C. False Alarm Probability

PFA (64)

= Tr
[
P̂ ρabs

]
(65)

= Tr

 ∑
|NA|≤N−1

|ϕNA
⟩ ⟨ϕNA

|

(N +M − 1

M − 1

)−1 ∑
|NS|=N

∑
NB

pNB
|NS,NB⟩ ⟨NS,NB|

 (66)

=

(
N +M − 1

M − 1

)−1 ∑
|NA|≤N−1

∑
|NS|=N

∑
NB

pNB
|⟨NS,NB|ϕNA

⟩|2 (67)

=

(
N +M − 1

M − 1

)−1 ∑
|NA|≤N−1

∑
|NS|=N

∑
NB

pNB



∣∣∣∣∣∣∣⟨NS,NB|
1√
NA!

√(
N −NA +M − 1

N −NA

) ∑
|N′′

S |=N−NA

(N′′
S +NA)!

N′′
S!NA!

− 1
2 (

â†I

)NA

|ψN−NA
⟩

∣∣∣∣∣∣∣
2

(68)

=

(
N +M − 1

M − 1

)−1 ∑
|NA|≤N−1

∑
|NS|=N

∑
NB

pNB

NA!

 ∑
|N′′

S |=N−NA

(N′′
S +NA)!

N′′
S!NA!

−1 ∣∣∣∣∣∣⟨NS,NB|
(
â†I

)NA ∑
|N′

S|=N−NA

|N′
S,N

′
S⟩

∣∣∣∣∣∣
2

(69)

=

(
N +M − 1

M − 1

)−1 ∑
|NA|≤N−1

∑
|NS|=N

∑
NB

pNB

NA!

 ∑
|N′′

S |=N−NA

(N′′
S +NA)!

N′′
S!NA!

−1

∣∣∣∣∣∣
∑

|N′
S|=N−NA

√
(N′

S +NA)!√
N′

S!
⟨NS,NB|N′

S +NA,N
′
S⟩

∣∣∣∣∣∣
2

(70)

=

(
N +M − 1

M − 1

)−1 ∑
|NA|≤N−1

∑
|NS|=N

∑
|NB|=N−NA

pNB

NA!

 ∑
|N′′

S |=N−NA

(N′′
S +NA)!

N′′
S!NA!

−1 ∣∣∣∣∣
√

(NB +NA)!√
NB!

⟨NS|NB +NA⟩

∣∣∣∣∣
2

(71)

=

(
N +M − 1

M − 1

)−1 ∑
|NA|≤N−1

p̃(N−NA)

 ∑
|N′′

S |=N−NA

(N′′
S +NA)!

N′′
S!NA!

−1 ∑
|NB|=N−NA

(NB +NA)!

NA!NB!
(72)

=

(
N +M − 1

M − 1

)−1 N−1∑
NA=0

(
N −NA +M − 1

N −NA

)
p̃(N−NA) (73)

= p̃1
N

N +M − 1
+ p̃2

N(N − 1)

(N +M − 1)(N +M − 2)
+ ...+ p̃N

(
M +N − 1

N

)(−1)

(74)

D. Probability of Missed Detection

1− PMD = Tr
[
P̂ ρpres

]
(75)

= Tr

 ∑
|NA|≤N−1

|ϕNA
⟩ ⟨ϕNA

|

 ∑
|N′

A|≤N

∣∣∣ϕ̃N′
A

〉〈
ϕ̃N′

A

∣∣∣
 (76)

=
∑

|NA|≤N−1

∑
|N′

A|≤N

1〈
ϕ̃NA

∣∣∣ϕ̃NA

〉Tr [∣∣∣ϕ̃NA

〉〈
ϕ̃NA

∣∣∣ϕ̃N′
A

〉〈
ϕ̃N′

A

∣∣∣] (77)

=
∑

|NA|≤N−1

∑
|N′

A|≤N

∣∣∣〈ϕ̃NA

∣∣∣ϕ̃N′
A

〉∣∣∣ (78)

=
∑

|NA|≤N−1

∣∣∣〈ϕ̃NA

∣∣∣ϕ̃NA

〉∣∣∣ (79)

= 1−
∑

|NA|=N

∣∣∣〈ϕ̃NA

∣∣∣ϕ̃NA

〉∣∣∣ (80)

= 1−
∑

|NA|=N

ηN−N (1− η)N
(
N +M − 1

N

)−1 ∑
|NS|=N−N

(NS +NA)!

NS!NA!
(81)

= 1−
∑

|NA|=N

η0(1− η)N
(
N +M − 1

N

)−1
(0+NA)!

0!NA!
(82)

= 1− (1− η)N
(
N +M − 1

N

)−1 ∑
|NA|=N

1 (83)

= 1− (1− η)N (84)
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