A characterization of the existence of zeros for operators with Lipschitzian derivative and closed range

BIAGIO RICCERI

ABSTRACT. Let H be a real Hilbert space and $\Phi: H \rightarrow H$ be a C^{1} operator with Lipschitzian derivative and closed range. We prove that $\Phi^{-1}(0) \neq \emptyset$ if and only if, for each $\epsilon>0$, there exist a convex set $X \subset H$ and a convex function $\psi: X \rightarrow \mathbf{R}$ such that $\sup _{x \in X}\left(\|x\|^{2}+\psi(x)\right)-\inf _{x \in X}\left(\|x\|^{2}+\psi(x)\right)<\epsilon$ and $0 \in \overline{\operatorname{conv}}(\Phi(X))$.

2020 Mathematics Subject Classification. Primary 47J05.

Key words. Nonlinear operator, Lipschitzian derivative, minimax theorem.

The aim of this very short note is to establish the following result:
THEOREM 1. - Let H be a real Hilbert space, let $\Omega \subseteq H$ be an open set and let $\Phi: \Omega \rightarrow H$ be a C^{1} operator with Lipschitzian derivative.

Then, the following assertions are equivalent:
(a) $\inf _{x \in \Omega}\|\Phi(x)\|=0$;
(b) for every $\epsilon>0$, there exist a convex set $X \subset \Omega$ and a convex function $\psi: X \rightarrow \mathbf{R}$ such that

$$
\sup _{x \in X}\left(\|x\|^{2}+\psi(x)\right)-\inf _{x \in X}\left(\|x\|^{2}+\psi(x)\right)<\epsilon
$$

and

$$
0 \in \overline{\operatorname{conv}}(\Phi(X))
$$

More precisely, the key result of this note is Theorem 2 below. Theorem 1 then follows as a by-product of it.

THEOREM 2. - Let H be a real Hilbert space, let $\Omega \subseteq H$ be an open set and let $\Phi: \Omega \rightarrow H$ be a C^{1} operator such that Φ^{\prime} is Lipschitzian, with Lipschitz constant L. Moreover, assume that

$$
\delta:=\inf _{x \in \Omega}\|\Phi(x)\|>0
$$

Then, for each convex set $X \subset \Omega$ such that

$$
\sup _{x \in X}\left(\|x\|^{2}+\psi(x)\right)-\inf _{x \in X}\left(\|x\|^{2}+\psi(x)\right)<\frac{2 \delta}{L}
$$

for some convex function $\psi: X \rightarrow \mathbf{R}$, one has

$$
0 \notin \overline{\operatorname{conv}}(\Phi(X)) .
$$

PROOF. Fix any convex set $X \subset \Omega$ and any convex function $\psi: X \rightarrow \mathbf{R}$ satisfying

$$
\begin{equation*}
\sup _{x \in X}\left(\|x\|^{2}+\psi(x)\right)-\inf _{x \in X}\left(\|x\|^{2}+\psi(x)\right)<\frac{2 \delta}{L} \tag{1}
\end{equation*}
$$

Set

$$
Y=\{x \in H:\|x\| \leq 1\}
$$

and consider the functions $\varphi: X \rightarrow \mathbf{R}$ and $f, g: X \times Y \rightarrow \mathbf{R}$ defined by

$$
\begin{gathered}
\varphi(x)=\frac{L}{2}\left(\|x\|^{2}+\psi(x)\right), \\
f(x, y)=\langle\Phi(x), y\rangle
\end{gathered}
$$

and

$$
g(x, y)=f(x, y)+\varphi(x)
$$

for all $x \in X, y \in Y$. We claim that

$$
\begin{equation*}
\inf _{X} \sup _{Y} f-\sup _{Y} \inf _{X} f \leq \sup _{X} \varphi-\inf _{X} \varphi . \tag{2}
\end{equation*}
$$

Arguing by contradiction, assume that

$$
\inf _{X} \sup _{Y} f-\sup _{Y} \inf _{X} f>\sup _{X} \varphi-\inf _{X} \varphi .
$$

We then would have

$$
\begin{equation*}
\sup _{Y} \inf _{X} g \leq \sup _{Y} \inf _{X} f+\sup _{X} \varphi<\inf _{X} \sup _{Y} f+\inf _{X} \varphi \leq \inf _{X} \sup _{Y} g . \tag{3}
\end{equation*}
$$

For each $y \in Y$, the function $f(\cdot, y)$ is C^{1} and one has

$$
f_{x}^{\prime}(x, y)(u)=\left\langle\Phi^{\prime}(x)(u), y\right\rangle
$$

for all $x \in \Omega, u \in H$. Also, for each $v, w \in \Omega$, we have

$$
\begin{align*}
\left\|f_{x}^{\prime}(v, y)-f_{x}^{\prime}(w, y)\right\|= & \sup _{u \in Y}\left\|\left\langle\Phi^{\prime}(v)(u)-\Phi^{\prime}(w)(u), y\right\rangle \mid \leq \sup _{u \in Y}\right\| \Phi^{\prime}(v)(u)-\Phi^{\prime}(w)(u) \| \\
& =\left\|\Phi^{\prime}(v)-\Phi^{\prime}(w)\right\|_{\mathcal{L}(H)} \leq L\|v-w\| \tag{4}
\end{align*}
$$

In view of (4), for each $y \in Y$, the function $g(\cdot, y)$ is convex ([2], Corollary 42.7). But then, thanks to a standard minimax theorem ([1]), we would have

$$
\sup _{Y} \inf _{X} g=\inf _{X} \sup _{Y} g
$$

contradicting (3). So, (2) does hold. Notice that

$$
\inf _{X} \sup _{Y} f=\inf _{x \in X}\|\Phi(x)\|
$$

Therefore, from (2) we infer that

$$
\frac{L}{2}\left(\inf _{x \in X}\left(\|x\|^{2}+\psi(x)\right)-\sup _{x \in X}\left(\|x\|^{2}+\psi(x)\right)\right)+\inf _{x \in X}\|\Phi(x)\| \leq \sup _{y \in Y} \inf _{x \in X}\langle\Phi(x), y\rangle
$$

and hence, in view of (1),

$$
0<\sup _{y \in Y} \inf _{x \in X}\langle\Phi(x), y\rangle
$$

Fix $\gamma>0$ and $\tilde{y} \in Y$ so that

$$
\inf _{x \in X}\langle\Phi(x), \tilde{y}\rangle \geq \gamma
$$

Thus, if we set

$$
C=\{u \in H:\langle u, \tilde{y}\rangle \geq \gamma\}
$$

we have

$$
\overline{\operatorname{conv}}(\Phi(X)) \subset C
$$

while $0 \notin C$ and the proof is complete.
Proof of Theorem 1. The implication $(a) \rightarrow(b)$ is immediate. So, assume that (b) holds. We have to prove (a). Arguing by contradiction, suppose that $\inf _{x \in \Omega}\|\Phi(x)\|>0$. By assumption, there are a convex set $X \subset \Omega$ and a convex function $\psi: X \rightarrow \mathbf{R}$ such that

$$
\sup _{x \in X}\left(\|x\|^{2}+\psi(x)\right)-\inf _{x \in X}\left(\|x\|^{2}+\psi(x)\right)<2 \frac{\inf _{x \in \Omega}\|\Phi(x)\|}{L}
$$

and

$$
0 \in \overline{\operatorname{conv}}(\Phi(X))
$$

against Theorem 2.
REMARK 1. - Notice that, in general, Theorem 1 does not hold if Φ is only C^{1}. To see this, consider a C^{1} function $h: \mathbf{R} \rightarrow \mathbf{R}$ with the following property: there exist two sequences in $] 0,+\infty\left[\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}\right.$ such that $\lim _{n \rightarrow \infty} \alpha_{n}=+\infty, \lim _{n \rightarrow \infty}\left(\beta_{n}^{2}-\alpha_{n}^{2}\right)=0, \alpha_{n}<\beta_{n}, h\left(\alpha_{n}\right)=0, h\left(\beta_{n}\right)=-\pi$ for all $n \in \mathbf{N}$. Then, consider the function $\Phi: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by

$$
\Phi(x, y)=(\sin (h(x)), \cos (h(x)))
$$

for all $(x, y) \in \mathbf{R}^{2}$. So, Φ is C^{1} and $\inf _{(x, y) \in \mathbf{R}^{2}}\|\Phi(x, y)\|=1$. However, for each $\epsilon>0$, if n is large enough, we have $\beta_{n}^{2}-\alpha_{n}^{2}<\epsilon$ and $0 \in \operatorname{conv}\left(\Phi\left(\left[\alpha_{n}, \beta_{n}\right] \times\{0\}\right)\right)$.

REMARK 2. - We are not aware of known results close to Theorem 1 so that a proper comparison can be made.

Acknowledgements: The author has been supported by PRIN 2022BCFHN2 "Advanced theoretical aspects in PDEs and their applications", by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and by the Università degli Studi di Catania, PIACERI 2020-2022, Linea di intervento 2, Progetto MAFANE.

References

[1] M. SION On general minimax theorems, Pacific J. Math., 8 (1958), 171-176.
[2] E. ZEIDLER, Nonlinear functional analysis and its applications, vol. III, Springer-Verlag, 1985.

Department of Mathematics and Informatics
University of Catania
Viale A. Doria 6
95125 Catania, Italy
e-mail address: ricceri@dmi.unict.it

