A characterization of the existence of zeros for operators with Lipschitzian derivative and closed range

BIAGIO RICCERI

ABSTRACT. Let H be a real Hilbert space and $\Phi : H \to H$ be a C^1 operator with Lipschitzian derivative and closed range. We prove that $\Phi^{-1}(0) \neq \emptyset$ if and only if, for each $\epsilon > 0$, there exist a convex set $X \subset H$ and a convex function $\psi : X \to \mathbf{R}$ such that $\sup_{x \in X} (||x||^2 + \psi(x)) - \inf_{x \in X} (||x||^2 + \psi(x)) < \epsilon$ and $0 \in \overline{\operatorname{conv}}(\Phi(X))$.

2020 Mathematics Subject Classification. Primary 47J05.

Key words. Nonlinear operator, Lipschitzian derivative, minimax theorem.

The aim of this very short note is to establish the following result:

THEOREM 1. - Let H be a real Hilbert space, let $\Omega \subseteq H$ be an open set and let $\Phi : \Omega \to H$ be a C^1 operator with Lipschitzian derivative.

Then, the following assertions are equivalent:

(a) $\inf_{x \in \Omega} \|\Phi(x)\| = 0$;

(b) for every $\epsilon > 0$, there exist a convex set $X \subset \Omega$ and a convex function $\psi: X \to \mathbf{R}$ such that

$$\sup_{x \in X} (\|x\|^2 + \psi(x)) - \inf_{x \in X} (\|x\|^2 + \psi(x)) < \epsilon$$

and

$$0 \in \overline{\operatorname{conv}}(\Phi(X))$$
.

More precisely, the key result of this note is Theorem 2 below. Theorem 1 then follows as a by-product of it.

THEOREM 2. - Let H be a real Hilbert space, let $\Omega \subseteq H$ be an open set and let $\Phi : \Omega \to H$ be a C^1 operator such that Φ' is Lipschitzian, with Lipschitz constant L. Moreover, assume that

$$\delta := \inf_{x \in \Omega} \|\Phi(x)\| > 0 .$$

Then, for each convex set $X \subset \Omega$ such that

$$\sup_{x \in X} (\|x\|^2 + \psi(x)) - \inf_{x \in X} (\|x\|^2 + \psi(x)) < \frac{2\delta}{L}$$

for some convex function $\psi: X \to \mathbf{R}$, one has

$$0 \notin \overline{\operatorname{conv}}(\Phi(X))$$
.

PROOF. Fix any convex set $X \subset \Omega$ and any convex function $\psi: X \to \mathbf{R}$ satisfying

$$\sup_{x \in X} (\|x\|^2 + \psi(x)) - \inf_{x \in X} (\|x\|^2 + \psi(x)) < \frac{2\delta}{L} .$$
(1)

 Set

$$Y = \{x \in H : ||x|| \le 1\}$$

and consider the functions $\varphi:X\to {\bf R}$ and $f,g:X\times Y\to {\bf R}$ defined by

$$\varphi(x) = \frac{L}{2}(||x||^2 + \psi(x))$$
$$f(x, y) = \langle \Phi(x), y \rangle$$

and

$$g(x,y) = f(x,y) + \varphi(x)$$

for all $x \in X$, $y \in Y$. We claim that

$$\inf_{X} \sup_{Y} f - \sup_{Y} \inf_{X} f \le \sup_{X} \varphi - \inf_{X} \varphi .$$
⁽²⁾

Arguing by contradiction, assume that

$$\inf_X \sup_Y f - \sup_Y \inf_X f > \sup_X \varphi - \inf_X \varphi$$

We then would have

$$\sup_{Y} \inf_{X} g \le \sup_{Y} \inf_{X} f + \sup_{X} \varphi < \inf_{X} \sup_{Y} f + \inf_{X} \varphi \le \inf_{X} \sup_{Y} g .$$
(3)

,

For each $y \in Y$, the function $f(\cdot, y)$ is C^1 and one has

$$f'_x(x,y)(u) = \langle \Phi'(x)(u), y \rangle$$

for all $x \in \Omega$, $u \in H$. Also, for each $v, w \in \Omega$, we have

$$\|f'_{x}(v,y) - f'_{x}(w,y)\| = \sup_{u \in Y} \|\langle \Phi'(v)(u) - \Phi'(w)(u), y \rangle\| \le \sup_{u \in Y} \|\Phi'(v)(u) - \Phi'(w)(u)\|$$
$$= \|\Phi'(v) - \Phi'(w)\|_{\mathcal{L}(H)} \le L \|v - w\| .$$
(4)

In view of (4), for each $y \in Y$, the function $g(\cdot, y)$ is convex ([2], Corollary 42.7). But then, thanks to a standard minimax theorem ([1]), we would have

$$\sup_{Y} \inf_{X} g = \inf_{X} \sup_{Y} g$$

contradicting (3). So, (2) does hold. Notice that

$$\inf_X \sup_Y f = \inf_{x \in X} \|\Phi(x)\| .$$

Therefore, from (2) we infer that

$$\frac{L}{2} \left(\inf_{x \in X} (\|x\|^2 + \psi(x)) - \sup_{x \in X} (\|x\|^2 + \psi(x)) \right) + \inf_{x \in X} \|\Phi(x)\| \le \sup_{y \in Y} \inf_{x \in X} \langle \Phi(x), y \rangle$$

and hence, in view of (1),

$$0 < \sup_{y \in Y} \inf_{x \in X} \langle \Phi(x), y \rangle \ .$$

Fix $\gamma > 0$ and $\tilde{y} \in Y$ so that

 $\inf_{x\in X} \langle \Phi(x), \tilde{y} \rangle \geq \gamma \ .$

Thus, if we set

$$C = \{ u \in H : \langle u, \tilde{y} \rangle \ge \gamma \}$$

we have

 $\overline{\operatorname{conv}}(\Phi(X)) \subset C$

while $0 \notin C$ and the proof is complete.

Proof of Theorem 1. The implication $(a) \to (b)$ is immediate. So, assume that (b) holds. We have to prove (a). Arguing by contradiction, suppose that $\inf_{x \in \Omega} \|\Phi(x)\| > 0$. By assumption, there are a convex set $X \subset \Omega$ and a convex function $\psi: X \to \mathbf{R}$ such that

$$\sup_{x \in X} (\|x\|^2 + \psi(x)) - \inf_{x \in X} (\|x\|^2 + \psi(x)) < 2 \frac{\inf_{x \in \Omega} \|\Phi(x)\|}{L}$$

and

 $0 \in \overline{\operatorname{conv}}(\Phi(X))$,

against Theorem 2.

REMARK 1. - Notice that, in general, Theorem 1 does not hold if Φ is only C^1 . To see this, consider a C^1 function $h: \mathbf{R} \to \mathbf{R}$ with the following property: there exist two sequences in $]0, +\infty[\{\alpha_n\}, \{\beta_n\}\}$ such that $\lim_{n\to\infty} \alpha_n = +\infty$, $\lim_{n\to\infty} (\beta_n^2 - \alpha_n^2) = 0$, $\alpha_n < \beta_n$, $h(\alpha_n) = 0$, $h(\beta_n) = -\pi$ for all $n \in \mathbf{N}$. Then, consider the function $\Phi: \mathbf{R}^2 \to \mathbf{R}^2$ defined by

$$\Phi(x, y) = (\sin(h(x)), \cos(h(x)))$$

for all $(x, y) \in \mathbf{R}^2$. So, Φ is C^1 and $\inf_{(x,y)\in\mathbf{R}^2} \|\Phi(x, y)\| = 1$. However, for each $\epsilon > 0$, if n is large enough, we have $\beta_n^2 - \alpha_n^2 < \epsilon$ and $0 \in \operatorname{conv}(\Phi([\alpha_n, \beta_n] \times \{0\}))$.

REMARK 2. - We are not aware of known results close to Theorem 1 so that a proper comparison can be made.

Acknowledgements: The author has been supported by PRIN 2022BCFHN2 "Advanced theoretical aspects in PDEs and their applications", by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and by the Università degli Studi di Catania, PIACERI 2020-2022, Linea di intervento 2, Progetto MAFANE.

Δ

 \triangle

References

- [1] M. SION On general minimax theorems, Pacific J. Math., 8 (1958), 171-176.
- [2] E. ZEIDLER, Nonlinear functional analysis and its applications, vol. III, Springer-Verlag, 1985.

Department of Mathematics and Informatics University of Catania Viale A. Doria 6 95125 Catania, Italy *e-mail address*: ricceri@dmi.unict.it