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We show that when a honeycomb antiferromagnetic insulator (AFMI) is sandwiched between two
transition metal dichalcogenide (TMD) monolayers in a commensurate way, magnons in the AFMI
can mediate an interaction between electrons in the TMDs that gives rise to interlayer Cooper
pairing. This interaction opens coexisting extended s-wave and chiral p-wave superconducting gaps
in the energy spectrum of the coupled system, and the latter give rise to topological Majorana edge
modes.

Introduction.— The last decade has seen a prolifera-
tion in the number and variety of few-layer van der Waals
heterostructures, which provide new grounds to study
exotic many-body phases and their applications in quan-
tum technologies [1–3]. Transition metal dichalcogenides
(TMDs) are a particularly interesting class of such mate-
rials due to the interplay of their spin and valley degrees
of freedom [4]. This interplay can give rise to strongly
correlated phases with charge density wave, magnetic,
and excitonic orders [5–16]. Furthermore, superconduc-
tivity has been observed in several TMD monolayers at
large electron doping [17–23], and topological supercon-
ductivity has been predicted [24–31].

In multilayer systems, the additional layer degree of
freedom enables further instabilities [32, 33]. An exotic
possibility is interlayer superconductivity, where Cooper
pairs are formed from electrons in different layers [34–
38]. This phenomenon could be exploited for an effi-
cient Cooper-pair-splitting device [39–43]. Current de-
vices typically filter the individual electrons of Cooper
pairs through spin-polarized quantum dots [44, 45]. How-
ever, this process is limited by the inability to fully spin-
polarize the dots. With interlayer pairing, this issue
could be circumvented by filtration in real-space.

One mechanism for superconductivity in heterostruc-
tures is spin fluctuations in adjacent magnetic insula-
tors [46–55]. Furthermore, the magnons of non-collinear
magnetic textures can mediate topological superconduc-
tivity [56, 57]. Heterostructures containing magnets cou-
pled to TMDs already provide fertile ground for new
physics [58–61]. In this paper, we uncover a mechanism
for interlayer superconductivity in such a heterostruc-
ture: two TMD monolayers separated by an antiferro-
magnetic insulator (AFMI), see Fig. 1. We show that
magnons in the AFMI induce superconductivity with co-
existing chiral p-wave and s-wave pairing. The topologi-
cal nature of this state results in Majorana modes delo-
calized over the edges of the TMD bilayer.

Facilitating interlayer pairing.— Interlayer Cooper
pairing requires Fermi surfaces engineered with a
favourable phase space for the appropriate pairing chan-
nel, as well as interactions inducing this pairing. We
focus exclusively on the case of zero-total-momentum
pairs where the spin index σ (quantization axis perpen-
dicular to the layer planes) and layer index l remain
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FIG. 1. (a-b) Model heterostructure consisting of an AFMI
sandwiched between two TMDs (labelled as A and B). The
electrons of TMD A (B) are coupled to the localized spins
on sublattice A (B) of the AFMI. The TMDs are character-
ized by strong Ising spin-orbit coupling that gives rise to a
spin- and direction-dependent hopping tσij = t0 + iσζijt with
sign determined by ζij as shown in the panel (c). (d) The
TMD energy spectrum with interlayer exchange interaction
J̄ = 55 meV. (e) The bare (black) and renormalized (yellow
and purple) magnon spectra for nearest neighbour interac-
tions.

good quantum numbers [62]. To disfavor competing in-
tralayer Bardeen-Cooper-Schrieffer (BCS) pairs, the nor-
mal state should have broken time-reversal symmetry T .
In terms of the single-particle spectra ϵklσ, this implies
ϵklσ ̸= ϵ−klσ̄. To favour interlayer pairing, the sys-
tem should also preserve one out of two possible dis-
crete interlayer symmetries, ϵklσ = ϵ−k,l̄,±σ, where the
plus sign in the subscript corresponds to preserved inver-
sion symmetry I, and the minus sign to preserved sym-
metry T ⊗ σh, where σh represents mirror reflection in
the layer plane. Since low-dimensional systems have re-
duced Coulomb screening, we expect the density-density
interaction channel to be repulsive and look for uncon-
ventional superconductivity with pair scattering between
different Fermi surfaces. Since this necessarily involves
spin-flip scattering, it suggests magnon-mediated pair-
ing [46–53, 56, 57]. For the inversion symmetric case, the
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simplest pairing interaction does not conserve angular
momentum, leaving preservation of T ⊗ σh as the most
viable option.

Group-VI TMD monolayers form hexagonal lattices
with D3h point-group symmetry [63]. They have bro-
ken in-plane-inversion symmetry, but preserve both T
and σh. This results in Ising spin-orbit coupling, such
that the valence-band maxima occur with opposite out-
of-plane spin at the two inequivalent valleys K and K ′.
To break T symmetry in such a bilayer system while
preserving T ⊗σh, we need opposite Zeeman fields in the
two layers. In addition, we need magnons to provide a
spin-flip pairing mechanism, and an insulating barrier to
prevent layer hybridization. All three can be provided by
an intermediate hexagonal Néel antiferromagnetic insu-
lator.

Heterostructure model.— We consider the heterostruc-
ture in Fig. 1, consisting of a honeycomb lattice anti-
ferromagnetic insulator sandwiched between two TMD
layers at low hole doping. The lattice of the AFMI can
be partitioned into two triangular sublattices A and B.
The low-energy valence bands of TMDs have orbital char-
acters dominated by the dxy and dx2−y2 orbitals of the
transition-metal atoms, which form a triangular lattice.
In our structure, the triangular lattice of the top (bot-
tom) TMD is commensurate with and on top of (below)
the sublattice composed of A (B) sites of the AFMI. As-
suming a nearest neighbour exchange interaction between
the itinerant electron spins in the TMDs and the local
spins of the AFMI, we model this system by the Hamil-
tonian H = HTMD +HAFMI +Hint, where

HTMD =
∑
lσ

∑
i,j∈l

[tσij − δij(µ− ϵ0)]c
†
ilσcjlσ, (1)

HAFMI =
∑
mα

∑
⟨i,j⟩m

Jα
mS

α
i S

α
j −K

∑
i

(Sz
i )

2, (2)

Hint = J̄
∑
lσσ′

∑
i∈l

Si · σσσ′
c†ilσcilσ′ . (3)

Here, c†ilσ (cilσ) creates (annihilates) an electron with
spin σ on the hexagonal lattice site i of layer l, and Sα

i

denotes the α-component of the spin-S operator at site i
in the AFMI, while σ is a vector of Pauli matrices. Here,
⟨i, j⟩m in the AFMI Hamiltonian denotes the sum over
pairs of mth nearest neighbour sites (i, j) on the honey-
comb lattice. From the stacking geometry, the index i
also correspond to sites of sublattice l ∈ {A,B} of the
AFMI, and we use the single index i to refer to both. We
assume that the hopping amplitudes tσij are non-zero only
for nearest neighbour sites i, j on the triangular lattice
(next-nearest neighbour on the hexagonal lattice). The
symmetries of the TMDs constrain the hopping elements
to the form tσij = t0 + iσζijt, with sign ζij = ±1 deter-
mined by the hopping direction as shown in Fig. 1(c).
The hopping amplitudes t0 and t can be fit to ab-initio
results for a given TMD material, as discussed in the
Supplemental Material (SM) [64]. For MoSe2, we obtain

t0 = −0.21 eV and t = −0.28 eV, which we use through-
out the paper. Furthermore, µ is the chemical poten-
tial, ϵ0 = −3(|t0|+

√
3|t|) [65], and Jα

m are the exchange
coupling strengths, where we assume Jx

m = Jy
m ≡ Jm

throughout. Finally, K is the easy axis anisotropy and J̄
the s-d exchange coupling.
For simplicity we consider spin-spin interactions up to

nearest neighbours in the AFMI Heisenberg Hamiltonian.
Motivated by MnPSe3 [66–68], we use J1 = Jz

1 = 0.9meV
and S = 5/2. We further set the easy axis anisotropy to
K = 0.14J1, although it could also be larger due to the
strong spin-orbit coupling in the heterostructure. Apply-
ing a linearized Holstein-Primakoff transformation, we
write the magnon Hamiltonian in terms of the sublattice
Fourier modes aq and bq:

HAFMI =
∑
q

(
a†q b−q

)(Cq Dq

D∗
q Cq

)(
aq
b†−q

)
, (4)

where Cq ≡ 3Jz
1S + 2KS and Dq ≡ J1Sγq. Here,

γq =
∑

j e
iq·δj , and δj are the nearest neighbour vectors

from the A to the B sublattice of the AFMI. The magnon
spectrum is obtained by directly diagonalizing HAFMI,
however, it also gets renormalized through the coupling
to the electronic system. Incorporating this through the
static polarization Πσ

q (see SM [64]), the effective fre-
quency for a magnon of spin σ is

ωσ
q =

√
(Cq + 2SJ̄2Πσ

q)
2 − |Dq|2, (5)

where we set ℏ = 1. The bare (Πσ
q = 0) and renormalized

spectra are shown in Fig 1(e).
Effective interaction.— Superconductivity can arise

through a magnon-mediated effective interaction due to
the coupling term in Eq. (3). Here, we consider the spin-
wave expansion up to first order in the magnon operators,
and write Hint = H0

int +H1
int. The zeroth order term de-

scribes the Zeeman splitting experienced by the electrons
due to the antiferromagnet and is included directly in the
electronic Hamiltonian

HTMD +H0
int =

∑
klσ

ξklσc
†
klσcklσ, (6)

where ξklσ = ϵklσ − µ and the spectrum is

ϵklσ = ϵ0 + 2
∑
n

[t0 cos(k · bn) + tσ sin(k · bn)] + lσJ̄S.

(7)

Here, {bn}3n=1 are the three triangular lattice nearest
neighbour vectors in Fig. 1(c), and l = +/− for layer
A/B. The spectrum is illustrated in Fig. 1(b) and gives
rise to the schematic Fermi surfaces labelled by l, σ in
Fig. 2(a).
The first order term takes the form

H1
int =

√
2SJ̄√
N

∑
l

∑
k,q

M lσ
q c†k+q,lσcklσ̄, (8)
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FIG. 2. (a) Schematic Fermi surfaces for the TMDs. The
magnon-mediated pair scattering processes are indicated with
arrows for the scattering of a Cooper pair from the outer to
the inner Fermi surfaces. (b) Pair scattering process from
the inner to the outer Fermi surfaces. (c) Pair scattering
potential in the complex plane. The curves correspond to
scattering from fixed incoming momentum p′ specified by θ′

to outgoing momentum p specified by θ for the outer-to-inner
(yellow; θ′ = 0) and inner-to-outer (purple; θ′ = π). The
latter encloses the origin, while the former does not. This
is the reason for the coexisting topologically trivial and non-
trivial gaps.

where we have introduced the magnon operators M lσ
q

given byMA↓
q = (MA↑

−q )
† = aq andMB↑

q = (MB↓
−q )

† = bq,
and N is the number of unit cells.

The magnons can now be integrated out through a
Schrieffer-Wolff transformation, to give rise to an effec-
tive interaction Hamiltonian. Due to the Fermi surface
splitting, on-shell superconducting pairing can only form
between particles on the Fermi surfaces (A ↑, B ↓) and
on (A ↓, B ↑). Furthermore, since the magnons carry a
spin, the scattering processes mediating the pairing must
be of inter-valley type, as also shown in Fig. 2(a-b). The
relevant BCS reduced Hamiltonian for the expected su-
perconducting pairing is therefore of the form

HBCS =
1

N

∑
pp′σ

Wσ
pp′c

†
p′Aσ̄c

†
−p′Bσc−pBσ̄cpAσ, (9)

with pair scattering potential

Wσ
pp′ = −2SJ̄2 Dp′−p

(ξpAσ − ξp′Aσ̄)2 − (ωσ̄
p′−p)

2
. (10)

Notably, it is proportional to the sublattice hybridization
Dp′−p in Eq. (4). This is because the pair-scattering pro-
cess occurs between electrons in different layers. Since
the two layers are coupled to different sublattices of the
antiferromagnet, the magnons mediating the interaction
propagate from one sublattice to the other, so that the
corresponding propagator is proportional to Dq, which
is a complex number. Writing q = ±K + κ and ex-
panding to linear order in the deviations κ, it takes the
form D±K+κ ∝ (κx ± iκy). Thus, its phase winds when
the momentum q is moved around the point K. The

effect of this on the pair scattering potential can be ob-
served by plotting Wσ

p′p in the complex plane, as shown

in Fig. 2(c). The pair-scattering from the inner to outer
Fermi surfaces results in a phase winding of the interac-
tion potential, while scattering from the outer to inner
Fermi surfaces does not. As we will see, this gives rise to
two coexisting gap components: one topologically trivial,
and one non-trivial.
Superconductivity.— The gap equation can be derived

by performing a standard mean-field decoupling of the
BCS reduced Hamiltonian. Introducing the supercon-
ducting gap function

∆Aσ
p ≡ 1

N

∑
p′

W σ̄
p′p⟨c−p′Bσcp′Aσ̄⟩, (11)

we obtain(
∆A↑

p

∆A↓
p

)
= − 1

N

∑
p′

(
0 W ↓

p′pχ
A↓
p′

W ↑
p′pχ

A↑
p′ 0

)(
∆A↑

p′

∆A↓
p′

)
,

(12)

with susceptibilities χlσ
p = tanh(βElσ

p /2)/2E
lσ
p and ener-

gies Elσ
p =

√
ξ2plσ + |∆lσ

p |2. As expected from the rele-

vant scattering processes, the gap equation is off-diagonal
in the pairing amplitudes on the inner and outer Fermi
surfaces. While the above gap equations determine ∆Aσ

p ,

the gap function ∆Bσ
p on Fermi surface Bσ is obtained

from the symmetry relation ∆lσ
p = −∆l̄σ̄

−p. Due to the
suppression of the pairing potential for momenta far away
from the Fermi surface, we may restrict our attention to

an energy range ωD ≡ ω↓
K = ω↑

−K around the Fermi
level. By integrating out the perpendicular momentum,
the gap equation can then be reduced to a gap equation
on the Fermi surface (see SM [64]).
Consider first the limit of small hole doping, resulting

in small circular Fermi surfaces characterized by Fermi
momenta kAσ

F . At the critical temperature, the gap equa-
tion can be linearized, and utilizing the approximate form
of D±K+κ, we obtain

λ

(
∆A↑(θ)
∆A↓(θ)

)
= − v

kF

∫
dθ′

2π
M(θ, θ′)

(
∆A↑(θ′)
∆A↓(θ′)

)
, (13)

where the Fermi surfaces have been parametrized by an-
gle θ, see Fig. 2. The effective pairing potential strength
is

v =
3

2
S2(kFa)νFa

2 J̄
2J1
ω2
D

, (14)

where kF ≡ 1
2 (k

A↑
F +kA↓

F ) is the average Fermi wavenum-
ber and νF the density of states per spin at the Fermi
level for a single TMD. Furthermore, M(θ, θ′) is the ma-
trix

M(θ, θ′) =

(
0 kA↑

F e−iθ − kA↓
F e−iθ′

kA↑
F eiθ

′ − kA↓
F eiθ 0

)
.

(15)
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FIG. 3. (a) Absolute value of the gap amplitudes determined
from the gap equation in the limit of small hole doping. (b)
Critical temperature Tc as a function of interlayer exchange
coupling obtained from the gap equation for varying biaxial
strain (modelled by J1 = ϵJ × 0.9 meV). (c) ∆lσ

p on the four
Fermi surfaces, as determined from the gap equation (Eq.
(12)) on the Fermi surface at T = 0. The height indicates the
magnitude, and the color indicates the phase.

The above gap equation is an eigenvalue problem for
the effective coupling strength λ, which is related to

the critical temperature Tc through λ−1 = log
(

2eγωD

πkBTc

)
,

where γ is the Euler-Mascheroni constant. The an-
gular dependence of M(θ, θ′) fixes the angular depen-
dence of the gap functions, which can be decomposed as

∆A↑(θ) = ∆A↑
0 +∆A↑

−1e
−iθ and ∆A↓(θ) = ∆A↓

0 +∆A↓
+1e

+iθ.
Inserting the ansatz, the gap equation splits into two

separate pairs of equations, one for (∆A↑
−1,∆

A↓
0 ), and

one for (∆A↑
0 ,∆A↓

+1). The leading instability occurs in
the channel with the largest critical temperature, as ob-

tained from the largest eigenvalue λ = vkA↑
F /kF , where

we assumed kA↑
F > kA↓

F . The order parameter takes the

form ∆ = (∆A↑
−1e

−iθ,∆A↓
0 )T . Since the two pairs of gap

components mutually suppress each other, the other pair

(∆A↑
0 ,∆A↓

+1) remains zero all the way down to zero tem-
perature. This is confirmed by the numerical solution
of the gap equation at small hole doping, as shown in
Fig. 3(a).

We also solve the gap equation for larger doping, where
the Fermi surfaces have trigonal warping. The resulting
critical temperature is shown in Fig. 3(b) for exchange
parameters motivated by MnPSe3. Biaxial strain can re-
duce the intralayer exchange interaction in the magnets
significantly [69, 70], and we incorporate this by reduc-
ing all intralayer exchange parameters by a factor ϵJ .
This enhances the critical temperature, as also shown in
the figure. The gap profile on the Fermi surface at zero
temperature is shown in Fig. 3(c). As expected from
the solution in the limit of small hole doping, the order

,

,
,

,

FIG. 4. Low-energy eigenstates in a ribbon geometry with
Ny = 105 sites and periodic boundary conditions in the x-
direction. The eigenstates are composed of electrons from
band (l, σ) and holes from band (l̄, σ̄). Two of the four gap
components have chiral p-wave character, yielding two topo-
logical sectors. Each of these sectors hosts two Majorana edge
modes (one on each edge). The shaded regions indicate the
projection of the bulk band. The inset shows the projection
of the Brillouin zone down on the kx-axis. We used chemical
potential µ = −0.3 eV and average gap magnitude 0.2 meV
on the Fermi surface.

parameters ∆A↑
p and ∆B↓

p have chiral p-wave character,

while ∆A↓
p and ∆B↑

p have s-wave character. In addition,
the gap develops amplitude modulations for non-circular
Fermi surfaces [71].
Topological edge states.— To understand the topol-

ogy of the system, we now consider the Bogoliubov-de
Gennes (BdG) Hamiltonian with superconducting s-wave
and chiral p-wave gap functions. It takes the block diag-
onal form

H =
1

2

∑
plσ

ψ†
plσ

(
ξplσ ∆lσ

p

∆lσ∗
p −ξ−pl̄σ̄

)
ψplσ, (16)

where ψplσ =
(
cplσ, c

†
−pl̄σ̄

)T
. Two blocks have a gap

with extended s-wave character, while two blocks have
a gap with chiral p-wave character. Calculating their
Chern numbers [64], we find two topologically trivial
blocks with Chern number 0, and two non-trivial blocks
with Chern number +1. From the bulk boundary corre-
spondence, we therefore expect topological edge modes
in a finite geometry. To check this, we compute the BdG
spectrum on a ribbon geometry (see SM [64]). We ob-
tain the result in Fig. 4, showing edge states crossing the
bulk bandgap for the topological p-wave blocks. These
are chiral Majorana edge modes, and they should also oc-
cur in vortices [72]. We also note that a domain wall in
the antiferromagnet would yield regions of pairing with
opposite chirality, and therefore confine two Majorana
edge modes which can transport charge [73].
Discussion.— The critical temperature is determined

by the effective coupling strength λ, which depends on
model parameters through Eq. (14). This guides the
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search for materials to realize the proposed phenom-
ena [74–76]. In particular, the magnon frequency of the
pair scattering processes should be small. The interlayer
exchange interaction J̄ should also be large. There is a
growing list of heterostructures where this is the case [77–
90]. For instance, graphene deposited on antiferromag-
netic CrSe exhibits an induced splitting of 134meV [86].
Enormous proximity induced spin-splitting can also be
achieved in TMDs [79, 87], particularly when deposited
on EuS and EuO (∼300meV) [80, 81]. Furthermore, J̄
can be boosted by hydrostatic pressure [91, 92]. These
examples show that reasonably large values of Tc should
be accessible.

There are several potential material candidates for our
structure, such as the experimentally studied MoSe2 cou-
pled to the planar AFMI MnPSe3 [93] or the very simi-
lar MnPS3. These magnets exhibit a soft magnon spec-
trum, with excitation energy around 10meV at the K-
point [66, 67]. The lattice spacing of the former is close

to double that of MoSe2 [94], with a lattice mismatch
of only 2%. Since the emerging Moiré scale is large,
one can expect puddles with topological interlayer pair-
ing surrounded by normal regions. An alternative which
does not depend on lattice matching is the layered A-
type AFMI MnBi2Te4 [75, 95]. It consists of alternating
ferromagnetic layers whose natural stacking orientation
ensures that a bilayer exactly maps onto our monolayer
AFMI model. The magnon spectrum has a maximum
of only 3meV [68, 96–98], yielding critical temperatures
similar to those obtained with MnPSe3 [64]. This demon-
strates that several heterostructures are promising can-
didates to host topological interlayer superconductivity.
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This supplemental material contains a discussion of the electron spectrum (Sec. S1), the magnon spectrum and
magnon renormalization (Sec. S2), the gap equation on the Fermi surface (Sec. S3), its analytical solution in the limit
of small hole doping (Sec. S4), numerical results (Sec. S5), and topological edge states (Sec. S6).

S1. ELECTRON SPECTRUM

Lightly hole-doped monolayer TMDs have two spin-valley locked bands close to the Fermi surface, and can therefore
be described by a two-band tight-binding model. We consider only nearest neighbour hopping terms. The symmetries
of the TMDs restrict the allowed hopping terms. TMDs have broken in-plane inversion symmetry but preserve mirror
symmetry through the layer plane. The C3 symmetry of lattice ensures isotropic hopping amplitudes. Finally, the
TMDs preserve time-reversal symmetry. Together, this implies that the nearest neighbour hopping model is of the
form given in the main text, in terms of two hopping parameters t0 and t.
These parameters can be set by comparing the low-energy spectrum obtained from the single-orbital model in the

main paper to the more complicated three-orbital model in Ref. [63]. At low hole-doping, we may expand around the
points K = ( 4π3a , 0) and K ′ = −K. With k = K + κ(cos θ, sin θ), the expansion of the spectrum (Eq. (7) in the main
text) is

ϵklσ − lσJ̄S =
3

4
(t0 +

√
3σt)(κa)2 − 1

8
(
√
3t0 − σt) cos(3θ)(κa)3 +O(κ4). (S17)

Similarly expanding the spectrum of the three-orbital model for MoSe2 [63] around K gives

E↑/(1 eV) ≈ const− 0.52(κa)2 + 0.0088 cos(3θ)(κa)3. (S18a)

Comparing the two expansions, we can extract the parameters t0 = −0.21 eV and t = −0.28 eV for MoSe2. The
corresponding density of states is νF = −[3π(t0 +

√
3t)a2]−1.

S2. MAGNON SPECTRUM

The AFMI Hamiltonian is given in Eq. (4) of the main text, where we assume Jx
m = Jy

m ≡ Jxy
m ≡ Jm. Through a

standard Holstein-Primakoff transformation and linear spin wave theory up to quadratic order in magnon operators,
we then obtain the AFMI Hamiltonian

HAFMI =
∑
q

[
Cq(a

†
qaq + b†qbq) + (D∗

qaqb−q +Dqa
†
qb

†
−q)
]
, (S19)

where the coefficients Cq and Dq are in general (i.e. without assuming finite range interactions Jα
m) given by

Cq =
∑
m

∑
j

θmJmS cos(q · δmj ) +
∑
m

(−1)θmzmJ
z
mS + 2KS, (S20a)

Dq =
∑
m

∑
j

(1− θm)JmSe
iq·δm

j . (S20b)

Here zm is the number of m-th nearest neighbours on the honeycomb lattice, and δmj are m-th nearest neighbour
vectors labelled by j ∈ {1, . . . , zm} from a lattice site on sublattice A to a lattice site on sublattice A or B (depending

on m). For the nearest neighbours (m = 1), they are given by {δ1j }3j=1 = a√
3
{(

√
3
2 ,

1
2 ), (−

√
3
2 ,

1
2 ), (0,−1)}, where a

is the next-to-nearest neighbour distance on the honeycomb lattice, i.e. the lattice constant of the triangular Bravais
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TABLE S1. Exchange parameters for candidate magnets MnPSe3 [68] and MnBi2Te4 [96] used to calculate the critical tem-
perature in the main paper. Biaxial strain is modelled by a multiplicative factor ϵJ reducing all intralayer exchange coupling
strengths, i.e. J1 for MnPSe3 [69] and (J2, J5, J6) for MnBi2Te4 [70].

Magnet S K (meV) J1 (meV) J2 (meV) J3 (meV) J4 (meV) J5 (meV) J6 (meV)
MnPSe3 (ϵJ = 1.0) 5/2 0.045 0.9
MnPSe3 (ϵJ = 0.7) 5/2 0.045 0.63
MnPSe3 (ϵJ = 0.4) 5/2 0.045 0.36
MnBi2Te4 (ϵJ = 1.0) 5/2 0.04 0.022 -0.12 0 0 0.0332 -0.0092
MnBi2Te4 (ϵJ = 0.7) 5/2 0.04 0.022 -0.084 0 0 0.02324 -0.00644
MnBi2Te4 (ϵJ = 0.3) 5/2 0.04 0.022 -0.036 0 0 0.00996 -0.00276

lattice. The prefactor θm is defined such that θm = 1 when the mth nearest neighbours are on the same sublattice,
and θm = 0 otherwise. The above result is in fact generic for the AFMI magnon Hamiltonian on any bipartite lattice.
The bare magnon spectrum ωq can now be obtained through a standard Bogoliubov transformation, and the result is

ωq =
√
C2

q − |Dq|2. (S21)

Two antiferromagnetic materials described by a spin Hamiltonian of the form given in the paper are MnPSe3 [68, 93]
and a bilayer of the layered A-type AFM MnBi2Te4 [67, 96]. The exchange and anistropy parameters utilized to
calculate the critical temperature for these materials are given in Table S1, where we further assume Jz

m = Jm. As
discussed in the main paper, biaxial strain can reduce the in-plane exchange coupling constants significantly. We
include this effect by reducing all in-plane exchange coupling strengths with a factor ϵJ , as also shown in the table.
For the planar magnet MnPSe3 [69], this amounts to reducing all exchange coupling strengths by ϵJ . For the layered
magnet MnBi2Te4 [70], it means that only exchange couplings between spins on the same sublattice (i.e. within the
same layer) are reduced.

The back-action of the electrons on the magnons can be included through magnon renormalization, as follows. We

introduce the magnon spinors ϕq↓ =
(
aq, b

†
−q

)T
and ϕq↑ =

(
a†−q, bq

)T
. The operators in the spinor ϕqσ carry spin

σ, and since spin along the quantization axis is conserved in our model, the magnon propagator is block diagonal in
these operators. We therefore define the Matsubara magnon propagator

Dσ(q, iνm) = −
∫ β

0

dτ eiνmτ ⟨T ϕqσ(τ)ϕ†qσ(0)⟩. (S22)

In the absence of coupling to the electronic system, this gives bare magnon propagator

Dσ
0 (q, iνm) =

1

(iνm)2 − ω2
q

(
iσνm + Cq −Dq

−D∗
q −iσνm + Cq

)
. (S23)

In the main text, we give the effective pairing potential in Eq. (10), as obtained by deriving the effective interaction
through a Schrieffer-Wolff transformation. It can also be obtained directly from the magnon propagator through

Wσ
pp′ = V 2Dσ̄;AB(p′ − p, iνm → ξp′Aσ̄ − ξpAσ), (S24)

where V =
√
2SJ̄ . Inserting the off-diagonal element of the bare propagator from Eq. (S23) for D in Eq. (S24) clearly

gives the result in Eq. (10) of the main text in the absence of coupling to the electronic system. However, the above
relation is more general, and magnon renormalization can be included by dressing the bare propagator through RPA
resummation of electron-hole bubbles in the TMDs to obtain D. We therefore calculate the polarization

Πlσ̄(q, iνm) =
1

N

∑
k

nF (ξklσ)− nF (ξk+q,lσ̄)

iνm + ξklσ − ξk+q,lσ̄
, (S25)

where nF is the Fermi distribution function. Exploiting the symmetry relation ξklσ = ξ−kl̄σ̄, one may show that

Πlσ(q, iνm) = Πl̄σ(q,−iνm). For the static polarization Πlσ
q ≡ Πlσ(q, 0), this means Πσ

q ≡ Πlσ
q = Πl̄σ

q . The Dyson

equation (Dσ)−1 = (Dσ
0 )

−1 − V 2Πσ gives

Dσ(q, iνm) =
1

(iνm)2 − (ωσ
q )

2

(
iσνm + Cq + V 2Πσ

q −Dq

−D∗
q −iσνm + Cq + V 2Πσ

q

)
, (S26)
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with renormalized spectrum ωσ
q = [(Cq + V 2Πσ

q)
2 − |Dq|2]1/2.

For scattering momenta close to q = 0 and q = ±K, the polarization can be related to the standard Lindhard func-
tion by assuming that the electron spectrum is parabolic and that δz ≡ J̄S is small compared to the electronic energy
scale. For processes with small momentum q, the polarization is small, while for intervalley scattering momentum
q = σK + δq, the polarization is

Πσ̄(q = σK + δq, 0) ≈ −νFAuc

1−Θ(|δq| − 2kF )

√
1−

(
2kF
|δq|

)2
 = −νFAuc, (S27)

where Auc =
√
3a2/2 is the real space unit cell area.

S3. GAP EQUATION ON THE FERMI SURFACE

The gap equation is given in Eq. (12) of the main paper. From the interaction potential, we expect that only the
regions within an energy range corresponding to the magnon energy can contribute to the pairing. Thus, we may
restrict the momentum p′ to this narrow region around the Fermi surface. In analogy with BCS theory, in this region,
we may approximate the pairing potential by

Wσ
pp′ = Θ(ωσ̄

p′−p − |ξpA↑|)Θ(ωσ̄
p′−p − |ξp′A↓|)

V 2Dp′−p

(ωσ̄
p′−p)

2
. (S28)

Since the region that contributes to the pairing Wσ
pp′ is narrow, the integral over momentum in the gap equation

can be rewritten in terms of integrals over momentum components parallel (p∥) and perpendicular (p⊥) to the Fermi
surface. Furthermore, Wσ

pp′ is only weakly dependent on the momentum p⊥ perpendicular to the Fermi surface.

As a consequence, ∆lσ
p is also approximately independent of this momentum component. The susceptibility χAσ̄

p′

only depends on p′ through the energy ξp′Aσ̄, and is sharply peaked near the Fermi surface. Thus, we may further
rewrite the perpendicular momentum integral in terms of an energy integral up to the approximate magnon cutoff
frequency ωσ

p∥−p′
∥
. The perpendicular momentum component can then be integrated out. Introducing the Fermi

velocity vAσ̄
F (p∥) = |∇pξpAσ̄| on Fermi surface (Aσ̄), we obtain gap equation

∆Aσ(p∥) = − 1

ABZ

∫
FSAσ̄

dp′∥

vAσ̄
F (p′∥)

W σ̄
p′
∥p∥
g(ωσ

p−p′ , |∆Aσ̄(p′∥)|)∆
Aσ̄(p′∥), (S29)

where the function g(ω,∆) is given by

g(ω,∆) ≡
∫ ω

0

dξ
tanh(β

√
ξ2 + |∆|2/2)√

ξ2 + |∆|2
, (S30)

and β is the inverse temperature. In the special cases T = Tc and T = 0, the function g is given by

g(ω, 0) = log

(
2eγ

π
βω

)
, lim

β→∞
g(ω,∆) = arcsinh

(
ω

|∆|

)
≈ log

(
2ω

|∆|

)
, (S31)

which simplifies the calculation of Tc and the gap at zero temperature. We have now reduced the two-dimensional
gap equation to a gap equation on the Fermi surface contour. In the paper, we solve the gap equation in Eq. (S29)
numerically at T = 0 and T = Tc, and analytically in the limit of small hole doping.

S4. ANALYTICAL SOLUTION IN THE LIMIT OF SMALL HOLE DOPING

In the main text, we derive an analytical solution of the gap equation by assuming nearest-neighbour exchange
interactions in the magnet and small hole doping. The latter allows three simplifications. First, the electron energy
bands are approximately parabolic and the Fermi surfaces are circular, parametrized by an angle θ. Second, since
the magnon frequency remains nearly constant as we vary the momenta p and p′ on the Fermi surfaces, we let



4

(a) (b)

FIG. S5. Critical temperature obtained by solving the linearized gap equation in Eq. (S35) at finite hole doping. Exchange
parameters as given in Tab. S1 for (a) MnPSe2 (as also given in the main text) and (b) MnBi2Te4 for strained (ϵJ = 0.7, 0.3)
and unstrained (ϵJ = 1) antiferromagnets.

ωσ
p−p′ → ωD ≡ ω↓

K = ω↑
−K . Third, we can expand the interaction potential in small deviations κ from the valley

maxima at ±K = ±( 4π3a )(1, 0). For this, we write

p = σK + κ, p′ = −σK + κ′, (S32)

where κ ≡ kAσ
F (cos θ, sin θ) and κ′ ≡ kAσ̄

F (cos θ′, sin θ′). Here, p is on the Fermi surface Aσ, and p′ is on the Fermi
surface Aσ̄. We can then write ∆lσ

p = ∆lσ(θ). Assuming a constant magnon frequency, the scattering potential W σ̄
p′p

depends on the magnon momentum p′ − p only through the factor Dp−p′ . For electron scattering processes between
points on the Fermi surfaces, the momenta are given by Eq. (S32), so that

Dp−p′ = Jxy
1 S

∑
j

ei(2σK+κ−κ′)·δ1
j ≃

√
3a

2
Jxy
1 Sσ

(
kAσ
F e−iσθ − kAσ̄

F e−iσθ′
)
. (S33)

With this approximation, the gap equation takes the form(
∆A↑(θ)
∆A↓(θ)

)
= − v

kF

∫
dθ′

2π

(
0 +kA↑

F e−iθ − kA↓
F e−iθ′

kA↑
F eiθ

′ − kA↓
F eiθ 0

)(
g(ωD, |∆A↑(θ′)|)∆A↑(θ′)
g(ωD, |∆A↓(θ′)|)∆A↓(θ′)

)
, (S34)

where kF is the average Fermi wavevector kF = (kA↑
F + kA↓

F )/2, and v is the effective coupling strength defined in
Eq. (14) of the main text. There, we also discuss how this equation is solved analytically for T = Tc.

S5. NUMERICAL RESULTS AT FINITE DOPING

For T = Tc, the gap equation can be linearized, and utilizing the result in Eq. (S31), we obtain

∆Aσ(θ) = −2π
V 2

ABZ

∫
ΓAσ̄

dθ′

2π

kAσ̄
F (θ′)

vAσ̄
F (θ′)

(
Dp−p′

(ωσ
p−p′)2

)[
log

(
ωσ
p−p′

ω̄

)
+ log

(
2eγ

π
βω̄

)]
∆Aσ̄(θ′), (S35)

where p = σK + kAσ
F (θ)(cos θ, sin θ), p′ = −σK + kAσ̄

F (θ′)(cos θ′, sin θ′), and ω̄ is an arbitrary frequency scale.
Computationally, however, it is advantageous to choose it to be a frequency that is representative for the magnons
mediating the pairing interaction. For simplicity, we therefore choose the magnon frequency averaged over the
scattering processes involved in the pairing,

ω̄ = ⟨ωσ
q ⟩proc ≡

1

2

∑
σ

∫
dθdθ′

(2π)2
⟨ωσ

p−p′⟩. (S36)

The above gap equation is now a generalized eigenvalue problem for the gap function with eigenvalue λ−1
c ≡

log
(
2eγ

π βω̄
)
. Solving it numerically, we thus obtain both the critical temperature Tc = 2eγ

π ω̄ exp(−1/λc) and the

gap profile ∆Aσ(θ) for the leading instability.
In the main paper, we show the critical temperature as function of s-d exchange coupling J̄ with exchange cou-

pling constants corresponding to our model for MnPSe2. We also calculate the critical temperature with exchange
parameters corresponding to MnBi2Te4 as given in Table S1 for different biaxial strain, and the result is shown in
Fig. S5.



5

S6. TOPOLOGICAL EDGE STATES

A. Topological invariant

In terms of the Pauli matrix vector σ, Eq. (16) of the main text can be written in the form

H =
1

2

∑
klσ

ψ†
klσ(d

lσ
k · σ)ψklσ, dlσ

k = (Re∆lσ
k ,− Im∆lσ

k , ξklσ). (S37)

For a Hamiltonian of this form, the Chern number is given by [99]

Clσ =
1

4π

∫
BZ

d2k dlσ
k · (∂kx

dlσ
k × ∂ky

dlσ
k ). (S38)

The Chern number can subsequently be calculated numerically for the various blocks. For the blocks with chiral
p-wave pairing, we find CA↑ = CB↓ = 1. The chirality is identical because the phase winding of the gap runs in the
same direction, as shown in Fig. 3(c) of the main text. For the blocks with s-wave pairing, we find CA↓ = CB↑ = 0.

B. Numerical calculation of the edge states

To investigate possible topological edge states, we need a gap function defined throughout the Brillouin zone.
Instead of using the solutions of the gap equation on the Fermi surface (Eq. (S29)) directly, we therefore use the
topologically equivalent profiles

∆A↑
p = ∆χgχ(p), ∆A↓

p = ∆s. (S39)

Here, gχ(p) is a basis function from the E2 irreducible representation of the symmetry group of the triangular lattice
which reproduces the chiral p-wave gap on the Fermi surface. In particular, we choose

gχ(p) =
2√
3

∑
n

eiϕn cos(k · bn), (S40)

where eiϕn = (x̂ + iŷ) · bn/a. The BdG Hamiltonian can now be rewritten in terms of a real-space model H =
H0 +Hs

1 +Hχ
1 on the triangular lattice, where

H0 =
∑
lσ

∑
i,j∈l

[tσij − δij(µ− lσJ̄S − ϵ0)]c
†
ilσcjlσ, (S41a)

Hs
1 = ∆s

∑
j

(c†jA↓c
†
jB↑ + cjB↑cjA↓), (S41b)

Hχ
1 =

∆χ√
3

∑
jnζ

(
eiϕnc†j+ζbn,A↑c

†
jB↓ + e−iϕncjB↓cj+ζbn,A↑

)
, (S41c)

with Nx × Ny sites and periodic boundary conditions in the x-direction but not in the y-direction. To diagonalize
the Hamiltonian, we introduce a standard partial Fourier transform and obtain the spectrum as a function of the
momentum component kx along the x̂-direction. The result is shown in Fig. 4 of the main paper.
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