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SHARP LOCALIZATION ON THE FIRST SUPERCRITICAL STRATUM FOR

LIOUVILLE FREQUENCIES

RUI HAN

Abstract. We establish Anderson localization for Schrödinger operators with even analytic poten-
tials on the first supercritical stratum for Liouville frequencies in the sharp regime {E ∶ L(ω,E) >
β(ω) > 0, κ(ω,E) = 1}, with κ(ω,E) being Avila’s acceleration. This paper builds on the large
deviation measure estimate and complexity bound scheme, originally developed for Diophantine
frequencies by Bourgain, Goldstein and Schlag [BG, BGS1, BGS2], and the improved complexity
bounds in [HS1]. Additionally, it strengthens the large deviation estimates for weak Liouville fre-
quencies in [HZ]. We also introduce new ideas to handle Liouville frequencies in a sharp way.

1. Introduction

We study one-dimensional quasi-periodic Schrödinger operators with analytic potentials v:

(Hω,θφ)n = φn+1 + φn−1 + v(θ + nω)φn,(1.1)

in which θ ∈ T is called the phase, ω ∈ T ∖Q is called the frequency. Throughout the paper, for
θ ∈ T, ∥θ∥T ∶= dist(θ,Z). We shall simply write it as ∥θ∥.

The main result of this paper is the following:

Theorem 1.1. Let v be an even analytic function on T. For non-resonant θ ∈ Θ, see (1.2), Hω,θ

exhibits Anderson localization on

{E ∶ L(ω,E) > β(ω) ≥ 0, and κ(ω,E) = 1},
in which β(ω) is as in (2.8), L(ω,E) is the Lyapunov exponent and κ(ω,E) is Avila’s acceleration
number.

We call the collection of those energies satisfying κ(ω,E) = 1 and L(ω,E) > 0 the first supercrit-
ical stratum, according to Avila’s stratification of the spectrum in [Av2]. Theorem 1.1 has been
established recently in [HS1] for Diophantine ω ∈ DC 1, where

DC ∶= {ω ∈ T ∶ ∥nω∥ ≥ c

n(logn)A , for some A > 1 and c > 0}.
DC is a full Lebesgue measure set and is a proper subset of {ω ∶ β(ω) = 0}.

The set of non-resonant θ is defined to be

Θ ∶= {θ ∈ T ∶ lim sup
n→∞

− log ∥2θ + nω∥
∣n∣ = 0} .(1.2)

It is well-known that Θ is a full Lebesgue measure set.
This paper builds and expands upon the large deviation measure estimates and the complexity

bounds for quasi-periodic Schrödinger operators. We will review the literature and discuss our
contribution in this paper below.

R. Han is partially supported by NSF DMS-2143369.
1In some of literature, DC has a slightly different definition, we omit such technicality.
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1.1. Large deviation and complexity bound for analytic potentials. Following the scheme
originally developed by Bourgain, Goldstein and Schlag [BG,BGS1,BGS2], the main difficulty in
proving AL is to control both the large deviation measure estimates (LDM), and at the same time,
the complexity (number of connected components) of the large deviation sets.

● For general analytic potentials, in their seminal paper [BG], Bourgain and Goldstein proved
LDM for the norm of transfer matrices um,E(θ) ∶=m−1 log ∥Mω

m,E(θ)∥ for Diophantine ω in
the following form:

mes({θ ∶ ∣um,E(θ) − ⟨um,E⟩∣ >m−σ}) ≤ e−mσ

, for some σ > 0,(1.3)

in which ⟨um,E⟩ is the average value of um,E . Bourgain and Goldstein also introduced a
semi-algebraic set argument which, roughly speaking, controls the complexity of the large
deviation sets in a polynomial manner mC , C > 1. Combining LDM with the complexity
bound, Bourgain and Goldstein proved AL for general analytic potentials, for a.e. (non-
arithmetic) ω. The approach is very robust, and has been further developed to establish AL
in a variety of more general settings, including the higher-dimensional torus Td (d ≥ 2) [BG],
the skew-shift dynamics [BGS1], the challenging higher-dimensional operators [BGS2,Bo],
block-valued operators [BJ1, DK1, Kl, HS2, HS3], and continuous quasi-periodic operator
[BKV]. The proof of LDM for um,E , relying crucially on its almost shift invariant property,
in fact generalizes beyond ω ∈ DC. For example, You-Zhang [YZ] extended it to the case
β(ω) = o(1), and Han-Zhang [HZ] further generalized it to β(ω) = o(L(ω,E)). However, it
remained a challenging problem to prove arithmetic AL following this scheme, even for all
Diophantine ω’s, essentially due to the lack of a tight complexity bound.
● In their landmark work [GS1], Goldstein and Schlag introduced a new important tool, the
Avalanche Principle (AP), into the study of quasi-periodic operators. AP has since played
an indispensable role and established a foundation for solving many major problems such
as [GS1, GS2, GS3, BJ2] and others. It has also been generalized to higher-dimensional
cocycles in [Sch1,DK2], which play an increasingly important role in the study of block-
valued operators [DK1,Kl,HS3]. In [GS1], Goldstein and Schlag were able to combine the
powers of LDM for vm,E and AP to prove, for the first time, Hölder continuity of IDS for
one-dimensional quasi-periodic operators. Later, to study the more challenging problem of
determining the exact Hölder exponent, Goldstein and Schlag studied a more subtle alter-
native object vPm,E(θ) ∶=m−1 log ∣Pω

m,E(θ)∣ in [GS2], where Pm,E is the Dirichlet determinant
and is an entry of Mω

m,E . Their paper, for the first time, revealed the importance of zero
count of Pm,E and established the connection between the Hölder exponent at energy E

and the local zero count of Pm,E . The local zero count is controlled by the global zero count

NP
m,E through a delicate AP argument, leading to Hölder exponent (m/NP

m,E)− 0. As part
of their deep analysis, they proved LDM for vPm,E for all Diophantine ω ∈ DC, for which

they overcame the significant difficulty due to the lack of almost shift invariance for vPm,E.

● Goldstein and Schlag in [GS3] proved remarkably LDM for vtrm,E(θ) ∶=m−1 log ∣tr(Mω
m,E(θ))∣,

which played a crucial role in their proof of Cantor spectrum for quasi-periodic operators.
LDM of trace turns out to have profound impacts in other open problems as well, including
Han and Schlag’s solution [HS3] of a problem on non-perturbative AL for block-valued op-
erators, and more importantly a quantitative version of Avila’s almost reducible conjecture
for Diophantine ω’s [HS2]. The latter builds crucially on AL for the dual model and an
important formula of Haro and Puig for dual Lyapunov exponents [HP]. As in the study of
the entries, the proof LDM for trace also presents significant difficulty, due to the lack of
almost shift invariance. Goldstein and Schlag’s proofs in [GS2,GS3] consist of a series of
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technical steps, including an additional Cartan estimate, which requires controlling quan-
titative small deviations for um,E(θ), for example, of the form (1.3) with deviation m−σ.
However, to establish such kinds of small deviations one often requires ω ∈ DC.
● Recently, Han and Schlag [HS1] uncovered the mystery behind Avila’s acceleration number
and the global zero count of Pω

m,E by establishing a sharp characterization (up to quantita-

tive small error):

κ(ω,E) = NP
m,E/(2m),(1.4)

for all Diophantine ω ∈ DC. This leads to a sharp complexity bound 2m ⋅ κ(ω,E) for vPm,E .

Using this sharp bound, Han and Schlag [HS1] were able to prove a conjectured Hölder
exponent for IDS (up to the endpoint), and also arithmetic AL for all ω ∈ DC on the first
supercritical stratum.

This paper builds mainly on [HS1] and earlier works [BG,GS1, GS2, GS3, HZ], but new ideas
need to be introduced to overcome three main difficulties. Before we enter detailed discussion, let
us briefly introduce the framework. Our analysis is multi-scale: for each n, we study the decay of
eigenfunctions, roughly speaking, on the scale of (qn/5, qn+1/5). Depending on the growth from qn
to qn+1, we divide the scales into weakly Liouvillian scales (when (log qn+1)/qn ≤ δ1, where δ1 is as
in (3.24)), and strong Liouville scales (when (log qn+1)/qn > δ1). In a strong Liouville scale, to prove
AL in the sharp regime, we need to further divide into strongly resonant regimes, those of the form((ℓ −σ)qn, (ℓ + σ)qn), and weakly resonant regimes ((ℓ +σ)qn, (ℓ+ 1 −σ)qn), where σ > 0 is a small
constant. The study of the strongly resonant regimes is the technical core of the paper, which also
relies heavily on a sharp analysis of the weakly resonant regimes. Next, we explain the difficulties
in each weak/strong Liouville scale and weakly/strongly resonant regime in more details below.

(1) For a weak Liouville scale, the complexity bound for um,E , for m ∈ (qn/5, qn+1/5), is not

tight enough for arithmetic AL. The challenges remain even if one considers vPm,E or vtrm,E

since their LDM in the literature required ω ∈ DC. Hence one needs new ideas on controlling
LDM and sharp complexity simultaneously for such weak Liouville scales. We overcome this
difficulty by studying an alternative object, an analytic function defined by:

gωm,E(z) = (Pω
m,E(z))2 + (Pω

m−1,E(z))2 + (Pω
m−1,E(ze2πiω))2 + (Pω

m−2,E(ze2πiω))2,(1.5)

and the associated subharmonic v
g
m,E(θ) = (2m)−1 log ∣gωm,E(e2πiθ)∣. Clearly gωm,E(e2πiθ) =∥Mω

m,E(ω, θ)∥2HS for θ ∈ T. This function was in fact introduced in Sec.7 of [GS1], to improve

the complexity bound for um,E from mC in [BG] to C ′m, with some implicit large constant
C ′, for ω ∈ DC. In this paper, we show that gm,E(z) is, surprisingly, a perfect candidate for
arithmetic AL (except possibly in strong Liouville case). On one hand, it is equivalent to the
operator norm, hence it inherits directly the LDM for um,E on the scale m ∈ (qn/5, qn+1/5).
On the other hand, it is an analytic function, thus making it possible to try to adapt
a similar strategy in [HS1] for this Liouville setting, to improve Goldstein and Schlag’s
complexity bound in [GS1] from C ′m to exactly 2m on the first supercritical stratum. In
[HS1], the complexity of vPm,E was bounded by the number of zeros of Pω

m,E , which in turn

is determined by Avila’s acceleration as in (1.4). Such bound is possible because by LDM
and an additional Cartan estimate, each connected component of the large deviation set
must be close to at least one zero of Pω

m,E . However, as we mentioned, an additional Cartan

argument often requires small deviation ∼ m−σ and hence ω ∈ DC, which is not the case
here. We overcome this difficulty by developing a different approach: directly bounding
the complexity of vg

m,E
by the number of zeros for a perturbed function g̃ωm,E , whose zeros

are also determined by the acceleration number. Finally, combining LDM and the sharp
complexity bound 2m with the pigeonhole principle argument as in [HS1] one can prove
exponential decay of eigenfunctions in such a scale.
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(2) For strong Liouville scales, there had been no quantitative LDM for um,E form ∈ [σqn, σ−1qn],
where σ > 0 small. This is because LDM is essentially a quantitative ergodic theorem, hence
being exponentially close to rationals makes the system less ergodic, thus causing signifi-
cant difficulties. The only LDM on such a scale goes back to key lemma of Bourgain and
Jitomirskaya, [BJ2, Lemma 4], where LDM was proved for um,E for m > σ−1qn. In this
paper we are able to prove LDM for v

g
m,E for m ∈ [σqn, σ−1qn], an important regime that

is out of the reach of [BJ2]. The applicability of LDM for m ∈ [σqn, qn/2] is crucial, and is
in fact the only range we need, for our analysis of the weakly resonant regimes in a strong
Liouville scale.

(3) To study the strongly resonant regimes at a strong Liouville scale, we do not consider
v
g
m,E

; instead, we study vtrqn,E. The big advantage of studying the trace is that we can

directly derive the structure of its zeros using rational approximation, and obtain sharp
LDMs and complexity bounds directly from such a zero structure. This is a completely
new approach for LDMs and complexity bounds; indeed, it allows one to truly utilize the
Liouville feature instead of working against it as in a conventional resolution of a small
divisor problem. This rational approximation idea is inspired by Avila’s proof [Av1] of
the almost reducibility conjecture for Liouville frequencies on the subcritical stratum, a
stratum complementary to the supercritical ones we study in this paper. Based on our
analysis of vtrm,E , we further develop a new approach to AL for strong Liouville frequencies,

by directly studying the closeness of the orbit {θ+kω}k∈Z to the zeros of tr(Mω
qn,E
), without

using the pigeonhole principle argument as in [HS1]. This approach is deterministic and
yields a good control of the resolvent on the interval [−[qn/2], [qn/2]], instead of merely
establishing the existence of a good interval by the pigeonhole principle. Note that with
a LDM for gm,E , m ∈ [qn,2qn], and its associated complexity bound 2m, one can perhaps
develop an alternative approach to the strongly resonant scales. But we do not pursue this
idea here.

The purely singular continuous spectrum in the complementary regime {L(ω,E) < β(ω)} estab-
lished in [AYZ] demonstrates the sharpness of our result on the first supercritical stratum.

1.2. Related results in special cases. In the past, sharp arithmetic localization for Liouville
frequencies has only been established for two specific models, one being the Maryland model, when
v(θ) = λ tan(πθ), the other one being the almost Mathieu operator (AMO), when v(θ) = 2λ cos(2πθ)
with λ > 1.

In the literature, the Maryland model had been studied via the Cayley transform, an indirect
approach that works uniquely for the tan potential. Those studies had led to a complete spectral
characterization [GFP,FP,Si2,JL2], with a proof of AL for all Diophantine frequencies back in the
1980s’ [FP,Si2]. An alternative direct approach, based on the Green’s function expansion, has been
quite recently developed for the Maryland model [JY], and further extended in [HJY] revealing some
novel structures of eigenfunctions due to presence of large potential barriers. But that approach is
also tan specific. The proofs of AL for AMO are also restricted to the cos potential: [AYZ] relies on
the reducibility for the dual operator and the unique “self-dual” feature of AMO; [Ji, JL2] utilize
crucially the Lagrange interpolation argument (an algebraic property) for the Dirichlet determinant
Pω
m,E(θ), which is a polynomial in cos of degree exactly m. To the best of our knowledge, neither

the duality nor the Lagrange interpolation argument currently apply to general analytic potentials.
But it might be possible to incorporate the new ideas we introduce in this paper to further extend
these two approaches beyond AMO.

It is desirable to understand the phase transition phenomenon, beyond special cases, in a more
robust and physically relevant setting, e.g., for models with general even analytic potentials. In
fact, AMO originates from studying the motion of a single electron on the Z2 lattice, subjected to
a transversal magnetic field. There, the electron is only allowed to hop to its nearest neighbors,
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which gives rise to the cos potential upon taking the Fourier transform. However, in the real world,
the electron indeed exhibits infinite-distance hopping with an exponentially decaying symmetric
hopping strength, which gives rise to a true even analytic potential. In this paper, we show that
arithmetic phase transition phenomena are indeed “topological invariant”: they are robust within
the class of κ(ω,E) = 1 for general even potentials. It is worth-noting that AMO with λ > 1 together
with its even analytic perturbations are a special case of the operators we study here: the entire
spectrum of AMO with λ > 1 (and any analytic perturbation) is contained in the first supercritical
stratum, see [Av2, Lemma 25]. Our analysis also allows one to establish the hierarchical structure
of eigenfunctions in the localization regime, similar to that of AMO in [JL2]. To achieve that, one
replaces our study around the global maximal, roughly speaking ∣φ0∣, with an arbitrary local max.
We leave it for interested readers.

We introduce some notations before we proceed. For any R > 1, let AR ∶= {z ∈ C ∶ 1/R < ∣z∣ < R}
be the annulus. Let Cr ∶= {z ∈ C ∶ ∣z∣ = r} be the circle with radius r > 0. For z ∈ C and r > 0, let
Br(z) be the open ball centered at z with radius r. For x ∈ R, let [x] be the largest integer such
that [x] ≤ x.

We organize the rest of the paper as follows: Sec. 2 is devoted to preliminaries, Sec. 3 contains
an overview of Anderson localization, in particular how to incorporate the weak/strong Liouville
scale analysis presented in Sec. 4 and 5 respectively. Sec. 6 is on the proofs of the large deviation
estimates in Sec. 4.

2. Preliminaries

2.1. Non-resonant θ’s. Clearly, for any θ ∈ Θ, and any small constant δ′ > 0, for n large enough,
we have

∥2θ + nω∥ ≥ e−δ′ ∣n∣.(2.6)

By restricting to θ ∈ Θ, one essentially rules out the resonance caused by reflection invariance.

2.2. Continued fraction expansion. Give ω ∈ (0,1), let [a1, a2, ...] be the continued fraction
expansion of ω. For n ≥ 1, let pn/qn = [a1, a2, ..., an] be the continued fraction approximants of ω.
The following property is well-known for n ≥ 1,

∥qnω∥T = min
1≤k<qn+1

∥kω∥T,(2.7)

The β(ω) exponent measures the exponential closeness of ω to rational numbers:

β(ω) ∶= lim sup
n→∞

log qn+1
qn

= lim sup
n→∞

(− log ∥nω∥T
n

) .(2.8)

Let

βn(ω) ∶= log qn+1
qn

.

It is well-known that

∥qnω∥ ∈ (1/(2qn+1),1/qn+1) = (e−βn(ω)qn/2, e−βn(ω)qn).(2.9)

The pn, qn’s are determined by an’s in the following way:

qn+1 = an+1qn + qn−1, and pn+1 = an+1pn + pn−1,(2.10)

and

∥qn−1ω∥ = an+1∥qnω∥ + ∥qn+1ω∥.(2.11)

To see the latter is true, note that by (2.10),

qn+1ω − pn+1 = an+1(qnω − pn) + (qn−1ω − pn−1),
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which yields (2.11) since ∥qnω∥ = ∣qnω − pn∣ and
(qn+1ω − pn+1) ⋅ (qnω − pn) < 0,

for any n ≥ 1.
2.3. Green’s function for the annulus. We state the precise Green’s kernel, which can be
derived by the method of images.

Lemma 2.1. [HS1] The Green’s function on the annulus AR is given by

GR(z,w) = 1

2π
log ∣z −w∣ + ΓR(z,w),(2.12)

where

ΓR(z,w) = log(∣z∣/R) log(∣w∣/R)
4π logR

+ 1

2π
log
⎛
⎝

∏∞k=1 ∣1 − 1
R4k

z
w
∣ ⋅ ∣1 − 1

R4k
w
z
∣

R ⋅ ∏∞k=1 ∣1 − 1
R4k−2wz∣ ⋅ ∣1 − 1

R4k−2
1
zw
∣
⎞
⎠ .(2.13)

The Green’s function is symmetric and invariant under rotations: GR(z,w) = GR(w,z) and
GR(z,w) = GR(eiφz, eiφw).

It is also easy to check that

2πGR(1/z,1/w)(2.14)

= log ∣1/z − 1/w∣ + log(1/(R∣z∣)) log(1/(R∣w∣))
2 logR

+ log⎛⎝
∏∞k=1 ∣1 − 1

R4k
w
z
∣ ⋅ ∣1 − 1

R4k
z
w
∣

R ⋅ ∏∞k=1 ∣1 − 1
R4k−2

1
wz
∣ ⋅ ∣1 − 1

R4k−2 zw∣
⎞
⎠

=2πGR(z,w).
The following integral is useful, see [HS1, Lemma 3.2], note ΓR =HR therein.

∫
1

0
ΓR(re2πiθ,w)dθ = log(r/R)

4π logR
log(∣w∣/R) − logR

2π
.(2.15)

2.4. Cartan set and estimate.

Definition 2.1 (Cartan set). For an arbitrary subset P ⊂ D(z0,1) ⊂ C, where D(z0,1) is the disk,

we say that P ∈ Car(H,K) if P ⊂ ⋃k0
k=1
D(zk, rk) with k0 ≤K, and

∑
j

rj < e−H .(2.16)

By Wiener’s covering lemma we can assume that D(zk, rk) are pairwise disjoint, at the expense
of a factor of 3 in (2.16).

Lemma 2.2. Let ϕ be an analytic function defined in a disk D ∶= D(z0,1). Let M ≥ supz∈D log ∣ϕ(z)∣,
m ≤ log ∣ϕ(z0)∣. Given H ≫ 1, there exists a set P ⊂ D, P ∈ Car(H,K), K = CH(M −m) for some
absolute constant C > 0, such that

log ∣ϕ(z)∣ >M −CH(M −m),
for any z ∈ D(z0,1/6) ∖ P.
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2.5. Cocycles and Lyapunov exponents. Let (ω,A) ∈ (T,Cω(T,SL(2,R))). Let
Aω

n(θ) = A(θ + (n − 1)ω)⋯A(θ).
Let the finite-scale Lyapunov exponents be defined as

Ln(ω,A) ∶= 1

n
∫
T
log ∥Aω

n(θ)∥dθ,
and the infinite-scale Lyapunov exponents as

L(ω,A) = lim
n→∞

Ln(ω,A).
We denote the phase-complexified Lyapunov exponents as

Ln(ω,A(⋅ + iε)) =∶ Ln(ω,A, ε), and L(ω,A(⋅ + iε)) =∶ L(ω,A, ε),
respectively.

If ω = p/q ∈ Q, we define

L(p/q,A, θ) = lim
n→∞

1

n
log ∥Ap/q

n (θ)∥ = 1

q
log(ρ(Ap/q

q (θ))),
where ρ(A) is the spectral radius of A.

The Schrödinger cocycle (ω,Mω
E) associated to the operator (1.1) is defined with

Mω
E(θ) = (E − v(θ) −11 0

) .
The matrix Mω

E(θ) is called transfer matrix, and

Mω
n,E(θ) =Mω

E(θ + (n − 1)ω)⋯Mω
E(θ)

is called n-step transfer matrix.

2.6. Avila’s acceleration. Let (ω,A) ∈ (T,Cω(T,SL(2,R))). The Lyapunov exponent L(ω,A, ε)
is a convex and even function in ε. Avila defined the acceleration to be the right-derivative as
follows:

κ(ω,A, ε) ∶= lim
ε′→0+

L(ω,A, ε + ε′) −L(ω,A, ε)
2πε′

.

As a cornerstone of his global theory [Av2], he showed that for analytic A ∈ SL(2,R) and irrational
ω, κ(ω,A, ε) ∈ Z is always quantized.

Recall that v is an analytic functions on Tε0 for some ε0 > 0. We may shrink ε0 when necessary
such that

L(ω,Mω
E , ε) = L(ω,Mω

E ,0) + 2πκ(ω,Mω
E ,0) ⋅ ∣ε∣, holds for any ∣ε∣ ≤ ε0.(2.17)

For the rest of the paper, when ε = 0, we shall omit ε from various notations of Lyapunov exponents
and accelerations. We will also write L(ω,E, ε) instead of L(ω,Mω

E , ε), and sometimes even omit
ω,E in the notation.

2.7. Regular/Dominated cocycles. Following [AJS], we say an analytic cocycle (ω,A) is regular
if κ(ω,A, ε) is constant for ε in a small neighborhood of ε = 0. We will use the following theorem
from [AJS], note we restrict to the 2 × 2 cocycle case below.

Theorem 2.3. [AJS, Theorem 5.2] Assume L(ω,A) > −∞ and that (α,A) is regular. Then for
any rational approximant p/q of ω, one has uniformly for small ε and all θ ∈ T

L(p/q,A, θ + iε) = L(ω,A, ε) + o(1).
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2.8. Transfer matrix and Dirichlet determinants. It is well-known that the entries of the
transfer matrices are the Dirichlet determinants:

Mω
n,E(θ) = ( Pω

n,E(θ) −Pω
n−1,E(θ + ω)

Pω
n−1,E(θ) −Pω

n−2,E(θ + ω)) ∈ SL(2,R),(2.18)

in which Pω
k,E(θ) ∶= det(H[0,k−1],ω,θ −E) is the Dirichlet determinant on the interval [0, k − 1].

Let

fω
n,E(θ) ∶= det(Mω

n,E(θ) − I2) = 2 − tr(Mω
n,E(θ)).(2.19)

In fact fω
n,E is the determinant of H[0,n−1],ω,θ with periodic boundary condition, see [HS2, Lemma

5.1]. This played an important role in Goldstein-Schlag’s proof of Cantor spectrum [GS3], and Han-

Schlag’s proof of a quantitative version of Avila’s almost reducibility conjecture [HS2]. f
p/q
q,E(θ) is a

1/q-periodic function in θ. This fact plays a crucial role in Avila’s global theory, and our proof of
Anderson localization for Liouville frequencies.

Since Mω
n,E ∈ SL(2,R), one has

2I2 −Mω
n,E(θ) − (Mω

n,E(θ))−1 = fω
n,E(θ) ⋅ I2.(2.20)

This implies

∥(Mω
n,E(θ))2∥∥Mω
n,E
(θ)∥ − 3 ≤ ∣fω

n,E(θ)∣ ≤ ∥(M
ω
n,E(θ))2∥∥Mω
n,E
(θ)∥ + 3 ≤ ∥Mω

n,E(θ)∥ + 3.(2.21)

We shall also frequently write fω
k,E(z) ∶= fω

k,E(θ) and Pω
k,E(z) ∶= Pω

k,E(θ), with the obvious iden-

tification z = e2πiθ.
2.9. Green’s function expansion. Let φ be such that it solves Hω,θφ = Eφ for some E ∈ R. Then
for any interval [m1,m2] ⊂ Z, we have for any h ∈ [m1,m2] that

∣φh∣ ≤ ∣P
ω
m2−h,E

(θ + (h + 1)ω)∣
∣Pω

m2−m1+1,E
(θ +m1ω)∣ ∣φm1−1∣ + ∣Pω

h−m1
(θ +m1ω)∣

∣Pω
m2−m1+1,E

(θ +m1ω)∣ ∣φm2+1∣.(2.22)

Note that we avoid introducing the Green’s function for the Schrödinger operator, rather, we use
directly its connection to the Dirichlet determinants to avoid confusion with the Green’s function
on the annulus in (2.12).

2.10. Uniform upper semi-continuity. The following lemma is an easy corollary of the argu-
ments, essentially a subadditivity argument, in the proof of Lemma 5.1 in [AJS].

Lemma 2.4. For any small τ > 0, there exists N = N(τ,ω, v,E) ≥ 1 and δ = δ(τ,ω, v,E) > 0 such
that for any ∥ω′ − ω∥T ≤ δ and n ≥ N ,

1

n
log ∥Mω′

n,E(θ)∥ ≤ L(ω,ME) + τ,
uniformly in θ ∈ T.
2.11. Symmetry of zeros.

Fact 2.5. [HS2, Fact 2.1] For any ω ∈ T, any n ∈ N and E ∈ R. If z ∉ C1 is a zero of fω
n,E(z) (or

Pω
n,E(z)), then 1/z is also a zero.

Proof. Since the potential function v is real-valued, fω
n,E(e2πiθ) ∈ R for θ ∈ T. Hence the two analytic

function fω
n,E(z) = fω

n,E(1/z) coincide on the unit circle z ∈ C1, which implies they are identical. �
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2.12. Shnol’ theorem and generalized eigenfunction. By Shnol’s theorem [Be,Si1,Ha,Sch2],
to prove Anderson localization, it suffices to show an arbitrary generalized eigenfunction φ to
Hω,θφ = Eφ, satisfying

1 =max(∣φ0∣, ∣φ−1∣), and ∣φk ∣ ≤ C ∣k∣, for any k ≠ 0,(2.23)

decays exponentially. Throughout the rest of the paper, we fix such a generalized eigenpair (E,φ).
3. An overview of the proof of Anderson localization

In this section, we give an overview of the proof, in particular, how to incorporate the two
different weak/strong Liouville scale analysis presented in Sec. 4 and 5 respectively to prove decay
of eigenfunction on the whole Z. We need to pay extra attention to the applicability of the Theorems
4.1 and 5.19 at two consecutive scales.

Let Cv ≥ 1 be the constant in (6.103). Note that Cv depends solely on ∥v∥L∞(Tε0
). Recall ε0 is

as in (2.17).
Throughout the rest of the paper, let δ1 > 0 be a small constant such that

δ
1/4
1 = min(ε0,1,L(ω,E) − β(ω))

105Cv max(1,L(ω,E)) .(3.24)

Let

c0 = 10δ1/41 /(1 + β(ω)),
and

η = 1000Cvε
−1
0 δ

1/4
1 < 1

100
.(3.25)

Below, let ∗ = qk−1/10 if qk−1 ≤ eδ1qk−2 , and ∗ = q1−c0k−1 if qk−1 > eδ1qk−2 .
We divide into four cases:
Case 1. If qk ≤ eδ1qk−1 and qk+1 ≤ eδ1qk . One applies Theorem 4.1 to both the scales n = k − 1 and

n = k so that ∣φy ∣ decays on [∗, qk/10]⋃[qk/10, qk+1/10]. We note that the two consecutive scales
leave no space uncovered around their connection at qk/10.

Case 2. If qk ≥ eδ1qk−1 and qk+1 ≤ eδ1qk . One applies Theorem 5.19 to the scale n = k − 1 so
that ∣φy ∣ decays on [∗, q1−c0

k
]. One applies Theorem 4.1 to the scale n = k so that ∣φy ∣ decays on

[q1−c0
k

, qk+1/10].
Case 3. If qk ≤ eδ1qk−1 and qk+1 ≥ eδ1qk . One applies Theorem 4.1 to the scale n = k − 1 so that∣φy ∣ decays on [∗, qk/10], and Theorem 5.19 to the scale n = k so that ∣φy ∣ decays on [qk/10, q1−c0k+1 ].
Case 4. If qk ≥ eδ1qk−1 and qk+1 ≥ eδ1qk . One applies Theorem 5.19 to both scales n = k − 1 and

n = k so that ∣φy ∣ decays on [∗, q1−c0k
]⋃[q1−c0k

, q1−c0
k+1 ].

Therefore by gluing the scales together, we obtain exponential decay of ∣φy ∣ on the whole Z.

4. Weak Liouville scales

Throughout this section, we assume that qn+1 ≤ eδ1qn , except in Lemma 4.4. This is what we
called a weak Liouville scale. Our goal of this section is to prove exponential decay of the generalized
eigenfunction, roughly speaking on the scale of [qn/10, qn+1/10].
Theorem 4.1. If qn+1 ≤ eδ1qn, then for

∣y∣ ∈ ⎧⎪⎪⎨⎪⎪⎩
[q1−c0n , qn+1/10], if qn ≥ eδ1qn−1
[qn/10, qn+1/10], if qn ≤ eδ1qn−1 ,

we have ∣φy ∣ ≤ e−L(ω,E)∣y∣/40.
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Remark 4.2. It follows from a standard argument that iterating the Green’s function expansion in
(2.22) leads to a sharp decay

∣φy ∣ ≤ e−(L(ω,E)−CCvδ
1/4
1
)∣y∣,

for some absolute constant C > 0. We leave this for interested readers.

Proof. In the proof, we shall sometimes write L(ω,E, ε) as L(ε) and Lm(ω,E, ε) as Lm(ε) for
simplicity. Without loss of generality, we assume y > 0.

Recall that gωm,E is as in (1.5). We will in fact bound the number of zeros of gωm,E(z)− e2m(Lm−δ)

near the unit circle, for small constant δ > 0, and prove a large deviation estimate for the following
function:

vm,E(θ) ∶= 1

2m
log(gωm,E(e2πiθ)).

Let

Bg
m,δ,E

∶= {θ ∈ T ∶ vm,E(θ) < Lm(ω,E) − δ}.
Note that for θ ∈ T, gωm,E(e2πiθ) = ∥Mω

m,E(θ)∥2HS > 0, hence
Bg
m,δ,E

= {θ ∈ T ∶ 0 < gωm,E(θ) < e2m(Lm(ω,E)−δ)}.
Therefore each connected component (which is an interval) of Bg

m,δ,E
has two endpoints in {θ ∈ T ∶

gωm,E(θ) = e2m(Lm−δ)}. Thus the number of connected components of Bg
m,δ,E

is controlled by half of

the number of zeros of gωm,E(z) − e2m(Lm−δ).

4.1. Large deviation estimates.

Lemma 4.3. Let Cv be as in (6.103). Assume qn+1 ≤ eδ1qn. Then for any m such that 10qn ≤m ≤
qn+1/5, with n large enough, we have

mes(Bg
m,1500Cvδ

1/2
1

,E
) ≤ e−100δ1m.

As we mentioned, the large deviation estimate can be proved by using almost shift invariance of
vm,E(θ), or the equivalence between vm,E(θ) and m−1 log ∥Mω

m,E(θ)∥. This proof is close to that in

[HZ], which has a similar weak Liouville condition (in which it was assumed that, roughly speaking,
each qn+1 ≤ eδ1qn holds for all n). We postpone it to Sec. 6.2.

We also prove the following new large deviation estimates, roughly speaking for m of size com-
parable to qn. The novelty is that it does not require the weak Liouville assumption qn+1 ≤ eδ1qn .
Lemma 4.4. Let Cv be as in (6.103). For any m such that

10qn ≥m ≥
⎧⎪⎪⎨⎪⎪⎩
5δ

1/4
1 q1−c0n , if qn ≥ eδ1qn−1

5δ
1/4
1 qn, if qn ≤ eδ1qn−1 ,

with n large enough, we have

mes(Bg
m,1000Cvδ

1/4
1

,E
) ≤ e−100δ1m.

This lemma also plays an important role in our study of the eigenfunction in the weakly resonant
regimes of the strong Liouville sales, e.g. [νqn, (1 − ν)qn] for small ν > 0, at a scale qn that
qn+1 ≥ eδ1qn . We present the proof of Lemma 4.4 in Sec. 6.3.

Next, we turn to the zero count.
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4.2. Zero count.
Below and throughout the rest of the section, κ ∶≡ κ(ω,E).

Lemma 4.5. Let η be as in (3.25). Let N g
m,δ,E

(ε) ∶= #{z ∈ Ae2πε ∶ gωm,E(z) = e2m(Lm(ω,E)−δ)}. For

any δ ≥ 1100Cvδ
1/4
1 , ε1 = 2η/(1 + 2η)ε0, and m large enough (depending on ε0, δ, η) satisfying

m ∈
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[10qn, qn+1/5], if qn+1 ≤ δ1qn,
[5δ1/41 q1−c0n ,10qn], if qn ≥ eδ1qn−1 ,
[5δ1/41 qn,10qn], if qn ≤ eδ1qn−1 ,

(4.26)

we have N g
m,δ,E

(ε1) ≤ 4(1 + η)κm.

Before proving this lemma, we give a quick corollary.

Corollary 4.6. Under same condition as Lemma 4.5, the large deviation set satisfies:

Bg
m,1100Cvδ

1/4
1

,E
= Ñ⋃

j=1

Um,j ,

with Ñ ≤ 2(1 + η)κm and {Um,j}Ñj=1 are disjoint intervals satisfying

mes(Um,j) ≤ e−100δ1m,

for large enough m satisfying (4.26).

We give a quick proof of this corollary.

Proof. Each interval of Bg
m,1100Cvδ

1/4
1

,E
has two distinct endpoints, both lie in {θ ∶ gωm,E(e2πiθ) =

e2m(Lm(ω,E)−1100Cvδ
1/4
1
)}. Hence the number of intervals is controlled by

1

2
N g

m,1100Cvδ
1/4
1

,E
(ε1) ≤ 2(1 + η)κm.

The measure estimates follow from Lemmas 4.3 and 4.4. �

Next, we prove Lemma 4.5

Proof. Within the proof we shall sometimes write Lm(ω,E) as Lm for simplicity. Let R ∶= e2πε0

and N ∶=N g
m,δ,E

(ε0). Let w1, ...,wN be the zeros of gωm,E(z)− e2m(Lm−δ) in AR (assuming it is zero

free on ∂AR, otherwise shrink ε0 to ε0 − o(1). We omit this small technical adjustment). Define

GR,m,E(z) = 1

2m

N

∑
k=1

GR(z,wk),
where GR is the Green’s function in (2.12). Let

ṽm,E(z) ∶= 1

2m
log ∣gωm,E(z) − e2m(Lm−δ)∣ = 2πGR,m,E(z) + hR,m,E(z).

Then hR,m,E(z) is harmonic in AR. Let

Lṽ
m(E,ε) ∶=∫

T
ṽm,E(e2πi(θ+iε))dθ, and

IGm(E,ε) ∶=∫
T
2πGR,m,E(e2πi(θ+iε))dθ and

Ihm(E,ε) ∶=∫
T
hR,m,E(e2πi(θ+iε))dθ

Note that Lṽ
m(E,ε) ≠ Lm(E,ε), but we will show their difference is negligible in Lemma 4.8. We

first show Ihm(E,ε) is constant in ε.
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Lemma 4.7. There exists b ∈ R such that Ihm(E,ε) ≡ b for ∣ε∣ ≤ ε0.
Proof. We first prove Lṽ

m(E,ε), IGm(E,ε) and Ihm(E,ε) are all even functions in ε. Similar to the
proof of Fact 2.5, one observes that since each determinant Pω

k,E(θ) is real-valued for θ ∈ T, we have
Pω
k,E(z) = Pω

k,E
(1/z).

This implies

gω
m,E
(1/z)(4.27)

=(Pω
m,E
(1/z))2 + (Pω

m−1,E(1/z))2 + (Pω
m−1,E(e2πiω/z))2 + (Pω

m−2,E(e2πiω/z))2
=(Pω

m,E(1/z))2 + (Pω
m−1,E(1/z))2 + (Pω

m−1,E(1/(ze2πiω)))2 + (Pω
m−2,E(1/(ze2πiω)))2

=(Pω
m,E(z))2 + (Pω

m−1,E(z))2 + (Pω
m−1,E(ze2πiω))2 + (Pω

m−2,E(ze2πiω))2 = gωm,E(z).
Hence ṽm,E(e2πi(θ+iε)) = ṽm,E(1/e2πi(−θ+iε)) = ṽm,E(e2πi(θ−iε)), which implies

Lṽ
m(E,ε) = Lṽ

m(E,−ε).(4.28)

By (4.27), if z is a solution to gωm,E(z) = e2m(Lm−δ), then gωm,E(1/z) = e2m(Lm−δ). Hence 1/z is also

a solution, which implies ⋃N
k=1{wk} = ⋃N

k=1{1/wk}. Therefore, by (2.14),

GR,m,E(z) = 1

2m

N

∑
k=1

GR(z,1/wk) = 1

2m

N

∑
k=1

GR(1/z,wk) = GR,m,E(1/z).
This implies

IGm(E,ε) = IGm(E,−ε).(4.29)

Combining (4.28) with (4.29), we obtain

Ihm(E,ε) = Ihm(E,−ε).(4.30)

For any r ∈ [1/R,R], and ∣x + iy∣ = r, we define a radial function as follows:

h̃(x + iy) ∶= Ihm(E,
log r

2π
) = ∫

T
hR,m,E(re2πiθ)dθ.

Since hR,m,E is harmonic, h̃ is a radial harmonic function, which implies

h̃(x + iy) = a log ∣x + iy∣ + b = Ihm(E,
log ∣x + iy∣

2π
),

for some constants a, b. Then, by (4.30),

Ihm(E,ε) = 2πaε + b = −2πaε + b = Ihm(E,−ε),
which implies a = 0. Hence

Ihm(E,ε) ≡ b, for any ∣ε∣ ≤ ε0,
as claimed. �

We further use the following lemma to bound Lṽ
m(E,0) from below.

Lemma 4.8. Under the same condition as Lemma 4.5. For δ ≥ 1100Cvδ
1/4
1 , for m large and

satisfying (4.26), we have

Lṽ
m(E,0) ≥ Lm(E,0) − 1200Cvδ

1/4
1 .
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Proof. Recall the large deviation estimates of vm,E in Lemmas 4.3 and 4.4:

mes(Bg
m,1000Cvδ

1/4
1

,E
) =mes({θ ∶ ∣vm,E(e2πiθ) −Lm(E,0)∣ > 1000Cvδ

1/4
1 }) ≤ e−100δ1m.(4.31)

For θ ∉ Bg
m,1000Cvδ

1/4
1

,E
, the following is true

e2m(Lm(E,0)−1000Cvδ
1/4
1
) ≤ gωm,E(e2πiθ) ≤ e2m(Lm(E,0)+1000Cvδ

1/4
1
),

which implies for δ ≥ 1100δ1/41 that

1

2
e2m(Lm(E,0)−1000Cvδ

1/4
1
) ≤ gωm,E(e2πiθ) − e2m(Lm(E,0)−δ) ≤ 2e2m(Lm(E,0)+1000Cvδ

1/4
1
).

Hence by (4.31),

mes(B̃m) ∶=mes({θ ∶ ∣ṽm,E(e2πiθ) −Lm(E,0)∣ > 1100Cvδ
1/4
1 })(4.32)

≤mes(Bg
m,1000Cvδ

1/4
1

,E
) ≤ e−100δ1m.

This yields a preliminary L2 estimate as below:

∥ṽm,E(e2πiθ) −Lm(E,0)∥L2(T) ≤ C̃v,δ1,ε0 .(4.33)

To see this, one covers the unit circle C1 with ∼ ε−10 many disks of radius ∼ ε0, with centers in B̃c
m,

and then applies the Cartan estimate (Lemma 2.2) to each of these disks.
With (4.32) and (4.33) in hands, we obtain

∥ṽm,E(e2πiθ) −Lm(E,0)∥L1(T)

=∫
B̃m

∣ṽm,E(e2πiθ) −Lm(E,0)∣dθ + ∫
B̃c

m

∣ṽm,E(e2πiθ) −Lm(E,0)∣dθ
≤(mes(B̃m))1/2 ⋅ ∥ṽm(e2πiθ) −Lm(E,0)∥L2(T) + 1100Cvδ

1/4
1

≤C̃v,δ1,ε0e
−50δ1m + 1100Cvδ

1/4
1 .

Hence

∫
T
ṽm,E(e2πiθ)dθ ≥ Lm(E,0) − 1200Cvδ

1/4
1 ,

as claimed. �

Next, we present the upper bound of Lṽ
m(E,ε).

Lemma 4.9. For any ε ∈ [0, ε0], for m large enough, the following is true

Lṽ
m(E,ε) ≤ Lm(E,ε) + o(1).

Proof. The following standard uniform upper bound is from Lemma 2.4:

1

m
log ∥Mω

m,E(θ + iε2)∥ ≤ Lm(E,ε2) + o(1), uniformly in θ ∈ T.
It implies that uniformly in θ ∈ T:

∣gωm,E(e2πi(θ+iε2))∣ ≤ ∥Mω
m,E(θ + iε2)∥2HS ≤ Ce2m(Lm(E,ε2)+o(1)),

for some absolute constant C > 0 that arises from the equivalence between the two norms of
2 × 2 matrices. Hence, by using that Lm(E,0) ≤ Lm(E,ε2) (which follows from the convexity of
Lm(E, ⋅)), we obtain

∣gωm,E(e2πi(θ+iε2)) − e2m(Lm(E,0)−δ)∣ ≤ 2Ce2m(Lm(E,ε2)+o(1)).
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Hence uniformly in θ ∈ T, we have

ṽm,E(e2π(θ+iε2)) ≤ Lm(E,ε2) + o(1),
This implies the claimed result. �

With these preparations, we now turn to the zero count. The arguments below are very similar
to those in [HS1]. By [HS1, (4.24)], the following holds

IGm(E,ε1) = − π

2m
∫

ε0

ε1
N g

m,δ,E
(ε2)dε2.

Hence for ε0 ≥ ε2 > ε1 > 0,
IGm(E,ε2) − IGm(E,ε1) = π

2m
∫

ε2

ε1
N g

m,δ,E
(ε3)dε3 ≥ π

2m
(ε2 − ε1)N g

m,δ,E
(ε1),

in which the last inequality follows from the monotonicity of N g
m,δ,E

(⋅). Combining the inequality

above with Lemma 4.7, we obtain

π

2m
(ε2 − ε1)N g

m,δ,E
(ε1) ≤ Lṽ

m(E,ε2) −Lṽ
m(E,ε1).(4.34)

By convexity of Lṽ
m(E, ⋅) and Lemma 4.8, we have

Lṽ
m(E,ε1) ≥ Lṽ

m(E,0) ≥ Lm(E,0) − 1200Cvδ
1/4
1 .(4.35)

Therefore, combining (4.35), Lemma 4.9 with (4.34), yields

π

2m
(ε2 − ε1)N g

m,δ,E
(ε1) ≤Lm(E,ε2) −Lm(E,0) + 1200Cvδ

1/4
1 + o(1).

This implies for m large enough,

π

2m
(ε2 − ε1)N g

m,δ,E
(ε1) ≤L(E,ε2) −L(E,0) + 1200Cvδ

1/4
1 + o(1)

≤2πκε2 + 1200Cvδ
1/4
1 + o(1).

Hence

N g
m,δ,E

(ε1) ≤ 4mκ

ε2 − ε1 (ε2 + 200Cvδ
1/4
1 + o(1)) .

Recall that η is as in (3.25). Taking ε2 = ((η/2)−1 +1)ε1 = ε0 and m large enough yields the desired
estimates. This finishes the proof of Lemma 4.5. �

Next, we explore some unique features of the even potentials. In fact, when v is even, the
Dirichlet determinants satisfy:

Pω
k,E(θ − k − 1

2
ω) = Pω

k,E(−θ − k − 1
2

ω), for any k ∈ N,(4.36)

which implies for arbitrary m ≥ 3 that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Pω
m−2,E(θ − m−1

2
ω + ω) = Pω

m−2,E(−θ − m−1
2

ω + ω), and

(Pω
m−1,E(θ − m−1

2
ω))2 + (Pω

m−1,E(θ − m−1
2

ω + ω))2
= (Pω

m−1,E(−θ − m−1
2

ω + ω))2 + (Pω
m−1,E(−θ − m−1

2
ω))2

Therefore,

gωm,E(e2πi(θ−m−1
2

ω)) = gωm,E(e2πi(−θ−m−1
2

ω)).
Combining this with Corollary 4.6, we conclude that:
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Corollary 4.10. Under the same conditions as Corollary 4.6, we have

Bg
m,1100Cvδ

1/4
1

,E
= Ñ ′

⋃
j=1

(Um,j⋃(−Um,j − (m − 1)ω)),
for some Ñ ′ ≤ κ(1 + η)m, furthermore each Um,j satisfies mes(Um,j) ≤ e−100δ1m.

4.3. Exponential decay of generalized eigenfunction.
Throughout the rest of the section, we assume κ(ω,E) = 1, namely restrict to the first supercrit-

ical stratum.
For any Z ∋ y ≥ 10, let my ∶= [y/2], and

I
y
1 ∶= [− [ 910my] ,− [3

5
my]] ∩Z and I

y
2 ∶= [y − [ 910my] , y − [ 1

10
my]] ∩ Z.

Since y ≥ 2my, I
y
1 ∩ Iy2 = ∅. Also it is clear that

card(I1⋃ I2) = card(I1) + card(I2) ≥ 11

10
my +O(1) > (1 + η)my,(4.37)

where we used that η < 1/100 as in (3.25).
Let

In ∶=
⎧⎪⎪⎨⎪⎪⎩
[10δ1/41 qn, qn+1/5], if qn+1 ≤ eδ1qn , and qn ≤ eδ1qn−1
[10δ1/41 q1−c0n , qn+1/5], if qn+1 ≤ eδ1qn , and qn > eδ1qn−1

Corollary 4.10 together with the weak Liouville condition qn+1 ≤ eδ1qn implies the following.

Lemma 4.11. For y ∈ In with n large enough. For each k ∈ Iy1 , we have

θ + kω ∈ Bg
my ,1100Cvδ

1/4
1

,E
.(4.38)

Furthermore there exists k
y
2 ∈ Iy2 such that

θ + ky2ω ∉ Bgmy ,1100Cvδ
1/4
1

,E
.

Proof. We prove (4.38) by contradiction. Suppose there exists k1 ∈ Iy1 such that

θ + k1ω ∉ Bg
my,1100Cvδ

1/4
1

,E
.

Then gωmy ,E
(θ + k1ω) ≥ e2my(Lmy−1100Cvδ

1/4
1
). This implies, by the definition of gωmy ,E

as in (1.5),

that there exists m′y ∈ {my,my − 1,my − 2} and a ∈ {0,1} such that

∣Pω
m′y ,E
(θ + (k1 + a)ω)∣ ≥ 1

2
emy(Lmy−1100Cvδ

1/4
1
) ≥ 1

2
emy(L−1200Cvδ

1/4
1
),(4.39)

where we used Lmy = L + o(1) for y large enough (which implies my is large enough). Applying
Green’s function expansion (2.22) of φh at h = 0,−1, on the interval [m1,m2] = [k1+a, k1+a+m′y−1],
and estimating the numerators of the expansion using Lemma 2.4, we arrive at a contradiction that

1 ≤ (max(∣φ0∣, ∣φ−1∣) ≤ e−∣k1∣(L−2000Cvδ
1/4
1
)∣φk1+a−1∣ + e−∣k1+m′y ∣(L−2000Cvδ

1/4
1
)∣φk1+a+m′y ∣ ≤ e− 1

20
myL,

(4.40)

where we used (2.23) and that min(∣k1∣, ∣k1+m′y ∣) ≥my/10−O(1) in the last inequality. This proves
(4.38).

Note that (4.38) implies for each k ∈ I1, there exists jk such that

θ + kω ∈ (Umy ,jk⋃(−Umy ,jk − (my − 1)ω)).
We need the following repulsion property among θ + kω for k ∈ Iy1 ⋃ I

y
2 .
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Lemma 4.12. Suppose for some k ∈ Iy1 ⋃ I
y
2 , θ + kω ∈ (Umy ,j⋃(−Umy ,j − (my − 1)ω)), then for any

k′ ∈ Iy1 ⋃ I
y
2 ∖ {k}, the following holds:

θ + k′ω ∉ (Umy ,j⋃(−Umy ,j − (my − 1)ω)).
Proof. Without loss of generality, we assume θ+kω ∈ Umy ,jk . The other case is completely analogous.

We need to distinguish two cases, depending on the size of y.
Case 1. If y ≤ qn/2. Then my ≤ qn/4. Clearly this implies

0 < ∣k − k′∣ < y + 4

5
my + 2 < qn.

Hence by (2.7) and (2.9), we have

∥(θ + kω) − (θ + k′ω)∥ ≥ ∥(k − k′)ω∥ ≥ ∥qn−1ω∥ ≥ 1

2qn
≥ e−100δ1my ,

where we used my ≥ 5δ1δ1/41 q1−c0n in the last inequality. Combining the above with the estimate of
Umy ,jk in Corollary 4.10 yields θ + k′ω ∉ Umy ,jk .

Case 2. If y ≥ qn/2. Then my ≥ qn/5. Since k′ ≠ k and ∣k − k′∣ < qn+1, we have by (2.7) and (2.9)
that

∥θ + k′ω − (θ + kω)∥ = ∥(k′ − k)ω∥ ≥ ∥qnω∥ ≥ e−δ1qn/2,
where we used qn+1 ≤ eδ1qn in the last inequality. Combining this with the measure estimate in
Corollary 4.10 and that my ≥ qn/5 yields

mes(Umy ,jk) ≤ e−100δ1my ≤ e−20δ1qn ≪ e−δ1qn/2,
This implies θ + k′ω ∉ Umy ,jk . Now it remains to show θ + k′ω ∉ (−Umy ,jk − (my − 1)ω). Note that

k + k′ +my − 1 ∈
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[−4

5
my,−1

5
my], if k, k′ ∈ Iy1 ,[y − 4

5
my, y + 3

10
my], if exactly one of k, k′ ∈ Iy1 ,[2y − 4

5
my,2y + 4

5
my] if k, k′ ∈ Iy2 .

Since y = 2my +O(1), ∣k + k′ +my − 1∣ ∈ [my/5,5my], thus (2.6) with δ′ = δ1 implies

∥θ + k′ω − (−(θ + kω) − (my − 1)ω)∥ = ∥2θ + (k + k′ +my − 1)ω∥ ≥e−δ1 ∣k+k′+my−1∣

≥e−5δ1my ≥mes(Umy ,jk1
).

Hence
θ + k′ω ∉ −Umy,j − (my − 1)ω ∋ −(θ + kω) − (my − 1)ω.

This proves the claimed result of Lemma 4.12. �

Lemma 4.11 follows from combining Lemma 4.12 with (4.37) and the pigeonhole principle. �

For

y ∈
⎧⎪⎪⎨⎪⎪⎩
[q1−c0n , qn+1/10], if qn ≥ eδ1qn−1[ qn
10
, qn+1

10
], if qn ≤ eδ1qn−1 ,

expanding φy using the Green’s function expansion on [ky2 , ky2 +my −1] with k
y
2 provided by Lemma

4.12, we have similar to (4.40) that

∣φy ∣ ≤max(e−∣y−ky2 ∣(L−2000Cvδ
1/4
1
)∣φk

y
2
−1∣, e−∣ky2+my−y∣(L−2000Cvδ

1/4
1
)∣φk

y
2
+my
∣) ≤ e−Ly/40,

in which we used min(∣y − ky2 ∣, ∣ky2 +my − y∣) ≥my/10 ≥ y/20, and used (2.23) to bound

max(∣φk
y
2
−1∣, ∣φk

y
2
+my
∣) ≤ Cy.

This is the claimed result. �
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5. Strong Liouville scales

We first give an overview of this section. Throughout this section, we assume qn+1 ≥ eδ1qn . Our
goal is to study the decay of the generalized eigenfunction φ, roughly speaking, in [qn/10, q1−c0n+1 ].
The main result of this section is Theorem 5.19, which is based on Theorems 5.12 and 5.16, that
handle weakly resonant regimes and strongly resonant regimes, respectively. The strongly resonant
regimes Rℓqn , for ∣ℓ∣ ≤ 10q1−c0n+1 /qn, as defined as follows. If qn ≤ eδ1qn−1 , let

Rℓqn ∶= [(ℓ − 10δ1/41 )qn, (ℓ + 10δ1/41 )qn], and rℓqn ∶= sup
y∈Rℓqn

∣φy ∣.
If qn > eδ1qn−1 , let

Rℓqn ∶= [ℓqn − 10δ1/41 q1−c0n , ℓqn + 10δ1/41 q1−c0n ], and rℓqn ∶= sup
y∈Rℓqn

∣φy ∣.
A regime in between two consecutive strong ones: [ℓqn, (ℓ + 1)qn] ∖ (Rℓqn ⋃R(ℓ+1)qn), is called a
weakly resonant regime.

The technical core of this section concerns the strongly resonant regimes, for which the study
of the weakly resonant regimes serve as preparations. In fact, sections 5.1, 5.2, 5.3, 5.4 are all
preparations for the proof of Theorem 5.16 in Sec. 5.5. The proof of Theorem 5.12, given in Sec.
5.4, is indeed independent of the sections 5.1, 5.2 and 5.3, but we decide to present it next to Sec.
5.5 since they both concern the study of eigenfunctions.

This section deals with the case when there exists a sequence of such strong Liouville scales
qn+1 ≥ eδ1qn , which is true when β(ω) ≥ δ1 > 0. In such case, we can formula the following variant
of (2.6): for any small δ′ > 0, there exists cδ′ > 0 such that

∥2θ + nω∥ ≥ cδ′ e−δ′ ∣n∣.(5.41)

Note that this follows from (2.6) unless 2θ + n0ω ∈ Z for some n0 ∈ Z. However that would lead to
a contradiction to θ ∈ Θ. In fact, we would have

0 = lim sup
n→∞

− log ∥2θ + nω∥
∣n∣ = lim sup

n→∞

− log ∥(n − n0)ω∥∣n∣ = β(ω) ≥ δ1 > 0,
hence a contradiction. We will use this variant (5.41) in Sections 5.3 and 5.5.

Define βn be such that ∥qnω∥ = e−βnqn . By (2.9), we have βn ≥ δ1. Recall fω
n,E is roughly speaking

the trace of Mω
n,E, as in (2.19). Let

vωqn,E(z) = q−1n log ∣fω
qn,E
(z)∣,

and R ∶= e2πε0 , N ∶= Nqn(ω,E, ε0). Let w1, ...,wN be the zeros of fω
qn,E
(z) in AR (assume fω

qn,E
(z)

is zero free on ∂AR). Define

Gω
R,qn,E(z) = 1

qn

N

∑
k=1

GR(z,wk),
where GR is the Green’s function of AR as in (2.12). Then

vωqn,E(z) = 2πGω
R,qn,E

(z) + hωR,qn,E
(z),(5.42)

where hωR,qn,E
is a harmonic function on AR.
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5.1. Zeros of f
pn/qn
qn,E

. We start off by studying the zeros of fω, for ω = pn/qn, which are structured

due to periodicity.

Since the trace of M
pn/qn
qn,E

is periodic:

tr(Mpn/qn
qn,E

(θ)) = tr(Mpn/qn
qn,E

(θ + pn/qn)),
f
pn/qn
qn,E

(e2πi⋅) is also 1/qn-periodic, due to (2.19), which implies

Fact 5.1. If z0 ∈ C is a zero of f
pn/qn
qn,E

(z), namely f
pn/qn
qn,E

(z0) = 0, then for any 1 ≤ j ≤ qn − 1,
z0e

2πijpn/qn is also a zero.

Next, we estimate the total number of zeros of f
pn/qn
qn,E

(z) lying near the unit circle. For any

0 ≤ ε ≤ ε0, define
Nn(ω,E, ε) ∶=#{e−2πε ≤ ∣z∣ ≤ e2πε ∶ z is a zero of fω

n,E(z)}.
Fact 5.1 yields immediately that:

Corollary 5.2. For any ε ≥ 0, Nqn(pn/qn,E, ε) is a multiple of qn.

Let

Ipn/qn,Gqn (E,ε) ∶= ∫
T
2πG

pn/qn
R,qn,E

(e2πi(θ+iε))dθ
be the integral of the Green’s function, and

Lpn/qn,v
qn (E,ε) ∶= ∫

T
v
pn/qn
qn,E

(e2πi(θ+iε))dθ.
Lemma 5.3. The harmonic part of v

pn/qn
qn,E

as in (5.42) satisfies h
pn/qn
R,qn,E

= vpn/qn
qn,E

on ∂AR, and the

following holds uniformly in z ∈ AR:

h
pn/qn
R,qn,E

(z) = L(ω,E, ε0) + o(1).(5.43)

For any small δ > 0, for n large enough (depending on δ, ε0), the zero count satisfies

Nqn(pq/qn,E, ε0/2) = Nqn(pn/qn,E, δ/2) = 2qn.
Proof. We start with the harmonic part. Since for ε ∈ {±ε0,±ε0/2,±δ/2,±δ/4}, (ω,ME(⋅ + iε)) is
regular, Theorem 2.3 implies that for n large enough and uniformly in θ ∈ T,

1

qn
log(ρ(Mpn/qn

qn,E
(θ + iε))) = L(ω,E, ε) + o(1),

where ρ(M) is the spectral radius of M . This implies, due to ρ(M) ≤ ∥M2∥1/2 ≤ ∥M∥, that
1

qn
min(log ∥Mpn/qn

qn,E
(θ + iε)∥, 1

2
log ∥(Mpn/qn

qn,E
(θ + iε))2∥)(5.44)

≥ 1

qn
log(ρ(Mpn/qn

qn,E
(θ + iε)))

≥L(ω,E, ε) + o(1),
uniformly in θ ∈ T, for n large enough.

By Lemma 2.4 and (2.21), we conclude that for n large enough,

v
pn/qn
qn,E

(e2πi(θ+iε)) ≤ 1

qn
log ∥Mpn/qn

qn,E
(θ + iε)∥ + o(1) ≤ L(ω,E, ε) + o(1),(5.45)
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uniformly in θ ∈ T. Note that (5.44) and (5.45) together with (2.21) imply, uniformly in θ ∈ T, that
v
pn/qn
qn,E

(e2πi(θ+iε)) ≥ 1

qn
log
∥(Mpn/qn

qn,E
(θ + iε))2∥

∥Mpn/qn
qn,E

(θ + iε)∥ + o(1) ≥ L(ω,E, ε) + o(1).(5.46)

Combining (5.45) with (5.46) yields

v
pn/qn
qn,E

(e2πi(θ+iε)) = L(ω,E, ε) + o(1),(5.47)

for ε ∈ {±ε0,±ε0/2,±δ/2,±δ/4}, uniformly in θ ∈ T. This clearly implies the integral satisfies:

Lpn/qn,v
qn (E,ε) = L(ω,E, ε) + o(1), for ε ∈ {±ε0,±ε0/2,±δ/2,±δ/4}.(5.48)

Since h
pn/qn
R,qn,E

(z) = v
pn/qn
qn,E

(z) for z ∈ ∂AR, by (5.47) and the max/min principle for harmonic

functions,

h
pn/qn
R,qn,E

(z) = L(ω,E, ε0) + o(1),
holds uniformly in z ∈ AR, thus proving (5.43).

Next, we estimate the number of zeros. By (5.43) and (5.48), we have for any

ε2, ε1 ∈ {ε0, ε0/2, δ/2, δ/4},
and for n large enough that

Ipn/qn,Gqn
(E,ε2) − Ipn/qn,Gqn

(E,ε1) =Lpn/qn,v
qn

(E,ε2) −Lpn/qn,v
qn

(E,ε1) + o(1)
=L(ω,E, ε2) −L(ω,E, ε1) + o(1).(5.49)

By [HS1, (4.24)],

Ipn/qn,Gqn
(E,ε) = 2π∫

T
G

pn/qn
R,qn,E

(e2πi(θ+iε))dθ = − π

qn
∫

ε0

ε
Nqn(pn/qn,E, ε)dε.(5.50)

Combining (5.49) with (5.50), and using the L(ω,E, ε) = L(ω,E,0) + 2πε, we have

∫
ε0

ε0/2
Nqn(pn/qn,E, ε)dε =qn

π
(L(ω,E, ε0) −L(ω,E, ε0/2) + o(1))

=qnε0(1 + o(1)).
This implies, by the monotonicity of Nqn(pn/qn,E, ε) in ε, that

Nqn(pn/qn,E, ε0/2) ≤ 2qn(1 + o(1)).
By Corollary 5.2, we have

Nqn(pn/qn,E, ε0/2) ≤ 2qn.(5.51)

Similarly

∫
δ/2

δ/4
Nqn(pn/qn,E, ε)dε =qn

π
(L(ω,E, δ) −L(ω,E, δ/2) + o(1))

=qnδ
2
(1 + o(1)),

which implies

Nqn(pn/qn,E, δ/2) ≥ 2qn(1 + o(1)),
This combined with Corollary 5.2 yields

Nqn(pn/qn,E, δ/2) ≥ 2qn.
Taking the upper bound (5.51) into account, we conclude that for n large enough,

Nqn(pn/qn,E, δ/2) = Nqn(pn/qn,E, ε0/2) = 2qn,
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as claimed. �

Facts 2.5, 5.1 and Lemma 5.3 yield the following immediately:

Lemma 5.4. There exists z
(pn/qn)
1 = r1e2πi(θ1+iε1), z(pn/qn)2 = r2e2πi(θ2+iε2) ∈ Aexp(πδ) (it is possible

that z
(pn/qn)
1 = z(pn/qn)2 ), with r1r2 = 1 and r2 ≤ r1, such that the zeros of f

pn/qn
qn,E

(z) in Aexp(πε0) are

Zqn(pn/qn,E) ∶=
qn−1

⋃
j=0

{z(pn/qn)1 e2πijpn/qn , z
(pn/qn)
2 e2πijpn/qn}.

The periodic structure of zeros implies the following control of ΓR in (2.12). Let

Γ
pn/qn
R,qn,E

(z) ∶= 1

qn
∑

w∈Zqn(pn/qn,E)

ΓR(z,w).(5.52)

Lemma 5.5. For any δ > 0, for n large enough, uniformly in z ∈AR, the following holds:

∣Γpn/qn
R,qn,E

(z) + log(∣z∣R)
2π

∣ ≤ δ.
Proof. For each s = 1,2, we study

1

qn

qn−1

∑
j=0

ΓR(z, z(pn/qn)s e2πijpn/qn).
Recall that ΓR(z,w) is as in (2.13), there exists some k0 = k0(δ) such that uniformly in z ∈AR and
w ∈ Aexp(πδ),

ΓR(z,w) = log(∣z∣/R) log(∣w∣/R)
4π logR

+ 1

2π
log
⎛
⎝

∏k0
k=1
∣1 − 1

R4k
z
w
∣ ⋅ ∣1 − 1

R4k
w
z
∣

R ⋅ ∏k0
k=1
∣1 − 1

R4k−2wz∣ ⋅ ∣1 − 1
R4k−2

1
zw
∣
⎞
⎠ + ξ1,

where ∣ξ1∣ ≤ δ/4. It is easy to show, for each 1 ≤ k ≤ k0 that uniformly in z ∈AR,

1

qn

qn−1

∑
j=0

log ∣1 − 1

R4k

z

z
(pn/qn)
s e2πijpn/qn

∣

= 1

qn

qn−1

∑
j=0

log ∣1 − 1

R4k

z

rse2πi(θs+j/qn)
∣

=∫
T
log ∣1 − 1

R4k

z

rse2πiθ
dθ∣+O ( ∣z∣

R4krs − ∣z∣)
1

qn
,

and similarly

1

qn

qn−1

∑
j=0

log

RRRRRRRRRRR1 −
1

R4k

z
(pn/qn)
s e2πijpn/qn

z

RRRRRRRRRRR = ∫T ∣1 −
1

R4k

rse
2πiθ

z
dθ∣ +O ( rs

R4k∣z∣ − rs)
1

qn
,

1

qn

qn−1

∑
j=0

log ∣1 − 1

R4k−2
z(pn/qn)s e2πijpn/qnz∣ = ∫

T
∣1 − 1

R4k−2
rse

2πiθz dθ∣ +O ( rs∣z∣
R4k−2 − rs∣z∣ )

1

qn
,

1

qn

qn−1

∑
j=0

log ∣1 − 1

R4k−2

1

zz
(pn/qn)
s e2πijpn/qn

∣ = ∫
T
∣1 − 1

R4k−2

1

zrse2πiθ
dθ∣+O ( 1

R4k−2rs∣z∣ − 1)
1

qn
.
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Therefore, for each 1 ≤ k ≤ k0, the sums can be approximated, uniformly in z ∈AR, by the integrals.
This implies for qn large enough, depending on R,δ, that

δ/2 ≥ RRRRRRRRRRR
1

qn

qn−1

∑
j=0

ΓR(z, z(pn/qn)s e2πijpn/qn) − ∫
T
ΓR(z, rse2πiθ)dθ

RRRRRRRRRRR
= RRRRRRRRRRR

1

qn

qn−1

∑
j=0

ΓR(z, z(pn/qn)s e2πijpn/qn) − log(∣z∣/R)
4π logR

log(rs/R) + logR

2π

RRRRRRRRRRR ,
where we used (2.15) in the last line. This implies, by triangle inequality and log r1 + log r2 = 0,
that

∣Γpn/qn
R,qn,E

(z) + log(∣z∣R)
2π

∣ ≤ δ,
as claimed. �

Combining the control of h
pn/qn
R,qn,E

in Lemma 5.3 with the control of Γ
pn/qn
R,qn,E

in Lemma 5.5, we

have that for some ∣ξ∣ ≤ 2δ,
v
pn/qn
qn,E

(z) =2πGpn/qn
R,qn,E

(z) + hpn/qn
R,qn,E

(z)
= 1

qn

⎛
⎝ ∑
w∈Zqn(pn/qn,E)

log ∣z −w∣⎞⎠ − log(∣z∣R) +L(ω,E, ε0) + ξ

= 1

qn

⎛
⎝ ∑
w∈Zqn(pn/qn,E)

log ∣z −w∣⎞⎠ − log ∣z∣ +L(ω,E) + ξ,(5.53)

where we used L(ω,E, ε0) = L(ω,E) + 2πε0 = L(ω,E) + logR in the last line.
The following lemma controls the sum of logarithmic potential part via its minimum term, in

(5.53) above.

Lemma 5.6. For s ∈ {1,2}, the following holds uniformly in z ∈ AR:RRRRRRRRRRRq
−1
n

2

∑
s=1

qn−1

∑
j=0

log ∣z − z(pn/qn)s e2πijpn/qn ∣ − q−1n
2

∑
s=1

qn−1

min
j=0

log ∣z − z(pn/qn)s e2πijpn/qn ∣(5.54)

−
2

∑
s=1
∫
T
log ∣z − rse2πiθ ∣dθ∣ ≤ δ.

Proof. Fix an arbitrary s ∈ {1,2}. Let z = rze
2πiθz , where rz > 0 and θz ∈ T. We partition T as

follows:

T = qn−[qn/2]−1

⋃
k=−[qn/2]

[θz − 1

2qn
+ k

qn
, θz + 1

2qn
+ k

qn
) =∶ Qk.

For each k ∈ [−[qn/2], qn − [qn/2] − 1], there exists a unique jk such that θs + jkpn/qn ∈ Qk. Clearly
j0 is such that

log ∣z − z(pn/qn)s e2πij0pn/qn ∣ = qn−1

min
j=0

log ∣z − z(pn/qn)s e2πijpn/qn ∣.
To control the non-minimum terms, for each k ∈ [−[qn/2], qn − [qn/2]− 1]∖ {0} and θ ∈ Qk, we have
that

∣θ − (θs + jkpn/qn)∣ ≤ 1/qn, and min(∣θz − (θs + jkpn/qn)∣, ∣θz − θ∣) ≥ (2∣k∣ − 1)/qn.
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This implies

q−1n log ∣z − z(pn/qn)s e2πijkpn/qn ∣ − ∫
Qk

log ∣z − rse2πiθ ∣dθ
=∫

Qk

log ∣1 + rs(e2πiθ − e2πi(θs+jkpn/qn))
z − rse2πiθ ∣ dθ

≤q−1n sup
θ∈Qk

∣rs(e2πiθ − e2πi(θs+jkpn/qn))
z − rse2πiθ ∣

≤q−1n π∣θ − (θs + jkpn/qn)∣
2∣θz − θ∣ ≤ q−1n π

4∣k∣ − 2 .
Summing up in k and s, we conclude that for qn large enough that (5.54) holds as claimed. �

By Jensen’s formula we have that, recall that r1r2 = 1 and r2 ≤ r1,
2

∑
s=1
∫
T
log ∣z − rse2πiθ ∣dθ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if ∣z∣ < r2
log(r1∣z∣) if r2 ≤ ∣z∣ ≤ r1
2 log ∣z∣, if ∣z∣ > r1

(5.55)

Combining (5.53), (5.54), (5.55) with the fact that 1 ≤ r1 ≤ eπδ (due to Lemma 5.4) yields:

Corollary 5.7. For any z ∈ Aexp(2πδ), for n large enough,

∣vpn/qn
qn,E

(z) − 1

qn
( 2

∑
s=1

qn−1

min
j=0

log ∣z − z(pn/qn)s e2πijpn/qn ∣) −L(ω,E)∣ ≤ 10δ,
and for any z ∈Aexp(2πδ) ∖ (⋃2

s=1⋃qn−1
j=0 Bexp(−δqn)(z(pn/qn)s e2πijpn/qn))),
v
pn/qn
qn,E

(z) ≥ L(ω,E) − 12δ.
Note that by Lemma 5.4, Zqn(pn/qn,E) ⊂ Aexp(πδ), hence

2

⋃
s=1

qn−1

⋃
j=0

B4exp(−δqn)(z(pn/qn)s e2πijpn/qn)) ⊂ Aexp(2πδ).

5.2. Zeros of fω
qn,E

. Next, we study the zeros of fω
qn,E

for the irrational frequency ω. In the

following, we write L(ω,E) as L for simplicity. We will show:

Lemma 5.8. There exists zωqn,j,s ∈ Aexp(2πδ), j ∈ {0, ..., qn − 1} and s = 1,2 such that the set

Zqn(ω,E) of zeros of fω
qn,E

in Aexp(2πδ) is given by

Zqn(ω,E) = 2

⋃
s=1

qn−1

⋃
j=0

{zωqn,j,s}(5.56)

Furthermore, the zeros are structured (almost 1/qn-periodic), in the sense that for any j, k ∈{0, ..., qn − 1}, the following holds

zωqn,j,s = zωqn,k,se2πi(j−k)pn/qn +O(e−δqn).(5.57)

If we denote zωqn,j,s ∶= rωj,se2πiθωj,s for s = 1,2 and j ∈ {0,1, ..., qn − 1}, then
rωj,s = rωk,s +O(e−δqn) and θωj,s = θωk,s + (j − k)pnqn

+O(e−δqn),(5.58)

for j, k ∈ {0, ..., qn − 1} and s = 1,2.
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Proof. We distinguish into two different cases:

Case 1. If z
(pn/qn)
1 ∈ B2exp(−δqn)(z(pn/qn)2 e2πij0pn/qn) for some j0 ∈ {0,1, ..., qn − 1}. Let

Bqn,0 ∶= B4exp(−δqn)(z(pn/qn)2 e2πij0pn/qn),
and Bqn,j ∶= Bqn,0e

2πijpn/qn . It is clear from Corollary 5.7 that

∣fpn/qn
qn,E

(z)∣ ≥ e(L−12δ)qn , for any z ∈ Aexp(2πδ) ∖ (qn−1⋃
j=0

Bqn,j).(5.59)

By (2.20), Lemma 2.4 and the standard telescoping argument, for qn+1 ≥ e30δqn , we have uniformly
in Aexp(2πδ) that

∣fω
qn,E(z) − fpn/qn

qn,E
(z)∣ ≤ 2∥Mω

qn,E(z) −Mpn/qn
qn,E

(z)∥ ≤e(L(ω,E,δ)+δ)qn∥qnω∥(5.60)

≤e(L+2πδ+δ)qn∥qnω∥
≤e(L−20δ)qn ,

where we used ∥qnω∥ ≤ q−1n+1 ≤ e−30δqn (see (2.9)). Combining this with (5.59) yields the following

for z ∉ ⋃qn−1
j=0 Bqn,j ⊂ Aexp(2πδ):

∣fω
qn,E
(z) − fpn/qn

qn,E
(z)∣ ≤ 1

2
∣fpn/qn
qn,E

(z)∣.
Rouche’s theorem, applied to each ball Bqn,j, implies the two analytic functions fω

qn,E
and f

pn/qn
qn,E

have the same number of zeros in each ball Bqn,j. Thus fω
qn,E

has exactly two zeros, denoted
by zωqn,j,1, z

ω
qn,j,2

, in each Bqn,j, j = 0, ..., qn − 1. Furthermore, fω
qn,E

has no zero in Aexp(2πδ) ∖
(⋃qn−1

j=0 Bqn,j).
Case 2. If z

(pn/qn)
1 ∉ ⋃qn−1

j=0 B2exp(−δqn)(z(pn/qn)2 e2πijpn/qn). For each s = 1,2, and j ∈ {0,1, ..., qn−1},
let

Bs
qn,j
∶= Bexp(−δqn)(z(pn/qn)s e2πijpn/qn).

It is clear that in this case Bs
qn,j1
∩ Bs′

qn,j2
= ∅ for any s ≠ s′ and any j1, j2 ∈ {0,1, ..., qn − 1}. By

Corollary 5.7 we obtain that

∣fpn/qn
qn,E

(z)∣ ≥ e(L−12δ)qn , for any z ∈ Aexp(2πδ) ∖ ( 2

⋃
s=1

qn−1

⋃
j=0

Bs
qn,j
).

Similar to the Case 1 above, for qn+1 ≥ e30δqn , we have

∣fω
qn,E(z) − fpn/qn

qn,E
(z)∣ ≤ 1

2
∣fpn/qn
qn,E

(z)∣,
for any z ∈ Aexp(2πδ) ∖ (⋃2

s=1⋃qn−1
j=0 Bs

qn,j
). Thus fω

qn,E
has exactly one zero, denoted by zωqn,j,s, in

each Bs
qn,j

, j = 0, ..., qn − 1, s = 1,2, and it has no zero in Aexp(2πδ) ∖ (⋃2
s=1⋃qn−1

j=0 Bs
qn,j
).

The zeros in both two cases clearly satisfy (5.57) and thus (5.58). �

The zeros of the strong Liouville scale, similar to its rational approximation, are structured
(almost 1/qn-periodic) as in (5.57). Therefore, similar to Corollary 5.7, we obtain:

Lemma 5.9. Let

δ = δ1/30.(5.61)
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For n large enough and qn+1 ≥ eδ1qn . For any z ∈ Aexp(2πδ),

∣vωqn,E(z) − 1

qn
( 2

∑
s=1

qn−1

min
j=0

log ∣z − zωqn,j,s∣) −L(ω,E)∣ ≤ 10δ,
in which Zqn(ω,E) = ⋃2

s=1⋃qn−1
j=0 {zωqn,j,s} is the set of zeros of fω

qn,E
in Aexp(2πδ). Furthermore, for

any z ∈ Aexp(2πδ) ∖ (⋃2
s=1⋃qn−1

j=0 Bexp(−δqn)(zωqn,j,s)),
vωqn,E(z) ≥ L(ω,E) − 12δ.

Proof. We discuss the proof briefly. Defining Γω
R,qn,E

similar to (5.52) as

Γω
R,qn,E(z) ∶= 1

qn
∑

w∈Zqn(ω,E)

ΓR(z,w).
Then due to the almost periodicity of Zqn(ω,E) provided by Lemma 5.8, similar to Lemma 5.5,
the following estimates hold uniformly in z ∈AR,

∣Γω
R,qn,E

(z) + log(∣z∣R)
2π

∣ ≤ δ.
Next, we show an analogue of (5.43) holds as follows:

hωR,qn,E(z) = L(ω,E, ε0) + o(1), uniformly in z ∈ AR.(5.62)

By (5.43), for z ∈ ∂AR the following holds:

∣fpn/qn
qn,E

(z)∣ = eqn(L(ω,E,ε0)+o(1)).(5.63)

By the telescoping argument as in (5.60), we have for z ∈ ∂AR that

∣fpn/qn
qn,E

(z) − fω
qn,E
(z)∣ ≤ 2∥Mpn/qn

qn,E
(z) −Mω

qn,E
(z)∥ ≤e(L(ω,E,ε0)+δ)qn∥qnω∥(5.64)

≤e(L(ω,E,ε0)−29δ)qn ,

for qn+1 ≥ eδ1qn = e30δqn . Then (5.62) follows from combining (5.63) with (5.64). Finally, it remains
to note that an analogue of Lemma 5.6, which controls the sum of the logarithmic potentials via
their minimum terms, is true for ω, again due to the almost periodicity of the zeros provided by
Lemma 5.8. �

5.3. The consequence of even potentials and non-resonance of θ. Our goal in this subsec-
tion is to prove Lemma 5.11 below. As a preparation, we first show e2πi(θ−[qn/2]ω) is e−δqn close to
one of the zeros in Zqn(ω,E).
Lemma 5.10. For n large enough, and qn+1 ≥ eδ1qn , the following holds:

e2πi(θ−[qn/2]ω) ∈ 2

⋃
s=1

qn−1

⋃
j=0

Bexp(−δqn)(zωqn,j,s).
Proof. Proof by contradiction. Assume otherwise, then by Lemma 5.9,

∣fω
qn,E(e2πi(θ−[qn/2])ω)∣ ≥ e(L−12δ)qn .

By (2.18) and (2.20), we have

∣Pω
qn,E(θ − [qn/2]ω) − Pω

qn−2,E(θ − [qn/2]ω + ω)∣ ≥ e(L−12δ)qn − 2.
Assume without loss of generality that

∣Pω
qn,E
(θ − [qn/2]ω)∣ ≥ e(L−14δ)qn .(5.65)
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Applying the Green’s function expansion (2.22) to φ0 on the interval [−[qn/2],−[qn/2]+ qn − 1], we
obtain

∣φ0∣ ≤ ∣P
ω
−[qn/2]+qn−1,E

(θ + ω)∣
∣Pω

qn,E
(θ − [qn/2]ω)∣ ∣φ−[qn/2]−1∣ +

∣Pω
[qn/2],E

(θ − [qn/2]ω)∣
∣Pω

qn,E
(θ − [qn/2]ω)∣ ∣φ−[qn/2]+qn ∣.

Combining the lower bound of the denominator in (5.65) with the standard upper bound of the
numerator in (2.18) and Lemma 2.4, we have

∣φ0∣ ≤ e−(L−30δ) qn2 max(∣φ[−qn/2]+qn ∣, ∣φ−[qn/2]−1∣).
Finally using that φ is a generalized solution satisfying (2.23), we conclude that

∣φ0∣ ≤ e−(L−35δ) qn2 .

The same argument implies the same bound for ∣φ−1∣, which leads to a contradiction to (2.23). �

Lemma 5.10 implies that for some j0 ∈ {0, ..., qn − 1} and s0 ∈ {1,2},
rωj0,s0 = 1 +O(e−δqn), and ∥θ − [qn/2]ω − θωj0,s0∥ = O(e−δqn).(5.66)

Without loss of generality, we assume s0 = 1. We will show:

Lemma 5.11. For n large enough, and qn+1 ≥ eδ1qn , the following holds:

Zqn(ω,E) =
qn−1

⋃
j=0

{zωqn,j,1, e−2πi(qn−1)ω/zωqn,j,1}.
Furthermore, zωqn,j,1 is “far away” from e−2πi(qn−1)ω/zωqn,k,1, for any j, k ∈ {0, ..., qn − 1} in the sense
that:

∥θωk,1 − (−θωj,1 − (qn − 1)ω)∥ ≥ e−δqn/25,(5.67)

Proof. We have for any k, j ∈ {0, ..., qn − 1}, by (5.58),

∥θωk,1 − (−θωj,1 − (qn − 1)ω)∥ =∥θωk,1 + θωj,1 + (qn − 1)ω∥
=∥2θωj0,1 + (k + j − 2j0)pnqn

+ (qn − 1)ω∥ +O(e−δqn)
=∥2θωj0,1 + (k + j − 2j0 − 1)ω∥ +O(e−δqn),(5.68)

where we used ∥qnω∥ ≤ e−δ1qn ≪ e−δqn (see (2.9)), and ∣k + j − 2j0∣ ≤ 2qn, which implies

∣(k + j − 2j0)(pn
qn
− ω)∣ = ∣k + j − 2j0∣

qn
∥qnω∥ ≤ 2e−δ1qn ≪ e−δqn .

Combining (5.66) with (5.68) yields

∥θωk,1 − (−θωj,1 − (qn − 1)ω)∥ =∥2θ + (k + j − 2j0 − 1 − 2[qn/2])ω∥ +O(e−δqn).(5.69)

It is easy to see that ∣k + j − 2j0 − 1 − 2[qn/2]∣ ≤ 3qn, hence by (5.41) with δ′ = δ/100, we have

∥2θ + (k + j − 2j0 − 1 − 2[qn/2])ω∥ ≥ cδe−δ∣k+j−2j0−1−2[qn/2]∣/100 ≥ cδe−3δqn/100 ≫ e−δqn .(5.70)

Thus (5.69) together with (5.70) implies

∥θωk,1 − (−θωj,1 − (qn − 1)ω)∥ ≥ e−δqn/25,
in particular

⎛
⎝
qn−1

⋃
j=0

{θωj,1}⎞⎠ ∩
⎛
⎝
qn−1

⋃
j=0

{−θωj,1 − (qn − 1)ω}⎞⎠ = ∅.(5.71)
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Recall that we assume the potential is an even function. This implies that, see (4.36),

tr(Mω
qn,E(θ − qn − 1

2
ω)) =Pω

qn(θ − qn − 1
2

ω) −Pω
qn−2(θ − qn − 1

2
ω + ω)

=Pω
qn
(−θ − qn − 1

2
ω) − Pω

qn−2
(−θ − qn − 1

2
ω + ω)

=tr(Mω
qn,E
(−θ − qn − 1

2
ω)).

By (2.19), this further implies

fω
qn,E(e2πi(θ−(qn−1)ω/2)) = fω

qn,E(e2πi(−θ−(qn−1)ω/2))
This means the two analytic function below coincide on the unit circle z ∈ C1, hence are identical:

fω
qn,E
(z) = fω

qn,E
(e−2πi(qn−1)ω/z).

Then if z is a zero of fω
qn,E
(z), e−2πi(qn−1)ω/z is also a zero. Note that (5.71) implies ⋃qn−1

j=0 {zωqn,j,1}
and ⋃qn−1

j=0 {e−2πi(qn−1)ω/zωqn,j,1} are distinct (and in total 2qn) zeros. Therefore Lemma 5.11 follows

from (5.56) in Lemma 5.9. �

5.4. Eigenfunctions in the weakly resonant regime. The main difficulty in proving Anderson
localization lies in the strongly resonant regime, which are the locations of the local peaks of the
eigenfunctions. To address the strong regimes in a sharp way, one needs to first control the weakly
resonant regimes in terms of its adjacent peaks. The following lemma shows, roughly speaking,
the eigenfunction in a weakly resonant regime can be dominated by its values in its two adjacent
strongly resonant regimes.

Theorem 5.12. For any ℓ ∈ Z, and large enough y ∈ [ℓqn, (ℓ + 1)qn] ∖ (Rℓqn ⋃R(ℓ+1)qn) satisfying∣y∣ ≤ 10q1−c0n+1 , the following holds:

∣φy ∣ ≤max

⎧⎪⎪⎨⎪⎪⎩
e−(L−2000Cvδ

1/4
1
)⋅dist(y0,Rℓqn) ⋅ rℓqn ,

e−(L−2000Cvδ
1/4
1
)⋅dist(y0,R(ℓ+1)qn) ⋅ r(ℓ+1)qn .

Proof. The proof is similar to, but more difficult than, that of the weak Liouville case in Sec. 4.
For y ∈ [ℓqn, (ℓ + 1)qn], let my ∶= dist(y, qnZ)/2. Let

I
y
1 ∶= [− [ 910my] ,− [3

5
my]] , and I

y
2 ∶= [y − [ 910my] , y − [ 1

10
my]] .(5.72)

By Corollary 4.10, we have that:

Lemma 5.13. The large deviation set Bg
my,1100Cvδ

1/4
1

,E
satisfies:

Bg
my ,1100Cvδ

1/4
1

,E
= Ñ ′

⋃
j=1

(Umy ,j⋃(−Umy ,j − (my − 1)ω)),
for some Ñ ′ ≤ (1 + η)my with η as in (3.25). Furthermore each Umy ,j satisfies mes(Umy ,j) ≤
e−100δ1my .

Proof. Note that if qn ≤ eδ1qn−1 , then y ∈ [(ℓ+10δ1/41 )qn, (ℓ+1−10δ1/41 )qn], and qn/4 ≥my ≥ 5δ1/41 qn.

If qn ≥ eδ1qn−1 , then y ∈ [ℓqn + 10δ1/41 q1−c0n , (ℓ + 1)qn − 10δ1/41 q1−c0n ], and qn/4 ≥ my ≥ 5δ1/41 q1−c0n . We
have verified the conditions in Corollary 4.10, therefore Corollary 4.10 directly implies the claimed
result. �

Then one can show:
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Lemma 5.14. For any k ∈ Iy1 , we have

θ + kω ∈ Bg
my ,1100Cvδ

1/4
1

,E
.

Furthermore there exists k
y
2 ∈ Iy2 such that

θ + ky2ω ∉ Bgmy ,1100Cvδ
1/4
1

,E
.(5.73)

Proof. The first claim regarding I
y
1 is very similar to that of Lemma 5.10, which we shall leave for

the readers.
To prove (5.73), it suffices to prove the following repulsion property:

Lemma 5.15. If for some k ∈ Iy1 ⋃ I
y
2 ,

θ + kω ∈ (Umy ,j⋃(−Umy ,j − (my − 1)ω)
for some j ∈ {0, ..., qn − 1}. Then the following holds for any k′ ∈ Iy1 ⋃ I

y
2 ∖ {k}:

θ + k′ω ∉ (Umy ,j⋃(−Umy ,j − (my − 1)ω)).
Proof. Without loss of generality, we assume θ+kω ∈ Umy ,j (the other case is completely analogous).

Case 1. If k, k′ belong to I
y
1 or Iy2 simultaneously, then 0 < ∣k −k′∣ ≤ 4my/5 ≤ qn/5, where we used

my ≤ qn/4. Hence by (2.7) and (2.9), we have

∥θ + k′ω − (θ + kω)∥ ≥ ∥qn−1ω∥ ≥ 1

2qn
≫ e−100δ1my ≥mes(Umy ,j),

since my ≥ 5δ1/41 q1−c0n . This implies θ + k′ω ∉ Umy ,j.
To show θ + k′ω ∉ (−Umy ,j − (my − 1)ω), we further distinguish two cases.
Case 1.1. If k, k′ ∈ Iy1 , it is easy to check that

k′ + k +my − 1 ∈ [−4
5
my,−1

5
my].

Then by (2.6) with δ′ = δ1, when y is large (hence n is large and my is large),

∥θ + k′ω − (−θ − kω − (my − 1)ω)∥
=∥2θ + (k′ + k +my − 1)ω∥ ≥ e−δ1∣k′+k+my−1∣ ≥ e−4δ1my/5 ≫ e−100δ1my ≥mes(−Umy ,j − (my − 1)ω).

This implies

θ + k′ω ∉ −Umy,j − (my − 1)ω ∋ −(θ + kω) − (my − 1)ω.(5.74)

Case 1.2. If k, k′ ∈ Iy2 . Since ∣y∣ ≤ 10q1−c0n+1 , ∣ℓ∣qn < 20q1−c0n+1 , we obtain by (2.9) that,

max(∣2ℓ∣, ∣2ℓ + 2∣)∥qnω∥ ≤ 4max(∣ℓ∣,1)
qn+1

≤ 80q−c0n+1 ≤ 80e−δ1c0qn ,(5.75)

where we used qn+1 ≥ eδ1qn in the last inequality.
We further distinguish two cases depending on if y ≤ (ℓ + 1/2)qn.
Case 1.2.1. If ℓqn ≤ y ≤ (ℓ + 1/2)qn. In this case y − ℓqn = 2my. This implies

k + k′ +my − 1 − 2ℓqn ∈ [2y − 4

5
my − 2ℓqn − 1,2y + 4

5
my − 2ℓqn − 1] ⊂ [3my,5my].

Hence by (2.6) with δ′ = δ1c0/10 < δ1/10, we obtain for y large enough that

∥2θ + (k + k′ +my − 1 − 2ℓqn)ω∥ ≥ e−5δ′my ≥ e−5δ′qn/4 ≫ 80e−δ1c0qn ≥ ∣2ℓ∣∥qnω∥,(5.76)
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in which we used (5.75) in the last inequality. By triangle inequality, (5.76) implies

∥θ + k′ω − (−θ − kω − (my − 1)ω)∥
≥∥θ + k′ω − (−θ − kω − (my − 1)ω) − 2ℓqnω∥ − ∣2ℓ∣∥qnω∥
=∥2θ + (k′ + k +my − 1 − 2ℓ)qn)ω∥ − ∣2ℓ∣∥qnω∥
≥e−5δ′my/2≫ e−100δ1my ≥mes(−Umy ,j − (my − 1)ω).(5.77)

This verifies (5.74) for Case 1.2.1.
Case 1.2.2. If (ℓ + 1/2)qn ≤ y ≤ (ℓ + 1)qn. In this case (ℓ + 1)qn − y = 2my. The estimates below

are similar to those in Case 1.2.1. First, we have

k + k′ +my − 1 − 2(ℓ + 1)qn ∈ [2y − 4

5
my − 2(ℓ + 1)qn − 1,2y + 4

5
my − 2(ℓ + 1)qn − 1] ⊂ [−5my,−3my].

This implies similar to (5.76) that

∥2θ + (k + k′ +my − 1 − 2(ℓ + 1)qn)ω∥ ≥ e−5δ′my ≥ e−5δ′qn/4 ≫ ∣2(ℓ + 1)∣∥qnω∥.
This, by triangle inequality, implies, similar to (5.77), that

∥θ + k′ω − (−θ − kω − (my − 1)ω)∥≫mes(−Umy ,j − (my − 1)ω).
Thus we have verified (5.74) in Case 1.2.2.

Case 2. If k ∈ Iy1 and k′ ∈ Iy2 (the other case when k ∈ Iy2 and k′ ∈ Iy1 is analogous), we distinguish
two cases below:

Case 2.1. If y ≤ ℓqn + qn/2. In this case y − ℓqn = 2my, hence

k′ − ℓqn − k ∈ [y − ℓqn − 3

10
my, y − ℓqn + 4

5
my] ⊂ [my,3my] ⊂ [my,3qn/4].

Therefore, by (2.7),

∥θ + kω − (θ + k′ω) + ℓqnω∥ = ∥(k − (k′ − ℓqn))ω∥ ≥ ∥qn−1ω∥ ≥ 1

2qn
≫ 40e−δ1c0qn .

Combining this with (5.75) yields

∥θ + kω − (θ + k′ω)∥ ≥ ∥θ + kω − (θ + k′ω) + ℓqnω∥ − ∥ℓqnω∥ ≥ 1

4qn
≫e−100δ1my

≥mes(Umy ,j),(5.78)

where we used my ≥ 5δ1/41 q1−c0n . Clearly, (5.78) implies θ + k′ω ∉ Umy ,j.
We also have, by y − ℓqn = 2my that

k + k′ +my − 1 − ℓqn ∈ [y − 4

5
my − 1 − ℓqn, y + 3

10
my − 1 − ℓqn] ⊂ [my,3my].

By (2.6) with δ′ = δ1c0/10 < δ1/10, we have for y large enough that

∥2θ + (k + k′ +my − 1 − ℓqn)ω∥ ≥ e−3δ′my ≥ e−3δ′qn/4 ≫ 40e−δ1c0qn ≥ ∣ℓ∣∥qnω∥,
where we used (5.75) in the last inequality. Combining this with the triangle inequality yields

∥θ + k′ω − (−θ − kω − (my − 1)ω)∥
=∥2θ + (k + k′ +my − 1)ω∥
≥∥2θ + (k + k′ +my − 1 − ℓqn)∥ − ∣ℓ∣∥qnω∥
≥e−3δ′my/2≫ e−100δ1my ≥mes(−Umy ,j − (my − 1)ω).

This implies θ + k′ω ∉ (−Umy ,j − (my − 1)ω).
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Case 2.2. If y ≥ ℓqn + qn/2. This case is very similar to Case 2.1. Note that in this case,(ℓ + 1)qn − y = 2my, thus

k′ − (ℓ + 1)qn − k ∈ [y − (ℓ + 1)qn − 3

10
my, y − (ℓ + 1)qn + 4

5
my] ⊂ [−3my,−my] ⊂ [−3qn/4,−my].

This implies, by (2.7) that

∥θ + kω − (θ + k′ω) + (ℓ + 1)qnω∥ ≥ ∥qn−1ω∥ ≥ 1

2qn

Then similar to (5.78) above, we conclude that

∥θ + kω − (θ + k′ω)∥ ≥ 1

4qn
≫ e−100δ1my ≥mes(Umy ,j).

This shows θ + k′ω ∉ Umy ,j.
We also have

k + k′ +my − 1 − (ℓ + 1)qn ∈ [y − 4

5
my − 1 − (ℓ + 1)qn, y + 3

10
my − 1 − ℓqn] ⊂ [−3my,−my].

By (2.6) with δ′ = δ1c0/10 < δ1/10, the following holds:

∥2θ + (k + k′ +my − (ℓ + 1)qn)ω∥ ≥ e−3δ′my ≥ e−3δ′qn/4 ≫ 40e−δ1c0qn ≥ ∣ℓ + 1∣∥qnω∥,
where we used (5.75) in this last inequality. This, together with the triangle inequality, yields

∥θ + k′ω − (−θ − kω − (my − 1)ω)∥
=∥2θ + (k + k′ +my − 1)ω∥
≥e−3δ′my/2≫ e−100δ1my ≥mes(−Umy ,j − (my − 1)ω).

This implies θ+k′ω ∉ (−Umy ,j − (my −1)ω). Therefore we have proved the claimed result of Lemma
5.15. �

Finally, note that

card(Iy1 ) + card(Iy2 ) ≥ 11

10
my − 2 > (1 + η)my ≥ Ñ ′,

where Ñ ′ is as in Lemma 5.13. Lemma 5.14 then follows from the pigeonhole principle. �

Returning to the proof of Theorem 5.12, by Lemma 5.14, we conclude similar to (4.39) that there
exists m′y ∈ {my,my − 1,my − 2} and a ∈ {0,1} such that

∣Pω
m′y
(θ + (ky2 + a)ω)∣ ≥ 1

2
emy(Lmy−1000Cvδ

1/4
1
).

Denoting Γy ∶= [ky2 + a, ky2 + a +m′y − 1] and ∂Γy ∶= {ky2 + a − 1, ky2 + a +m′y}. Expanding φy using
Green’s function expansion on the interval Γy, and denoting y = y0, we have similar to (4.40) that:

∣φy0 ∣ ≤ max
y1∈∂Γy0

e−dist(y0,y1)⋅(L−2000Cvδ
1/4
1
)∣φy1 ∣.

Clearly one expand on φy1 as long as y1 ∉ Rℓqn ⋃R(ℓ+1)qn . Iterating such expansion yields

∣φy0 ∣ ≤ sup
(y1,y2,...,yt)∈S

e−∑
t
j=1 dist(yj−1,yj)⋅(L−2000Cvδ

1/4
1
)∣φyt ∣,(5.79)

where S is collection of admissible chains such that either⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
yt ∈ Rℓqn , or

yt ∈ R(ℓ+1)qn , or

t = t0, and yj ∉ Rℓqn ⋃R(ℓ+1)qn , for any 1 ≤ j ≤ t0,
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where the stopping time

t0 ∶=
⎧⎪⎪⎨⎪⎪⎩
[10/δ1/41 ] + 1, if qn ≤ eδ1qn−1 , or

[10qc0n /δ1/41 ] + 1, if qn ≥ eδ1qn−1 .
Note that if we do artificially terminate the process at t = t0, then for each 0 ≤ j < t0, we have
φyj ∉ Rℓqn ⋃R(ℓ+1)qn and hence

dist(yj, qnZ) ≥
⎧⎪⎪⎨⎪⎪⎩
10δ

1/4
1 qn, if qn ≤ eδ1qn−1

10δ
1/4
1 q1−c0n , if qn ≥ eδ1qn−1 .

Therefore, due to our choice of the I
yj
2 interval as in (5.72),

dist(yj , yj+1) ≥ 1

10
myj = 1

20
dist(yj , qnZ) ≥

⎧⎪⎪⎨⎪⎪⎩
δ
1/4
1 qn/2, if qn ≤ eδ1qn−1
δ
1/4
1 q1−c0n /2, if qn ≥ eδ1qn−1 .

Then

t0

∑
j=1

dist(yj−1, yj) ≥t0 ⋅
⎧⎪⎪⎨⎪⎪⎩
δ
1/4
1 qn/2, if qn ≤ eδ1qn−1
δ
1/4
1 q1−c0n /2, if qn ≥ eδ1qn−1

≥4qn.
This implies such chain of expansion (y1, y2, ..., yt0) ∈ S contributes at most

e−4(L−2000Cvδ
1/4
1
)qn ∣φyt0

∣ ≤ e−4(L−2000Cvδ
1/4
1
)qn ⋅ bℓ,ℓ+1,qn,

in which

bℓ,ℓ+1,qn ∶= sup
k∈[ℓqn,(ℓ+1)qn]∖(Rℓqn ⋃R(ℓ+1)qn )

∣φk ∣.
If a chain (y1, y2, ..., yt) ∈ S is such that yt ∈ Rℓqn , then along this chain, by triangle inequality,

t

∑
j=1

dist(yj−1, yj) ≥ dist(y0,Rℓqn).
The contribution along this chain is at most

e−(L−2000Cvδ
1/4
1
)⋅dist(y0,Rℓqn) ⋅ rℓqn ,

where we dominate ∣φyt ∣ by rℓqn since yt ∈ Rℓqn .
If a chain (y1, y2, ..., yt) ∈ S is such that yt ∈ R(ℓ+1)qn , then similar to the case above, the

contribution along this chain is at most

e−(L−2000Cvδ
1/4
1
)⋅dist(y0,R(ℓ+1)qn) ⋅ r(ℓ+1)qn .

Combining the three cases above with (5.79), we conclude that for any y ∈ [ℓqn, (ℓ + 1)qn] ∖(Rℓqn ⋃R(ℓ+1)qn),

∣φy ∣ ≤max

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

e−(L−2000Cvδ
1/4
1
)⋅dist(y0,Rℓqn) ⋅ rℓqn

e−(L−2000Cvδ
1/4
1
)⋅dist(y0,R(ℓ+1)qn) ⋅ r(ℓ+1)qn

e−4(L−2000Cvδ
1/4
1
)qn ⋅ bℓ,ℓ+1,qn .

(5.80)

In particular, we can take y such that ∣φy ∣ = bℓ,ℓ+1,qn, then the inequality above yields

bℓ,ℓ+1,qn ≤max

⎧⎪⎪⎨⎪⎪⎩
e−(L−2000Cvδ

1/4
1
)⋅dist(y0,Rℓqn) ⋅ rℓqn

e−(L−2000Cvδ
1/4
1
)⋅dist(y0,R(ℓ+1)qn) ⋅ r(ℓ+1)qn .

(5.81)
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Combining (5.80) with (5.81) yields

∣φy ∣ ≤max

⎧⎪⎪⎨⎪⎪⎩
e−(L−2000Cvδ

1/4
1
)⋅dist(y0,Rℓqn) ⋅ rℓqn

e−(L−2000Cvδ
1/4
1
)⋅dist(y0,R(ℓ+1)qn) ⋅ r(ℓ+1)qn ,

as claimed. �

5.5. Eigenfunction in the strongly resonant regimes. We are now ready to study the eigen-
function in a strongly resonant regime Rℓqn . The goal of this subsection is to prove the following:

Theorem 5.16. For n large enough, if qn+1 ≥ eδ1qn, then the following holds for any 1 ≤ ∣k∣ ≤
5q1−c0n+1 /qn:

rkqn ≤ e−(1−o(1))(L−βn)∣k∣qn,

where o(1) ∈ (0,1/50).
In fact, o(1) ∼ (5L + 1000Cv)δ1/41 . Hence by choosing smaller δ1, one can make o(1) arbitrarily

small.

Proof. Recall δ = δ1/30 as in (5.61). We need the following lemma:

Lemma 5.17. If for some ∣j∣ ≤ qn,
vωqn,E(e2πi(θ−jω)) < L(ω,E) − βn − 12δ,(5.82)

then for any k ∈ Z ∖ {0}, ∣k∣ ≤ q1−c0n+1 , we have

vωqn,E(e2πi(θ+(kqn−j)ω)) ≥ L(ω,E) + log ∣k∣
qn

− βn − 12δ.

Proof. By Lemma 5.11, (5.82) implies that

(qn−1min
ℓ=0

q−1n log ∣e2πi(θ−jω) − zωqn,ℓ,1∣ + qn−1

min
ℓ=0

q−1n log ∣e2πi(θ−jω) − e−2πi(qn−1)ω/zωqn,ℓ,1∣) < −βn − 2δ.
Due to non-resonance of θ, only one of these two minimums can be less than −δ/25, see (5.67),
which forces this minimum to be less than −βn−δ. Assume without loss of generality that for some
ℓ0 ∈ {0,1, ..., qn − 1},

∣e2πi(θ−jω) − zωqn,ℓ0,1∣ ≤ e−(βn+δ)qn ,

which implies

∥θ − jω − θωℓ0,1∥ ≤ e−(βn+δ)qn .(5.83)

We first show θ − jω + kqnω is away from ⋃qn−1
ℓ=0
{−θωℓ,1 − (qn − 1)ω}.

By (5.58), we have for any ℓ ∈ {0, ..., qn − 1},
∥θ − jω − (−θωℓ,1 − (qn − 1)ω)∥ =∥θ + θωℓ,1 + (qn − j − 1)ω∥

=∥θ + θωℓ0,1 + (ℓ − ℓ0)pnqn
+ (qn − j − 1)ω +O(e−δqn)∥

=∥θ + θωℓ0,1 + (ℓ − ℓ0 − j − 1)ω +O(e−δqn)∥,(5.84)

where we used by (2.9) that

∣ℓ − ℓ0∣ ⋅ ∣pn
qn
− ω∣ ≤ ∣ℓ − ℓ0∣

qn
∥qnω∥ ≤ 2∥qnω∥ ≤ 2e−δ1qn ≪ e−δqn .
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Combining (5.83) with (5.84) yields

∥θ − jω − (−θωℓ,1 − (qn − 1)ω)∥ = ∥2θ + (ℓ − ℓ0 − 2j − 1)ω +O(e−δqn)∥.(5.85)

Since ∣ℓ − ℓ0 − 2j − 1∣ ≤ 3qn, by (5.41) with δ′ = δ1c0/100 < δ1/100 = 3δ/10, we obtain

∥2θ + (ℓ − ℓ0 − 2j − 1)ω∥ ≥ cδ′ e−δ′ ∣ℓ−ℓ0−2j−1∣ ≥ cδ′ e−3δ′qn ≫ e−δqn ,(5.86)

for n large enough. Therefore (5.85) and (5.86) imply

∥θ − jω − (−θωℓ,1 − (qn − 1)ω)∥ ≥ 1

2
cδ′ e

−3δ′qn .(5.87)

Since ∣k∣ ≤ q1−c0n+1 , we have by (2.9) that

∥kqnω∥ ≤ ∣k∣∥qnω∥ ≤ ∣k∣
qn+1

≤ q−c0n+1 ≤ e−δ1c0qn ≪ cδ′e
−3δ′qn ,(5.88)

for n large enough. Combining (5.87) with (5.88) yields

∥θ + (kqn − j)ω − (−θωℓ,1 − (qn − 1)ω)∥ ≥ 1

4
cδ′ e

−δ′qn ≫ e−δqn .

This implies

qn−1

min
ℓ=0

q−1n log ∣e2πi(θ+(kqn−j)ω) − e−2πi(qn−1)ω/zωqn,ℓ,1∣(5.89)

≥ qn−1min
ℓ=0

q−1n log ∥θ + (kqn − j)ω − (−θωℓ,1 − (qn − 1)ω)∥ ≥ −δ.
Next, we show θ − jω + kqnω is away from ⋃qn−1

ℓ=0
ℓ≠ℓ0

{θωℓ,1}.
By (5.83) and (5.58), we conclude that for any ℓ ∈ {0,1, ..., qn − 1} ∖ {ℓ0},

∥θ − jω − θωℓ,1∥ ≥ 1

2qn
.

Combining this with (5.88) yields

∥θ − jω + kqnω − θωℓ,1∥ ≥ 1

2qn
− e−δ1c0qn ≥ 1

4qn
.(5.90)

Next, it suffices to study ∥θ + (kqn − j)ω − θωℓ0,1∥. By (2.9), for 1 ≤ ∣k∣ ≤ q1−c0n+1 ,

∥kqnω∥ = ∣k∣∥qnω∥ ≥ ∥qnω∥ ≥ 1

2
e−βnqn ≫ e−(βn+δ)qn .

Therefore by triangle inequality and (5.83), we have

∥θ + (kqn − j)ω − θωℓ0,1∥ ≥ ∣k∣∥qnω∥ − ∥θ − jω − θωℓj ,1∥ ≥∣k∣∥qnω∥ − e−(βn+δ)qn

≥1
2
∣k∣e−βnqn ,(5.91)

and by further combining with (5.88),

∥θ + (kqn − j)ω − θωℓj ,1∥ ≤ ∣k∣∥qnω∥ + ∥θ − jω − θωℓj ,1∥ ≤ e−δ1c0qn + e−(βn+δ)qn ≪ 1

qn
.(5.92)

Combining (5.90), (5.91) with (5.92), we conclude that

qn−1

min
ℓ=0

q−1n log ∥θ + (kqn − j)ω − θωℓ,1∥ =q−1n log ∥θ + (kqn − j)ω − θωℓ0,1∥
≥ log ∣k∣

qn
− βn − δ.
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This implies

qn−1

min
ℓ=0

q−1n log ∣e2πi(θ+(kqn−j)ω) − zωqn,ℓ,1∣ ≥ qn−1min
ℓ=0

q−1n log ∥θ + (kqn − j)ω − θωℓ,1∥(5.93)

≥ log ∣k∣
qn

− βn − δ.
Finally, combining (5.89) with (5.93) yields

(qn−1min
ℓ=0

q−1n log ∣e2πi(θ+(kqn−j)ω) − zωqn,ℓ,1∣ + qn−1

min
ℓ=0

q−1n log ∣e2πi(θ+(kqn−j)ω) − e−2πi(qn−1)ω/zωqn,ℓ,1∣)
≥ log ∣k∣

qn
− βn − 2δ.

This combined with Lemma 5.9 implies the claimed result. �

Next, we prove

Lemma 5.18. For n large enough,

vωqn,E(e2πi(θ−[qn/2]ω)) < L(ω,E) − βn − 12δ.
Proof. We write L(ω,E) as L for simplicity. Suppose by contradiction that

vωqn,E(e2πi(θ−[qn/2]ω)) ≥ L − βn − 12δ.
By (2.20), this implies

∣Pω
qn,E(θ − [qn/2]ω) − Pω

qn−1,E(θ + ω − [qn/2]ω)∣ ≥ e(L−βn−12δ)qn − 2.
Hence for some a, b ∈ {0,1},

∣Pω
qn−a
(θ + (b − [qn/2])ω)∣ ≥ e(L−βn−14δ)qn .

Then by Green’s function expansion (2.22) of φ0 on the interval [b − [qn/2], b − [qn/2] + qn − a − 1],
we obtain, similar to (4.40), that

∣φ0∣ ≤e−(L2 −βn−15δ)qn ⋅max(∣φb−[qn/2]−1∣, ∣φb−[qn/2]+qn−a∣).(5.94)

Note that both b − [qn/2] − 1 = −qn/2 +O(1) and b − [qn/2] + qn − a = qn/2 +O(1) are in the weakly
resonant regime. Hence one can control φ at those values via Theorem 5.12:

max(∣φb−[qn/2]−1∣, ∣φb−[qn/2]+qn−a∣) ≤e−(L−2000Cvδ
1/4
1
)(1−10δ

1/4
1
) qn

2 ⋅max(r−qn , r0, rqn).(5.95)

Combining (5.94) with (5.95) yields

∣φ0∣ ≤ e−(L(1−5δ1/41
)−βn−15δ−1000Cvδ

1/4
1
(1−10δ

1/4
1
))qn ⋅max(r−qn , r0, rqn).

Finally bounding max(r−qn , r0, rqn) ≤ Cqn by (2.23) yields

∣φ0∣ ≤ e−(L(1−5δ1/41
)−βn−16δ−1000Cvδ

1/4
1
(1−10δ

1/4
1
))qn .(5.96)

Clearly, due to our choice of δ1, see (3.24), the exponential exponent

−(L(1 − 5δ1/41 ) − βn − 16δ − 1000Cvδ
1/4
1 (1 − 10δ1/41 )) = −(1 − o(1))(L − βn) < 0,

with some small constant o(1) ∈ (0,1/50). Hence (5.96) can be rewritten as:

∣φ0∣ ≤ e−(1−o(1))(L−βn)qn .

Since the same argument applies to φ−1, we arrive at a contradiction with max(∣φ0∣, ∣φ−1∣) = 1 as in
(2.23). �
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Combining Lemmas 5.17 and 5.18 yields for any k ≠ 0 and ∣k∣ < 10q1−c0n+1 /qn that

vωqn,E(e2πi(kqn−[qn/2])ω) ≥ L(ω,E) + log ∣k∣
qn

− βn − 12δ.
Following the same argument as in the proof of Lemma 5.18 above, expanding ∣φkqn+m∣ = rkqn, for
some kqn +m ∈ Rkqn , we have

rkqn ≤ ∣k∣−1e−(1−o(1))(L−βn)qn ⋅max(r(k−1)qn , rkqn , r(k+1)qn).
Since the exponential exponent is negative, we conclude that

rkqn ≤ ∣k∣−1e−(1−o(1))(L−βn)qn ⋅max(r(k−1)qn , r(k+1)qn).
For any 1 ≤ ∣k0∣ ≤ 5q1−c0n+1 /qn, one can iterate such expansion until one reaches k = 0 or ∣k∣ = k1 ∶=[10q1−c0n+1 /qn]. If one reaches k = 0, then the contribution is controlled by

rk0qn ≤ e−(1−o(1))(L−βn)∣k0∣qn ⋅ r0 ≤ e−(1−o(1))(L−βn)∣k0∣qn ,

where we dominate r0 by Cqn using (2.23). If one reaches k1, then the contribution is controlled
by

rk0qn ≤ e−(1−o(1))(L−βn)∣k0−k1∣qn ⋅Ck1,

where we used (2.23) to control max(rk1qn , r−k1qn) ≤ Ck1qn. Since ∣k0 − k1∣ ≥ max(∣k0∣, k1/2), we
conclude that

rk0qn ≤ e−(1−o(1))(L−βn)∣k0∣qn .

This is the claimed result. �

Finally, combining our analysis in the weakly resonant and strongly resonant regimes, we obtain
the following:

Theorem 5.19. For n large enough. If qn+1 ≥ eδ1qn, then for any y satisfying

⎧⎪⎪⎨⎪⎪⎩
qn/10 ≤ ∣y∣ ≤ 5q1−c0n+1 , if qn ≤ eδ1qn−1
q1−c0n /10 ≤ ∣y∣ ≤ 5q1−c0n+1 , if qn ≥ eδ1qn−1

we have

∣φy ∣ ≤ e−(1−o(1))(L−βn)∣y∣,

where o(1) ∈ (0,1/50).
6. Large deviation estimates

6.1. Review of some basic estimates. Let vm,E(θ) ∶= 1
2m

log(gm,E(e2πiθ)), where gm,E is as in
(1.5). In the rest of the section, we shall omit the dependence in E since it is fixed. It is easy to
see the following holds for some constant Cv,1 = C(∥v∥Tε0

) > 0:
∣vm(θ) − vm(θ + ω)∣ = 1

2m
∣log ∥Mω

2m(θ)∥HS∥Mω
2m(θ + ω)∥HS

∣
≤ C

2m
+ 1

2m
∣log ∥Mω

2m(θ)∥∥Mω
2m(θ + ω)∥ ∣

≤ C

2m
+ 1

2m
(log ∥Mω(θ)∥ + log ∥Mω(θ + 2mω)∥)

≤Cv,1

m
,(6.97)
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where C > 0 in the second line is an absolute constant arising from the equivalence of the Hilbert-
Schmidt norm and the operator norm.

We recall some basic estimates for the Fejér kernel:

FR(k) = ∑
∣j∣<R

R − ∣j∣
R2

e2πikjω.

The following estimates can be found in [HZ], with their proofs in [HZ, Appendix E]. Below, p/q is
an arbitrary continued fractional approximant of ω, as in 2.2.

0 ≤ FR(k) ≤min(1, 2

1 +R2∥kω∥2 ),(6.98)

∑
1≤∣k∣<q/4

1

1 +R2∥kω∥2 ≤ 2π
q

R
,(6.99)

and

∑
ℓq/4≤k<(ℓ+1)q/4

1

1 +R2∥kω∥2 ≤ 2 + 2π
q

R
.(6.100)

For a proof of a variant of (6.100), see Sec. (6.139).
We will always use (6.98) to bound the Fejer kernel without explicitly referring to it throughout

the rest of this section.
We also have two basic estimates for the Fourier coefficients:

∣v̂m(k)∣ ≤ Cv,2∣k∣ , k ≠ 0,(6.101)

for some constant Cv,2 = C(∥v∥Tε0
, ε0) > 0. Here we used that vm,E(θ) ≥ 0 for θ ∈ T and

∣gωm(e2πiθ)∣ ≤ ∥Mω
m(θ)∥2HS,

for θ ∈ Tε0 , which implies

vm(θ) ≤ 1

m
log ∥Mω

m(θ)∥HS ≤ C∥v∥Tε0
,

for some absolute constant C > 0 and uniformly in θ ∈ Tε0 .
The next lemma was first proved in [HZ], and is useful in particular for small values of k.

Lemma 6.1. [HZ, Lemma 2.4]

∣v̂m(k)∣ ≤ Cv,3

m∥kω∥ , k ≠ 0,(6.102)

for some constant Cv,3 > 0.
Proof. The proof is short. By (6.97),

∣v̂m(k) − e2πikωv̂m(k)∣ ≤ ∥vm(⋅) − vm(⋅ + ω)∥L∞(T) ≤ Cv,1

m
,

this clearly implies (6.101) taking into account that

∣1 − e2πikω ∣ = 2∣ sin(πkω)∣ ≥ 4∥kω∥.
This proves Lemma 6.1. �

We let

Cv ∶=max(Cv,1,Cv,2,Cv,3,1),(6.103)

where Cv,1,Cv,2,Cv,3 are as in (6.97), (6.101) and (6.102) respectively.
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6.2. Proof of Lemma 4.3. The first large deviation theorem we prove is the following, which

implies Lemma 4.3 by choosing δ = 10δ1/21 .

Lemma 6.2. For any constant δ ∈ (0,1), for large enough m >m0(δ) satisfying 10qn <m < qn+1/5,
the following holds:

mes({θ ∈ T ∶ ∣vm,E(θ) −Lm(ω,E)∣ ≥ Cv (145δ + 12 log qn+1
δqn

)}) ≤ e−δ2m.

Proof. We consider R = [δm], and
v(R)m (θ) ∶= ∑

∣j∣<R

R − ∣j∣
R2

vm(θ + jω).
First note that the zeroth Fourier coefficient is almost Lm:

v̂m(0) = 1

m
∫
T
log ∥Mω

m(θ)∥HS dθ = Lm + O(1)
m

,(6.104)

whereO(1) is bounded by an absolute constant, due to the equivalence between the Hilbert-Schmidt
norm and the operator norm of 2 × 2 matrices. Next, we consider

vm(θ) − v̂m(0) =vm(θ) − v(R)m (θ) =∶ U1(θ)
+ v(R)m (θ) − v̂m(0)

Fourier expanding the second line above yields, note the zeroth coefficient cancels:

v(R)m (θ) − v̂m(0) = ∑
1≤∣k∣≤δ−2

v̂m(k)FR(k)e2πikθ =∶ U2(θ)
+ ∑

δ−2<∣k∣<qn/4

v̂m(k)FR(k)e2πikθ =∶ U3(θ)
+ ∑

qn/4≤∣k∣<qn+1/4

v̂m(k)FR(k)e2πikθ ∶= U4(θ)
+ ∑

qn+1/4≤∣k∣<e4δ
2m

v̂m(k)FR(k)e2πikθ =∶ U5(θ)
+ ∑
∣k∣≥e4δ2m

v̂m(k)FR(k)e2πikθ =∶ U6(θ).

By (6.97), we obtain

∥U1∥L∞(T) = ∥vm − v(R)m ∥L∞(T) ≤ Cv
R

m
≤ Cvδ.(6.105)

Regarding U2, we have by (6.102) that

∥U2∥L∞(T) ≤ ∑
1≤∣k∣≤δ−2

Cv

m∥kω∥ ≤
2Cvδ

−2

m
⋅ max
1≤∣k∣≤δ−2

1

∥kω∥ ≤ δ,(6.106)

provided m is large enough. We have by (6.99) and (6.101) that

∥U3∥L∞(T) ≤ Cvδ
2 ∑
1≤∣k∣<qn/4

1

1 +R2∥kω∥2
T

≤ 2πCvδ
2 qn

R
≤ Cvδ,(6.107)
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where we used R = [δm] ≥ 9δqn. Regarding U4, we conclude by (6.101) and (6.100) that

∥U4∥L∞(T) ≤4Cv

qn+1/qn

∑
ℓ=1

∑
k∈[ℓqn/4,(ℓ+1)qn/4)

1

ℓqn

1

1 +R2∥kω∥2
≤4Cv

qn+1/qn

∑
ℓ=1

1

ℓqn
(2 + 2πqn

R
)

≤4Cv (2 log qn+1
qn

+ 2π log qn+1
9δqn

)
≤12Cv log qn+1

δqn
,(6.108)

in which we used again R ≥ 9δqn. We also obtain by (6.100) and (6.101) that

∥U5∥L∞(T) ≤4Cv

4e4δ
2m/qn+1

∑
ℓ=1

1

ℓqn+1
∑

k∈[ℓqn+1/4,(ℓ+1)qn+1)/4

1

1 +R2∥kω∥2

≤4Cv

4e4δ
2m/qn+1

∑
ℓ=1

1

ℓqn+1
(2 + 2πqn+1

R
)

≤4Cv (10δ2m
qn+1

+ 10πδ2m

R
) ≤ 140Cvδ,

where we used m ≤ qn+1/5 and R = [δm]. Finally it remains to note that by (6.101) that

∥U6∥2L2 = ∑
∣k∣>e4δ2m

∣v̂m(k)∣2∣FR(k)∣2 ≤ C2
v ∑
∣k∣>e4δ2m

1

∣k∣2 ≤ 2C2
ve
−4δ2m.(6.109)

Combining (6.104), (6.105), (6.106), (6.107), (6.108) with (6.109), we have for m large enough,

∥vm −Lm −U6∥L∞(T) ≤ ∣v̂m(0) −Lm∣ + 5

∑
j=1

∥Uj∥L∞(T) ≤ Cv (144δ + 12 log qn+1
δqn

) .
Combining this with (6.109) and the Chebyshev’s inequality, we conclude that

mes({θ ∶ ∣vm(θ) −Lm∣ > Cv (145δ + 12 log qn+1
δqn

)})
≤mes({θ ∶ ∣U6(θ)∣ > Cvδ}) ≤ 1

Cvδ
∥U6∥L2(T) ≤√2δ−1e−2δ2m ≤ e−δ2m,

as claimed. �

6.3. Proof of Lemma 4.4. Let δ1 be as in (3.24). The second large deviation we prove is the

following, it implies Lemma 4.4 by choosing δ = (400δ1)1/4 and c0 = 10δ1/41 /(1 + β(ω)) (note that
for n large, (log qn)/qn−1 < 1 + β(ω)).
Lemma 6.3. For any constants c0, δ ∈ (0,1), for n be large enough. For m ∈ N such that

δ−1qn ≥m ≥
⎧⎪⎪⎨⎪⎪⎩
δq1−c0n , if qn ≥ eδ1qn−1
δqn, if qn ≤ eδ1qn−1 ,(6.110)

the following holds:

mes({θ ∈ T ∶ ∣vm,E(θ) −Lm(ω,E)∣ ≥ Cv (170δ + 4c0 log qn
qn−1

)}) ≤ e−δ4m/4.
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Proof. We consider R = [δm], and
v(R)m (θ) ∶= ∑

∣j∣<R

R − ∣j∣
R2

vm(θ + jω).
Next, we consider

vm(θ) −Lm =v̂m(0) −Lm

+ vm(θ) − v(R)m (θ) =∶ U1(θ)
+ ∑

1<∣k∣≤δ2qn

v̂m(k)FR(k)e2πikθ =∶ U2(θ)
+ ∑

δ2qn≤∣k∣<eδ
4m

v̂m(k)FR(k)e2πikθ =∶ U3(θ)
+ ∑
∣k∣≥eδ4m

v̂m(k)FR(k)e2πikθ =∶ U4(θ)
By (6.104), we obtain

∣v̂m(0) −Lm∣ ≤ δ,(6.111)

for m large enough. By (6.97), we conclude that

∥U1∥L∞(T) = ∥vm − v(R)m ∥L∞(T) ≤ Cv
R

m
≤ Cvδ.(6.112)

Lemma 6.4. Regarding U2, the following holds:

∥U2∥L∞(T) ≤ Cv (55δ + 4c0 log qn
qn−1

) .
Proof. Let qn−ℓ be such that qn−ℓ ≤ δ2qn < qn−ℓ+1. Note that δ2qn < qn, hence

qn−ℓ+1 ≤ qn, and qn−ℓ ≤ qn−1.(6.113)

Note that when m is large, qn is large and then both qn−ℓ+1, qn−ℓ are large. Let

[δ2qn] = j0qn−ℓ + r, with 0 ≤ r < qn−ℓ.(6.114)

Note that by (2.10), qn−ℓ+1 = an−ℓ+1qn−ℓ + qn−ℓ−1 > j0qn−ℓ + r, hence
j0 ≤ an−ℓ+1.

We have RRRRRRRRRRRR
∑

1≤∣k∣≤δ2qn

v̂m(k)FR(k)e2πikθ
RRRRRRRRRRRR

≤ j0

∑
∣j∣=1

∣v̂m(jqn−ℓ)∣∣FR(jqn−ℓ)∣ + j0

∑
j=1

∑
(j−1)qn−ℓ<∣k∣<jqn−ℓ

∣v̂m(k)∣∣FR(k)∣
+ ∑

j0qn−ℓ<∣k∣≤j0qn−ℓ+r

∣v̂m(k)∣∣FR(k)∣

≤ j0

∑
∣j∣=1

∣v̂m(jqn−ℓ)∣∣FR(jqn−ℓ)∣ + ∑
0<∣k∣<qn−ℓ

∣v̂m(k)∣∣FR(k)∣

+
j0+1

∑
j=2

∑
(j−1)qn−ℓ<∣k∣<jqn−ℓ

∣v̂m(k)∣∣FR(k)∣
= ∶ I1 + I2 + I3,
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respectively. First, note that for any ∣j∣ ≤ an−ℓ+1,

∥jqn−ℓω∥ = ∥j∥qn−ℓω∥∥ = ∣j∣∥qn−ℓω∥.(6.115)

In fact by (2.9) and (2.10), for ∣j∣ ≤ an−ℓ+1,

∣j∣∥qn−ℓω∥ ≤ an−ℓ+1

qn−ℓ+1
≤ 1

qn−ℓ
< 1

2
,

which implies ∥j∥qn−ℓω∥∥ = ∣j∣∥qn−ℓω∥ as claimed in (6.115).
Next, we estimate I1. By (6.101) and (6.115),

I1 ≤4Cv

j0

∑
j=1

1

jqn−ℓ

1

1 +R2j2∥qn−ℓω∥2
≤4Cv

j0

∑
j=1

1

jqn−ℓ

1

1 + δ2m2j2∥qn−ℓω∥2
≤4Cv

j0

∑
j=1

1

jqn−ℓ

1

1 + δ2m2j2/(2qn)2 ,(6.116)

where we used R = [δm] and ∥qn−ℓω∥ ≥ 1/(2qn−ℓ+1) ≥ 1/(2qn), due to (2.9) and (6.113).
Next, we need to divide into two different cases:
Case I1-1. If qn ≤ eδ1qn−1 . In this case we have m ≥ δqn according to (6.110). We can bound I1

in (6.116) as follows:

I1 ≤4Cv

j0

∑
j=1

1

jqn−ℓ

1

1 + δ4j2/4
≤ 4Cv

qn−ℓ
(1 + ∫ ∞

1

1

x(1 + δ4x2/4) dx)
≤ 4Cv

qn−ℓ
(1 + ∫ 1

δ2/2

1

x(1 + x2) dx + ∫
∞

1

1

x(1 + x2) dx)
≤ 4Cv

qn−ℓ
(1 + ∫ 1

δ2/2

1

x
dx + ∫

∞

0

1

1 + x2 dx)
≤4Cv(3 + log(2δ−2))

qn−ℓ
≤ δ,(6.117)

provided m is large.
Case I1-2. If qn ≥ eδ1qn−1 . In this case we have m ≥ δq1−c0n according to (6.110). Note in this

case δ2qn ≥ δ2eδ1qn−1 > qn−1, provided n is large enough. Hence n − ℓ ≥ n − 1, which yields, when
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combined with (6.113), that qn−ℓ = qn−1. We bound I1 in (6.116) as follows:

I1 ≤4Cv

j0

∑
j=1

1

jqn−1

1

1 + δ4q−2c0n j2/4
≤ 4Cv

qn−1

⎛
⎝1 +

j0

∑
j=2

1

j

1

1 + δ4q−2c0n j2/4
⎞
⎠(6.118)

≤ 4Cv

qn−1
(1 + ∫ ∞

1

1

x(1 + δ4q−2c0n x2/4) dx)
≤ 4Cv

qn−1
(1 + ∫ 1

δ2q
−c0
n /2

1

x(1 + x2) dx + ∫
∞

1

1

1 + x2 dx)
≤4Cv ( 3

qn−1
+ log(2δ−2qc0n )

qn−1
)

≤4Cvc0
log qn
qn−1

+ δ,

provided n is large enough.
Next, we study I2. By (6.102),

I2 = ∑
1≤∣k∣<qn−ℓ

∣v̂m(k)∣∣FR(k)∣ ≤4Cv ∑
1≤k<qn−ℓ

1

m∥kω∥
1

1 + δ2m2∥kω∥2 .(6.119)

For 0 < ∣k∣ < qn−ℓ, we obtain by (2.7) and (2.9) that

∥kω∥ ≥ ∥qn−ℓ−1ω∥ ≥ 1

2qn−ℓ
.(6.120)

This implies the I2 as in (6.119) can be bounded by:

I2 ≤ 8Cvqn−ℓ

m
∑

1≤k<qn−ℓ

1

1 + δ2m2∥kω∥2 .(6.121)

We decompose the sum over {1,2, ..., qn−ℓ−1} into sums of two subsets: {1,2, ..., qn−ℓ−1} =K1⋃K2,
where

K1 ∶={k ∈ {1,2, ..., qn−ℓ − 1} ∶ kω − [kω] ∈ (0,1/2)}, and(6.122)

K2 ∶={k ∈ {1,2, ..., qn−ℓ − 1} ∶ kω − [kω] ∈ (1/2,1)}
For k1 ≠ k2 such that {k1, k2} ⊂K1, clearly ∥kjω∥ = kjω − [kjω] holds for j = 1,2, and hence

∥∥k1ω∥ − ∥k2ω∥∥ = ∥(k1 − k2)ω∥.
Combining this with ∥k1ω∥ − ∥k2ω∥ ∈ (−1/2,1/2) and that for x ∈ (−1/2,1/2), ∣x∣ = ∥x∥, we have

∣∥k1ω∥ − ∥k2ω∥∣ = ∥k1ω − k2ω∥ ≥ ∥qn−ℓ−1ω∥ ≥ 1

2qn−ℓ
,(6.123)

where we used 0 < ∣k1 − k2∣ < qn−ℓ and the estimate similar to (6.120). Combining (6.120) with
(6.123), we conclude that {∥kω∥}k∈K1

are non-negative terms, which are at least 1/(2qn−ℓ) spaced
with the smallest being at least 1/(2qn−ℓ). This implies

∑
k∈K1

1

1 + δ2m2∥kω∥2 ≤
qn−ℓ

∑
s=1

1

1 + δ2m2s2/(2qn−ℓ)2 .(6.124)



SHARP LOCALIZATION ON THE FIRST SUPERCRITICAL STRATUM FOR LIOUVILLE FREQUENCIES 41

The sum in K2 is similar. In fact for {k1 ≠ k2} ⊂ K2, ∥kjω∥ = [kjω] + 1 − kjω holds for j = 1,2.
Hence, similar to (6.123), we have

∣∥k1ω∥ − ∥k2ω∥∣ = ∥k1ω − k2ω∥ ≥ ∥qn−ℓ−1ω∥ ≥ 1

2qn−ℓ
.(6.125)

This implies similar to (6.124) that

∑
k∈K2

1

1 + δ2m2∥kω∥2 ≤
qn−ℓ

∑
s=1

1

1 + δ2m2s2/(2qn−ℓ)2 .(6.126)

Combining (6.124), (6.126) with (6.121), we obtain

I2 ≤16Cvqn−ℓ

m

qn−ℓ

∑
s=1

1

1 + δ2m2s2/(2qn−ℓ)2
≤16Cvqn−ℓ

m
∫
∞

0

1

1 + δ2m2x2/(2qn−ℓ)2 dx
≤32Cvq

2
n−ℓ

δm2 ∫
∞

0

1

1 + x2 dx

≤16πCvq
2
n−ℓ

δm2
.(6.127)

If qn ≥ eδ1qn−1 , we bound m ≥ δq1−c0n ≥ δeδ1(1−c0)qn−1 ≥ q2n−1 ≥ q2n−ℓ for m large enough, where we used
qn−1 ≥ qn−ℓ as in (6.113). This implies the following bound on I2 as in (6.127):

I2 ≤ 16πCv

δq2
n−ℓ

< δ,(6.128)

for m large enough.
If qn ≤ eδ1qn−1 , we bound m ≥ δqn and qn−ℓ ≤ δ2qn (according to the definition of qn−ℓ), then

I2 ≤ 16πCvδ
4q2n

δ3q2n
≤ 16πCvδ.(6.129)

Next, we consider I3. We distinguish two cases.
Case I3-1. If j0 ≤ 10. We simply estimate, via (6.100) and (6.101) (we divide ((j − 1)qn−ℓ, jqn−ℓ)

into four intervals of length qn−ℓ/4 and apply (6.100) to each of these four) that

I3 ≤ 10

∑
j=2

∑
(j−1)qn−ℓ<∣k∣<jqn−ℓ

∣v̂m(k)∣∣FR(k)∣ ≤Cv

10

∑
j=2

8

qn−ℓ
(8 + 8πqn−ℓ

R
)

≤Cv ( 576
qn−ℓ

+ 576π

R
) < δ,(6.130)

provided m is large enough.
Case I3-2. If j0 > 10. We obtain by (6.101) that for each 2 ≤ j ≤ j0 + 1,

∑
(j−1)qn−ℓ<∣k∣<jqn−ℓ

∣v̂m(k)∣∣FR(k)∣ ≤ 4Cv(j − 1)qn−ℓ ∑
(j−1)qn−ℓ<k<jqn−ℓ

1

1 + δ2m2∥kω∥2 .(6.131)

Since ∣k − (j − 1)qn−ℓ∣ < qn−ℓ,
∥kω − (j − 1)qn−ℓω∥ ≥ ∥qn−ℓ−1ω∥.(6.132)

For each 2 ≤ j ≤ [j0/2], using j0 ≤ an−ℓ+1 and that an−ℓ+1∥qn−ℓω∥ < ∥qn−ℓ−1ω∥ (see (2.11)), we have
by (6.115) that

∥(j − 1)qn−ℓω∥ = (j − 1)∥qn−ℓω∥ ≤ (j0
2
− 1)∥qn−ℓω∥ ≤ 1

2
∥qn−ℓ−1ω∥.(6.133)



42 R. HAN

Combining (6.132) with (6.133), we have by triangle inequality that for (j − 1)qn−ℓ < k < jqn−ℓ,
∥kω∥ ≥ 1

2
∥qn−ℓ−1ω∥ ≥ 1

4qn−ℓ
.(6.134)

Similar to (6.122), For each j ≤ j0 + 1, we define

K3 ∶={k ∈ ((j − 1)qn−ℓ, jqn−ℓ) ∶ kω − [kω] ∈ (0,1/2)}, and(6.135)

K4 ∶={k ∈ ((j − 1)qn−ℓ, jqn−ℓ) ∶ kω − [kω] ∈ (1/2,1)}
Similar to (6.123) and (6.125), we can obtain pairwise spacing of size ∥qn−ℓ−1ω∥, among {∥kω∥}k∈K3

and {∥kω∥}k∈K4
, respectively. Together with a control of the minimum value in (6.134), we conclude

that {∥kω∥}k∈K3
(and {∥kω∥}k∈K4

) are at least 1/(2qn−ℓ) spaced and the smallest being at least
1/(4qn−ℓ). Thus we can bound (6.131) as follows:

∑
(j−1)qn−ℓ<∣k∣<jqn−ℓ

∣v̂m(k)∣∣FR(k)∣ ≤ 4

∑
r=3

4Cv(j − 1)qn−ℓ ∑k∈Kr

1

1 + δ2m2∥kω∥2
≤ 8Cv(j − 1)qn−ℓ

qn−ℓ

∑
s=1

1

1 + δ2m2s2/(4qn−ℓ)2
≤ 8Cv(j − 1)qn−ℓ ∫

∞

0

1

1 + δ4q2−2c0n x2/(4qn−ℓ)2 dx
≤ 16πCv

(j − 1)δ2q1−c0n

,

where we used m ≥ δq1−c0n , which is satisfied in both cases (see (6.110)). Therefore, the estimate
above yields

∑
2≤j≤[j0/2]

∑
(j−1)qn−ℓ<∣k∣<jqn−ℓ

∣v̂m(k)∣∣FR(k)∣

≤ ∑
2≤j≤[j0/2]

16πCv

(j − 1)δ2q1−c0n

≤ 16πCv log j0

δ2q1−c0n

≤ 16πCv log(δ2qn)
δ2q1−c0n

< δ,(6.136)

for n large enough. Note that we controlled j0 ≤ δ2qn above, due to (6.114).
For each j such that [j0/2] < j ≤ j0 + 1, define K3,K4 as in (6.135) above, one can show that{∥kω∥}k∈K3

(and {∥kω∥}k∈K4
) are at least 1/(2qn−ℓ) spaced and the smallest term being at least 0

(which is a trivial lower bound). Therefore we can bound (6.131) as follows:

∑
(j−1)qn−ℓ<∣k∣<jqn−ℓ

∣v̂m(k)∣∣FR(k)∣ ≤ 4

∑
r=3

4Cv(j − 1)qn−ℓ ∑k∈Kr

1

1 + δ2m2∥kω∥2
≤ 8Cv(j − 1)qn−ℓ (1 +

qn−ℓ

∑
s=1

1

1 + δ2m2s2/(2qn−ℓ)2)
≤ 8Cv(j − 1)qn−ℓ (1 + ∫

∞

0

1

1 + δ2m2x2/(2qn−ℓ)2 dx)
≤ 8Cv(j − 1)qn−ℓ (1 +

πqn−ℓ

δm
) .

This implies

j0+1

∑
j=[j0/2]+1

∑
(j−1)qn−ℓ<∣k∣<jqn−ℓ

∣v̂m(k)∣∣FR(k)∣ ≤ 8Cv log 2( 1

qn−ℓ
+ π

δm
) < δ,(6.137)
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for m large enough. Combining (6.136) with (6.137), we conclude in Case I3-2 that

I3 ≤ 2δ.(6.138)

Combining the estimates of I1, I2, I3 in (6.117), (6.118), (6.128), (6.129), (6.130), (6.138) yields
the claimed result for U2. �

Lemma 6.5. Regarding U3, the following holds:

∥U3∥L∞(T) ≤ 110Cvδ.

Proof. To prove this lemma we need the following estimate, which is a modification of (6.100).

∑
ℓδ2qn<k<(ℓ+1)δ2qn

1

1 +R2∥kω∥2 ≤ 2 +
2πqn
R

.(6.139)

To see why this is true: for any {k1 ≠ k2} ⊂ (ℓδ2qn, (ℓ + 1)δ2qn), we have 0 < ∣k1 − k2∣ < δ2qn < qn.
Hence by (2.7) and (2.9),

∥(k1 − k2)ω∥ ≥ ∥qn−1ω∥ ≥ 1

2qn
.

Define

K5 ∶={k ∈ (ℓδ2qn, (ℓ + 1)δ2qn) ∶ kω − [kω] ∈ (0,1/2)}, and

K6 ∶={k ∈ (ℓδ2qn, (ℓ + 1)δ2qn) ∶ kω − [kω] ∈ (1/2,1)}.
Similar to (6.123), (6.125), we have {∥kω∥}k∈K5

(and {∥kω∥}k∈K6
) have pairwise spacing at least∥qn−1ω∥ ≥ 1/(2qn), with the smallest term being at least 0. Hence

∑
ℓδ2qn<k<(ℓ+1)δ2qn

1

1 +R2∥kω∥2 = ∑r=5,6 ∑k∈Kr

1

1 +R2∥kω∥2
≤2⎛⎝1 +

δ2qn

∑
s=1

1

1 +R2s2/(2qn)2
⎞
⎠

≤2(1 + ∫ ∞

0

1

1 +R2x2/(2qn)2 dx)
≤2(1 + πqn

R
) .

This proves (6.139). Clearly, (6.139) combined with (6.101) implies

∥U3∥L∞(T) ≤ 4Cv

δ2qn

eδ
4m/(δ2qn)

∑
ℓ=1

1

ℓ
∑

ℓδ2qn≤k<(ℓ+1)δ2qn

1

1 +R2∥kω∥2
≤8Cvδ

2m( 1
qn
+ π

R
)

≤80Cvδ + 8πCvδ ≤ 110Cvδ,

in which we used m ≤ δ−1qn and R = [δm]. This proves the claimed result for U3. �

For U4, we obtain by (6.101) that

∥U4∥2L2(T) = ∑
∣k∣>eδ4m

∣v̂m(k)∣2∣FR(k)∣2 ≤ C2
v ∑
∣k∣>eδ4m

1

∣k∣2 ≤ 2C2
ve
−δ4m.(6.140)
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Combining (6.111), (6.112), Lemmas 6.4 and (6.5) with the Chebyshev’s inequality and (6.140), we
conclude that

mes({θ ∶ ∣vm(θ) −Lm∣ > Cv (170δ + 4c0 log qn
qn−1

)})
≤mes({θ ∶ ∣U4(θ)∣ ≥ 3Cvδ})
≤ 1

3Cvδ
∥U4∥L2(T) ≤ e−δ4m/4,

as claimed. �
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