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SHARP LOCALIZATION ON THE FIRST SUPERCRITICAL STRATUM FOR
LIOUVILLE FREQUENCIES

RUI HAN

ABSTRACT. We establish Anderson localization for Schrédinger operators with even analytic poten-
tials on the first supercritical stratum for Liouville frequencies in the sharp regime {E : L(w, E) >
B(w) > 0,k(w, E) = 1}, with k(w, F) being Avila’s acceleration. This paper builds on the large
deviation measure estimate and complexity bound scheme, originally developed for Diophantine
frequencies by Bourgain, Goldstein and Schlag [BG, BGS1, BGS2], and the improved complexity
bounds in [HS1]. Additionally, it strengthens the large deviation estimates for weak Liouville fre-
quencies in [HZ]. We also introduce new ideas to handle Liouville frequencies in a sharp way.

1. INTRODUCTION

We study one-dimensional quasi-periodic Schrodinger operators with analytic potentials v:

(1'1) (Hw,e(ﬁ)n = ¢n+1 + ¢n—1 + 1)(9 + nw)¢n7

in which 6 € T is called the phase, w € T \ Q is called the frequency. Throughout the paper, for
O €T, ||0|T :=dist(6,Z). We shall simply write it as |0].
The main result of this paper is the following:

Theorem 1.1. Let v be an even analytic function on T. For non-resonant 6 € ©, see (1.2), Hy g
exhibits Anderson localization on

{E:L(w,E)>pB(w)>0, and k(w,E) =1},

in which B(w) is as in (2.8), L(w, E) is the Lyapunov exponent and r(w, E) is Avila’s acceleration
number.

We call the collection of those energies satisfying x(w, F) =1 and L(w, E) > 0 the first supercrit-
ical stratum, according to Avila’s stratification of the spectrum in [Av2]. Theorem 1.1 has been
established recently in [HS1] for Diophantine w € DC !, where

DC:={weT: |nw| > for some A >1 and ¢ > 0}.

n(logn)4’
DC is a full Lebesgue measure set and is a proper subset of {w: f(w) = 0}.
The set of non-resonant 6 is defined to be

(1.2) O := {HGT: limsupM =0}.
n—>co In]
It is well-known that © is a full Lebesgue measure set.
This paper builds and expands upon the large deviation measure estimates and the complexity
bounds for quasi-periodic Schrédinger operators. We will review the literature and discuss our
contribution in this paper below.

R. Han is partially supported by NSF DMS-2143369.
n some of literature, DC has a slightly different definition, we omit such technicality.
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1.1. Large deviation and complexity bound for analytic potentials. Following the scheme
originally developed by Bourgain, Goldstein and Schlag [BG, BGS1, BGS2], the main difficulty in
proving AL is to control both the large deviation measure estimates (LDM), and at the same time,
the complexity (number of connected components) of the large deviation sets.

e For general analytic potentials, in their seminal paper [BG], Bourgain and Goldstein proved

LDM for the norm of transfer matrices w, g(0) = m™!log | My, z(8)] for Diophantine w in
the following form:

mes({0 : |ty 2(0) = (. p)| >m™7}) <e™, for some o >0,

in which (u,, g) is the average value of u,, . Bourgain and Goldstein also introduced a
semi-algebraic set argument which, roughly speaking, controls the complezity of the large
deviation sets in a polynomial manner m®, C' > 1. Combining LDM with the complexity
bound, Bourgain and Goldstein proved AL for general analytic potentials, for a.e. (non-
arithmetic) w. The approach is very robust, and has been further developed to establish AL
in a variety of more general settings, including the higher-dimensional torus T% (d >2) [BG],
the skew-shift dynamics [BGS1], the challenging higher-dimensional operators [BGS2,Bo],
block-valued operators [BJ1, DK1, KI, HS2, HS3], and continuous quasi-periodic operator
[BKV]. The proof of LDM for u,, g, relying crucially on its almost shift invariant property,
in fact generalizes beyond w € DC. For example, You-Zhang [YZ] extended it to the case
B(w) = o(1), and Han-Zhang [HZ] further generalized it to f(w) = o(L(w, F)). However, it
remained a challenging problem to prove arithmetic AL following this scheme, even for all
Diophantine w’s, essentially due to the lack of a tight complexity bound.

In their landmark work [GS1], Goldstein and Schlag introduced a new important tool, the
Avalanche Principle (AP), into the study of quasi-periodic operators. AP has since played
an indispensable role and established a foundation for solving many major problems such
as [GS1, GS2, GS3,BJ2] and others. It has also been generalized to higher-dimensional
cocycles in [Sch1l, DK2|, which play an increasingly important role in the study of block-
valued operators [DK1, Kl HS3]. In [GS1], Goldstein and Schlag were able to combine the
powers of LDM for v,, g and AP to prove, for the first time, Holder continuity of IDS for
one-dimensional quasi-periodic operators. Later, to study the more challenging problem of
determining the exact Holder exponent, Goldstein and Schlag studied a more subtle alter-
native object v:;’E(H) :=m !log |y (0)] in [GS2], where P, g is the Dirichlet determinant
and is an entry of M;; g+ Their paper, for the first time, revealed the importance of zero
count of P, g and established the connection between the Hélder exponent at energy F
and the local zero count of P, . The local zero count is controlled by the global zero count
NTI; p through a delicate AP argument, leading to Holder exponent (m/NTI; ) —0. As part

of their deep analysis, they proved LDM for UTI; p for all Diophantine w € DC, for which

they overcame the significant difficulty due to the lack of almost shift invariance for vf;’ B

Goldstein and Schlag in [GS3] proved remarkably LDM for vﬁfL’E(H) :=m tlog ltr(M;;, 2(0))];
which played a crucial role in their proof of Cantor spectrum for quasi-periodic operators.
LDM of trace turns out to have profound impacts in other open problems as well, including
Han and Schlag’s solution [HS3] of a problem on non-perturbative AL for block-valued op-
erators, and more importantly a quantitative version of Avila’s almost reducible conjecture
for Diophantine w’s [HS2]. The latter builds crucially on AL for the dual model and an
important formula of Haro and Puig for dual Lyapunov exponents [HP]. As in the study of
the entries, the proof LDM for trace also presents significant difficulty, due to the lack of
almost shift invariance. Goldstein and Schlag’s proofs in [GS2, GS3] consist of a series of
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technical steps, including an additional Cartan estimate, which requires controlling quan-
titative small deviations for u,, g(#), for example, of the form (1.3) with deviation m™.
However, to establish such kinds of small deviations one often requires w € DC.

e Recently, Han and Schlag [HS1] uncovered the mystery behind Avila’s acceleration number
and the global zero count of P;;; g by establishing a sharp characterization (up to quantita-

tive small error):
(14) ’%(va) :Nri,E/(2m)7

for all Diophantine w € DC. This leads to a sharp complexity bound 2m - k(w, E') for vf;’ 1o
Using this sharp bound, Han and Schlag [HS1] were able to prove a conjectured Holder
exponent for IDS (up to the endpoint), and also arithmetic AL for all w e DC on the first
supercritical stratum.

This paper builds mainly on [HS1] and earlier works [BG, GS1, GS2, GS3, HZ], but new ideas
need to be introduced to overcome three main difficulties. Before we enter detailed discussion, let
us briefly introduce the framework. Our analysis is multi-scale: for each n, we study the decay of
eigenfunctions, roughly speaking, on the scale of (¢,,/5,¢n+1/5). Depending on the growth from g,
to @n+1, we divide the scales into weakly Liouvillian scales (when (log gp+1)/qn < 01, where §; is as
in (3.24)), and strong Liouville scales (when (log g,+1)/gn > 61). In a strong Liouville scale, to prove
AL in the sharp regime, we need to further divide into strongly resonant regimes, those of the form
((£=0)gn, (£ +0)gn), and weakly resonant regimes ((£+ o)qn, ({+1—-0)g,), where o > 0 is a small
constant. The study of the strongly resonant regimes is the technical core of the paper, which also
relies heavily on a sharp analysis of the weakly resonant regimes. Next, we explain the difficulties
in each weak/strong Liouville scale and weakly /strongly resonant regime in more details below.

(1) For a weak Liouville scale, the complexity bound for w,, g, for m € (¢,/5,gn+1/5), is not
tight enough for arithmetic AL. The challenges remain even if one considers vf;’ E or vfj; )
since their LDM in the literature required w € DC. Hence one needs new ideas on controlling
LDM and sharp complexity simultaneously for such weak Liouville scales. We overcome this
difficulty by studying an alternative object, an analytic function defined by:

(15)  gme(2) = (P p(2))? + Py 2(2))* + (P g g (27™))? + (P p(277))?,

and the associated subharmonic sz () = (2m) ! log |G, 2(e7™9)|. Clearly Iom. (e2™0) =

| My, g (w, 0) |? for 6 € T. This function was in fact introduced in Sec.7 of [GS1], to improve

the complexity bound for u,, g from m® in [BG] to C'm, with some implicit large constant
C’, for w e DC. In this paper, we show that g,, g(z) is, surprisingly, a perfect candidate for
arithmetic AL (except possibly in strong Liouville case). On one hand, it is equivalent to the
operator norm, hence it inherits directly the LDM for u,, g on the scale m € (¢, /5, gn+1/5).
On the other hand, it is an analytic function, thus making it possible to try to adapt
a similar strategy in [HS1] for this Liouville setting, to improve Goldstein and Schlag’s
complexity bound in [GS1] from C'm to exactly 2m on the first supercritical stratum. In
[HS1], the complexity of v,ﬁ’ p Was bounded by the number of zeros of P;;fh 1> Which in turn
is determined by Avila’s acceleration as in (1.4). Such bound is possible because by LDM
and an additional Cartan estimate, each connected component of the large deviation set
must be close to at least one zero of P;fh p- However, as we mentioned, an additional Cartan
argument often requires small deviation ~ m™ and hence w € DC, which is not the case
here. We overcome this difficulty by developing a different approach: directly bounding
the complexity of v;‘fﬂ’ g by the number of zeros for a perturbed function gy, , whose zeros
are also determined by the acceleration number. Finally, combining LDM and the sharp
complexity bound 2m with the pigeonhole principle argument as in [HS1]| one can prove
exponential decay of eigenfunctions in such a scale.
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(2) For strong Liouville scales, there had been no quantitative LDM for w,, g for m € [ogy, o tqn],
where o > 0 small. This is because LDM is essentially a quantitative ergodic theorem, hence
being exponentially close to rationals makes the system less ergodic, thus causing signifi-
cant difficulties. The only LDM on such a scale goes back to key lemma of Bourgain and
Jitomirskaya, [BJ2, Lemma 4], where LDM was proved for w,, g for m > o7 'q,. In this
paper we are able to prove LDM for vme for m € [0¢n, 07 g, ], an important regime that
is out of the reach of [BJ2]. The applicability of LDM for m € [0qy,, ¢, /2] is crucial, and is
in fact the only range we need, for our analysis of the weakly resonant regimes in a strong
Liouville scale.

(3) To study the strongly resonant regimes at a strong Liouville scale, we do not consider
vg% B instead, we study v;f“ - The big advantage of studying the trace is that we can
directly derive the structure of its zeros using rational approximation, and obtain sharp
LDMs and complexity bounds directly from such a zero structure. This is a completely
new approach for LDMs and complexity bounds; indeed, it allows one to truly utilize the
Liouville feature instead of working against it as in a conventional resolution of a small
divisor problem. This rational approximation idea is inspired by Avila’s proof [Av1] of
the almost reducibility conjecture for Liouville frequencies on the subcritical stratum, a
stratum complementary to the supercritical ones we study in this paper. Based on our
analysis of vf; g+ we further develop a new approach to AL for strong Liouville frequencies,
by directly studying the closeness of the orbit {+kw }xez to the zeros of tr(M 1), without
using the pigeonhole principle argument as in [HS1]. This approach is deterministic and
yields a good control of the resolvent on the interval [-[g,/2],[¢n/2]], instead of merely
establishing the existence of a good interval by the pigeonhole principle. Note that with
a LDM for g, g, m € [qn,2¢,], and its associated complexity bound 2m, one can perhaps
develop an alternative approach to the strongly resonant scales. But we do not pursue this
idea here.

The purely singular continuous spectrum in the complementary regime {L(w, E) < f(w)} estab-
lished in [AYZ] demonstrates the sharpness of our result on the first supercritical stratum.

1.2. Related results in special cases. In the past, sharp arithmetic localization for Liouville
frequencies has only been established for two specific models, one being the Maryland model, when
v(0) = Mtan(76), the other one being the almost Mathieu operator (AMO), when v(6) = 2\ cos(270)
with A > 1.

In the literature, the Maryland model had been studied via the Cayley transform, an indirect
approach that works uniquely for the tan potential. Those studies had led to a complete spectral
characterization [GFP,FP,Si2, JL.2], with a proof of AL for all Diophantine frequencies back in the
1980s’ [FP,Si2]. An alternative direct approach, based on the Green’s function expansion, has been
quite recently developed for the Maryland model [JY], and further extended in [HJY] revealing some
novel structures of eigenfunctions due to presence of large potential barriers. But that approach is
also tan specific. The proofs of AL for AMO are also restricted to the cos potential: [AYZ] relies on
the reducibility for the dual operator and the unique “self-dual” feature of AMO; [Ji, JL2] utilize
crucially the Lagrange interpolation argument (an algebraic property) for the Dirichlet determinant
P (0), which is a polynomial in cos of degree exactly m. To the best of our knowledge, neither
the duality nor the Lagrange interpolation argument currently apply to general analytic potentials.
But it might be possible to incorporate the new ideas we introduce in this paper to further extend
these two approaches beyond AMO.

It is desirable to understand the phase transition phenomenon, beyond special cases, in a more
robust and physically relevant setting, e.g., for models with general even analytic potentials. In
fact, AMO originates from studying the motion of a single electron on the Z? lattice, subjected to
a transversal magnetic field. There, the electron is only allowed to hop to its nearest neighbors,
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which gives rise to the cos potential upon taking the Fourier transform. However, in the real world,
the electron indeed exhibits infinite-distance hopping with an exponentially decaying symmetric
hopping strength, which gives rise to a true even analytic potential. In this paper, we show that
arithmetic phase transition phenomena are indeed “topological invariant’: they are robust within
the class of k(w, E) = 1 for general even potentials. It is worth-noting that AMO with A > 1 together
with its even analytic perturbations are a special case of the operators we study here: the entire
spectrum of AMO with A > 1 (and any analytic perturbation) is contained in the first supercritical
stratum, see [Av2, Lemma 25]. Our analysis also allows one to establish the hierarchical structure
of eigenfunctions in the localization regime, similar to that of AMO in [JL2]. To achieve that, one
replaces our study around the global maximal, roughly speaking |¢g|, with an arbitrary local max.
We leave it for interested readers.

We introduce some notations before we proceed. For any R> 1, let Ap:={2¢C:1/R<|z|< R}
be the annulus. Let C, := {z € C: |z| = r} be the circle with radius » > 0. For z € C and r > 0, let
B, (z) be the open ball centered at z with radius r. For x € R, let [x] be the largest integer such
that [z] < x.

We organize the rest of the paper as follows: Sec. 2 is devoted to preliminaries, Sec. 3 contains
an overview of Anderson localization, in particular how to incorporate the weak/strong Liouville
scale analysis presented in Sec. 4 and 5 respectively. Sec. 6 is on the proofs of the large deviation
estimates in Sec. 4.

2. PRELIMINARIES

2.1. Non-resonant 0’s. Clearly, for any 6 € ©, and any small constant ¢’ > 0, for n large enough,
we have
(2.6) 120 + nw| > e,

By restricting to 0 € ©, one essentially rules out the resonance caused by reflection invariance.

2.2. Continued fraction expansion. Give w € (0,1), let [aj,as,...] be the continued fraction
expansion of w. For n > 1, let p,/q, = [a1, a2, ...,a,] be the continued fraction approximants of w.
The following property is well-known for n > 1,

(2.7) lgnwlr = minkwlr,
1Sk<Qn+1

The (w) exponent measures the exponential closeness of w to rational numbers:

log gn,
(2.8) B(w) :=limsup 08 Ant1 _ iy sup (—

n—o00 Adn n—o00

log |nw| T
—
Let
log g,
Ba(w) = —8dnt1

It is well-known that
(2.9) lgnw| € (1/(2qns1), 1/ gne1) = (e Prn j2, e=Bn(@)any,

The pn,qn’s are determined by a,,’s in the following way:

(210) Gn+1 = Gp+19n + Gn-1, and Pn+1 = Qn+1Pn + Pn-1,
and
(2.11) lgn-1w]| = ansi|lgnw| + [gnarw].-

To see the latter is true, note that by (2.10),

dn+1W — Pn+l1 = an+1(an - pn) + (Qn—lw - pn—l):
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which yields (2.11) since |g,w]|| = |gnw — pn| and

(Qn+1w _pn+1) : (an _pn) < O,

for any n > 1.

2.3. Green’s function for the annulus. We state the precise Green’s kernel, which can be
derived by the method of images.

Lemma 2.1. [HS1] The Green’s function on the annulus Ag is given by
1

(2.12) Gr(z,w) = 2—log|z—w|+FR(z,w),
T

where

g1 - 1-
(2.13) Tr(z,w) = log([=I/ 1) log (wl/ 1) + Llog ai=t R4k al R4k 12 ]
4mlog R 2m R'l_[};iﬂl—mwd'u_——

RA—2 Zw

The Green’s function is symmetric and invariant under rotations: Gr(z,w) = Gr(w,z) and
Gr(z,w) = Gr(e®z, ew).

It is also easy to check that

(2.14) 27 GR(1/Z,1/w)

=log|1/z - 1/w| + log(1/(2])) log(1/(R|uw])) +log( e - R4k zl 1- W; )

2log R R-TI72 11— R4k2wz| 1- R4k,2,z@|
=27GRr(z,w).

The following integral is useful, see [HS1, Lemma 3.2], note I'p = Hp, therein.

1og(r/ll?)
47 log

log R

(2.15) fo P R(re?™ 1) do = og(|w|/R) -

2.4. Cartan set and estimate.

Definition 2.1 (Cartan set). For an arbitrary subset P c D(zp,1) c C, where D(z,1) is the disk,
we say that P € Car(H,K) if P c Ulgil D(zp,11) with ko < K, and

(2.16) Srj<e
J

By Wiener’s covering lemma we can assume that D(zy, 7, ) are pairwise disjoint, at the expense
of a factor of 3 in (2.16).

Lemma 2.2. Let ¢ be an analytic function defined in a disk D := D(z9,1). Let M > sup,.plog|e(z)|,
m < log|p(z0)|. Given H > 1, there exists a set P c D, PeCar(H,K), K =CH(M -m) for some
absolute constant C >0, such that

log [p(2)| > M - CH(M - m),

for any z € D(z9,1/6) N\ P.
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2.5. Cocycles and Lyapunov exponents. Let (w,A) € (T,C*%(T,SL(2,R))). Let
AY(0) = A(O+ (n-1)w)--A(6).

Let the finite-scale Lyapunov exponents be defined as

1
Lu(w, 4) == [ log | 42(0)] d9,
n JT
and the infinite-scale Lyapunov exponents as
L(w,A) = lim L,(w,A).
We denote the phase-complexified Lyapunov exponents as
Ly(w,A(-+ig)) =t Lp(w, A,e), and L(w, A(- +ig)) = L(w, A, ¢€),

respectively.
If w=p/qeQ, we define

L(p/a. 4.6) = lim ~log |42(6)] = < log(p(47(9))).

where p(A) is the spectral radius of A.
The Schrédinger cocycle (w, M§) associated to the operator (1.1) is defined with

wzo) =510 ).

The matrix Mg(6) is called transfer matrix, and
i (0) = ME(6 + (n—1)w)--Mg(0)
is called n-step transfer matrix.
2.6. Avila’s acceleration. Let (w,A) € (T,C¥(T,SL(2,R))). The Lyapunov exponent L(w, A,¢)

is a convex and even function in . Avila defined the acceleration to be the right-derivative as
follows:

4 —
H(W,A,E) = lim L(W,A7€+g ) L(wvAae),
e’'—0* 27T€,

As a cornerstone of his global theory [Av2], he showed that for analytic A € SL(2,R) and irrational
w, k(w, A,e) € Z is always quantized.

Recall that v is an analytic functions on T, for some g9 > 0. We may shrink €yp when necessary
such that

(2.17) L(w,M%,¢e) = L(w, M§,0) + 2mk(w, M7,0) - |¢|, holds for any |e| < .

For the rest of the paper, when e = 0, we shall omit e from various notations of Lyapunov exponents
and accelerations. We will also write L(w, E,¢) instead of L(w, M}, ¢), and sometimes even omit
w, E in the notation.

2.7. Regular/Dominated cocycles. Following [AJS], we say an analytic cocycle (w, A) is regular
if k(w, A,e) is constant for £ in a small neighborhood of € = 0. We will use the following theorem
from [AJS], note we restrict to the 2 x 2 cocycle case below.

Theorem 2.3. [AJS, Theorem 5.2] Assume L(w,A) > —oo and that («, A) is regular. Then for
any rational approximant plq of w, one has uniformly for small € and all @ € T

L(p/q,A,0 +ic) = L(w,A,e) +o(1).
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2.8. Transfer matrix and Dirichlet determinants. It is well-known that the entries of the
transfer matrices are the Dirichlet determinants:

PYg(0) P2y p(0+w)
2.18 M p(0) = | po” b
( ) n’E( ) (Pn—l,E(e) ‘Pn—z,E(9+w)

in which P’ (0) = det(H{og-1]0,0 — £) is the Dirichlet determinant on the interval [0,k —1].
Let

(2.19) Inp(0) = det(M; p(0) - I2) =2 - tr(M,; 5(0)).

) e SL(2,R),

In fact fp is the determinant of Hyg 1), with periodic boundary condition, see [HS2, Lemma
5.1]. This played an important role in Goldstein-Schlag’s proof of Cantor spectrum [GS3], and Han-
Schlag’s proof of a quantitative version of Avila’s almost reducibility conjecture [HS2]. fli /5(9) is a
1/g-periodic function in #. This fact plays a crucial role in Avila’s global theory, and our proof of

Anderson localization for Liouville frequencies.
Since M, ; € SL(2,R), one has

(2.20) 21> = My p(0) = (M7 5(0)) ™" = [ 5(6) - L.
This implies
|(M 5(6))?] |(M; £(0))°]
2.21 — - 3<|frp0) f ———————+3< | M (0 3.

We shall also frequently write fip(2) = fi/p(0) and Py (2) = P (), with the obvious iden-

tification z = 2™,

2.9. Green’s function expansion. Let ¢ be such that it solves H,, 9¢ = E¢ for some E € R. Then
for any interval [mq, mo] c Z, we have for any h € [my,mz] that

(2 22) |¢h| < |P7(;J12—h,E(9 + (h + 1)W)| |P;;)_m1(9 + mlw)|
B |P77u;2—m1+1,E(9 +mw)| P;)"bz—mﬁ—l,E(e +myw)|

|¢m171| + | |¢m2+1|'

Note that we avoid introducing the Green’s function for the Schrédinger operator, rather, we use
directly its connection to the Dirichlet determinants to avoid confusion with the Green’s function
on the annulus in (2.12).

2.10. Uniform upper semi-continuity. The following lemma is an easy corollary of the argu-
ments, essentially a subadditivity argument, in the proof of Lemma 5.1 in [AJS].

Lemma 2.4. For any small T > 0, there exists N = N(1,w,v,F) > 1 and § = §(7,w,v, E) >0 such
that for any ||w' - w|r <d and n > N,
1 /
~log |25 < L(w, M) + 7,
uniformly in 0 € T.
2.11. Symmetry of zeros.

Fact 2.5. [HS2, Fact 2.1] For anyw €T, anyn e N and E € R. If 2 ¢ Cy is a zero of f p(2) (or
PP p(2)), then 1/Z is also a zero.

Proof. Since the potential function v is real-valued, f;; E(e2”9) € R for # € T. Hence the two analytic

function f}; p(2) = fy ;(1/Z) coincide on the unit circle z € C1, which implies they are identical. [
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2.12. Shnol’ theorem and generalized eigenfunction. By Shnol’s theorem [Be,Sil, Ha, Sch2],
to prove Anderson localization, it suffices to show an arbitrary generalized eigenfunction ¢ to
H, g0 = E¢, satisfying

(2.23) 1 = max(|pol, |¢-1]), and |px| < Clk|, for any k + 0,
decays exponentially. Throughout the rest of the paper, we fix such a generalized eigenpair (E, ).

3. AN OVERVIEW OF THE PROOF OF ANDERSON LOCALIZATION

In this section, we give an overview of the proof, in particular, how to incorporate the two
different weak /strong Liouville scale analysis presented in Sec. 4 and 5 respectively to prove decay
of eigenfunction on the whole Z. We need to pay extra attention to the applicability of the Theorems
4.1 and 5.19 at two consecutive scales.

Let C, > 1 be the constant in (6.103). Note that C, depends solely on |v] et ). Recall g9 is
as in (2.17).

Throughout the rest of the paper, let 41 > 0 be a small constant such that

sS4 - min(eg, 1, L(w, E) - f(w))

24 =

(3.24) 1 105C, max(1, L(w, E))
Let

co = 106, /(1 + B(w)),
and

1

3.25 — 10000, e 164 « —.
(3.25) 1 0% <100

Below, let * = q;_1/10 if gp_; < €®*%-2_ and * = qi:i‘) if g > €12,

We divide into four cases:

Case 1. If g < %1 and gz,q < €%, One applies Theorem 4.1 to both the scales n = k-1 and
n =k so that |¢,| decays on [*,¢;/10]U[gx/10, gx+1/10]. We note that the two consecutive scales
leave no space uncovered around their connection at g /10.

Case 2. If g > "%1 and g1 < €”%. One applies Theorem 5.19 to the scale n = k -1 so
that |¢,| decays on [*,qifco]. One applies Theorem 4.1 to the scale n = k so that |¢,| decays on

(g, qx+1/10].

Case 3. If ¢ < %1 and gi4; > €®%. One applies Theorem 4.1 to the scale n = k — 1 so that
|| decays on [*,q;/10], and Theorem 5.19 to the scale n = k so that |¢,| decays on [qk/lo,qiﬁo].

Case 4. If g > %1 and gg.q > €%, One applies Theorem 5.19 to both scales n = k-1 and
l-co _1-co

n =k so that |¢,| decays on [*,qiiCO]U[qk b
Therefore by gluing the scales together, we obtain exponential decay of |¢,| on the whole Z.
4. WEAK LIOUVILLE SCALES

Throughout this section, we assume that ¢,.1 < e except in Lemma 4.4. This is what we
called a weak Liouville scale. Our goal of this section is to prove exponential decay of the generalized
eigenfunction, roughly speaking on the scale of [g,/10, ¢,+1/10].

Theorem 4.1. If g1 < 651%’ then for
| | c [qvlzicOaQn-#l/lO], Zf qn Z e5lqn—1
[qn/l()? Qﬂ,+1/]~0:|7 Zf n < 661[]'”—17

we have
|6,] < e~ L(w,E)yl/40.
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Remark 4.2. It follows from a standard argument that iterating the Green’s function expansion in
(2.22) leads to a sharp decay

Iy | < - (E@E)-CCu8
for some absolute constant C' > 0. We leave this for interested readers.

Proof. In the proof, we shall sometimes write L(w, E,¢) as L(e) and L,,(w,FE,e) as L, (¢) for
simplicity. Without loss of generality, we assume y > 0.

Recall that g%, 5 is as in (1.5). We will in fact bound the number of zeros of ¢ ,(z)-e
near the unit ciréle, for small constant § > 0, and prove a large deviation estimate for the following
function:

2m(Lm—9)

1

o (0) 1= —og(g5 (™).

Let

Bgn(SE = {9 ET:UM,E(H) <Lm(w7E) _6}

Note that for 8 €T, g5, 5(¢*™) = [ My, () [fs > 0, hence
Bfn,&,E = {9 eT:0< g%’E(Q) < e2m(Lm(UJ7E)—6)}‘

Therefore each connected component (which is an interval) of B? . has two endpoints in {6 € T
w 0) = 2m(Lm,
gm7E( ) =€

the number of zeros of g, 5(2) -

_6)}. Thus the number of connected components of Bfn 5. is controlled by half of
e2m(me5).

4.1. Large deviation estimates.

Lemma 4.3. Let C, be as in (6.103). Assume ¢p+1 < e Then for any m such that 10q, < m <
Gn+1/5, with n large enough, we have

g ~10081m
meS(Bm,woocy&}/?,E) ¢ ’

As we mentioned, the large deviation estimate can be proved by using almost shift invariance of
U, 5(0), or the equivalence between vy, () and m™! log | M, (8)]. This proof is close to that in
[HZ], which has a similar weak Liouville condition (in which it was assumed that, roughly speaking,
each ¢p.1 < e91n holds for all n). We postpone it to Sec. 6.2.

We also prove the following new large deviation estimates, roughly speaking for m of size com-
parable to ¢,. The novelty is that it does not require the weak Liouville assumption ¢y < 19",

Lemma 4.4. Let C, be as in (6.103). For any m such that

1/4 1- . 51Gn—
551/ gl if g > ePran

10g, >2m >
! {55}/4%, if qn < M1,

with n large enough, we have

mes (B’

m,1000C,61/* | E

) < 6—10061m

This lemma also plays an important role in our study of the eigenfunction in the weakly resonant
regimes of the strong Liouville sales, e.g. [vqn, (1 —v)g,] for small v > 0, at a scale ¢, that
Gns1 > €19 We present the proof of Lemma 4.4 in Sec. 6.3.

Next, we turn to the zero count.
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4.2. Zero count.
Below and throughout the rest of the section, s := k(w, F).

Lemma 4.5. Let 7 be as in (3.25). Let NJ, 5 () = #{z € Acore 1 g p(2) = 2 Lm (W E)=0) = For
any 6 > 110OCU(5i/4, e1=2n/(1+2n)eg, and m large enough (depending on £¢,0,m) satisfying

[1an7QTL+1/5]7 Zf dn+1 < 51qn7
(4.26) m e { (55} 4}, 10, ], if g > D101,
(561" 4. 10g,], if qu < 1971,
we have N7 o -(e1) <4(1 +n)km.
Before proving this lemma, we give a quick corollary.

Corollary 4.6. Under same condition as Lemma 4.5, the large deviation set satisfies:

; N
B = JUnm.;
m,1100C,61/* E ]L:Jl 2

with N < 2(1 +n)km and {Unm,; }]le are disjoint intervals satisfying

mes(Up, ;) < g 1000im

for large enough m satisfying (4.26).
We give a quick proof of this corollary.

Proof. Each interval of BY ”

27ri€) —
m,1100Cy,6;" ", E

has two distinct endpoints, both lie in {6 : g%’ (e

1/4 . .
2(Lm (@, B)=1100C%0,")Y * Hence the number of intervals is controlled by

1

2 5111000 51/ E(€1) <2(1 +n)km.
’ v o
The measure estimates follow from Lemmas 4.3 and 4.4. O]

Next, we prove Lemma 4.5

2me

Proof. Within the proof we shall sometimes write L,,(w,E) as L, for simplicity. Let R := e
and N := ./\/;‘ZL757E(€0). Let w1, ...,wn be the zeros of g, (2) - > (Lm=0) in AR (assuming it is zero
free on 0ApR, otherwise shrink ey to g9 — o(1). We omit this small technical adjustment). Define

1 N
Grmp(2) = %;GR(Z,W)’
where Gp is the Green’s function in (2.12). Let

e2m(me5)| — 27TGR,m,E(Z) + hR,m,E(z)‘

_ 1 w
Um,e(2) = 2—10g |9m,E(Z) -
m
Then hg m, g(z) is harmonic in Ag. Let
LY (E,¢) ::fTﬁmE(e%M”E))dG, and
IG(E,e) = fT27TGR7m,E(e27ri(9+i€))d9 and

1M (E.e) ==fThR,m,E(€2m(9”€))d9

Note that L2 (E,e) # L,(E,¢), but we will show their difference is negligible in Lemma 4.8. We
first show I" (F,¢) is constant in e.
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Lemma 4.7. There exists be R such that I' (E,) = b for |¢| < €.

Proof. We first prove LY, (E,¢), IS(E,¢) and I (E,e) are all even functions in . Similar to the
proof of Fact 2.5, one observes that since each determinant Py’ (0) is real-valued for 6 € T, we have

PEp(2) - P 175D
This implies
(421) g5 (172
=Py p(1/2))? + (P, 5(1/2))° + (P, p(27[2))? + (P, p(e2m%[7))?
=(P2 (1/2))% + (Pay (12))% + (P, p(1/(2627)))% + (P_y 5 (1/(2€27)))?
=( m,E(Z))2 +( m—1,E(Z))2 +( m—l,E(Ze27”w))2 +( m—2,E(Z€2mw))2 = gm,E(Z)'
Hence 0, 5 (e2™0%)) = 5, p(1/e2™1(-0+9)) = 5, p(e2™(9=)) which implies

(4.28) LY.(E,e) = LY (E, -¢).

By (4.27), if z is a solution to gj;, p(2) = ¢?(Lm=0) then I (1/Z) = ¢>™(Lm=9) Hence 1/% is also
a solution, which implies UL, {wy} = UL {1/wW}}. Therefore, by (2.14),

1 X 1 X
Crmp(2) = — S Gr(z1/T7) = — " Gr(1/Z.wx) = Grmp(1/7).
Rom, (%) ka; r(z 1/wg) 2m1§1 r(1/Z,wi) = Grom,5(1/7)

This implies

(4.29) IS(B,¢) = IS(E,-¢).
Combining (4.28) with (4.29), we obtain
(4.30) I"(B,e) =I"(E,-¢).

For any r € [1/R, R], and |z + iy| = r, we define a radial function as follows:
~ 1
W+ iy) = LB, o) = [ b (re™) o,

Since hgm, g is harmonic, h is a radial harmonic function, which implies

log |z + zy|)

h(zx +iy) = alog |z +iy| +b=I"(E, 5
s

for some constants a,b. Then, by (4.30),
I"(E,e) = 2raes +b = -2wac + b= I" (B, -¢),
which implies a = 0. Hence
I"(E,¢) = b, for any |e| < eo,
as claimed. g

We further use the following lemma to bound L?,(E,0) from below.

Lemma 4.8. Under the same condition as Lemma 4.5. For § > 110001,(5;/4, for m large and
satisfying (4.26), we have

L%(E,0) > Ly (E,0) - 1200C,61"*.
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Proof. Recall the large deviation estimates of vy, g in Lemmas 4.3 and 4.4:

(431) mes(BY | s p) = mes({0 < o g (™) = Lin (., 0)] > 1000C, 5Ly < em1008um,
v0q JE
For 6 ¢ BY va > the following is true

m,1000C,6,/*

2L (E,0)-1000C,6 ! )<g (627r29) < 2m(Lm (E,0)+1000C5 51/

)

1/4

which implies for § > 11006,"" that

L oL (E,0)-1000C, 614 w 2mi0y _ ,2m(Lim(E,0)-0 2m( L (E,0)+1000C, 5,
L am(Ln(E0)-1000u5") ¢ o | (2mi0) _ 2m(Ln(B0)-0) ¢ ge2m(Lm (F.0)+100C,5"")

2
Hence by (4.31),
(4.32) mes(By,) =mes({0 : [0, 5(¢*™) - L, (E,0)| > 110OCU(5i/4})
<mes(B7 m,10000,8,/* \E ) g e,
This yields a preliminary L? estimate as below:
(4.33) |G, 2(€*™) = Ly (E,0) || z2(r) < Co61 0

To see this, one covers the unit circle C; with ~ ! many disks of radius ~ ¢, with centers in Bfn,
and then applies the Cartan estimate (Lemma 2.2) to each of these disks.
With (4.32) and (4.33) in hands, we obtain

|G, 12(€%™) = Ly (E,0)] 11 ¢
- /B (5, 2(e*™") = Ly (E,0)] d6 + fB Nom,2(e7) = L (E,0)| 46

<(mes(Bn )" [ (e7) = Lin(B,0)| 12y +1100C,8,"*
<Cy 5,0 2™ +1100C,, 517",
Hence
fT T 5(29) A0 > Lo (E,0) - 12000,6.7*,
as claimed. 0
Next, we present the upper bound of LY, (E,¢).
Lemma 4.9. For any ¢ € [0,2¢0], for m large enough, the following is true
LY (E,€) € Ly (E,€) +0(1).
Proof. The following standard uniform upper bound is from Lemma 2.4:
%log |M;y, (0 +ig2)|| < Ly (E,e2) +0(1), uniformly in 6 € T.
It implies that uniformly in 6 € T:
g5, £ (TN < | My, (6 +ie2) [fg < CePmEm (B2 relD)

for some absolute constant C' > 0 that arises from the equivalence between the two norms of
2 x 2 matrices. Hence, by using that L,,(F,0) < L,,(F,e2) (which follows from the convexity of
L., (E,-)), we obtain

g2, (2704 i22)) _ 2m(En(BO-0)| ¢ goetmlLm(Bea)o(h))
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Hence uniformly in 6 € T, we have
O, 2 (27052 < L (B e2) + 0(1),
This implies the claimed result. ]

With these preparations, we now turn to the zero count. The arguments below are very similar
to those in [HS1]. By [HS1, (4.24)], the following holds

I (E 81)———/ 5E(€2)d€2

Hence for g > g9 > &1 > 0,
IG(E,2) = 1G(Ee1) = o [N, (ea) ey > (o2 = )N, (),
€1

in which the last inequality follows from the monotonicity of A 7% 5.z(-). Combining the inequality
above with Lemma 4.7, we obtain

(4.34) —(62 -e)N? se(e1) <LY(E,e0) - LY (E,e1).

By convexity of L2 (E,-) and Lemma 4.8, we have

(4.35) L% (E,e1) 2 L% (E,0) > Ly (E,0) - 1200C,5."*.
Therefore, combining (4.35), Lemma 4.9 with (4.34), yields

4 o(1).

—(62 -e)N? s.0(81) <L (E,€2) = Lin(E,0) + 1200C,6
This implies for m large enough,
—(62 — )N 5 p(e1) SL(E, 2) - L(E,0) +12000,6,"* + (1)
<2mKey + 1200Cv51/4 +o(1).

Hence

NI (o) < 28

e €2 €1

(62 +200C,0, ey 0(1))

Recall that 7 is as in (3.25). Taking e = ((1/2)™' +1)e; = g9 and m large enough yields the desired
estimates. This finishes the proof of Lemma 4.5. O

Next, we explore some unique features of the even potentials. In fact, when v is even, the
Dirichlet determinants satisfy:

k-1 k-1
(4.36) P p(0 - Tw) = P p(-0- Tw), for any k € N,
which implies for arbitrary m > 3 that
Pm2E(9 —1w+w) 2.5 (—0 - —w+w) and

(P p(0- W))2+( 1E(9 lo +w))?
( lE( 9 W+W))2+( lE( 6 - w))2

Therefore,
w (= ri(—0- 2Ly
o (77O ) = g p (2T,

Combining this with Corollary 4.6, we conclude that:
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Corollary 4.10. Under the same conditions as Corollary 4.6, we have

Bg 1/4 U(U m,j U( U m,j (m—l)w)),

m,1100C,6,/* E

for some N' < (1 +n)m, furthermore each Uy, ; satisfies mes(Uy, ;) < e 10091m,

4.3. Exponential decay of generalized eigenfunction.

Throughout the rest of the section, we assume x(w, E') = 1, namely restrict to the first supercrit-
ical stratum.

For any Z 3y > 10, let m,, := [y/2], and

P I o PR

Since y > 2my,, I{ nIJ = @. Also it is clear that
11
(4.37) card(I; | JI2) = card(Iy) + card(I2) > oM O(1) > (1 +n)my,

where we used that 1 < 1/100 as in (3.25).
Let
_ [106," gy gs1 /5], if gner < €%, and g, < 191
' [1051/4 2 i1 [5], if gna1 < €219, and gy, > €219

Corollary 4.10 together with the weak Liouville condition ¢,,1 < €% implies the following.

Lemma 4.11. For y € I,, with n large enough. For each k € I, we have

(4.38) 0+ kwe B »

my,1100C,6,* B’

Furthermore there exists k3 € I such that

0+ kiw ¢ B )
my,1100C,61/* B

Proof. We prove (4.38) by contradiction. Suppose there exists k; € I such that

0+ kiw¢ B! )
1w ¢ my,1100C, 6,4 E

/
Then g%%E(H +kiw) > 2y (Lmy =1100C,8,) i implies, by the definition of g‘;’nyE as in (1.5),

that there exists my, € {my, m, —1,m, - 2} and a € {0,1} such that
(4.39) |P°"/ 20+ (k1 +a)w)| > my(Lmy 1100C,8,") > = my(L 1200C,6,")
2 )

where we used Ly, = L +o(1) for y large enough (which implies m, is large enough). Applying
Green’s function expansion (2.22) of ¢ at h = 0,1, on the interval [m1, m2] = [k1+a, k1 +a+my—1],
and estimating the numerators of the expansion using Lemma 2.4, we arrive at a contradiction that

(4.40)
1 < (max(|oo), |¢-1) < e F1l(E=2000C0 7 g ]+ e Gkysasmy | < €5

where we used (2.23) and that min(|k1], [k1 +m;|) > m,/10-O(1) in the last inequality. This proves
(4.38).
Note that (4.38) implies for each k € I, there exists ji such that

0+kwe (Umyvjk U(_Umyvjk - (my -Dw)).
We need the following repulsion property among 6 + kw for k € I UTY.

sl ~ |k +m | (L-2000C,5,"* myL
)
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Lemma 4.12. Suppose for some ke I} UL, 0 + kw € (U, j U(=Un,j — (my — 1)w)), then for any
k' e IV ULy ~ {k}, the following holds:

9 + k’w ¢ (Umyvj U(_Umyvj - (my - 1)0}))

Proof. Without loss of generality, we assume 0+kw € Uy, j, . The other case is completely analogous.
We need to distinguish two cases, depending on the size of y.
Case 1. If y < ¢,,/2. Then m,, < ¢, /4. Clearly this implies

4
O<|k-K|<y+ 3my+2<qn.
Hence by (2.7) and (2.9), we have

1
[0+ k) = (0 + )| 2 |k = K )] 2 gnre0] 2 5 — 2 71000,
q

n

where we used m, > 5515? 4q}[c° in the last inequality. Combining the above with the estimate of
Unm,.j. in Corollary 4.10 yields 0 + k'w ¢ Uy, j, -

Case 2. If y > g, /2. Then my, > g, /5. Since k' # k and |k — k| < gn+1, we have by (2.7) and (2.9)
that

10+ K'w—(0+kw)]| = [(K = k)] 2 |gnw] > e /2,

where we used ¢,41 < €9 in the last inequality. Combining this with the measure estimate in
Corollary 4.10 and that m,, > g,/5 yields

mes(Upn, j,.) < e~1000imy ¢ o=2001an e_‘slq"/2,
This implies 6 + k'w ¢ U,, Now it remains to show 0 + k'w ¢ (-U,,
[—2my,-1m,], if k, k" e 17,
k+k +my-1e{[y- %my,y + %my], if exactly one of k,k’ € I7,
[2y - $my, 2y + 2my ] if kK € 1Y,
Since y = 2my, + O(1), |k + k" +my — 1| € [my/5,5m, ], thus (2.6) with ¢’ = ¢; implies
16+ k'w— (=(0+ kw) = (my = Dw)]| = |20 + (k + k' +my, — 1)w| 2e 0lk+k+my=1]

>e001my 5 meS(Umkal )-

Yk jn — (my = 1)w). Note that

Hence
0+Fkw¢-Upn,j—(my—1ws—(0+kw) - (my-1)w.
This proves the claimed result of Lemma 4.12. ]
Lemma 4.11 follows from combining Lemma 4.12 with (4.37) and the pigeonhole principle. [
For

an qn+1] 01qn-1

y € {[qu_coaqnﬂ/l()], if g, > %191

expanding ¢, using the Green’s function expansion on [kY, k3 +m, —1] with k% provided by Lemma
4.12, we have similar to (4.40) that

“ly—KY|(L-2000C,6* “|kY +my—y|(L-2000C, 874
6] < mar(e W HIE2000CR D g | g emyl2000Cu Dy )

in which we used min(|y - k3], |kY + m,, — y|) > m,,/10 > y/20, and used (2.23) to bound

maX(lqbkg,ll, |¢k§+my|) < Cy
This is the claimed result. U
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5. STRONG LIOUVILLE SCALES

We first give an overview of this section. Throughout this section, we assume ¢,41 > €19, Our
goal is to study the decay of the generalized eigenfunction ¢, roughly speaking, in [g,/ 10,q71;01°].
The main result of this section is Theorem 5.19, which is based on Theorems 5.12 and 5.16, that
handle weakly resonant regimes and strongly resonant regimes, respectively. The strongly resonant

regimes Ry, , for |{| < 1Oq71;cl‘) /Gn, as defined as follows. If g, < e%197-1, let

Reg, = [(£ =106\ ) g, (£ + 106, )q, ], and 74, = sup |-

yeRyq,,
If g, > X191 let

1/4 1- 1/4 1-
Ryg,, = [Lqn - 1051/ q}b O fgy, + 1051/ q}b ], and 7y, = s;;p |y .
ye Lan,

A regime in between two consecutive strong ones: [£g,, (£ + 1)gn] N (Reg, U R(41)q, ), is called a
weakly resonant regime.

The technical core of this section concerns the strongly resonant regimes, for which the study
of the weakly resonant regimes serve as preparations. In fact, sections 5.1, 5.2, 5.3, 5.4 are all
preparations for the proof of Theorem 5.16 in Sec. 5.5. The proof of Theorem 5.12, given in Sec.
5.4, is indeed independent of the sections 5.1, 5.2 and 5.3, but we decide to present it next to Sec.
5.5 since they both concern the study of eigenfunctions.

This section deals with the case when there exists a sequence of such strong Liouville scales
Gns1 > €219 which is true when S (w) > 61 > 0. In such case, we can formula the following variant
of (2.6): for any small ¢’ > 0, there exists ¢y > 0 such that

(5.41) 1260 + nw| > cs 70,

Note that this follows from (2.6) unless 26 + now € Z for some ng € Z. However that would lead to
a contradiction to 6 € ©. In fact, we would have

0 = lim sup lim sup ~log [(n = no)w| =f(w) =6 >0,

~log |20 + nw|

hence a contradiction. We will use this variant (5.41) in Sections 5.3 and 5.5.
Define 8, be such that |g,w| = e 9. By (2.9), we have 3, > §;. Recall [y i is roughly speaking
the trace of M}’ p, as in (2.19). Let

v 5(2) = 4, logf2 ()],
and R := €20 N := Ny, (w, E,e0). Let wy,...,wn be the zeros of f;‘:“E(z) in Ap (assume f;‘:“E(z)

is zero free on 0AR). Define

1 N
Ué,qn,E(z) = Z GR(Z,'UJk),
qn k=1

where Gp is the Green’s function of Apg as in (2.12). Then

(5.42) U;“E(z) = 27TG°,§7qu(z) + h“j%’qu(z),

where h, i E is a harmonic function on Ag.
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5.1. Zeros of f;’:g”. We start off by studying the zeros of f, for w = p,,/q,, which are structured
due to periodicity.
Since the trace of M 57 :‘g” is periodic:

tr(MPE () = tr(MP2 (8 + pufan)).
f;?/g”(ez’”') is also 1/¢,-periodic, due to (2.19), which implies

Fact 5.1. If zg € C is a zero of fg:’g"(z), namely fé):’g"(zo) =0, then for any 1 < j < q, -1,
20€2™IPnl s qlso a zero.

pn/

Next, we estimate the total number of zeros of f g”(z) lying near the unit circle. For any

0 < e <gg, define "
No(w, B, e) = #{e ™ <|2| < *™ : 2z is a zero of fop(2)}.
Fact 5.1 yields immediately that:
Corollary 5.2. For any € >0, Ny, (pn/qn, E,€) is a multiple of g,.
Let
Ié’:/q"’G(E,e) = fT27TG%’jéZ”‘E(62m(€”€))d0

be the integral of the Green’s function, and

Lpn/fIn,U(Ejg) - Avgzgvl(e2wi(9+i€)) d6.

qn
Lemma 5.3. The harmonic part of UZZKI%” as in (5.42) satisfies h%’fé:’fE = vgl/g" on OAR, and the
following holds uniformly in z € Ag:
(5.43) Wil (2) = L(w, B, ) + o(1).
For any small 6 >0, for n large enough (depending on §,eq), the zero count satisfies

Ny, (Pg/@ns E,€0/2) = Ny, (Pn/qn, E,0/2) = 2.

Proof. We start with the harmonic part. Since for € € {+eq,+e0/2,+0/2,+6/4}, (w, Mg(- +ic)) is
regular, Theorem 2.3 implies that for n large enough and uniformly in 6 € T,

1
— log(p(MI"13" (0 + i))) = L(w, B, €) +0(1),
q sy

n

where p(M) is the spectral radius of M. This implies, due to p(M) < [M?|'/? < | M|, that

(5.44) —mln(log HM;’mg (9+ZE)H,§lOg H(M;)m/g (9+z€))2\|)

1 .
> log(p(My " (0 + 8€))
>L(w, E,e) +0(1),

uniformly in 6 € T, for n large enough.
By Lemma 2.4 and (2.21), we conclude that for n large enough,

o 1
(5.45) vf;”/g”(e2m(9”€)) < —log HM;)"/g” (O +ie)| +0o(1) < L(w, E,e) +0(1),
s qn nH



SHARP LOCALIZATION ON THE FIRST SUPERCRITICAL STRATUM FOR LIOUVILLE FREQUENCIES 19

uniformly in 0 € T. Note that (5.44) and (5.45) together with (2.21) imply, uniformly in @ € T, that
1 Qa0+ i)’

o i

(5.46) vp:/g”(e2m(9”€)) > —log dn . +0(1) > L(w, E,e) +o(1).
! G| Ml (0 + e

Combining (5.45) with (5.46) yields

(5.47) obn i (2rO4E)) = L(w, B,e) + o(1),

for € € {£eg, +£0/2,+0/2,+0/4}, uniformly in § € T. This clearly implies the integral satisfies:
(5.48) Lin/an?(B,e) = L(w, E,e) +o(1), for e € {xeg, e0/2,+5/2,£5/4}.
Since h, ) q"E(z) p n q”(z) for z € AR, by (5.47) and the max/min principle for harmonic
functions,
%"é:?E(z) L(w,E,e0) +0(1),

holds uniformly in z € Ap, thus proving (5.43).
Next, we estimate the number of zeros. By (5.43) and (5.48), we have for any

€2,&1 € {50760/275/275/4}7
and for n large enough that

I/ (Byez) = IO (Brey) =L (Bue) = Ll (B, e1) + o(1)

(5.49) =L(w,E,e3) — L(w, E,e1) + o(1).
By [HS1, (4.24)],

. . £
(5.50)  Ipn/tC(Be) =2m fTG%’féZ’TE(em(e”e))d%—ql | Nau ol ns B.2)

n

Combining (5.49) with (5.50), and using the L(w, F,¢) = L(w, E,0) + 27e, we have
€
S Nos o, B,) 4z =T (L0, B,20) = L, B z0f2) + 0(1))
€0 T
ZQnEO(l + 0(1))

This implies, by the monotonicity of Ny, (pn/qn, E,€) in €, that

Ny, (Pnlan, E,e0/2) <2¢,(1 +0(1)).
By Corollary 5.2, we have

(5.51) Ny, (Pn/an, E,€0/2) < 2¢y.
Similarly

/2
s Naw(pnfan, B.2)de = (Lo, B,8) ~ L, .5/2) + 0(1))
™

n0
=82 (1 0(1),
which implies
Nqn(pn/Qna E7 5/2) 2 2qn(1 + 0(1))7
This combined with Corollary 5.2 yields

NQn (pN/qna E7 6/2) > 2qn

Taking the upper bound (5.51) into account, we conclude that for n large enough,
N‘]n (pn/Qna E7 5/2) = Nqn (pN/qna E7 60/2) = 2Qna
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as claimed. O

Facts 2.5, 5.1 and Lemma 5.3 yield the following immediately:

(pn/Qn) 27‘(‘i(91 +i€1) ngn/%)

Lemma 5.4. There exists z; = poe2mi(f2tic2) ¢ Acxp(rs) (it is possible

that z§p”/q”) = zép"/q”)), with riro =1 and ro < ry, such that the zeros of fp"/q”(z) in Aexp(req) 0T€

=Te

qn71 > A ..
an(pn/qn, E) = U {Z%pn/q”)e27r2]pn/fhz7ngn/Qn)e27r2]pn/qn}.
7=0

The periodic structure of zeros implies the following control of I'g in (2.12). Let

1 n 1
(5.52) ol (2) = — » Tr(zw).
qn weZQn(pn/qn7E)

Lemma 5.5. For any 6 >0, for n large enough, uniformly in z € Ag, the following holds:

10&-?;(|2'|R)

iy« B
Proof. For each s=1,2, we study
n—1
iqz Ir(z, Z(pn/qn) 2men/qn)
dn j=0

Recall that T'r(z,w) is as in (2.13), there exists some kg = ko(d) such that uniformly in z € Ar and
w € Aexp(ﬂé)a

k
og(l/Rog(lol/B) | 1 (T - gedl g )
4rlog R 27 R.H’Izg”l_wwd.u_;; )

RAk=2 Zyw

FR(Z,ZU) =

where |£1| < 0/4. It is easy to show, for each 1 <k < ko that uniformly in z € Ap,

1 qn—1

z
— lo
o Jz;) gl R4k (pn/Qn)egm]pn/qn
Qn_l 2
:q_n JZE] log |1 R4k Ty e2mi(0s+7/qn)
2] 1
flog R4k 2w 40 +O(R4k7,s_|2| )
and similarly
1 anl 1 oPnlan) 2mijpn/an 1 2mif)
_Zlogl—mzs e :f 1_m&d9 +0 % i,
In 20 R z T R 2 R¥|z| —rs ) qn
1 9t 1 1 , 72| 1
_ log |1 = 5 (Pn/an) 2mijpn/an— f‘l_ ree?™zdo|+ O —=2— | —,
o JZ:E] &1 T Rak—=2%s T T Rik=2' R%2 7 ) 4
1 ! 1 1 1 1 1 1
— log |1 - :/1———.d0+0— —.
qn g o8 RAk=2 (pn/qn)e27”1pn/Qn T R*k-2 37’5627”9 (R4k—27’5|2| - 1) qn
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Therefore, for each 1 < k < kg, the sums can be approximated, uniformly in z € Ag, by the integrals.
This implies for ¢, large enough, depending on R, J, that

qn—1 B '
5/2 > Z FR(Z Z(pn/Qn) 27TZ,7pn/Qn) _ fPR(Z,Tsezme)dQ
Qn 3=0 T
1 an=1 .. 1 lo
Z FR(Z z pn/qn)ezﬂlﬁpn/Qn) _ Og(|z|/R) lo (TS/R) gR 7
an =0 4mlog R 2T

where we used (2.15) in the last line. This implies, by triangle inequality and logr; + logre = 0,
that

pn/qn (2) + 10g(|z|R)

R Jqn,E

as claimed. 0

Combining the control of hglé Z"E in Lemma 5.3 with the control of F%”é Z"E in Lemma 5.5, we
have that for some |¢| < 24,

pn/‘]n(z) 27TGPn/q (Z) + hl})znéZtLE(z)

=i ( Z log |z - w|) —log(|2|R) + L(w, E,e0) + &

qn wEZ(I'rL (pn/l]n,E)

1
(5.53) :—( > log|2—w|) -loglz| + L(w, E) + &,
qn ’LU€an (pn/q'n,,E)
where we used L(w, E,g0) = L(w, E) + 2meg = L(w, E) + log R in the last line.
The following lemma controls the sum of logarithmic potential part via its minimum term, in
(5.53) above.

Lemma 5.6. For s € {1,2}, the following holds uniformly in z € Ag:

2 qn-1 1
;1 Z Z log |z - z(pn/Qn) 2mypn/qn| @ melog|z_z(pn/qn) 27Tijn/qn|
s=1 j=0 s=1 7=

(5.54)

<.

- Z /Tlog|z—7‘se2me|d9
s=1

Proof. Fix an arbitrary s € {1,2}. Let z = r,e?™%= where r, > 0 and 6, € T. We partition T as
follows:

qn—[qn/2]-1
T= U 92—L+£,92+L+£)::Qk.
= [an/2] 200 Gn 200 Gn

For each k € [-[qn/2], qn — [qn/2] — 1], there exists a unique jj such that 65 + jipn/qn € Q. Clearly
Jo is such that

qn—1
log |2 Z(pn/Qn) 2myopn/qn| _ mln log |Z _ Z(pn/‘]n) 27”]pn/‘]n|
J=

To control the non-minimum terms, for each k € [-[¢,/2], ¢n — [¢n/2] = 1]~ {0} and 6 € Qk, we have
that

16— (0s + jipn/qn)| < 1/qn, and min(|0, — (0s + jkpn/an)l,10- = 0]) > (2|k| = 1)/qy.
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This implies

q;I log |z — ngn/Qn)e27rijkpn/Qn| _ [Q log |2 — Tse2m‘€| a0
k

= log |1 +
J

748(e2m‘€ _ 627ri(93+jkpn/qn))

T8(627ri9 _ e27ri(93+jkpn/qn

))‘dH

o — 7‘5627”0

<q," sup
QEQk

- 170 = (05 + jkpn/an)| _ <l
=i 209, — 0] <’ 4k

Summing up in k£ and s, we conclude that for ¢, large enough that (5.54) holds as claimed. O

o — e27ri€

By Jensen’s formula we have that, recall that riro =1 and ro < rq,

9 0 if |z| < 7o
(5.55) > /Tlog|z — ™1 df = {log(r1|2]) if rg < |2 <1
s=1 2log|z|, if |z| >m

Combining (5.53), (5.54), (5.55) with the fact that 1 <7 <e™ (due to Lemma 5.4) yields:

Corollary 5.7. For any z € Agp(275), for n large enough,

< 106,

2 gn-1
Pn/Qn(z) (Z min log |z - Z(pn/Qn) 27rZ]pn/Qn|) - L(w,E)
dn

q
b sl_

and for any z € Agxp(ars) N (U§=1 nga Bexp(,gqn)(ngn/qn)e%rijpn/qn)))7
o (2) > L(w, E) - 124,

Note that by Lemma 5.4, Z, (pn/qn, ) € Acxp(xs), hence

T (pnfan) 20
L:J U B4oxp( éqn)(z Prfn) g2miipn Qn)) c Aexp(27r5)

5.2. Zeros of fr p. Next, we study the zeros of f p for the irrational frequency w. In the
following, we write L(w, F) as L for simplicity. We will show:

Lemma 5.8. There exists z; ;. € Aopans), J € {0,-sqn — 1} and s = 1,2 such that the set
Zq.,(w, E) of zeros of fon 5 i1 Acxp(2rs) 18 given by

(556) an(w E) - U U {an,] s}

s=1 j=0

Furthermore, the zeros are structured (almost 1/q,-periodic), in the sense that for any j.k €
{0,....,qn, — 1}, the following holds

(557) Zw . :Zw L ezﬂi(jfk)pn/fhz _,’_0(6*5[171).

qn,J,S qn;R,s

If we denote 2, . =1 ™55 for s=1,2 and j € {0,1,...,qn — 1}, then

K)o )
(5.58) =+ 0(e7) and 02, = 07, + G=Fpn O(e0m),

J:8
n

for 3,k e{0,...,q, — 1} and s =1,2.
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Proof. We distinguish into two different cases:
Case 1. If zfp"/q") € Bgexp(_(gqn)(zép"/q")ezmjop”/q”) for some jy €{0,1,....,q, — 1}. Let

Ba,.0 = Biexp(-5gn) (Zép”/q”)ezmjop”/%)’

and By, ;= quoez”ijp”/ It is clear from Corollary 5.7 that

qn—1

(5.59) F2 i (2)] 2 B9 for any 2 € Aqg(ans) ™ ( U Ba).

By (2.20), Lemma 2.4 and the standard telescoping argument, for g,+1 > 3099 we have uniformly
in Aexp(27r5) that

(5.60) 172 m(2) = fPm (2)] € 2| M, p(2) = MPn (2) ]| <eE B0 0in g,
Se(L+27r6+6)qn anwH

Se(L—205)qn 7

where we used |guw| < g1, < €730 (see (2.9)). Combining this with (5.59) yields the following
for z ¢ ngal Bqn,j c Aexp(27r6):

£ p(2) = £ ()] < pr”/"”( -

Rouche’s theorem, applied to each ball By, ;, implies the two analytic functions f , and fp nlan
have the same number of zeros in each ball By, ;. Thus f p has exactly two zeros, denoted
by an,j17 o 2o In each B, j, 7 = 0,...,g, — 1. Furthermore, fq B has no zero in Acp(2rs)

(an Qn \J )

Case 2. If z(p"/q”) ¢ Uq” B2oxp(,5qn)(zép”/q”)ez’”jp”/q”). For each s = 1,2, and j € {0,1,...,¢q, -1},
let

Bgnd BeXp( 6qn)(z(pn/Qn) 27r7,]pn/qn)

It is clear that in this case Bj Bgn j, = @ for any s # s" and any j1,j2 € {0,1,...,¢, - 1}. By

Corollary 5.7 we obtain that

2 gn-1
|f5:/qn(z)| 2 e(L 126)(1” for any z € Aexp(27r6) N (U U qn,]

Similar to the Case 1 above, for ¢y.1 > €39 we have

£ m(2) = forhin (2)] < |fp"/q"< ),

for any z € Agxp(ars) N (US 1Uq" ! B, ) Thus f;’ p has exactly one zero, denoted by z7 ., in
each By . j=0,..,qn -1, s=12, and it has no zero in Agxp(275) N (U2, an—l B; i)
The zeros in both two cases clearly satisfy (5.57) and thus (5.58). O

The zeros of the strong Liouville scale, similar to its rational approximation, are structured
(almost 1/g,-periodic) as in (5.57). Therefore, similar to Corollary 5.7, we obtain:

Lemma 5.9. Let
(5.61) d = 01/30.
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For n large enough and gp.1 > €®9". For any z € Aexp(2r5)

< 106,

o L (&t o
Vinop(2) = | Zminlogle =gl | = L(w, B)

n \s=1 7=

in which 2, (w, E) = U2 Uq”0 {25, ;s is the set of zeros of [ & in Acxp(ans)- Furthermore, for
any z € Acxp(2rs) N (U§=1 Uj:O Bexp(-5g.) (g, . s))’
Vg, (%) > L(w, EY) = 120.
Proof. We discuss the proof briefly. Defining I'y, | 5 similar to (5.52) as
fap() = Y Talzw).
dn wez,, (w,E)

Then due to the almost periodicity of Z,, (w, E') provided by Lemma 5.8, similar to Lemma 5.5,
the following estimates hold uniformly in z € Ag,

10&-?;(|Z|R)

RQn,E( ) 5

Next, we show an analogue of (5.43) holds as follows:

(5.62) P, p(2) = L(w, E,g0) + o(1), uniformly in z € Ag.
By (5.43), for z € 0.AR the following holds:

(5.63) ol ()] = e (PlesBeonot),

By the telescoping argument as in (5.60), we have for z € 0.Ag that

(5.64) |38 (2) = fo p(2)| < 2 ML (2) = My, p(2)] <eHoPe0) g )
<e(L(w:B20)=290)an.

for g1 > €219 = 309 Then (5.62) follows from combining (5.63) with (5.64). Finally, it remains
to note that an analogue of Lemma 5.6, which controls the sum of the logarithmic potentials via
their minimum terms, is true for w, again due to the almost periodicity of the zeros provided by
Lemma 5.8. ]

5.3. The consequence of even potentials and non-resonance of . Our goal in this subsec-
tion is to prove Lemma 5.11 below. As a preparation, we first show e2™(0-[a2/2]0) ig ¢=0an cloge to
one of the zeros in Z,, (w, E).

Lemma 5.10. For n large enough, and gn.1 > €9, the following holds:

€2m(0 [qn/2]w e U U Bexp( 6qn)( qn,Js S)

s=1 7=0
Proof. Proof by contradiction. Assume otherwise, then by Lemma 5.9,
|f;) E(e27ri(€7[qn/2])w)| > e(L7125)qn‘
By (2.18) and (2.20), we have
Py (0 = [gn/2]w) = Pii_y (0 = [gn/2]w +w)| > P12 — 9,
Assume without loss of generality that

(5.65) P2 (0 = [gn/2]w)| > eE140)n,
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Applying the Green’s function expansion (2.22) to ¢g on the interval [—[gn/2], -[¢n/2] + gn — 1], we
obtain

| UJ

lan/2) 001,00 + ) P 0~ /2] |
P O~ lg 2] 2 TR gy Ol

|o] <

Combining the lower bound of the denominator in (5.65) with the standard upper bound of the
numerator in (2.18) and Lemma 2.4, we have

|do| < e” (L-300) % max(|<;5 [-an/2] +qn| |¢ [an/2] 1|)

Finally using that ¢ is a generalized solution satisfying (2.23), we conclude that

|¢0| < e—(L—356)q7”.

The same argument implies the same bound for |¢_1|, which leads to a contradiction to (2.23). O

Lemma 5.10 implies that for some jj € {0, .. -1} and sg € {1,2},
—0qn w — ~6qn
(5.66) T s = 1+ 0(e™ "), and H@ [gn/2]w =03 oI = O(e™*").

Without loss of generality, we assume sy = 1. We will show:

Lemma 5.11. For n large enough, and ¢n.1 > €%, the following holds:

qn—1
an(w E) = U {an,mb 727”(% 1)w/ QnJ71}

Furthermore, z*° .. is “far away” from e’27r2(q”’1)“ 29 o, for any 5,k €{0,...,q, — 1} in the sense
Gn,Jj,1 Gn,k,1
that:

(5.67) 1051 = (=051 = (g0 = Dw) | = 700/,
Proof. We have for any k,j €{0,...,q, — 1}, by (5.58),
1051 = (=051 = (@n = Dw)| =[6F 1 + 071 + (g = 1w

(k +j - 2j0)pn

-0 n
=[265, 1 + + (g~ Dw| +O(e™™)

n

(5.68) =[26% 1 + (k +j = 2jo - 1)w| + O(e” %an )

where we used [g,w| < €719 « 7% (see (2.9)), and |k + j — 2jo| < 2¢,, which implies

k+7-2j
‘(kz +7-270) (]ﬁ —w)‘ = MH%WH < 2e 0 o0
dn q

n

Combining (5.66) with (5.68) yields
(5.69) 1621 = (=051 = (g0 = Dw)| =120 + (k + j = 2jo = 1 - 2[gn/2])w| + O(e™*").
It is easy to see that |k +j — 2jo — 1 — 2[gn/2]| < 3¢n, hence by (5.41) with ¢’ = /100, we have
(5.70) 20 + (k +j — 2jo — 1 — 2[gn/2])w| > cge Ok+I=20071=20an/20I/100 5 5=804n/100 & =0dn
Thus (5.69) together with (5.70) implies

102, - (-6~ (gu - D) 2 000/,
in particular

(5.71) (q’ful{e;jl}) . (UO {602, - (gu - 1)w}) -2
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Recall that we assume the potential is an even function. This implies that, see (4.36),

(M (0 - 22 L)) =P (0~ i Loy P2 0~ i Lo sw)

—P¥ (-0 -

w)—P;jL_Q(—H— =" v w)

-1
=tr(M, =

q7l7
By (2.19), this further implies
f;i,E(e%iw_(q”_l)w/z)) - f;i,E(e%i(_e_(q”_l)“/m)

This means the two analytic function below coincide on the unit circle z € C1, hence are identical:

fop(2) = fo gm0 ),
Then if z is a zero of f) p(2), e~ 2man=1)w /> is also a zero. Note that (5.71) implies Uq”O {2 i1}

and Uq" He2milan-1)w [ zg, i1} are distinct (and in total 2¢;) zeros. Therefore Lemma 5.11 follows
from (5 56) in Lemma 5.9. 0

5.4. Eigenfunctions in the weakly resonant regime. The main difficulty in proving Anderson
localization lies in the strongly resonant regime, which are the locations of the local peaks of the
eigenfunctions. To address the strong regimes in a sharp way, one needs to first control the weakly
resonant regimes in terms of its adjacent peaks. The following lemma shows, roughly speaking,
the eigenfunction in a weakly resonant regime can be dominated by its values in its two adjacent
strongly resonant regimes.

Theorem 5.12. For any { € Z, and large enough y € [{qn, (£ + 1)gn] ~ (Reg, U R(p41)q, ) Satisfying
ly| < 10270, the following holds:

n+l 7

s1/A
e—(L—2OOOC'U )-dist(yo,Req,, ) . Tlgns

|py| < max
yl (T 1/4
{e (L=2000C,87"*)-dist (50, R(g+1yqp ) . T(e41)qn-

Proof. The proof is similar to, but more difficult than, that of the weak Liouville case in Sec. 4.
For y € [4gn, (0 + 1)qy], let my := dist(y, ¢nZ)/2. Let

9 3 9 1
(5.72) i ::l llo yl l5myll’ and I ::l llo yl - llomyll
By Corollary 4.10, we have that:

Lemma 5.13. The large deviation set BY 14 satisfies:
my,11000,6,* . B
g N'
Bmy,noocv(s}/“,E - jL:Jl(UmW U(_Umq;,j = (my - 1w)),

for some N’ < (1 +n)m, with n as in (3.25). Furthermore each Un,.; satisfies mes(Uy,, ;) <
10001,

Proof. Note that if ¢, < €1 then y e [(£+ 1051/4)qn, (L+1- 1051/ )an], and g, /4 > my > 551/4

If g > €991 then y € [£gn + 1051/4 1o (0 +1)gy, — 105,/ q1-0], and g,/4 > my > 56,/ g0, We
have verified the conditions in Corollary 4.10, therefore Corollary 4.10 directly implies the claimed
result. g

Then one can show:
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Lemma 5.14. For any k € I, we have

0+ kwe B’ .
my,1100C, 61" E

Furthermore there exists kg € Ig such that

(5.73) 0+ kdw ¢ B

my,1100C, 814 B

Proof. The first claim regarding I} is very similar to that of Lemma 5.10, which we shall leave for
the readers.
To prove (5.73), it suffices to prove the following repulsion property:

Lemma 5.15. If for some ke IY UIY,
0 +kw € (Un, ;| J(=Un,.j - (my — 1)w)
for some j €{0,...,q, —1}. Then the following holds for any k" € IY U I3 ~ {k}:
0+ k"w ¢ (Umy,j U(_Umy,j - (my - 1)w)).

Proof. Without loss of generality, we assume 6+ kw € U, ; (the other case is completely analogous).
Case 1. If k, k' belong to Ij or Ij simultaneously, then 0 < |k —k'| < 4m,/5 < ¢,/5, where we used
my < gn/4. Hence by (2.7) and (2.9), we have

1 _
6+ Kw= (0 + k)| > |gnrw] > 5> 100017 > mes(Un, ;).

since m,, > 551/4(],1[00. This implies 0 + k'w ¢ Uy, ;.

To show 0 + k'w ¢ (~Up,.j — (my — 1)w), we further distinguish two cases.
Case 1.1. If k. k' € If, it is easy to check that
4 1
K+k+my-1c¢ [—gmy, —gmy].
Then by (2.6) with ¢’ = 61, when y is large (hence n is large and m,, is large),
16+ K'w - (-0 - kw — (my, — 1)w)|
=20 + (k" + k +my - Dw| > e O Rty =1 5 =40y [5 oy o=10001my mes(~Up, . j — (my — 1w).

This implies

(5.74) 0+Fkw¢-Upn,j—(my—1ws—(0+kw) - (my-1)w.
Case 1.2. If k, k" € Ij. Since y| < 10q:;61°, 1) < 20q:;61°, we obtain by (2.9) that,
4 /,1
(5.75) max((26], 26+ 2]) [ gneo]| « 2REUDD  ggp-en ¢ goe-teon
n+1

where we used ¢n.1 > €19 in the last inequality.
We further distinguish two cases depending on if y < (£ + 1/2)qy.
Case 1.2.1. If q,, <y < (£ +1/2)gqy,. In this case y - {q,, = 2m,,. This implies

4 4
k+k +my-1-20g,€[2y- 3my - 20g, — 1,2y + gmy - 20qy, — 1] c [3my, 5my].
Hence by (2.6) with ¢’ = §1¢0/10 < §1/10, we obtain for y large enough that

(5.76) 126 + (k + kK +my, -1 - 20g,)w| 2 e ™ » ¢ an/1 55 807019000 > |24 g,
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in which we used (5.75) in the last inequality. By triangle inequality, (5.76) implies
16+ k'w = (=0 — kw — (my — 1)w)|
>)6 + k'w — (-0 - kw - (my, - 1)w) - 2lguw]| - [2¢]| gnw]|
=[26 + (K" + & +my = 1= 20)gn )| = [2€] | gno]
(5.77) 26_56,my/2 > ¢ 10001my 5 mes(~Up,,.; — (my — 1w).

This verifies (5.74) for Case 1.2.1.
Case 1.2.2. If ({+1/2)gn <y < (£ +1)gy. In this case (¢ +1)g, —y = 2m,,. The estimates below
are similar to those in Case 1.2.1. First, we have

bk g =1 =200+ 1) € [2 = 21y =20+ 1 = 1,29 + 2y =2+ D 1] € [-5my, -3, ]
This implies similar to (5.76) that
120 + (k + K +my —1=2(0+1)gy)w| 2 e ™ > 750/ 55120+ 1)|| gnw].
This, by triangle inequality, implies, similar to (5.77), that
|0+ E'w = (=0 = kw = (my = 1)w)| > mes(~Up,, ; — (my - 1)w).

Thus we have verified (5.74) in Case 1.2.2.

Case 2. If k € I and k" € IJ (the other case when k € IJ and k' € I} is analogous), we distinguish
two cases below:

Case 2.1. If y < gy, + ¢, /2. In this case y - £g, = 2m,, hence

3 4
k' - lg, — ke [y ~lgqn — Emyyy —Llaqp + 3my] c [my73my] c [mya3Qn/4]'

Therefore, by (2.7),
1
16+ ke = (0 + K'w) + Lgne] = | (k = (K = ban))w] 2 [an-1] 2 5 — > 40¢™1 0",
n

Combining this with (5.75) yields

16+ Fw = (0 +Ew)| 26+ kw = (0 +Fw) +lgnw] = [€gnw] > 4i >>¢ 10001y
q

n

(5.78) >mes(Up, 5),

where we used my,, > 551/4(171[00. Clearly, (5.78) implies 6 + k'w ¢ U, ;.

We also have, by y - {g,, = 2m,, that
k+k +my-1-4Lq,¢€ly- %my -1-Llgn,y+ %my—l—fqn] c [my, 3my].
By (2.6) with §" = d1¢9/10 < 61/10, we have for y large enough that
120 + (k + K +my -1 —lg,)w| 2 e ™ » e739a0/1 55 40701000 > 7] gw],
where we used (5.75) in the last inequality. Combining this with the triangle inequality yields
16+ k'w = (=0 — kw — (my, - 1)w)|
=[260 + (k + k" + my — 1)w|
2[20 + (k + k' +my = 1= Lgn)| = [l gne]
Ze_?’ymy/2 > 7 10001my 5 mes(~Up,, j — (my - 1)w).

This implies 0 + k'w ¢ (=Up,, j — (my = 1)w).
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Case 2.2. If y > lg, + q,/2. This case is very similar to Case 2.1. Note that in this case,
(£ +1)g, -y = 2m,, thus

3 4
E-(U+1)g-kely-(0+1)g, - 0y~ (0+1)g, + gmy] c [-3my, -my] c [-3gn /4, —-my].

This implies, by (2.7) that

1
16 + kw — (0 + K'w) + (£ + 1) guw]| > ||gn-1w] > 0

n

Then similar to (5.78) above, we conclude that

1
16+ kw — (6 + K'w)| > > e 100y > mes(Up, ).
n

This shows 6 + k'w ¢ Up,,, ;-
We also have

4
k+k +my-1-(+1)g,€[y- 3my— 1-(+1)qn,y+ 1—30my— 1 -4qy] c [-3my,—my].
By (2.6) with §’" = 01¢9/10 < 61/10, the following holds:
120 + (k+ K +my — (£+1)g,)w]| 2 €3 ™ > 730/t 55 4001900 > |0 41| g,
where we used (5.75) in this last inequality. This, together with the triangle inequality, yields
16+ k'w = (=0 — kw — (my, - 1)w)|
=26 + (k + k" + my — 1)w|
>3 |9 5 710001y mes(—Up,.j — (my — 1)w).

This implies 0+ k'w ¢ (~Up,,j — (my —1)w). Therefore we have proved the claimed result of Lemma
5.15. 0

Finally, note that
11 ~
card(I{) + card(1Y) > ik 2> (L+n)my >N,

where N’ is as in Lemma 5.13. Lemma 5.14 then follows from the pigeonhole principle. U

Returning to the proof of Theorem 5.12, by Lemma 5.14, we conclude similar to (4.39) that there
exists my, € {my, m, - 1,m, -2} and a € {0,1} such that

|Pr(;)%(0 " (ké/ " (I)W)| > %emy(Lmyfl(]OOCv&i/Al)'

Denoting Iy = [k} + a, kY + a +mj - 1] and 9T, = {k§ + a - 1,k + a + m;}. Expanding ¢, using
Green’s function expansion on the interval I'y, and denoting y = 3o, we have similar to (4.40) that:

. 1/4
|¢yo|§ max e—dlst(yo,yl)-(L—2OOOCU61 )|¢y1|

Y1 Earyo

Clearly one expand on ¢y, as long as y1 ¢ Ry, U R(s41)q,- Iterating such expansion yields

. ) ) 1/4
(5.79) byl € sup e e A1) (12000006, g,
(y1,92,--,yt)€S

I

where S is collection of admissible chains such that either
Yt € Ryg,, or

Yt € R(Z+1)qn7 or
t =19, and y; ¢ Reg, U R(441)g,, for any 1< j <o,
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where the stopping time

(1061 + 1, if g < €M1 or
0063 /6,11 41, if gy > b,
Note that if we do artificially terminate the process at t = ¢y, then for each 0 < j < ¢y, we have
by, ¢ Reg, U R(p11)q, and hence

105i/4%, if g, < €191

dist(y;, gnZ) >
(y] qn ) {106i/4q}1007 lf Gn > 651Qn—1_

Therefore, due to our choice of the I3’ interval as in (5.72),

51/4%/2, if g, < €191

(5i/4q,1[00/2, if g, > edran-1,

. 1 1 ..
dist(y;,yj+1) 2 To™w = %dlSt(yj,QnZ) > {

Then
5i/4qn/2, if ¢, < ed1an-1

t
- 51/4%1[00/2, if g, > ed1dn-1

0
Z dist(yj_l, yj) >tg -
7=1

>4qy,.
This implies such chain of expansion (y1,¥y2, ..., ys,) € S contributes at most

—4(L-2000C,6* —4(L-2000C6*Yq,
e 4 o) )q"|¢yt0| <X v6," )an D0041.gs

in which
ber+1,g, = sup | P
kE[an,(Z+1)qn]\(qun UR(Z+1)qn)

If a chain (y1,y2,...,y¢) € S is such that y; € Ry, , then along this chain, by triangle inequality,

t
Z dist(yj,l, yj) > dist(yo, qun).
j=1

The contribution along this chain is at most

Cr 1/4N 3
e (L-2000C 6, )-dist(yo,Reg,, ) g

where we dominate |¢py,| by 1y, since y; € Ry, .
If a chain (y1,y2,...,4) € S is such that y; € Rs1)q,, then similar to the case above, the
contribution along this chain is at most

—(L-2000C,6*)-dist (yo, R
e ( w677 )-dist (Yo, Rr+1)qy ) (041 )gn -

Combining the three cases above with (5.79), we conclude that for any y € [lgn, (¢ + 1)g,] ~
(Reg, UR(11)g,)

ef(L72OOOCu5i/4)-dist(yo,qun) e
1/4 .
(5.80) |y| < max ¢~ (L2000, 8,")-dist (50, Re41)q,)

o~ 4(L-2000C, 5, ") qn

"T(e+1)gn
“br 41,y -

In particular, we can take y such that |¢,| = by ¢+1,4,, then the inequality above yields

~(L-2000C,8,/*)-dist(yo, Regn ) .
(5.81) bee41,g, < Max ) L-2000C,6*)-dist (yo, R N
e*( - v0q ) 1S (y07 (€+1)qn) 'T(Z+1)qn’
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Combining (5.80) with (5.81) yields
e—(L—ZOOOCU 6%/4)-dist(yo,Reqn) Teg

|y | < max
ul —(L-2000C,6*)-dist (yo, R
{6 ( v0,"")-dist(yo, (l+1)qn) 'T(Z+1)qnv

as claimed. 0

5.5. Eigenfunction in the strongly resonant regimes. We are now ready to study the eigen-
function in a strongly resonant regime Iy,,. The goal of this subsection is to prove the following:

Theorem 5.16. For n large enough, if Gni1 > 65151717 then the following holds for any 1 < |k| <
rkqn S 6_(1_0(1))(L—5n)\k|qn’
where o(1) € (0,1/50).

In fact, o(1) ~ (5L + 1OOOCU)(51/4. Hence by choosing smaller 47, one can make o(1) arbitrarily
small.

Proof. Recall § =01/30 as in (5.61). We need the following lemma:
Lemma 5.17. If for some |j| < qn,
(5.82) v (¥ 099 ¢ L(w, E) - B, - 126,

qn,
1-co
then for any k € Z~ {0}, |k| < q,.]", we have

v (2O kan=0)y > [(w, E) + gkl 5 195

Proof. By Lemma 5.11, (5.82) implies that

qn—1 . . qn—1 . . .
: -1 2mi(0—jw w . -1 2mi(0—jw =27i(gn—-1)w J w
(I}gggqn log |79 — 2 | +1ming, log e (O] 2milan =) /an,ml) < =By - 20.

Due to non-resonance of ¢, only one of these two minimums can be less than —§/25, see (5.67),
which forces this minimum to be less than —3,, — . Assume without loss of generality that for some

loe{0,1,....qn — 1},

|e27rz(€fjw) W

—(Bn+d)q
anbo1l S € (Fnro)an,

which implies
(5.83) 16 - jw - 07 1| < e Brrdan,

We first show 0 - jw + kq,w is away from Uzzgl{—e‘jl - (gn — 1w}.
By (5.58), we have for any ¢ € {0,...,q, — 1},

160 = jw = (=071 = (gn = D) | =0+ 071 + (g0 =5 - )|

w € - € Pn . _
gy - LR s 0|
(5.84) =0 +65 , + (L—ly—j - 1)w+O(e )],
where we used by (2.9) that
10— to| - |22 - | < €= fol lgnw] < 2] gnw|| < 267019 « 7%,
dn n
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Combining (5.83) with (5.84) yields

(5.85) 16— jw = (=671 = (g0 = Dw)| = 20 + (£ = Lo = 2 = 1w + O(e™*™) .
Since |0 — by — 2§ — 1| < 3qy, by (5.41) with §" = §1¢¢/100 < 61/100 = 36/10, we obtain
(5.86) 120+ (£ g - 25 — Vw| > cg e 17021 5 ¢4, 73 an 55 =00n

for n large enough. Therefore (5.85) and (5.86) imply

. 1 _ast
(5.87) [0 - e = (=01 = (qn = Dw) | 2 ey ™.
Since [k| < ¢}7%°, we have by (2.9) that
k /
(5.89) hguo] < Mllgneo] € TP < 768 < e-dreotn o cpem35an
n+1

for n large enough. Combining (5.87) with (5.88) yields

1 /
16+ (kan = 7)w = (=051 = (gn = D) | 2 e R
This implies
qn—1 . . .
(589) I?:lél qgl lOg |e27r2(9+(an*J)w) _ e*27rl(£1n*1)w/zc;n’£71|

qn—1
Zr?:ionq;l log H@ + (an _j)w - (—921 - (Qn — 1)w)” > 4.

Next, we show 0 — jw + kq,w is away from U‘g;gl{e‘;l}.
f¢fo
By (5.83) and (5.58), we conclude that for any ¢ € {0,1,....,q, — 1} ~ {{p},

1
0-jw-07]>—.
[ Jw é,lH 2

n

Combining this with (5.88) yields

. 1
5.90 0 - jw + kgpw — 07| > — — e 010 > .
(5:90) | w0l 2 5 -
Next, it suffices to study |6 + (kg — j)w — 0%, - By (2.9), for 1< |k| < q;clo7

1 _ _
[kgnw] = [Kllanw] 2 lanw] 2 e Ot > 7 (Pnt)an,
Therefore by triangle inequality and (5.83), we have
10+ (kan = j)w = 07, 1

1
(5.91) z§|k|e-ﬁn%,

_(Bn+6)Qn

2 [klllgnw] = [0 = jw = 07, 1|l 2| gnw] - €

and by further combining with (5.88),

1
(5.92) |0+ (kgn = )w =07 1 < Iklllgnw] + |0 - jow = 07 1 || < e70100n 4 7 (Fnt0n o« —,
’ bl qn

Combining (5.90), (5.91) with (5.92), we conclude that
gn—1
fin g, 1og [0+ (han — 1) 07,1 =a;"1og [0+ (han — 1) 63,

log | k|
an

>

_Bn_(s-



SHARP LOCALIZATION ON THE FIRST SUPERCRITICAL STRATUM FOR LIOUVILLE FREQUENCIES 33

This implies

qn—1
(5.93) Hzliélqgl log 270+ (kan=7)w) _ e | >m1nqn1 log 6 + (kqn — j)w = 67,
lo k
log k| 5.
qn
Finally, combining (5.89) with (5.93) yields
(%ﬁuﬁq 1log|e2m(6+(kqn —jw) _ qn,le +(I]n;nq 1log|e2ﬂi(9+(kqn—j)w) e 2mi(an— 1)w/ E |)
1 k
log |k 5, -2
dn
This combined with Lemma 5.9 implies the claimed result. ]

Next, we prove

Lemma 5.18. For n large enough,

v (2 0-lan/20)y ¢ [(w, E) - B, - 120.

an,
Proof. We write L(w, E) as L for simplicity. Suppose by contradiction that
vf;mE(eQM(e_[q"mw)) >L -3, -120.
By (2.20), this implies
1P 50 = [an/2]w) = Py 1 p(0 +w = [gn/2]w)| 2 P70 12000 g,
Hence for some a,b € {0,1},

(0+ (b= [gu/2]))] 2 L7101

Then by Green’s function expansion (2.22) of ¢y on the interval [b—[¢n/2],b - [qn/2] + ¢n —a - 1],
we obtain, similar to (4.40), that

(L_p _
(5'94) |¢0| <e (3-Fn~150)an 'max(l(bb*[qn/?]*ll?|¢b7[qn/2]+qn7a|)'

Note that both b - [g,/2] -1 =-¢,/2+ O(1) and b - [¢,,/2] + gn — a = ¢, /2 + O(1) are in the weakly
resonant regime. Hence one can control ¢ at those values via Theorem 5.12:

|q”a

o /4y 1 _1051/4) an
(L-2000Cy6,"")(1-105,"" ) & -max(r_gq,,70, g, )-

(5.95)  max(|py_[q, /211l [Po-[g, /2] +qn-al) <€
Combining (5.94) with (5.95) yields

_ _ 1/4 _ _ _ 1/4 _ 1/4
lbo| < e (L(1-56,"*)~Bn~156-1000C &, * (1-106,"*) ) gn -max(r_qn,ro,rqn).

Finally bounding max(r_y,,70,74,) < Cqn by (2.23) yields
(5.96) |o| < e—(L(l—S&i/‘*)—Bn—166—10000v5}/4(1—1061/4))qn‘
Clearly, due to our choice of d1, see (3.24), the exponential exponent
~(L(1-561"") = B, = 165 - 1000C,61/* (1 - 1061/*)) = (1 - 0(1))(L - B,) < 0,

with some small constant o(1) € (0,1/50). Hence (5.96) can be rewritten as:
o] < e~ (1=0(1))(L=Bn)gn

Since the same argument applies to ¢_1, we arrive at a contradiction with max(|¢ol,|¢-1]) =1 as in
(2.23). O
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Combining Lemmas 5.17 and 5.18 yields for any k # 0 and |k| < 10¢}7%°/g,, that
log ||

n

U;L’E(e%i(kqn—[qn/?])w) > L(w,E) +

~ By — 126.

Following the same argument as in the proof of Lemma 5.18 above, expanding |¢rq,+m| = Tkq,., for
some kg, +m € Ry, , we have

_1 - 1_ 1 L_ n n
Tk, < |k e (1=o(I)(L=hn)g 'max(r(k—l)qn’rkqnvr(kﬂ)qn)'
Since the exponential exponent is negative, we conclude that

qun < |k|—le—(l—0(l))(L—Bn)qu . max(r(k_l)qn’r(k_'_l)qn)'

For any 1 < |ko| < 5q1111c1° /qn, one can iterate such expansion until one reaches k = 0 or |k| = ky =
[10g}75°/gn]. If one reaches k = 0, then the contribution is controlled by

Phog, € € 7O EBulkolan o ¢ o=(1=0(D)(L=5n)lkolan

where we dominate rg by Cg, using (2.23). If one reaches kj, then the contribution is controlled
by
Thogn < e~ (1=0(1))(L~Bn) ko—k1lgn - Cky,
where we used (2.23) to control max(ry,q,,"-k1q,) < Ckign. Since |ko — k1| > max(|ko|, k1/2), we
conclude that
Thogn < e~ (1=0(1))(L=Bn)lkolgn
This is the claimed result. u

Finally, combining our analysis in the weakly resonant and strongly resonant regimes, we obtain
the following:

Theorem 5.19. For n large enough. If gn.1 > €219, then for any y satisfying

4n/10 < |y| < 5¢-%, if g < eD19n-1
@ /10 < Jy| < 5gL7C0, if g, > ed1an-1

n+l >
we have
|¢y| < e_(l_o(l))(L_B'rL)'y"

where o(1) € (0,1/50).

6. LARGE DEVIATION ESTIMATES

6.1. Review of some basic estimates. Let vy, g(0) = ﬁ 10g(gm. 5 (e*™?)), where g,, g is as in
(1.5). In the rest of the section, we shall omit the dependence in E since it is fixed. It is easy to
see the following holds for some constant C, 1 = C(||v|r.,) > 0:

1 |M35,,(0) lus
U (0) — v, (0 +w)| =— |lo a
(0] =m0 2m‘ S ThE5, (0 + )ns
Oy 1 g 50)]
2m  2m [ M (6 +w)

C 1 w w

m  2m

Cv,l
<

m

(6.97)

)
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where C > 0 in the second line is an absolute constant arising from the equivalence of the Hilbert-
Schmidt norm and the operator norm.
We recall some basic estimates for the Fejér kernel:
R =il omikje
Fr(k) = Z 2 e .
lil<R
The following estimates can be found in [HZ], with their proofs in [HZ, Appendix E]. Below, p/q is
an arbitrary continued fractional approximant of w, as in 2.2.

2

6.98 0 < Fr(k) < min(1, ————

1 q
(6.99) — <27,

1<lbj<q/a L+ R?|kw]? R

and

1 q
6.100 — <2427+,
(6.100) 1+ Rz TR

Lq/4<k<({+1)q/4

For a proof of a variant of (6.100), see Sec. (6.139).

We will always use (6.98) to bound the Fejer kernel without explicitly referring to it throughout
the rest of this section.

We also have two basic estimates for the Fourier coefficients:

Cv,2
|k|

for some constant C, o = C(HUHTEO,E()) > 0. Here we used that v, g(0) >0 for § € T and

[9m (€27 < M35 (6) s

(6.101) (o (k)] < =22 & 0,

for § € T,,, which implies
1 w
vm(0) < —log | My (0) [ns < Clvllz.,,

for some absolute constant C' > 0 and uniformly in 6 € T, .
The next lemma was first proved in [HZ], and is useful in particular for small values of k.

Lemma 6.1. [HZ, Lemma 2.4]

Cv,3

(6.102) [om (K)| < :
mkw]

k+0,

for some constant C, 3 > 0.

Proof. The proof is short. By (6.97),

(k) = 25 () < fem () = e+ )y € 22,
this clearly implies (6.101) taking into account that
|1 — ™| = 9| sin(rkw)| > 4] kw].
This proves Lemma 6.1. U
We let
(6.103) Cy :=max(Cy 1,Cy2,Cy3,1),

where C, 1,Cy2,Cy 3 are as in (6.97), (6.101) and (6.102) respectively.
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6.2. Proof of Lemma 4.3. The first large deviation theorem we prove is the following, which

implies Lemma 4.3 by choosing 4 = 105%/2.

Lemma 6.2. For any constant 6 € (0,1), for large enough m > mg(8) satisfying 10q, <m < ¢,+1/5,
the following holds:

mes ({9 €T :|Um,e(0) - Lin(w, E)| > C, (1455 + %)}) <eom,
dn
Proof. We consider R =[dm], and

,U7(nR)(9) - Z R_|j|
e B

U (0 + jw).

First note that the zeroth Fourier coefficient is almost L,,:

X 1 w ~ O(1)
(6.104) vm(O)—m/Tlog |25 s 46 = L + =,

where O(1) is bounded by an absolute constant, due to the equivalence between the Hilbert-Schmidt
norm and the operator norm of 2 x 2 matrices. Next, we consider

vm(8) = 5 (0) =vm (8) = v (6) = U1(6)
+ 05D () = 6 (0)
Fourier expanding the second line above yields, note the zeroth coefficient cancels:
o$(0) - 0,(0) = B (k) Fr (k)€™ = Uy (0
m R
1<|k|<6-2
2 Own(k)Fr(k)e™ = Us(6)
572<|k|<gn/4
+ 3 Oy (k) Fr(k)e*™*0 .= U4(0)
Qn/4§‘k|<q'n+1/4
+ D O (k) Fr(k)e*™* = U5 (9)
qn+1/4§|k\<e4527”
b o) Fr(k)e™ = U (0).

|k‘26462m

By (6.97), we obtain
_ (R) R
(6105) HUl HL""(’]I‘) = H?}m — Uy, HL‘”(’]I‘) < CUE < Cy0.

Regarding Us, we have by (6.102) that

Cy 20,672
<

6.106 Uz Lo (1) < = ' Trf <%
(6.106) [Walemy s D, opp<— - max, o

1<|k|<6-2

provided m is large enough. We have by (6.99) and (6.101) that

1 n
(6.107) |U3|| o= (1) < Cp0? — <0, <O,
= 1s\k|2<21n/4 1+ R2||kw|% R
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where we used R = [dm] > 90¢,,. Regarding Uy, we conclude by (6.101) and (6.100) that

Qn+1/4n 1 1

|Us]l L (1) <4Cy —
™ e; hellan/A.(Cr1)an/a) Lan 1+ B2 | kw|?

Gn+1/qn
<4C, (2 2 —)
Z Eqn " R

/=1
<40, (2 10g Gn+1 + 27 log qn+1 )
dn 95(]n
12C,1
(6.108) J12Cu 108 dnn.
dqn

in which we used again R > 9dg,,. We also obtain by (6.100) and (6.101) that
43462m/f1n+1 1 1

|Us|| poo(y <4Cy > —
@ =1 Ugn+1 ke[qns1/4,(0+1)qns1 ) /4 1+ R?|kwl?

464627”/Qn+1 1 Gnst
4c, Y (2+27r ’E )

/=1 &erl
2 2
<4C, (105 m , 10mo m) < 140C,9,
n+1 R
where we used m < ¢,4+1/5 and R = [ém]. Finally it remains to note that by (6.101) that
N 1 _46%m
(6.109) Ulie= ¥ lom®FIFR(<C0 3 o <205
|k|>e48%m |k|>e482m
Combining (6.104), (6.105), (6.106), (6.107), (6.108) with (6.109), we have for m large enough,
) 2 12log gn
H?}m - L, - UGHLOO(’]I‘) < |’Um(0) - Lm| + Z HU]' HL°°(’]1‘) <y (1445 + Tﬂ) .
j=1 n

Combining this with (6.109) and the Chebyshev’s inequality, we conclude that

mes ({9 Hom (0) = Lip| > Cy (1456 + %)})
dn

25~ 1 —26 m 6—62m

as claimed. 0

6.3. Proof of Lemma 4.4. Let d; be as in (3.24). The second large deviation we prove is the
following, it implies Lemma 4.4 by choosing & = (4008, )% and ¢ = 105%/4/(1 + B(w)) (note that
for n large, (logqn)/gn-1 <1+ B(w)).

Lemma 6.3. For any constants cg,6 € (0,1), for n be large enough. For m € N such that

{5q1 0, if gn 2 M1

6.110 §tg,>m>
( ) n 5Qm Zf qn < 651%—1’

the following holds:

mes ({0 €T : [um.e(0) ~ Lin(w, B)| > C, (1705 L de loan)}) < 0tmi
4n-1
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Proof. We consider R =[dm], and

EROEDY

lil<R

R i)
R

U (0 + jw).

Next, we consider
Um(0) = Ly, =0,,(0) = Ly,
o (0) = o (6) = U1(6)

+ Y o (k) Fr(k)e*™ = Us(0)
1<|k|<62qn

+ S (k) Fr(k)eP™ R = U5 (0)

82 qn<|k|<edtm

+ > B (k) Fr (k)e2™ 0 = U, (0)

|k|2ed%m
By (6.104), we obtain
(6.111) |0 (0) = Lyn| < 6,
for m large enough. By (6.97), we conclude that

R
(6.112) 1Tl 2o (1) = [vm = 0§ || oo 1y < Co— < Cyd.
m
Lemma 6.4. Regarding Us, the following holds:
log qy,
|Us ]| ooy < C (555 + 4eg ngl ) .

Proof. Let g,_; be such that g,_¢ < 6%¢s, < gn—s+1. Note that 62¢, < gn, hence
(6.113) Gr—t+1 < Gn, and ¢y—p < Gr-1.

Note that when m is large, ¢, is large and then both ¢,_¢.1,g,_¢ are large. Let
(6.114) [6%qn] = joGne + 7, With 0 <7 < gn_p.

Note that by (2.10), ¢n-¢+1 = @n—r+1Gn—t + Gn-t-1 > joGn-¢ + 7, hence

Jo < Qpgy1-
We have

S O (k) Fr(k)e®™

1<|k|<62¢n
Jo ) ) Jo

<Y NomGan-OIFr(Gan-o)| + Y, > [0m (k)| Fr(K)]
‘j|:1 J=1 (j_l)Qn—2<‘k|<an—l

+ > [om (K)||[FR(K)]

qunfl<|k‘Sj0qnfl+7‘

Jo
<Y NomGan-OllFr(Gan-0)|+ Y, |om(K)||Fr(K)]
ljl=1 0<[k|<gn-¢
j0+1
+ 2 2. [ (K| FR(F))|
j:2 (jfl)qnfl<‘k|<jqnff
=: Il + IQ + Ig,
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respectively. First, note that for any |j| < an_si1,

(6.115) lign-ewl = 13l gn-ewllll = [l gn-ew|.
In fact by (2.9) and (2.10), for |j| < an—rs1,

An—0+1 < 1

1
[l gn-ew] < <z
2

n—{+1 qn—¢

which implies [j|gn-—ew|| = |j||gn-rw| as claimed in (6.115).
Next, we estimate I;. By (6.101) and (6.115),

noac, 3! !
1< - -
! j=1 JAn—¢ 1+ R2]2||Qn—éwH2
Jjo 1 1
<40, - -
D s eI PE
Jo 1 1
(6.116) <40y, Y.

i Jdn-e 1+ 02m252/(24n)?’

where we used R = [dm] and ||gn_ew| > 1/(2¢n-r+1) > 1/(2¢,), due to (2.9) and (6.113).
Next, we need to divide into two different cases:

39

Case I1-1. If g, < €91 In this case we have m > g, according to (6.110). We can bound I

in (6.116) as follows:

I, <4C fj ! !
1< - -
' gn-e 1+ 6452/4

<4C” 1+/m;d$
T Qns 1 z(1+6%22/4)

1 oo
§4CU 1+/ édx+/ édx
Gn—t 52/2 (1 + z?) 1 z(l+22)

1 oo
340” (1+f ldar:+f ! d:n)
Grrt §2/2 x 0 1+a2

)

S4(5'1,(3+10g(25 ) <5
gn—v

(6.117)

9

provided m is large.

n

Case [;-2. If g, > €191, In this case we have m > dg} ™ according to (6.110). Note in this

case 02q, > 62eM9-1 > ¢, 4, provided n is large enough. Hence n — ¢ > n — 1, which yields, when
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combined with (6.113), that ¢,—¢ = g,—1. We bound I; in (6.116) as follows:

hac, 3t !
1< - 5o
" Jan1 1+ 64,252 /4

et Jo 1 1 )

(6.118) 1+ =

Gn1 571+ 84q, 20524
< 4, 1+ / 172 daz)
Gn-1 1 x(1+ 6%, 0x2/4)

4 1 1 o ]
< Co 1+ / ~ ———dz + f ——dx
Gn-1 §2¢,°0/2 (1 + a?) 1 1+a2
3 . 10g(2(5‘2qf§))
gn-1 gn-1

1
Og qn +6,
qn-1

<o

<4C,cp

provided n is large enough.
Next, we study I. By (6.102),

1 1
m|kw| 1+ 82m?2|kw|?

(6.119) L= % [em(WIFr(k)<4Cy Y

1S‘k|<q”—€ 1<k<qn_¢

For 0 < |k| < ¢y—¢, we obtain by (2.7) and (2.9) that

(6.120) [kwll > [ gn-e-10] > 20
An—¢

This implies the I3 as in (6.119) can be bounded by:

(6.121) L3t 1
mo g, 1 +62m? | kw|?

We decompose the sum over {1,2,...,¢,_¢—1} into sums of two subsets: {1,2,...,¢,—¢—1} = K1 U K>,
where

(6.122) Ky ={ke{1,2,....qn_¢ — 1} : kw — [kw] € (0,1/2)}, and
Ky ={ke{1,2, ..., qns -1} : kw - [kw] € (1/2,1)}

For ky # ko such that {ki,ke} c Ky, clearly ||kjw| = kjw — [kjw] holds for j = 1,2, and hence
[Esw] = Irawll] = (k1 = E2)w].
Combining this with |kw| - [kew| € (-1/2,1/2) and that for z € (-1/2,1/2), |x| = ||, we have

(6.123) k] = ko] = k1w = ko[ > [gn-eaw] =

2Qn757

where we used 0 < |ky — k2| < g,—¢ and the estimate similar to (6.120). Combining (6.120) with
(6.123), we conclude that {|kw|}rex, are non-negative terms, which are at least 1/(2¢,,—¢) spaced
with the smallest being at least 1/(2¢,—¢). This implies

1 qn—¢ 1
(6.124) S S, ,
kgﬁ 1+ 6%2m?|kwl? 32::1 1+62m?s2/(2qn-¢)?
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The sum in K> is similar. In fact for {k; # ko} ¢ Ks, |k;w| = [kjw] + 1 - kjw holds for j = 1,2.
Hence, similar to (6.123), we have

(6.125) k1wl = [F2w|| = k1w = kaw] 2 llgn-r-1w] 2 T
This implies similar to (6.124) that
(6.126) p— 5 :
6.126 ———————7 < .
ke, L+ 02mAkwl* — 3 1+ 62m?s?[(2¢n-¢)?
Combining (6.124), (6.126) with (6.121), we obtain
I, < 1601,qn g 1
22, = 1+02m2s%/(2qp-¢)?
16Cy g
< n-t / ! dx
m 0 1+02m222/(2¢n-¢)?
320,¢2 , > 1
< - d
dm? /0 1122 "
167Cyq2
(6.127) ¢ vt

om?2

If g, > €291 we bound m > Sql=co > s (1=co)an-1 > qg_l > q,z%g for m large enough, where we used
Gn-1 > Gn—¢ as in (6.113). This implies the following bound on I5 as in (6.127):

(6.128) I <

for m large enough.

If g, < 2191 we bound m > dq,, and ¢,_¢ < 62y (according to the definition of ¢,_y), then
167C,0%q2
g
Next, we consider I3. We distinguish two cases.

Case I3-1. If jp < 10. We simply estimate, via (6.100) and (6.101) (we divide ((j —1)qn-¢,7qn-¢)
into four intervals of length ¢,_¢/4 and apply (6.100) to each of these four) that

(6.129) Iy < <16mC,0.

S 3 - 8 qn—¢
Iy<) > eaR)IFR(R)| <Cy Y —— (s 87 ?)
772 (§-1)qn-e<|k|<jdn-¢ j=2 dn-¢
(6.130) <C, (ﬁ . 57677) <5,
qn-¢ R

provided m is large enough.
Case I3-2. If j, > 10. We obtain by (6.101) that for each 2 < j < jg + 1,

4C, 1

(6.131) > [om (B)||Fr(K)| < — 53
(D) n-e<lkl<jan_c G =Dnt (j-1)q, Teneiq,, L +02m?[kw]?

Since |k = (j — 1)qn-¢| < Gn-s,

(6.132) kw = (5 = Dgn-pw|| 2 | gn-e-1w]-

For each 2 < j < [jo/2], using jo < ap_g+1 and that a,_gi1|gn-w| < |gn-e-1w]| (see (2.11)), we have
by (6.115) that

. . 7 1
(6.133) 16 = Dan-l = G = Dllgn-e] € (2 = Dllgn-] < 5 g-e1]-
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Combining (6.132) with (6.133), we have by triangle inequality that for (j —1)gu—¢ <k < jqn_s,

1
(6.134) [kwll > Sl gn-e-10] > :
2 4Qn7€

Similar to (6.122), For each j < jo + 1, we define
(6.135) Ks:={ke((j-1)qn-r,Jqn-0) : kw - [kw] € (0,1/2)}, and
Ky ::{k € ((] - 1)Qn—£ann7€) P hw - [kw] € (1/27 1)}

Similar to (6.123) and (6.125), we can obtain pairwise spacing of size |g,_¢-1w|, among {|kw| }rex,
and {|kw||}kex,, respectively. Together with a control of the minimum value in (6.134), we conclude
that {|kw||}ker, (and {|kw|}ker,) are at least 1/(2¢,-¢) spaced and the smallest being at least
1/(4¢pn-¢). Thus we can bound (6.131) as follows:

4 4C, 1

|0 (B)[[FR(K)| < :
(j—l)qm%kquw Z;, (= Dan-t yex, 1+62m?|kw]?
8C, Qn—t 1

<—
(J=1)gn-r T 1+6°m?s2/(4gn-r)?

T D Jo 146422002 (4g,)?
167C,
S T
(j-1)6%qn

where we used m > §g.=°, which is satisfied in both cases (see (6.110)). Therefore, the estimate
above yields

> [0 (F) || FR(F)]
25j£[j0/2] (j_l)Qn—Z<|k‘<an—e
- 2
(6.136) . Z ‘ 16ﬂgvl_c . 167T201,1£(2g]0 . 1671'01,21(;%55 an)
2<5<[j0/2] (j—1)0%gn 0%qn 0%qn

<9,

for n large enough. Note that we controlled jy < 6%¢, above, due to (6.114).

For each j such that [jo/2] < j < jo + 1, define K3, K, as in (6.135) above, one can show that
{|kw|}rers (and {|kw|}rex,) are at least 1/(2g,_,) spaced and the smallest term being at least 0
(which is a trivial lower bound). Therefore we can bound (6.131) as follows:

S o) <Yy ]
m R > .
(G-1)an-r<lk|<jan-c 75 (7 = Dn-e g, 1+ 02m?[kw]?

< 8C, 1+ qi’v’ 1
T D-e ' H 1+ Pm2s?/(2g-0)?

<L 1+/°° ! dx
T - 1Dane 0 1+82m222/(2q,-0)?

<— 801) (1 + Wané) .
(] - 1)(]71—( om
This implies
Jo+1 1 T
(6.137) 5 5 i ()| P (R)] < 8Cy log 2 (— + —) <3,
gn—¢ om

j:[j0/2]+1 (j_l)Qn—2<‘k|<an—l
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for m large enough. Combining (6.136) with (6.137), we conclude in Case I3-2 that

(6.138) I3 < 20.
Combining the estimates of Iy, I, I3 in (6.117), (6.118), (6.128), (6.129), (6.130), (6.138) yields
the claimed result for Us. ]

Lemma 6.5. Regarding Us, the following holds:
HU3HL°°(']1') < 110C,56.

Proof. To prove this lemma we need the following estimate, which is a modification of (6.100).

1 21wqn,
(6.139) > <2+ .
(62n<be(lr1)s2qn L T I [Ew]? R

To see why this is true: for any {k; # ko} ¢ (£6%q,, (£ +1)6%q,), we have 0 < |ky — ko| < 6%q, < qn.
Hence by (2.7) and (2.9),

1
I(k1 = k2)w] 2 |gnaw] > —.
2q

n

Define
K5 :={k € (l0%qn, (L +1)0%q,) : kw — [kw] € (0,1/2)}, and
Kg={k € (£68%qn, (£ +1)8%q,) : kw — [kw] € (1/2,1)}.

Similar to (6.123), (6.125), we have {|kw|}rer, (and {|kw|}rex,) have pairwise spacing at least
lgn-1w| > 1/(2¢y), with the smallest term being at least 0. Hence

1 Yy 1
L+ R2[kw[? 5 g, 1+ B2 kw2

62‘1” 1
<211+
; 1+ R2s2/(2qy,)?

00 1
211 d
( +f0 1+ R%222/(2g,)? 3:)
s2(1+%).

R

This proves (6.139). Clearly, (6.139) combined with (6.101) implies

062 gy <k<(0+1)52qp,

IN

4CU 564m/(52qn) 1 1

>

Pan T sguckiiinyszg, L+ B2 Jkw]?

U3 | oo () <

1 =
<8C, 6> (— + —)
"o R
<80C,6 + 8 C,0 < 110C,0,
in which we used m < 6 '¢q, and R = [ém]. This proves the claimed result for Us. O

For Uy, we obtain by (6.101) that

1 ~5tm
(6.140) [Uiliey = % [om®PIERKP<CF Y oy <2057,

k>~
|k|>ed*m |k‘>e(54m| |
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Combining (6.111), (6.112), Lemmas 6.4 and (6.5) with the Chebyshev’s inequality and (6.140), we
conclude that

mes ({9 om (8) = Lin| > C,, (1705 +4cp 1;)% n )})
<mes({0: [Us(0)[ > 3C,d}) -

1 —5*m/4
ngnglQHL%T)SG ",

as claimed. O
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