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Capacity of Frequency-based Channels: Encoding

Information in Molecular Concentrations

Yuval Gerzon1, Ilan Shomorony2 and Nir Weinberger1

Abstract

We consider a molecular channel, in which messages are encoded to the frequency of objects (or concentration

of molecules) in a pool, and whose output during reading time is a noisy version of the input frequencies, as

obtained by sampling with replacement from the pool. We tightly characterize the capacity of this channel using

upper and lower bounds, when the number of objects in the pool of objects is constrained. We apply this result to

the DNA storage channel in the short-molecule regime, and show that even though the capacity of this channel

is technically zero, it can still achieve a large information density.

Index Terms

Channel capacity, data storage, DNA storage, information spectrum, molecular communication, permutation

channel, Poisson channel.

I. INTRODUCTION

In molecular communication [1], information is encoded into the presence of objects from various possible

types in some restricted physical domain. As a prominent example, in DNA storage systems [2]–[12], information

is encoded to K molecules, each is a strand of length L composed from the four possible nucleotides, denoted

by A := {A,C,G,T}. The K molecules are stored in a pool, and the distinctive aspect of this system is that the

order of the K molecules in the pool cannot be preserved. So, while the total of KL symbols can be considered

as the blocklength of the codeword, unlike standard channel coding, the codeword is, in fact, partitioned to

K out-of-order segments of length L each. Given the pool, the message is decoded by randomly sampling

molecules from the pool, sequencing each of them to obtain a noisy read of the sequence of nucleotides in the

strand, and using the out-of-order output strands to decode the message.
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A simple method to resolve the lack of order of the encoded molecules is to devote the first log|A|K

symbols of the molecule to encode its index. This requires that the molecule length will be large enough to

accommodate both the index and the message encoding. Indeed, in [13] it was established that the regime of

interest is L = β logK for some β > 0, and it was shown that indexing achieves the capacity of the DNA

storage channel when the sequencing is noiseless. Conversely, if the molecule length L is short in comparison

to their number K, and so there is not enough symbols to encode the index in the molecule, concretely, if

β ≤ 1
log|A| , then the capacity is zero. Consequently, in this regime, the log-cardinality of the optimal codebook

(which is the total number of stored bits) scales at most sub-linearly with the total number of nucleotides KL.

Nonetheless, the DNA storage medium has an extreme information density, and a huge number of nucleotides

can be stored in tiny pools. As noted in [14, Sec. 7.3], the amount of stored information can be large even for

channels with asymptotically vanishing maximal rate. This observation serves as a strong motivation to study

the log-cardinality of the optimal codebook in the short-molecule regime, that is, for β ≤ 1
log|A| . In this regime,

the number of molecules in a codeword K is larger than the number of possible strands of length L from the

alphabet A, to wit, K ≥ |A|L. Accordingly, each codeword must contain multiple copies of the same strand

(at least for one strand). Hence, in the short-molecule regime, the message is actually encoded by the number

of times each of the |A|L possible strands of length L appears in the pool. The encoded codeword can thus be

represented by the frequency vector that measures the frequency of each type of strands in the pool. We refer

to this type of channel as frequency-based channel. During reading, molecules are sampled from the pool (with

replacement) and so the output is a also a frequency vector. This vector is a noisy version of the input vector

for two reasons: First, the frequency of the strands in the codeword is not preserved by the sampling. Second,

the synthesis and the sequencing processes are possibly noisy [15].

In this paper, we formulate a general frequency-based channel. We focus on the effect of random sampling,

which we model as a multinomial distribution, and thus assume noiseless sequencing. In this channel model, the

blocklength n models the number of different types of objects. Each codeword has a total count of ngn objects

from the different types, and which are sampled nrn times in total. For example, in the DNA storage channel

n = |A|L, as this is the number of different molecules of length L from an alphabet A, and ngn = K, as this is

the total number of molecules. In [14, Sec. 7.3] a slightly different Poisson sampling channel was considered,

which assumes gn = rn, and a conjecture was made on the scaling of the log-cardinality of the optimal codebook

[14, Conjecture 4]. Concretely, based on the capacity of the average-power-constrained Poisson channel [16] it

was conjectured that the capacity scales as 1
2 log rn + on(1).

Main contribution: In this work, we address that conjecture. Though our multinomial sampling is slightly

different, its analysis is, in fact, based on a reduction to a Poisson channel, and so in this sense the multinomial

model subsumes the Poisson model. That being said, the reduction itself complicates the analysis of the resulting

Poisson channel, and the latter is non-standard from two aspects. First, the total number of counts in the codeword
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must be common to all codewords in the codebook in order for an input count to accurately model frequencies.

Second, since the input symbols also measure the count of a possible objects in the codeword, they must be

integer-valued, and so the input distribution must be supported on the integers. Our main result (Theorem 2) is an

approximate solution of the conjecture of [14, Conjecture 4]: Our converse bound shows that the capacity is less

then 1
2 log[rn ∧ (egn)] + on(1). That is, increasing rn beyond gn may increase capacity, but asymptotically only

up to 1
2 [nats]. Our achievable bound requires the condition n = ω(gn), and when the ratio rn/gn is optimized, it

is given by 1
2 log(gn)−1.295+on(1)[nats]. Interestingly, the optimum of the lower bound occurs at rn ≈ 0.4gn,

i.e., when sampling less objects than there are in the codeword.

The implication of this result to the DNA storage channel is valid when the molecules are not very short,

and specifically, in the regime β ∈ ( 1
2 log|A| ,

1
log|A|). The result shows that the log-cardinality of the optimal

codebook increases as

1− β log|A|
2β

·Kβ log|A| logK, (1)

up to terms negligible with K. A simple numerical example then shows that the resulting information density

(in nats per gram) could still be huge, which remarkably reinforces the importance of this, strictly speaking,

zero capacity, channel.

Related work: The analysis of the DNA-storage channel is an active research area, both from an information-

theoretic point of view [13], [14], [17]–[21] and from coding-theoretic point of view [10], [11], [22], [23]. Our

channel model is closely-related to the permutation channel. Using our formulation, the input to the permutation

channel is also a frequency vector, however, it is assumed that each object is sampled exactly once, and the

output vector is noisy due to noisy sequencing (in our terms). This channel was considered in [24], [25] with

codes termed multiset codes. Constructions of such codes were proposed, and combinatorial bounds on the size

of optimal codes for a given detection or correction capability were derived. An information-theoretic version

of the channel was introduced in [26], with sharp converse bounds obtained in [27]. However, compared to

our results, and in our terminology, the blocklength in [26], [27] is considered fixed, whereas in our model it

increases without bound (with a certain scaling). A multi-user model of this channel was recently explored in

[28]. Another related model for DNA storage is based on composite DNA letters [29], [30], in which many

copies of a single molecule are generated, and each letter in the molecule is a composite letter, i.e., it is randomly

chosen from a subset of {A,C,G,T}, chosen according to the encoded information. In this channel model too,

information is stored in the frequency of each DNA letter at the output, though the randomness of each letter

is created during synthesis. This leads to a somewhat different mathematical model, of a multinomial channel,

and its capacity is discussed, e.g., in [31].

We rely on the analysis of the Poisson channel under an average-power constraint. The capacity of this

channel was extensively explored (e.g., [16], [32]–[42]), but for the frequency-based channel we mainly rely
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on the asymptotic expression of [16]. On its own, the entropy of a Poisson random variable (RV) was also

extensively explored [43]–[45], along with ample study of related properties, e.g., [41], [43], [46]–[50].

Paper outline: The paper is organized as follows. In Sec. II we shortly describe the DNA storage channel,

and then formulate the more general frequency-based channel. In Sec. III we state our main result and outline

its proof. In Sec. IV we provide detailed proofs, and in Sec. V we conclude the paper with a summary and

future research directions.

II. PROBLEM FORMULATION

Notation conventions: For an integer n ∈ N+, let [n] := {1, 2, . . . n}. For a, b ∈ R, let a∨ b := max{a, b}
and a ∧ b := min{a, b}. Logarithms and exponents are taken to the natural base. Standard notation for

information-theoretic quantities is used [51], e.g., the entropy H(PX) or H(X) for a discrete RV X with

probability mass function (PMF) PX , the mutual information I(X;Y ) between two RVs X and Y , and

DKL(P || Q) for the KL divergence between the probability measures P and Q. The binary entropy function

is denoted by hbin(·).
Although our results are valid under general molecular storage settings, the DNA storage channel is our main

motivation, and so we next briefly review its model, and explain how it translates in the short-molecule regime

to a frequency-based channel [14, Sec. 7.3].

A. The DNA Storage Channel Model

The DNA storage model, also called the multi-draw noisy shuffling channel [14], is as follows. Let an

alphabet A be given, e.g., A = {A,C,G,T} in the case of an actual DNA-based storage system. A codeword

is aLK = (aL1 , . . . a
L
K), where aLk ∈ AL for all k ∈ [K] is called a molecule or a strand. Thus, there are

K molecules in a codeword, each of which is a length-L vector from the alphabet A. A codebook is a set

of different codewords, C = {aLK(j)}j∈[M ]. The codeword is read in a noisy way comprised of two stages.

In the first stage, N molecules are uniformly sampled from the K molecules of aLK , independently, with

replacement. Letting {Ui}i∈[N ] be independent and identically distributed (IID) such that Ui ∼ Uniform[K], the

output of this stage is {aLU1
, . . . , aLUN

}. In the second stage, each of the sampled molecules aLUi
is sequenced,

and the output molecule b∗i ∈ B∗ is obtained, where B is an output alphabet, and ∗ indicates varying length

B∗ =
⋃∞

ℓ=1 Bℓ. Thus, the length of b∗i may be different from L, and vary from one molecule to the other. The

possibly noisy sequencing is modeled as a noisy channel VL from AL to B∗. For example, this channel may

include substitutions of a letter from A with a different letter, deletions, and insertions [52]. The channel output

is then (b∗1, . . . , b
∗
N ).

Remark 1. It may seem more natural to model the channel output as obtained via sampling without replacement,

since each sampled molecule is removed from the DNA pool in order to be sequenced. The reason why we model
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the channel as performing sampling with replacement is because in practical DNA storage systems, polymerase

chain reaction (PCR) amplification is used to replicate each molecule in the pool a large (but roughly fixed)

number of times. Hence, the relative frequency of each DNA molecule in the pool remains roughly fixed, but

sampling from this amplified DNA pool is essentially sampling with replacement from the original pool.

We let the length of each molecule scale as L = LK , the number of sampled molecules to scale as N = NK ,

and denote the maximal cardinality of a codebook with codewords of K molecules and maximal error probability

ǫK as M∗
DNA(LK , VLK

, NK , ǫK). As a codeword is composed from a total KL symbols from A, the rate of a

codebook of cardinality M is defined as R := 1
KL logM . The capacity is the maximal rate with vanishing error

probability, that is, 1
KL logM∗

DNA(LK , VLK
, NK , ǫK) with ǫK → 0 as K → ∞.

The short-molecule regime: The capacity of the DNA storage channel for discrete memoryless sequencing

channels was analyzed in [13], [17], [18], [20]. Specifically, it was shown in [13] that even for noiseless

sequencing channels, the capacity of DNA storage is strictly positive only if the molecule length scales as LK =

β logK and β > 1
log|A| . Intuitively, the lack of order in the codeword can be resolved by using log|A|K = logK

log|A|

symbols from each molecule to encode its index in the codeword, and using the rest of the symbols to encode

the message. However, if β < 1
log|A| then the length of a molecule does not allow for encoding the index, let

alone for encoding the message. It can be shown that indexing is optimal for noiseless sequencing channels

(though not necessarily for noisy channels), and that no positive rate can be achieved when β ≤ 1
log|A| . We thus

refer to this regime as the short-molecule regime. From a different point of view, we may note that the number

of distinct molecules of length L is |A|L. As K ≥ |A|L in the short-molecule regime, each codeword must

contain more than a single copy of the same molecule. Since the molecules of the codeword lack any order, the

message is actually encoded in the number of copies of each of the n = |A|L possible molecules in AL, or in

their frequencies. Let us order the AL strings representing the possible molecules in some arbitrary order [n].

Then, the input codeword can be equivalently represented by the vector xn := (x1, . . . , xn) ∈ N
n where xi is

the count of the ith string in AL. Thus, it holds that
∑n

i=1 xi = K. Similarly, let us denote the number of counts

of each of the strings in AL at the output codeword by yn := (y1, . . . , yn) ∈ N
n. Due to the randomness in the

sampling stage, yn is a noisy version of xn even for noiseless sequencing channels. We refer to this equivalent

channel model as a frequency-based channel, and formally define it in the next subsection, in greater generality.

In the rest of the paper we will analyze the capacity of that channel model, which, in turn, leads to bounds on

M∗
DNA(LK , VLK

, NK , ǫK) for DNA storage channels. The capacity is zero in the short-molecule regime, and

so logM∗
DNA(LK , VLK

, NK , ǫK) scales sub-linearly with KL. However, it is still a monotonic non-decreasing

function of K, for which our goal it to characterize the optimal asymptotic scaling.
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B. The Frequency-based Channel Model

Consider a set of n distinguishable types of objects (e.g., molecules). An input message is encoded as a

pool of unordered objects from the various types. Thus, the channel input is represented by the count vector

xn := (x1, . . . , xn) ∈ N
n, where xi is the number of objects of the ith type in the pool of objects. It is

assumed that
∑n

i=1 xi is constant for all possible messages. Thus, x̂i := xi/(
∑n

i=1 xi) is a frequency-vector

(or concentration) of the ith type in the codeword pool. It is further assumed that the total number of objects

is restricted as
∑n

i=1 xi ≤ ngn, for some given gn. To read the message, nrn samples are taken, where for

each i ∈ [nrn], an object is randomly chosen uniformly at random from the set of
∑n

i=1 xi objects in the pool,

with replacement. Then, the type of the object is read, by a possibly noisy mechanism. Let Wn ∈ R
n×n be a

Markov kernel, so that Wn(j, i) represents the probability that an object of type i is determined to be of type j

(hence Wn(j, i) ≥ 0 and
∑n

j=1Wn(j, i) = 1). Thus, the ith object is Si ∼ Categorical(x̂nWn), where x̂nWn

represents the standard multiplication of row vector by a matrix, and Snrn := (S1, · · · , Snrn) is a vector of IID

RVs. Conditioned on input xn, the output is equivalently a noisy count vector Y n := (Y1, . . . , Yn) ∈ N
n where

Y n ∼ Multinomial(nrn, x̂
nWn). A noiseless setting is illustrated in Fig. 1.

A code is a set of M input count vectors CM := {xn(1), . . . , xn(M)} for which
∑n

i=1 xi(m) is constant for all

m ∈ [M ]. The size of the largest code for n object types, normalized total count of input objects gn, normalized

number of sampled objects rn, a reading kernel Wn, under a given error probability ǫn ∈ (0, 1) is denoted

by M∗(n | ǫn, gn, rn,Wn). Our goal is to accurately determine the growth rate of M∗(n | ǫn, gn, rn,Wn),

or the rate of the codebook, given by 1
n logM∗(·). We assume that both gn, rn are monotonic non-decreasing

functions of n, and aim to accurately characterize the dependency of M∗(n | ǫn, gn, rn,Wn) on these sequences.

For reasons that will be clear in what follows, we focus on the regime rn = Θ(gn). In this paper, we focus on

the randomness stemming from the sampling channel, and thus assume that Wn = In, the noiseless kernel for

all n (we discuss possible extensions to noisy channels in Sec. V). For the error probability, we just assume

that ǫn → 0 as n → ∞, though in possibly arbitrarily slow rate. Our main theorem provides upper and lower

bounds on the rate 1
n logM∗(·) in this regime.

In [14, Sec. 7.3], a closely-related channel model was considered, in which rn = gn, the sequencing is

noiseless Wn = In, and the output is Zn = (Z1, . . . , Zn) is such that conditioned on Xn = xn, it holds that

Zi ∼ Poisson(xi), and the Zi’s are independent. Based on the known asymptotic capacity expression of the

Poisson channel under an average-power constraint [16, Thm. 7], it was conjectured that the capacity of the

frequency-based channel whose output is Zn is given by 1
2 log rn+ on(1). However, the capacity of the Poisson

channel is asymptotically achieved by a gamma distributed input Xn ∼ Gamma(12 , 2gn) [16], [36], which is a

continuous distribution, whereas the frequency-based channel only allows for integer inputs. Our bounds will be

proved by modifying the multinomial output to a Poisson output. However, the analysis of the resulting Poisson

channel, along with integer-input constraints will require additional technical steps.



7

x1 = 3 x2 = 4 x3 = 1 x4 = 0 x5 = 2 x6 = 2

Si =

y1 = 5 y2 = 5 y3 = 2 y4 = 0 y5 = 4 y6 = 2

Figure 1. An illustration of the channel model with n = 6, gn = 2 and rn = 3. Top: The message is encoded to the codeword

x6 = (3, 4, 1, 0, 2, 2). Middle: The ngn = 12 objects are stored in a pool, and then sampled with replacement nrn = 18 times. At each

sample the object type is recorded as Si. Bottom: The output vector is the histogram of Snrn , given by yn = (5, 5, 2, 0, 4, 2).

III. MAIN RESULT

Assume that reading operation is noiseless, and so W = In. The channel is given by

Y n ∼ Multinomial

(
nrn,

1∑n
i=1 xi

xn
)
. (2)

For µ ∈ R+, let

Ψ(µ) := (µ+ 1) · hbin
(

1

µ+ 1

)
, (3)

which, as is well known, is the maximum entropy for non-negative integer-supported RVs with mean bounded

by µ (see Lemma 14).

Theorem 2. Assume Wn = In, that gn → ∞, and that cgn ≤ rn ≤ egn for some c ∈ (0, e).

• A (weak) converse bound: For any ǫn → 0

1

n
logM∗(n | ǫn, gn, rn,Wn) ≤

1

2
log [rn ∧ (egn)] + on(1). (4)
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• An achievability bound: Further assume that n = Ω(g1+ζ
n ) for some ζ > 0. Then,

1

n
logM∗(n | ǫn, gn, rn,Wn) ≥

1

2
log(rn)−Ψ

(
rn
gn

)
+ on(1). (5)

Comparison to the standard Poisson channel: For a Poisson channel with an average-power input constraint

E[X] ≤ gn,1 and gain rn
gn

, that is, Z | X = x ∼ Poisson( rngnx), the capacity is asymptotically given by

1
2 log rn+on(1), [16, Thm. 7].2 Nonetheless, this rate is achieved with input distribution X ∼ Gamma(12 , 2gn),

which is a continuous distribution, and is unsuitable for the frequency-based channel, which accepts non-negative

integer inputs. This restriction on the input affects both the converse and the achievability bound. For the converse

part, it leads to an upper bound 1
2 log(egn) on the maximal rate, which, as we discuss in what follows, is a

result of the log-cardinality of the set of possible inputs. Thus, unlike the standard, continuous-input, Poisson

channel, there is no motivation to increase rn beyond egn, at least in terms of rate. For the achievability bound,

the restriction of the input to be integer valued leads to the loss additive term Ψ( rngn ). This leads to a delicate

issue: For the decoder, increasing rn, the number of samples from the pool of objects, only leads to higher

mutual information and rate, since due to the data-processing theorem, the decoder can always ignore output

observations. However, in our model increasing rn also put a more restrictive constraint on the input integer

constraint, and this has the opposite effect on the mutual information, as it does not allow to achieve the output

entropy obtained as in the standard case. Thus, it is not obvious that increasing rn also increases the mutual

information. To further inspect this, let us write the lower bound, without the asymptotically vanishing terms,

as

1

2
log(gn) +

1

2
log

(
rn
gn

)
−Ψ

(
rn
gn

)
. (6)

We may then optimize it over rn ≤ egn. Interestingly, the function µ → 1
2 log(µ) −Ψ(µ) has a unique global

maximum at µ ≈ 0.398 and equals −1.295[nats], which is better than its value at µ = 1, given by −1.386[nats].

Thus, to optimize the lower bound of Theorem 2, the optimal choice is rn ≈ 0.4gn, that is, surely not sampling

some of the objects in the pool optimizes this bound. The optimized lower bound is then (in nats)

1

n
logM∗(n | ǫn, gn, rn,Wn) ≥

1

2
log(gn)− 1.295 + on(1). (7)

Naturally, an interesting open question is whether the rate can go beyond 1
2 log(gn), and if it can match the

upper bound, and what is the optimal value of rn.

Implication on the data stored in DNA storage systems: As discussed, strictly speaking, the capacity of

the DNA storage channel in the regime of interest is zero. Following [14, Sec. 7.1], let the pseudo-rate of a

1For the Poisson channel, the average input power is modeled as E[X], as opposed to the more common Gaussian channel, in which

the average input power is E[X2].
2In [16, Thm. 7], the Poisson channel is assumed to have unity gain, i.e., rn

gn
= 1. The capacity expression can be easily generalized

to non-unity gain by scaling of input codewords.
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DNA storage be defined as

R̃DNA :=
logM

LKβ log|A| , (8)

and the pseudo-capacity be defined as the maximal achievable pseudo-rate such that ǫK → 0 as K → ∞. We

thus obtain the following corollary:

Corollary 3. Assume that β > 1
2 log|A| . Then,

R̃DNA =
1− β log|A|

2β
. (9)

Specifically, this settles [14, Conjecture 4], under the more demanding multinomial channel, yet under the

restrictive constraint on β ∈ ( 1
2 log|A| ,

1
log|A|), which excludes very short molecules.

Proof: For the DNA storage channel, the number of unique objects is the number of unique molecules of

length LK = β logK, given by n ≡ |A|LK= Kβ log|A|, and the total number of objects is ngn ≡ K, that is,

gn = K1−β log|A|, whereas NK = rn. The converse bound of Theorem 2 then implies that

logM∗
DNA(LK , VLK

, NK , ǫK)

Kβ log|A| ≤ 1

2
log
[
NK ∧ (eK1−β log|A|)

]
+ oK(1). (10)

If, e.g., NK = K1−β log|A| (that is, rn = gn) we get

logM∗
DNA(LK , VLK

, NK , ǫK)

LKβ log|A| ≤ 1− β log|A|
2β

+ o

(
1

logK

)
. (11)

The achievability bound of Theorem 2 requires the condition n = Ω(g1+ζ
n ), which translates into β > 1

2 log|A| ,

and then implies that

logM∗
DNA(LK , VLK

, NK , ǫK)

LKβ log|A| ≥ 1

2β

log(NK)

logK
−Ψ

(
NK

K1−β log|A|

)
+ o

(
1

logK

)
. (12)

Using NK = K1−β log|A| results

logM∗
DNA(LK , VLK

, NK , ǫK)

LKβ log|A| ≥ 1

2β

log(K1−β log|A|)
logK

− Ψ(1)

β logK
+ o

(
1

logK

)
(13)

=
1− β log|A|

2β
− 2.773

2β
· 1

logK
+ o

(
1

logK

)
. (14)

Thus, in this regime for β the converse and achievable bounds only differ in O(log−1 K) term. It should be

mentioned that using the approximately optimized value of NK = 0.4K1−β log|A| slightly improves the factor

of 1/logK from 2.773
2β to 2.59

2β .

Example 4. Consider a DNA storage system with |A|= 4. We compare the number of achievable bits, that

is, the asymptotic lower bound on logM∗
DNA(LK , VLK

, NK , ǫK) of (14) (without the o(log−1K) term) to the

total number of nucleotides, in the short-molecule regime. As mentioned in [14, Sec. 1], just 5[grams] of DNA
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Figure 2. The lower bound on logM∗

DNA(LK , VLK , NK , ǫK) of (14) vs. KL. A darker line corresponds to larger β.

contain about KL = 4 · 1021 nucleotides. Thus, e.g., if β = 0.76
log(4) then Fig. 2 shows that these 5[grams] store

over 1.253 · 1016[nats] = 1.8 · 1016[bits], while L = βW(KL
β ) ≈ 26, where here W is the Lambert W function.

This is a huge amount of stored data, while the molecule length is rather short and thus amenable for efficient

synthesis and sequencing.

The assumptions of the theorem:

1) A simple application of the data-processing theorem implies that the converse bound is valid for any Markov

kernel Wn, not just noiseless.

2) The condition n = Ω(g1+ζ
n ) can be relaxed to just n = ω(gn). We have used the polynomial factor

n
gn

= Ω(gζn) for simplicity of exposition.

A. Proof Outline of the Converse Bound of Theorem 2

The proof follows the standard Fano’s inequality, which requires bounding I(Xn;Y n). The frequency-based

channel from Xn to Y n is a multinomial channel Y n ∼ Multinomial(nrn, x̂
n), which is not a memoryless

channel, and so a direct analysis of the mutual information is difficult. Nonetheless, as is well known, the

multinomial distribution can be converted into a Poisson distribution (see Appendix B). The Poisson distribution

is memoryless, and so the resulting mutual information is amenable for evaluation. Specifically, we consider

Zn to be the output of a memoryless Poisson channel, with the same input Xn, and then relate I(Xn;Y n)

to I(Xn;Zn). An optimal input distribution for the Poisson channel is memoryless PXn = P⊗n
X , which, in

turn, requires bounding a single-letter I(X;Z). This is bounded using the known bounds on the average-power-

constrained Poisson channel [16, Thm. 7], in the asymptotic regime of high power. This results in the term

1
2 log(rn) + on(1) in the upper bound. Next, we also note that I(Xn;Y n) ≤ H(Xn), and that since Xn is
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non-negative integer-valued and
∑n

i=1Xi ≤ ngn, this puts an immediate constraint on the cardinality of the

alphabet of Xn, and thus on its entropy. Stirling’s bound then shows that it is bounded as n
2 log(egn), which

results the term 1
2 log(egn) + on(1) in the upper bound.

B. Steps of the Proof of the Achievability Bound of Theorem 2

The proof of achievability Theorem 2 is based on the three propositions that will be described next. Here

we will state these propositions, and briefly outline their proofs. The detailed proof will appear in Sec. IV-B.

The proof is based on Feinstein’s maximal coding bound [53], which bounds the maximal error probability of

the optimal codebook of a given cardinality via the cumulative distribution function (CDF) of the information

density of the channel (i.e., the information spectrum). Concretely, we use the extended version stated in [54,

Thm. 20.7], which also takes into account input constraints. Let PY n|Xn denote the Markov kernel from the

input Xn to the output Y n, for which Y n | Xn = xn ∼ Multinomial(nrn, x̂
n). Let PXn denote the input

distribution, and PY n be the corresponding output distribution. Let the information density be

i(xn; yn) := log
PY n|Xn(yn | xn)

PY n(yn)
. (15)

The extended Feinstein bound assures the following: For any γ > 0 and M ∈ N+ there exists a code CM =

{xn(1), . . . , xn(M)} such that xn(j) ∈ Fn for all j ∈ [M ], and whose maximal error probability is ǫn, where

ǫnPXn(Fn) ≤ P [i(Xn;Y n) ≤ log γ] +
M

γ
. (16)

Here too, the fact that the channel from Xn to Y n is not memoryless makes a direct analysis of the information

spectrum challenging, and similarly, it is altered to a memoryless Poisson distribution. To obtain a useful

bound, however, it is required to restrict the input distribution to a finite support. The result is that we show that

there exists a codebook whose number of codewords is roughly M ≈ enI(X;Z), where I(X;Z) is the mutual

information of the Poisson channel, and the error probability upper bounded, by a bound which can be made

vanishing. This first step is summarized in the following proposition.

Proposition 5. Let PX be a distribution such that supp(PX) ⊆ [sn] = {1, 2, . . . , sn} for some sn ∈ N+. Let

Fn := {xn ∈ N
n: 1

n

∑n
i=1 xi = gn} be a set of input vectors. Also let Z | X = x ∼ Poisson( rngnx), and let

δn ∈ (0, rngn sn), where rn
gn
sn ≥ 12πe2. Then, there exists a code CM ⊂ Fn of M codewords with

logM = nI(X;Z)− 3nδn − 1

2
log(6πnrn), (17)

whose maximal error probability ǫn on the multinomial channel from Xn to Y n is bounded as

ǫn ≤ 11

P⊗n
X (Fn)

[
√
nrn exp

[
−nδ2n ·

(
2

log2 rnsn
gn

∧ gn

19rnsn log
2 sn

)]
+ e−nδn

]
. (18)
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Proof outline of Prop. 5: Feinstein’s bound is based on the information spectrum P[i(Xn;Y n) ≤ log γ]

for γ > 0. In order to relate this to the information spectrum of a memoryless Poisson channel (Xn, Zn) we

first relate the information density i(xn; yn) to that of Poisson, i.e., to

ĩ(xn; zn) := log
PZn|Xn(zn | xn)

PZn(zn)
. (19)

We show that the modification of the information density leads to an additive loss term in logM given by

1
2 log(6πnrn), which will be negligible after normalizing by n. Second, we replace the randomness over

(Xn, Y n) in the information spectrum with that of (Xn, Zn), using the Poissonization of the multinomial

effect (see Fact 20). As a result, the analysis of the information spectrum of the channel from Xn to Y n

is altered to the analysis of the information spectrum P[̃i(Xn;Zn) ≤ log γ]. Since the Poisson channel is

memoryless, if we further restrict PXn to a product distribution P⊗n
X , then ĩ(Xn;Zn) is a sum of IID RVs,

for which tail bounds can be readily derived. Before discussing the derivation of this bound, we highlight

that the required bound should decay faster than its decay for standard analysis of memoryless channels. In

the standard analysis, γ is chosen so that P[̃i(Xn;Zn) ≤ log γ] → 0 as n → ∞, albeit with an arbitrary

slow rate (e.g., in the proof of [54, Thm. 19.8]). Here, this probability is multiplied by a term that scales as

Θ(
√
nrn

P⊗n
X (Fn)

), and so obtaining a vanishing upper bound on ǫn requires a bound which is o(P
⊗n
X (Fn)√

nrn
). To obtain

the desired upper bound, we separate the analysis of the randomness of Zn conditioned on Xn = xn from

the randomness of Xn. To analyze the randomness over Zn conditioned on Xn = xn, we note that ĩ(xn;Zn)

is a function of n independent Poisson RVs. We show that under the restricted support assumption, that is,

supp(PX) ⊆ [sn], it holds that ĩ(xn;Zn) is a Lipschitz function with semi-norm log sn. In turn, this allows us

to use the concentration bound of Lipschitz functions of Poisson RVs due to Bobkov and Ledoux [55, Prop.

11] (see Appendix D for a brief overview). Thus we show that ĩ(xn;Zn) is close to its expected value, denoted

as J(xn) :=
∑n

i=1 E[log PZ|X(Zi | xi) | Xi = xi] =
∑n

i=1 J(xi).
3 Hence, under the choice of memoryless

input distribution, J(xn) is also a sum of independent RVs. We then prove that J(x) ∈ [− log rnsn
gn

, 0], that is,

J(Xn) is a sum of bounded RVs. An application of Hoeffding’s inequality then shows that J(Xn) concentrates

to its expected value −H(Z | X). Combining the concentration results of both J(Xn) and ĩ(xn;Zn) leads to

an upper bound on P[̃i(Xn;Zn) ≤ log γ], then to an upper bound on P[i(Xn;Y n) ≤ log γ], and finally, to the

claimed upper bound on the error probability ǫn, via Feinstein’s bound.

Further evaluation of the Feinstein-based bound (18) in Prop. 5 requires two tasks: First, evaluating the mutual

information I(X;Z) over the Poisson channel, and second, evaluating the probability that a randomly chosen

codeword meets the constraint, that is P⊗n
X (Fn). This is the content of the next two propositions, beginning

with the former.

3With a slight abuse of notation, we use J(·) for both scalar and vector inputs, with the common convention that the value of vector

inputs is the sum of the value of the scalar function of the coordinates.
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Let X̃ be a continuous input RV. As mentioned, under the average-power input constraint E[X̃] ≤ gn, the

optimal input distribution for a Poisson channel is X̃ ∼ Gamma(12 , 2gn) [16], [36]. This is a continuous

distribution supported on R+, and thus unsuitable to the frequency-based channel, which accepts non-negative

integer inputs. Furthermore, the bound of Prop. 5 is based on the assumption that supp(PX) ⊆ [sn], where

sn ∈ N+ is finite. In order to obtain a valid lower bound on the mutual information, we modify the gamma

distribution of X̃ by first truncating (or restricting) it to a judicious choice of interval Sn, and then rounding

it to be integer valued so that the resulting RV is supported on [sn]. We will use the following definition for

truncation:

Definition 6. Let A be a real RV, and let S ⊂ R be such that P[A ∈ S] > 0. The truncation of A to a support

S is the RV A|S which satisfies that for any Borel set A ∈ B(R),

P
[
A|S ∈ A

]
=

P
[
A|S ∈ A ∩ S

]

P [A ∈ S] . (20)

Proposition 7. Assume that gn → ∞, and that cgn ≤ rn ≤ egn for some c ∈ (0, e). Let ρ ∈ (0, 1) be given,

and consider the interval

Sn =

[
1

g1+3ρ
n

, g1+ρ
n

]
∈ R+. (21)

Let X̃ ∼ Gamma(12 , 2gn), and let X = ⌈X̃|Sn
⌉, i.e., X̃ is first truncated to Sn and then rounded upward to

the nearest integer. Further let Z | X = x ∼ Poisson( rngnx) for x ∈ R+. Then, there exists n0 (which depends

on (c, ρ) and {gn}), such that for all n ≥ n0

I(X;Z) ≥ 1

2
log rn −Ψ

(
rn
gn

)
− on(1). (22)

Proof outline of Prop. 7: The proof bounds the loss in the achievable mutual information I(X;Z) when

the asymptotically ideal X̃ ∼ Gamma(12 , 2gn) is truncated to Sn and then upward rounded to an integer. We

begin by analyzing X := X̃|Sn
. A direct analysis of the reduction in mutual information when modifying X̃ to

X appears to be cumbersome, and we thus take an indirect route, which exploits the relation between mutual

information and optimal estimation over the Poisson channel [37], [41], [42], [49], [50], [56], [57], [58, Ch. 8],

which we next briefly review. Let ℓ(u, v) ≡ ℓPoi(u, v) := v − u + u log u
v be the Poisson error function. For a

positive random variable U , we let V | U = u ∼ Poisson(u). Let Û be an estimator of U based on V . Then,

since ℓ(u, v) is the Bregman divergence [59] associated with the Poisson distribution, it holds that the minimal

estimation error is obtained by the expected mean E[U | V ] and the minimum mean Poisson error (MMPE) is

mmpe(U) = min
Û

E

[
ℓ(U, Û)

]
(23)

= E [ℓ (U,E[U | V ])] (24)
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= E

[
U log

U

E[U | V ]

]
. (25)

The following relation between the MMPE and the mutual information was established in [56, Corollary 1]:

Theorem 8 (I-MMPE relation [56, Corollary 1]). Assume that E[U logU ] < ∞ and let Va | U = u ∼
Poisson(au) for a > 0. Then,

I(U ;Vγ) =

∫ γ

0
mmpe(aU) · da

a
. (26)

Following a similar analysis for the Gaussian channel [60, Lemma 2], we analyze the difference between

mmpe(aU) and mmpe(aU), where U is a truncated version of U (Lemma 12). We show that this difference

is controlled by three terms

γ · smax · P [U ∈ [0, smin)] + γE [U logU · 1 {U ∈ (smax,∞)}] + γE

[
U log

1

smin

· 1 {U ∈ (smax,∞)}
]

(27)

where S := [smin, smax] is the set used for truncation. Accordingly, we show that this difference is small for the

specific gamma distribution of X̃ and the truncation set of interest (Lemma 13) when U follows the distribution

of X̃ ∼ Gamma(12 , 2gn). The difference between the MMPE of X̃ and X is then translated, via the I-MMPE

relation in Theorem 8, to a difference between their mutual information, which is eventually shown to be a

negligible on(1) term in the regime of interest. Thus, there is no essential loss in mutual information due to the

truncation of the gamma distribution.

Next, we consider the influence of rounding X to the integer X = ⌈X⌉. In contrast to truncation, it appears

that the rounding operation leads to a loss in the mutual information, and we upper bound this loss as Ψ( rngn )

(Lemma 15). This is the source of the additive loss term Ψ( rngn ) that appears in the statement of the proposition.

Specifically, from I(X;Z) = H(Z) − H(Z | X) and I(X ;Z) = H(Z) − H(Z | X) with Z | X = x ∼
Poisson( rngnx), we may compare the mutual information values by separately comparing the conditional entropy

values and the output entropy values. First, we use properties of the entropy of the Poisson PMF and the

input gamma distribution to show that H(Z | X) ≤ H(Z | X) + on(1). Second, we show that H(Z) is

only larger than H(Z) by at most Ψ( rngn ). The proof of this result relies on the infinite divisibility property of

the Poisson distribution. By writing X = X + D, where D ∈ [0, 1], we may also write Z = Z + Ź where

Ź | D = d ∼ Poisson( rngn d) (note, however, that Z are Ź are not independent). We then use the bounding

method used, e.g., in [61, Prop. 8]. We relate H(Z) − H(Z) to the maximum entropy that is possible for a

non-negative integer-valued RV whose expectation is less than E[Z−Z]. This maximum entropy is well-known

to be the entropy of a proper geometric RV (Lemma 14), given by the function Ψ(µ), assuming that the allowed

mean is µ. Combining the comparison between the values of the conditional entropy and the values of the output

entropy leads to the required comparison between the mutual information values. The final bound is obtained

by combining the effects of both the truncation and the rounding.
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Following the analysis of I(X;Z) for a proper choice of X, it remains to bound PXn(Fn). Since the term

multiplying PXn(Fn) in (18) decays super-polynomially with n, the error probability ǫn may decay to zero,

even if PXn(Fn) decays to zero, although polynomially.

Proposition 9. Let ζ > 0 and ρ ∈ (0, 14 ∨ 2ζ
3 ) be given. For i ∈ [n], let {X̃i}i∈[n] be IID with X̃i ∼

Gamma(12 , 2gn), and let Xi = ⌈X̃|Sn
⌉ where Sn = [g

−(1+3ρ)
n , g1+ρ

n ]. Let Fn(τ) := {xn ∈ N
n: 1

n

∑n
i=1 xi = τ}.

Assume that n = Ω(g1+ζ
n ). Then, there exists a sequence ςn = on(1) and τn ∈ [gn(1 + ςn)] such that

PXn [Fn(τn)] ≥
1

3ngn
(28)

for all n sufficiently large.

Proof outline of Prop. 9: The main technical aspect of the proof is to find a right-tail bound on
∑n

i=1X i,

where {X i}i∈[n] are IID, and each is distributed according to the Gamma(12 , 2gn) distribution truncated to

Sn = [g
−(1+3ρ)
n , g1+ρ

n ]. The gist of the proof is to define a proper generative model for {X i}i∈[n]. To this end,

we define {X̃i,j}i∈[n],j∈N+
to be a double-index array of IID RV, distributed according to X̃i,j ∼ Gamma(12 , 2gn).

We then define X i = X̃J∗(i) where J∗(i) ∈ N+ is the minimal index such that X̃i,j ∈ Sn. Evidently, {X i}i∈[n]
are IID, and have the required truncated gamma distribution. Now, using the fact that Sn is a high probability

set, we show that, with high probability, X̃i,1 is in Sn for most indices, and so X i = X̃1 for most indices, which

we denote by n − ℓ. For the remaining ℓ indices, it holds that X i ≤ g1+ρ
n , and so their effect on 1

n

∑n
i=1 Xi

is controlled. Consequently, loosely speaking,
∑n

i=1X i is dominated by
∑n

i=1 X̃i,1, up to terms which are

eventually negligible. Taking into account the number of possibilities for {J∗(i)}i∈[n] (under the high probability

event), and using standard tail bounds on the gamma distribution, we show that
∑n

i=1 Xi ≤ ngn(1 + ςn) with

probability larger than, say, 1/2. In turn, this is also true for the upward rounded Xi = ⌈X i⌉ with ςn replaced

by ςn which is essentially the same. Since
∑n

i=1Xi is an integer, roughly upper bounded by ngn, there must

exists nτn ∈ N+, with τn ≤ gn(1 + ςn) such that the probability of Fn(τn), as defined in the proposition, is

Ω( 1
ngn

), as claimed.

The proof of the achievability bound of Theorem 2 then directly combines the above propositions: First, Prop.

5 leads to a Feinstein-based bound on the number of codewords M and error probability ǫn, which depends on

I(X;Z) of the Poisson channel with integer inputs, and the probability of an input vector with a fixed sum τn

below ngn. Prop. 7 lower bounds I(X;Z), and Prop. 9 bounds PXn [Fn(τn)]. Analyzing the leading terms in

the resulting mutual information and error probability leads to the claimed result.
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IV. PROOF OF THEOREM 2

A. Proof of the converse bound of Theorem 2

Proof of the converse bound of Theorem 2: Let CM be a code of cardinality M , whose maximal error

probability is ǫn, and for which each codeword xn(j) ∈ CM satisfies
∑n

i=1 xi(j) = ng
n

for some g
n
≤ gn. By

Fano’s inequality (e.g. [54, Thm. 20.6]) it holds that

logM ≤ 1

1− ǫn


hbin(ǫn) + sup

PXn :supp(PXn )⊂Nn, PXn( 1

n

∑n
i=1 Xi=g

n
)=1

I(Xn;Y n)


 (29)

where Y n ∼ Multinomial(nrn,
1

ng
n

Xn). We evaluate this bound by further analyzing I(Xn;Y n). Set η ∈ (0, 1),

and let Zn = (Z1, . . . , Zn) be a vector of independent components, such that Zi | Xi = xi ∼ Poisson( 1
1−η · rng

n

xi).

We next relate I(Xn;Zn) to I(Xn;Y n). Let Q :=
∑n

i=1 Zi ∼ Poisson( 1
1−ηnrn) be the random number of

output objects in the Poisson model. Let {Si}∞i=1 be drawn as in the problem formulation (Sec. II-B), and

with a slight abuse of notation, let Y n(q) ∼ Multinomial(q, 1
g
n

Xn) be a sequence of RVs, with the coupling

that Y n(q) is the histogram of Sq. Thus, Y n d
= Y n(nrn). Furthermore, since P[S1, S2, . . . , Sq | Xn = xn] =

P[Sπ(1), Sπ(2), . . . , Sπ(q) | Xn = xn] for any permutation π in the symmetric group of degree q, it holds that

I(Xn;Sq) = I(Xn;Y n(q)). The data-processing inequality then implies that for any q1 ≤ q2

I(Xn;Y n(q1)) = I(Xn;Sq1) ≤ I(Xn;Sq2) = I(Xn;Y n(q2)). (30)

Now, from the Poissonization of the multinomial distribution effect (Fact 20) it holds that Zn | Xn, Q = q
d
=

Y n(q) | Xn for any q ∈ N. Hence,

I(Xn;Zn) = I(Xn;Zn, Q) (31)

= I(Xn;Q) + I(Xn;Zn | Q) (32)

≥ I(Xn;Zn | Q) (33)

=

∞∑

q=0

P[Q = q] · I(Xn;Y n(q)) (34)

≥
∞∑

q=nrn

P[Q = q] · I(Xn;Y n(q)) (35)

(a)

≥ P[Q ≥ nrn] · I(Xn;Y n) (36)

(b)

≥
(
1− e

− η2

2(1−η)
nrn

)
· I(Xn;Y n), (37)
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where (a) follows from the monotonicity property in (30), and (b) from Chernoff’s bound for Poisson RVs

(Lemma 22), which implies that P[Q ≥ nrn] ≥ 1− exp[− η2

2(1−η)nrn] for any η ∈ (0, 1). Therefore,

sup
PXn :supp(PXn )⊂Nn, PXn( 1

n

∑n
i=1 Xi=g

n
)=1

I(Xn;Y n)

≤ sup
PXn :supp(PXn )⊂Nn, 1

n

∑n
i=1 E[Xi]=g

n

I(Xn;Y n) (38)

≤ sup
PXn :supp(PXn )⊂Nn, 1

n

∑

n
i=1 E[Xi]≤g

n

I(Xn;Y n) (39)

(a)

≤ 1

1− e
− η2

2(1−η)
nrn

sup
PXn :supp(PXn )⊂Rn, 1

n

∑

n
i=1 E[Xi]≤g

n

I(Xn;Zn) (40)

(b)
=

1

1− e
− η2

2(1−η)
nrn

sup
PXn :supp(PXn )⊂Rn, 1

n

∑

n
i=1 E[Xi]≤ rn

1−η

I(Xn; Ẑn) (41)

=
1

1− e
− η2

2(1−η)
nrn

n · sup
PX :supp(PX)⊂Rn, E[X]≤ rn

1−η

I(X; Ẑ) (42)

(c)
= n

(
1

1− e
− η2

2(1−η)
nrn

)
·
[
1

2
log

(
rn

1− η

)
+ orn(1)

]
(43)

= n

(
1

1− e
− η2

2(1−η)
nrn

)
·
[
1

2
log(rn)−

1

2
log(1− η) + orn(1)

]
(44)

= n ·


1
2
log(rn) +

e
− η2

2(1−η)
nrn

1− e
− η2

2(1−η)
nrn

1

2
log rn −

(
1

1− e
− η2

2(1−η)
nrn

)
1

2
log(1− η) + orn(1)


 , (45)

where (a) follows from (37), in (b) we have defined Ẑn as a Poisson channel with a unity gain, that is

Ẑi | Xi = xi ∼ Poisson(xi), (c) follows from the asymptotic expression of the mean-constrained Poisson

channel capacity in [16, Thm. 7, Eq. (23)]. Choosing η ≡ ηn = (nrn)
1/2−ρ for some ρ ∈ (0, 1/2) shows that

if ǫn → 0 as as n → ∞ then it must hold that

logM ≤ 1

2
n [log(rn) + on(1)] . (46)

Next, it also holds that

sup
PXn :supp(PXn )⊂Nn, PXn( 1

n

∑n
i=1 Xi=g

n
)=1

I(Xn;Y n)

≤ sup
PXn :supp(PXn )⊂Nn, PXn( 1

n

∑n
i=1 Xi=g

n
)=1

H(Xn) (47)

≤ log

∣∣∣∣∣

{
xn ⊂ N

n:
1

n

n∑

i=1

xi = g
n

}∣∣∣∣∣ (48)

(a)
= log

(
ng

n
+ n− 1

n− 1

)
(49)

(b)

≤ log

(
ngn + n− 1

n− 1

)
(50)
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(c)
= log

[(
(ngn + n− 1)e

n− 1

)n−1 1√
2π(n − 1)

exp

(
−(n− 1)2(1 + o(1))

2(ngn + n− 1)

)]
+ o(1) (51)

≤ n [log egn + o(1)] , (52)

where (a) follows from the stars and bars model, (b) follows since g
n

≤ gn and the monotonicity of the

binomial coefficient, (c) follows from Stirling’s approximation of the binomial coefficient (see (A.2) in Fact 17,

Appendix A). Combining both (45) and (52) in Fano’s inequality (29) results the claimed bound.

B. Proof of the Achievability Bound of Theorem 2

In this section, we prove the achievability bound of Theorem 2. To this end, we prove Props. 5, 7 and 9 one

after the other, and then combine them in order to complete the proof of the bound.

Proof of Prop. 5: Our goal is to analyze the probability on the right-hand side of (16), which is typically

simple whenever i(Xn;Y n) is a sum of IID RVs. To approach this, we further choose a scalar distribution

PX , and, as common, restrict PXn to be the product distribution PXn = P⊗n
X . However, even under this

choice, i(Xn;Y n) is not a sum of IID RVs, since PY n|Xn is not a memoryless channel. We will transform the

analysis of this probability to the analysis of sum of IID RVs in two steps, first by relating i(xn; yn) to the

information density of a memoryless Poisson channel, and second, by relating the probability of events under

the original channel to the probability of events under this Poisson channel. Concretely, let Zn be the output

of a channel, such that conditioned on Xn = xn it holds that Zi ∼ Poisson( rngnxi), and where the components

of Zn are independent. Let PZn|Xn denote the Markov kernel from the input Xn to the output Zn. Recall that

Q =
∑n

i=1 Zi, and
∑n

i=1 Yi = nrn with probability 1. Then, for any xn ∈ N
n and yn with

∑n
i=1 yi = nrn, it

holds that

PY n|Xn(yn | xn)
PZn|Xn(yn | xn)

(a)
=

PZn|Xn,Q(y
n | xn, nrn)

PZn|Xn(yn | xn) (53)

=
PZn|Xn,Q(y

n | xn, nrn)∑∞
q=0 PQ|Xn(q | xn) · PZn|Xn,Q(yn | xn, q) (54)

(b)
=

1

PQ|Xn(nrn | xn) (55)

(c)
=

(nrn)!

(nrn)nrne−nrn
, (56)

where (a) follows from the Poissonization of the multinomial (Fact 20), (b) follows since

PZn|Xn,Q(y
n | xn, q) = 0 (57)

if q 6= ∑n
i=1 yi = nrn, and (c) follows since Q | Xn = xn ∼ Poisson(nrn) (i.e., Q is independent of Xn).
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Now, Stirling’s bound (Fact 16 in Appendix A) implies that, with probability 1

√
2πnrn ≤

PY n|Xn(yn | xn)
PZn|Xn(yn | xn) ≤

√
6πnrn. (58)

Then using
∑

ai/
∑

bi ≥ mini(ai/bi) for reals {(ai, bi)}, we also have

PZn(yn)

PY n(yn)
=

∑
xn PXn(xn)PZn|Xn(yn | xn)∑
xn PXn(xn)PY n|Xn(yn | xn) ≥ 1√

6πnrn
. (59)

So, for any nrn ≥ 2,

P [i(Xn;Y n) ≤ log γ]

= P

[
log

PY n|Xn(Y n | Xn)

PY n(Y n)
≤ log γ

]
(60)

= P

[
log

PZn|Xn(Y n | Xn)

PZn(Y n)
+ log

PY n|Xn(Y n | Xn)

PZn|Xn(Y n | Xn)
+ log

PZn(Y n)

PY n(Y n)
≤ log γ

]
(61)

(a)

≤ P

[
log

PZn|Xn(Y n | Xn)

PZn(Y n)
− 1

2
log(6πnrn) ≤ log γ

]
(62)

(b)

≤ e
√
nrnP

[
log

PZn|Xn(Zn | Xn)

PZn(Zn)
− 1

2
log(6πnrn) ≤ log γ

]
(63)

(c)
= e

√
nrnP

[
n∑

i=1

log
PZ|X(Zi | Xi)

PZ(Zi)
≤ log γ +

1

2
log(6πnrn)

]
, (64)

where (a) follows since log
√
2πnrn ≥ 0, (b) follows since the probability of any event of a multinomial is

upper bounded, with a proper factor, by the probability of that event under its Poissonized version [62, Thm.

5.7 and Corollary 5.9] (see Lemma 21 in Appendix B), and (c) holds since PZn|Xn(Zn | Xn) is a product

Markov kernel, which combined with the restriction PXn = P⊗n
X results that log

PZn|Xn (Zn|Xn)
PZn (Zn) is decomposed

to a sum of IID RVs.

We continue to upper bound the probability in (64) over (Xn, Zn). Due to the pre-factor Θ(
√
nrn), we will

need to show that this probability decays sufficiently fast in order to obtain a sufficiently strong bound on the

probability in the extended Feinstein bound (16). We again bound in two steps. First, we condition on Xn = xn,

and analyze the probability with respect to (w.r.t.) the randomness of Zn and second, we analyze the resulting

upper bound w.r.t. the randomness of Xn.

We begin with the first step, for which we recall that the supp(PX) ⊆ [sn] = {1, 2, . . . , sn}, and specifically,

that PX(0) = 0. We use this assumption to establish that for any xn ∈ supp(P⊗n
X ), the RV

fxn(Zn) :=

n∑

i=1

log
PZ|X(Zi | xi)

PZ(Zi)
(65)
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concentrates fast around its expected value

I(Zn;Xn = xn) :=

n∑

i=1

E

[
log

PZ|X(Zi | xi)
PZ(Zi)

∣∣∣∣Xi = xi

]
. (66)

We achieve this using a concentration bound of Lipschitz functions of Poisson RVs due to Bobkov and Ledoux

[55, Prop. 11] stated in Lemma 27 (Appendix D). The result is as follows:

Lemma 10. Assume that supp(PX) ⊆ [sn] for some sn ∈ N+. Let xn ∈ ([sn])
⊗n. Then, for any δ ∈ (0, rngn sn)

P [fxn(Zn) < I(Zn;Xn = xn)− nδ | Xn = xn] ≤ exp

[
−n

gnδ
2

19rnsn log
2 sn

]
. (67)

Proof: To establish this, we begin by showing that if xn ∈ ([sn])
⊗n then fxn(zn) is Lipschitz with semi-

norm β = log sn, as follows. We denote by en(i) = (0, 0, . . . , 1, 0..) the ith standard basis vector in R
n. Let

Z | X = x ∼ Poisson( rngnx). Then, it holds for any x ∈ R+ and z ∈ N that

PZ|X(z + 1 | x)
PZ|X(z | x) =

e−rnx/gn
(
rnx
gn

)z+1

(z + 1)!
· z!

e−rnx/gn
(
rnx
gn

)z (68)

=
rn
gn

x

z + 1
. (69)

Let PZ be the marginal resulting from PX ⊗ PZ|X . Then, similarly,

PZ(z)

PZ(z + 1)
=

∑
x̃∈supp(PX) PX(x̃)PZ|X(z | x̃)

∑
x̃∈supp(PX) PX(x̃)PZ|X(z + 1 | x̃) (70)

≤ max
x̃∈supp(PX)

PZ|X(z | x̃)
PZ|X(z + 1 | x̃) (71)

= max
x̃∈supp(PX)

gn
rn

z + 1

x̃
. (72)

Hence,
PZ|X(z + 1 | x)
PZ|X(z | x)

PZ(z)

PZ(z + 1)
≤ max

x̃∈supp(PX)

x

x̃
≤ sn. (73)

Analogously, we can prove that

PZ|X(z + 1 | x)
PZ|X(z | x)

PZ(z)

PZ(z + 1)
≥ min

x̃∈supp(PX)

x

x̃
≥ 1. (74)

Thus, for any x ∈ supp(PX) ⊆ [sn] and z ∈ N

∣∣∣∣log
PZ|X(z + 1 | x)

PZ(z + 1)
− log

PZ|X(z | x)
PZ(z)

∣∣∣∣ ≤ log sn. (75)

The additive form of fxn(zn) then implies that

max
zn∈Nn

|fxn(zn + en(i))− fxn(zn)| ≤ log sn. (76)
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This Lipschitz property results in a left-tail concentration of fxn(Zn), by invoking a variant of the Bobkov–

Ledoux concentration inequality [55, Prop. 11] (see Lemma 27) on the function −fxn(Zn) of the Poisson

RVs Zi | Xi = x ∼ Poisson( rngnxi). Specifically, since (76) implies that fxn(zn) is Lipschitz with semi-norm

β = log sn, Lemma 27 results

P [fxn(Zn)− I(Zn;Xn = xn) < −nδ | Xn = xn] ≤ exp

[
−n · δ2

16β2λ+ 3βδ

]
, (77)

where λ ≤ maxi∈[n]
rn
gn
xi ≤ rn

gn
sn. The concentration result stated in the lemma then follows by utilizing the

assumption that xi ∈ [sn] for all i ∈ [n], and by slightly loosening the bound, using the assumption δ ≤ rn
gn
sn.

We continue to the second step in analyzing the probability in (64), which is the analysis of the randomness

of Xn. To this end, we denote

J(xn) :=

n∑

i=1

E
[
logPZ|X(Zi | xi)

∣∣Xi = xi
]

(78)

=

n∑

i=1

I(Zi;Xi = xi)−H(Zi). (79)

Lemma 11. Assume that supp(PX) ⊆ [sn], and rnsn ≥ 12πe2gn. Then,

P [J(Xn) +H(Zn) < I(Xn;Zn)− nδ] ≤ exp

[
−n · 2δ2

log2 rnsn
gn

]
. (80)

Proof: We note that E[J(Xn)] = −H(Zn | Xn), and show that J(Xn) concentrates to its expected value

using Hoeffding’s inequality (Fact 18, Appendix A). We begin by noting that it holds that

E
[
log PZ|X(Zi | xi) | Xi = xi

]
≤ 0. (81)

Also,

− logPZ|X(z | x) = log
z!

e−rnx/gn
(
rnx
gn

)z (82)

≤ rnx

gn
+ log z! +z · log

(
gn
rnx

)
. (83)

For z ≥ 1, using Stirling’s bound (Fact 16 in Appendix A)

log z!≤ z log z − z +
1

2
log(6πz), (84)

and for z = 0 it holds that log z! = 0. Hence, for Z | X = x ∼ Poisson( rngnx)

E [logZ! | X = x]
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≤ E

[(
Z logZ − Z +

1

2
log(6πZ)

)
· 1{Z > 0}

∣∣∣∣X = x

]
(85)

(a)

≤ E

[
Z logZ − Z +

1

2
log(6π(Z + 1))

∣∣∣∣X = x

]
(86)

(b)

≤ rnx

gn
log

(
1 +

rnx

gn

)
− rnx

gn
+ E

[
1

2
log(6π(Z + 1))

∣∣∣∣X = x

]
(87)

(c)

≤ rnx

gn
log

(
1 +

rnx

gn

)
− rnx

gn
+

1

2
log

(
6π

(
rnx

gn
+ 1

))
, (88)

where (a) follows by analytically completing Z logZ = 0 for Z = 0, and upper bounding logZ ≤ log(Z +1),

(b) follows since if V ∼ Poisson(λ) then, E[V log V ] ≤ λ log(1 + λ) (see Lemma 24 in Appendix B for a

proof), (c) follows from Jensen’s inequality for the concave logarithm function. So,

E
[
− logPZ|X(Z | xi) | X = xi

]
(89)

=
rnxi
gn

+ E [logZ! | X = xi] + E [Z | x = xi] · log
(

gn
rnxi

)
(90)

=
rnxi
gn

+ E [logZ! | X = xi] +
rnxi
gn

log

(
gn
rnxi

)
(91)

(a)

≤ rnxi
gn

[
1 + log

(
gn
rnxi

)]
+

rnxi
gn

log

(
1 +

rnxi
gn

)
− rnxi

gn
+

1

2
log

(
6π

(
rnxi
gn

+ 1

))
(92)

=
rnxi
gn

log

(
1 +

gn
rnxi

)
+

1

2
log

(
6π

(
rnxi
gn

+ 1

))
(93)

(b)

≤ 1 +
1

2
log

(
6π

(
rnxi
gn

+ 1

))
(94)

(c)

≤ 1

2
log

(
6πe2

(
rnsn
gn

+ 1

))
(95)

(d)

≤ 1

2
log

(
12πe2

rnsn
gn

)
, (96)

(e)

≤ log
rnsn
gn

, (97)

where (a) follows from (88), (b) follows from log(1 + t) ≤ t, (c) follows since under the assumption of the

lemma xi ≤ sn, and both (d) and (e) follow by the assumption rnsn
gn

≥ 12πe2 ≥ 1.

We deduce from (81) and (97) that J(Xn) is a sum of n independent RVs EZi|Xi
[logPZ|X(Zi | Xi)], each

of which is bounded, with probability 1, in [− log rnsn
gn

, 0]. Consequently, Hoeffding’s inequality (Fact 18 in

Appendix A) implies that

P [J(Xn) +H(Zn | Xn) < −nδ] ≤ exp

[
−n · 2δ2

log2 rnsn
gn

]
, (98)

which then implies the claim of the lemma, by adding I(Xn;Zn) to both sides in the inequality defining the

event of interest.
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Setting δn ∈ (0, rngn sn), and then log γ = nI(X;Z)− 2nδn − 1
2 log(6πnrn). Let us define the event

En(xn) := {fxn(Zn) < I(Zn;Xn = xn)− nδn} . (99)

Then,

P

[
n∑

i=1

log
PZ|X(Zi | Xi)

PZ(Zi)
≤ log γ +

1

2
log(6πnrn)

]

= P

[
n∑

i=1

log
PZ|X(Zi | Xi)

PZ(Zi)
≤ nI(Xn;Zn)− 2nδn

]
(100)

=
∑

xn∈[sn]n
P[Xn = xn] · P [fxn(Zn) ≤ nI(Xn;Zn)− 2nδn |Xn = xn] (101)

≤
∑

xn∈[sn]n
P[Xn = xn] · P [{fxn(Zn) ≤ nI(Xn;Zn)− 2nδn} ∩ {Ec

n(x
n)} |Xn = xn]

+
∑

xn∈[sn]n
P[Xn = xn] · P [En(xn) |Xn = xn] (102)

(a)

≤
∑

xn∈[sn]n
P[Xn = xn] · 1 [{I(Zn;Xn = xn)− nδn ≤ nI(Xn;Zn)− 2nδn}]

+
∑

xn∈[sn]n
P[Xn = xn] · exp

[
−n · 2δ2n

log2 rnsn
gn

]
(103)

= P [J(Xn) +H(Zn) < I(Xn;Zn)− nδ] + exp

[
−n · 2δ2n

log2 rnsn
gn

]
(104)

(b)

≤ exp

[
−n · 2δ2n

log2 rnsn
gn

]
+ exp

[
−n · gnδ

2
n

19rnsn log
2 sn

]
(105)

≤ 2 exp

[
−nδ2n ·

(
2

log2 rnsn
gn

∧ gn

19rnsn log
2 sn

)]
, (106)

where (a) follows from the concentration bound in Lemma 10, and (b) follows from Lemma 11. We substitute

this back into (64), and then in the extended Feinstein’s bound (16) to obtain

ǫnP
⊗n
X (Fn) ≤ 4e

√
nrn exp

[
−nδ2n ·

(
2

log2 rnsn
gn

∧ gn

19rnsn log
2 sn

)]
+

M

enI(X
n;Zn)−2nδn− 1

2
log(6πnrn)

. (107)

The claim of the proposition is then proved by choosing M = exp
[
nI(X;Z)− 3nδn − 1

2 log(6πnrn)
]
, and

performing minor algebraic simplifications.

We now turn to prove Prop. 7.

Proof of Prop. 7: We analyze the reduction in mutual information over the Poisson channel, resulting

from modifying the ideal gamma distribution of X̃ to the truncated X := X̃|Sn
, and then to upward rounded

X := ⌈X⌉. We begin by analyzing the reduction in mutual information due to the truncation operation, using

the I-MMPE relation (Theorem 8). We begin with the following general result.
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Lemma 12. Let U be a non-negative RV, which satisfies E[U2 log2 U ] < ∞, and let U ≡ U|S be distributed as

U truncated to an interval S := [smin, smax] ⊂ R+, as in Definition 6 where smin < 1 < smax. Let a > 0 be

given, assume that Va | U = u ∼ Poisson(au), and let V a | U = u ∼ Poisson(au). Then, for any γ > 0

I(U ;Vγ) ≤ I(U ;V γ) + γ · smax · P [U ∈ [0, smin)]

+ γE [U logU · 1 {U ∈ (smax,∞)}]

+ γE

[
U log

1

smin

· 1 {U ∈ (smax,∞)}
]

(108)

Proof: Let a > 0 be given. Let âU(v) = E[aU | Va = v] be the MMPE estimator of aU based on

the measurement Va. Similarly, let âU(v) = E[aU | V a = v] be the MMPE estimator of aU based on the

measurement V a. Recall that ℓ(u, v) = v − u+ u log u
v is Poisson error function. Then,

mmpe(aU)

= E

[
ℓ
(
aU, âU (Va)

)]
(109)

(a)

≤ E

[
ℓ
(
aU, âU(Va)

)]
(110)

(b)
= aE

[
ℓ
(
U, Û(Va)

)]
(111)

= aE
[
ℓ
(
U, Û (Va)

) ∣∣∣U ∈ S
]
· P[U ∈ S] + aE

[
ℓ
(
U, Û(Va)

)
· 1{U 6∈ S}

]
(112)

(c)
= aE

[
ℓ
(
U, Û (V a)

)]
· P[U ∈ S] + aE

[
ℓ
(
U, Û(Va)

)
· 1{U 6∈ S}

]
(113)

(d)

≤ mmpe(aU) + aE
[
ℓ
(
U, Û(Va)

)
· 1{U 6∈ S}

]
(114)

= mmpe(aU) + aE
[
ℓ
(
U, Û(Va)

)
· 1 {U ∈ [0, smin)}

]
+ aE

[
ℓ
(
U, Û(Va)

)
· 1 {U ∈ (smax,∞)}

]
(115)

(e)

≤ mmpe(aU) + aE [ℓ (U, smax) · 1 {U ∈ [0, smin)}] + aE [ℓ (U, smin) · 1 {U ∈ (smax,∞)}] (116)

(f)

≤ mmpe(aU) + asmax · P [U ∈ [0, smin)] + a · E
[
U log

U

smin

· 1 {U ∈ (smax,∞)}
]
, (117)

where (a) follows from the sub-optimality of âU for estimating aU , (b) follows from the homogeneity property

of the loss function ℓ(au, av) = aℓ(u, v) for a ≥ 0, (c) follows since conditioned on U ∈ S , the distribution

of U equals that of U and the distribution of Va equals that of V a, (d) follows again from the homogeneity

property and P[U ∈ S] ≤ 1 and the term multiplying P[U ∈ S] is non-negative (the expected value of the

Poisson loss function), (e) follows since Û(Va) ∈ S = [smin, smax] and since the loss function v → ℓ(u, v) is

monotonic increasing (resp. decreasing) for v ≥ u (resp. v ≤ u), (f) follows since for u ≤ smin < 1 it holds

that

ℓ (u, smax) = smax − u+ u log
u

smax

≤ smax + u log
u

smax

≤ smax, (118)
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and for u ≥ smax > 1 > smin it holds that

ℓ (u, smin) = smin − u+ u log
u

smin

≤ smin − u+ u log
u

smin

≤ u log
u

smin

. (119)

Using twice the I-MMPE relation (Theorem 8), and the bound (117) directly leads to the stated claim of the

lemma, as

I(U ;Vγ) =

∫ γ

0
mmpe(aU)

da

a
(120)

≤
∫ γ

0
mmpe(aU )

da

a
+

∫ γ

0

{
asmax · P [U ∈ [0, smin)] + a · E

[
U log

U

smin

· 1 {U ∈ (smax,∞)}
]}

da

a
(121)

≤ I(U ;V γ) + γ · smax · P [U ∈ [0, smin)] + γE

[
U log

U

smin

· 1 {U ∈ (smax,∞)}
]
. (122)

Lemma 12 shows that the difference in mutual information between the input U and its truncated version

consists of three terms. Our next goal is to specifically evaluate these terms for the distribution and support of

interest, and show that they are negligible on(1).

Lemma 13. Let X̃ ∼ Gamma(12 , 2gn), and let smin =
1

g1+3ρ
n

and smax = g1+ρ
n for some ρ ∈ (0, 1). Then,

smax · P
[
X̃ ∈ [0, smin)

]
≤ 1

g
ρ/2
n

. (123)

Also, there exists n0(ρ) such that for all n ≥ n0(ρ)

E

[
X̃ log X̃ · 1

{
X̃ ∈ (smax,∞)

}]
≤ exp

[
−gρn

4

]
, (124)

and

E

[
X̃ log

1

smin

· 1
{
X̃ ∈ (smax,∞)

}]
≤ exp

[
−gρn

4

]
. (125)

Proof: We begin with the first term in (123). From the properties of the gamma probability distribution

function (PDF) of consideration (Lemma 25 in Appendix C), it holds that

smax · P
[
X̃ ∈ [0, smin)

]
= g1+ρ

n · P
[
X̃ ≤ 1

g1+3ρ
n

]
(126)

≤ g1+ρ
n

g
(2+3ρ)/2
n

≤ 1

g
ρ/2
n

. (127)

We now move on to the second term in (124). For t ∈ [g1+ρ
n ,∞), using the expression for the gamma PDF
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(see Appendix C)

E

[
X̃ log X̃ · 1

{
X̃ ≥ g1+ρ

n

}]
=

∫ ∞

g1+ρ
n

1√
2πx̃gn

e−x̃/(2gn) · x̃ log x̃ · dx̃ (128)

(a)

≤
∫ ∞

g1+ρ
n

x̃√
2πgn

e−x̃/(2gn) · dx̃ (129)

=

√
2gn
π

∫ ∞

g1+ρ
n

x̃

2gn
e−x̃/(2gn) · dx̃ (130)

(b)
=

(2gn)
3/2

√
π

∫ ∞

1

2
gρ
n

se−s · ds (131)

(c)
=

(2gn)
3/2

√
π

(
1

2
gρn + 1

)
e−

1

2
gρ
n (132)

(d)

≤ 4 exp

[
−1

2
gρn +

(
3

2
+ ρ

)
log gn

]
, (133)

where (a) follows since log x̃ ≤
√
x̃ for x̃ ∈ R+, (b) is using the change of variables s = x̃

2gn
, (c) by solving

the integral
∫
se−s · ds = −(s + 1)e−s, and (d) follows since gn ≥ 1. We finally move to the third term in

(124). It holds that

E

[
X̃ · 1

{
X̃ ≥ g1+ρ

n

}] (a)

≤ E

[
X̃3/2 · 1

{
X̃ ∈ (smax,∞)

}]
(134)

(b)

≤ exp

[
−gρn

3

]
, (135)

where (a) holds since smax = g1+ρ
n ≥ 1, and (b) holds as for the second term. The third term is bounded as

(124) since

log
1

smin

= (1 + 3ρ) log gn ≤ 4 log gn ≤ exp

[
−gρn
12

]
. (136)

Up until now we have considered the effect on the mutual information of the Poisson channel when truncating

the asymptotically optimal input X̃ ∼ Gamma(12 , 2gn) to X = X̃|S . We next consider the effect on the mutual

information of upward rounding a continuous input X to an integer input X = ⌈X⌉. To this end, we will

decompose the mutual information I(X;Z) = H(Z)−H(Z | X) and analyze how each of these terms changes

due to the rounding operation.

Let Ψ(µ) : R+ → R+ be the maximum entropy for non-negative integer distributions, under a mean constraint

µ. With a slight abuse of the notation in (3) we denote

Ψ(µ) := max
PA

{H(A): supp(PA) ⊆ N+, E[A] ≤ µ} . (137)

Lemma 14. Ψ(µ) = (µ+ 1) · hbin
(

1
µ+1

)
. The function µ → Ψ(µ) is monotonic non-decreasing and concave

in µ.
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Proof: It is well known that the maximum entropy distribution among distributions over the non-negative

integers with a mean constraint is geometric. For completeness, a standard proof is as follows. Let A ∼ PA

where pi := PA(i) for i ∈ N. Assume that PA satisfies the mean constraint. Let Q
(λ)
A be a distribution defined

by

qi(λ) =
eλ(µ−i)

∑
j e

λ(µ−j)
(138)

for i ∈ N. Then, for any λ ≥ 0

H(PA) ≤
∞∑

i=0

−pi log pi + λ

(
µ−

∞∑

i=0

ipi

)
(139)

=

∞∑

i=0

pi log
eλ(µ−i)

pi
(140)

= −
∞∑

i=0

pi log
pi

qi(λ)
+ log


∑

j

eλ(µ−j)


 (141)

= −DKL(PA || Q(λ)
A ) + log


∑

j

eλ(µ−j)


 (142)

≤ log


∑

j

eλ(µ−j)


 , (143)

where equality holds if both EP [A] =
∑∞

i=0 ipi = µ and PA ≡ Q
(λ)
A holds. Now, Q

(λ)
A is readily identified as

a geometric distribution over N = {0, 1, 2, ..}. Using the standard parametrization of the geometric distribution,

if A ∼ Geo(θ) then E[A] = 1−θ
θ and H(A) = hbin(θ)

θ . Thus, H(PA) = (µ + 1) · hbin( 1
µ+1 ), and this is the

maximum entropy. Monotonicity is trivial, and concavity is assured by the concavity of the entropy, or directly

from the closed-form expression of Ψ(µ).

Lemma 14 will next be used to compare the output entropy of the Poisson channel when the input is a

continuous X, to that entropy when the input is an integer rounded version of X. We will then also compare

the conditional entropy H(Z | X) under the different input distributions can be easily compared, and combining

these two results we obtain a relation between the mutual information values. Concretely:

Lemma 15. Assume that cgn ≤ rn ≤ egn for some c ∈ (0, e) and let ρ ∈ (0, 1) be given, and assume that

gn → ∞ as n → ∞. Let X̃ ∼ Gamma(12 , 2gn), X = X̃|Sn
with Sn = [g

−(1+3ρ)
n , g1+ρ

n ] and let X = ⌈X⌉ be its

upward rounding to the nearest integer. Let Z ∼ Poisson( rngnX) and let Z ∼ Poisson( rngnX). Then,

I(X;Z) ≥ I(X ;Z)−Ψ

(
rn
gn

)
− on(1). (144)

Proof: First, we compare the conditional entropy values H(Z | X) and H(Z | X). Let fX denote the
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density of X w.r.t. the Lebesgue measure λ, and let PX denote the PMF of X. We have that

H(Z | X) =

∫ ∞

0
fX(x) ·H(Z | X = x) · λ(dx) (145)

where H(Z | X = x) is the entropy of a Poisson RV, and, similarly,

H(Z | X) =

∞∑

i=0

PX(i) ·H(Z | X = i). (146)

We show that the contribution to this sum by “small” indices i ∈ [⌊g1−ρ
n ⌋] is negligible. Indeed, by Lemma 23,

it holds that for any i ∈ [⌊g1−ρ
n ⌋]

H(Z | X = i) ≤ 1

2
log

[
2πe

(
i
rn
gn

+
1

12

)]
(147)

≤ 1

2
log

[
2πe

(
2
rn
gρn

+
1

12

)]
(148)

≤ 1

2
log(35rn) (149)

assuming that ρ is sufficiently small so that 2 rn
gρ
n
≥ 1

12 . Now, Lemma 25 (Appendix C) implies that it holds that

P[X̃ 6∈ Sn] = P[X̃ ≤ g−(1+3ρ)
n ] + P[X̃ ≥ g1+ρ

n ] (150)

≤ 1

g
1+3ρ/2
n

+ 2e−gρ
n/2 (151)

≤ 1

2
(152)

for all n ≥ n0(ρ). Hence, using again (C.5) Lemma 25, it holds that

P
[
X ≤ ⌊g1−ρ

n ⌋
]
= P

[
X ≤ ⌊g1−ρ

n ⌋
]

(153)

≤ P[X̃ ≤ g1−ρ
n ]

P[X̃ ∈ Sn]
(154)

≤
1/gρ/2

n

P[X̃ ∈ Sn]
(155)

≤ 2

g
ρ/2
n

. (156)

Furthermore, assume that i ≥ g1−ρ
n . Then, for any x ∈ [i− 1, i] it holds from the asymptotic expression for the

Poisson entropy in Lemma 23 (Appendix B) that

H(Z | X = i)−H(Z | X = x) (157)

=
1

2
log

[
2πei

rn
gn

]
+O

(
1

i rngn

)
− 1

2
log

[
2πex

rn
gn

]
+O

(
1

x rn
gn

)
(158)

=
1

2
log

[
i

x

]
+O

(
1

x rn
gn

)
(159)
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≤ 1

2
log

[
x+ 1

x

]
+O

(
1

x rn
gn

)
(160)

= O

(
1

cx

)
(161)

= O

(
1

cg1−ρ
n

)
. (162)

Thus,

H(Z | X) =

⌊g1−ρ
n ⌋∑

i=0

PX(i) ·H(Z | X = i) +

∞∑

i=⌈g1−ρ
n ⌉

PX(i) ·H(Z | X = i) (163)

(a)

≤ P[X ≤ ⌊g1−ρ
n ⌋] ·H(Z | X = ⌊g1−ρ

n ⌋) +
∞∑

i=⌈g1−ρ
n ⌉

PX(i) ·H(Z | X = i) (164)

(b)

≤ 2

g
ρ/2
n

· 1
2
log(35rn) +

∞∑

i=⌈g1−ρ
n ⌉

PX(i) ·H(Z | X = i) (165)

=
2

g
ρ/2
n

· 1
2
log(35rn) +

∞∑

i=⌈g1−ρ
n ⌉

[∫ i

i−1
fX(x)λ(dx)

]
·H(Z | X = i) (166)

(c)

≤ 2

g
ρ/2
n

· 1
2
log(35rn) +

∫ ∞

⌈g1−ρ
n ⌉

fX(x) ·H(Z | X = x) · λ(dx) +O

(
1

cg1−ρ
n

)
(167)

≤ on(1) +

∫ ∞

0
fX(x) ·H(Z | X = x) · λ(dx) (168)

= on(1) +H(Z | X), (169)

where (a) follows from the monotonicity of the Poisson entropy as a function of its parameter, (b) follows from

(156) and (149), (c) follows from (162).

Second, we compare the output entropy H(Z) and H(Z). To this end, we decompose X = X +D where

D ∈ [0, 1] (note, however, that X and D are statistically dependent). Conditioned on X = x, or equivalently, on

(X,D) = (x, d), it holds that Z ∼ Poisson( rngn (x+ d)). By the infinite divisibility of the Poisson distribution,

we may write Z
d
= Z + Ź, where Z ∼ Poisson( rngnx) and Ź ∼ Poisson( rngnd) are statistically independent. We

thus let Z = Z+ Ź, and then note that that Z ≥ Z, with probability 1, and that both are integer valued discrete

RVs. We continue similarly to the bound in [61, Prop. 8]. It holds that

H(Z)−H(Z) ≤ H(Z,Z)−H(Z) (170)

= H(Z | Z) (171)

= H(Z − Z | Z) (172)

(a)

≤ E
[
Ψ
(
E
[
Z − Z | Z

])]
(173)

(b)

≤ Ψ
(
E
[
Z − Z

])
(174)
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= Ψ

(
rn
gn

E
[
X −X

])
(175)

(c)

≤ Ψ

(
rn
gn

)
, (176)

where (a) follows from the operational definition of Ψ(µ), (b) follows since µ → Ψ(µ) is concave (Lemma

14) along with Jensen’s inequality, and (c) follows since µ → Ψ(µ) is monotonic non-decreasing in µ (Lemma

14) and as 0 ≤ X −X ≤ 1.

Concluding, utilizing both (169) and (176) we obtain the claimed bound.

We may now conclude the proof of Prop. 7. Let ρ ∈ (0, 1) be given, and let Sn = [g
−(1+3ρ)
n , g1+ρ

n ]. Let

X̃ ∼ Gamma(12 , 2gn), let X = X̃|Sn
, and let X = ⌈X⌉. Let Z̃ | X̃ = x̃ ∼ Poisson( rngn x̃), Z | X = x ∼

Poisson( rngnx), and Z | X = x ∼ Poisson( rngnx). It then holds for all n ≥ n0 (which depends on c ρ, {gn}),

I(X;Z)
(a)

≥ I(X ;Z)−Ψ

(
rn
gn

)
− on(1) (177)

(b)

≥ I(X̃ ; Z̃)− rn
gn

·
(

1

g
ρ/2
n

+ 2e−
1

4
gρ
n

)
−Ψ

(
rn
gn

)
− on(1) (178)

= I(X̃ ; Z̃)−Ψ

(
rn
gn

)
− on(1) (179)

(c)

≥ 1

2
log rn −Ψ

(
rn
gn

)
− on(1), (180)

where (a) follows from Lemma 15, (b) follows from from Lemmas 12 and13, and (c) follows from the known

lower bound [16, Thm. 7] on the average-power-constrained Poisson channel.

We continue with the proof of Prop. 9:

Proof of Prop. 9: Essentially, our goal is to analyze the probability that 1
n

∑n
i=1Xi is significantly larger

than its non-truncated mean (that is, the mean of Gamma(12 , 2gn) distribution). Recall that {Xi} are drawn

from a rounded and truncated Gamma distribution. We next mainly discuss the truncation operation, as this has

larger effect on the analysis of that probability than the rounding operation. Let us describe a generative model

for RVs whose distribution is the truncated gamma. Let {X̃i,j}i∈[n],j∈N+
be a double-index array of IID RVs,

where X̃i,j ∼ Gamma(12 , 2gn). Let

J∗(i) := min
{
j ∈ N+: X̃i,j ∈ Sn

}
(181)

where Sn = [g
−(1+3ρ)
n , g1+ρ

n ], and let X i = X̃J∗(i). Then, Xi is distributed according to the Gamma(12 , 2gn)

distribution, truncated to Sn, as required. Now, using Lemma 25 (Appendix C), it holds for any fixed (i, j) that

P

[
X̃i,j 6∈ Sn

]
= P

[
X̃i,j ≤ g−(1+3ρ)

n

]
+ P

[
X̃i,j ≥ g1+ρ

n

]
≤ 1

g
1+3ρ/2
n

+ 2e−gρ
n/2 ≤ 2

g
1+3ρ/2
n

, (182)

where the last inequality holds for all n sufficiently large. Let L :=
∑n

i=1 1{J∗(i) > 1} be the number of
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indices for which X̃i,1 6∈ Sn, and so also Xi 6= X̃i,1. Hence, E[L] ≤ 2n
g
1+3ρ/2
n

, that is, J∗(i) = 1 for almost

all i ∈ [n]. More sharply, the event G := {L ≥ 3n
g1+3ρ/2
n

} has low probability, and indeed, the relative Chernoff

inequality (setting ξ = 1
2 in Fact 19 in Appendix A) implies that

P[G] = P

[
L ≥ 3n

g
1+3ρ/2
n

]
≤ exp

[
−1

5

n

g
1+3ρ/2
n

]
. (183)

So, letting t > 0, we may decompose the probability of interest as

P

[
1

n

n∑

i=1

X i − gn ≥ t

]
≤ P

[{
1

n

n∑

i=1

X i − gn ≥ t

}⋂
Gc

]
+ P[G] (184)

(a)

≤
⌈ 3n

g
1+3ρ/2
n

⌉
∑

ℓ=0

P

[{
1

n

n∑

i=1

Xi − gn ≥ t

}⋂
{L = ℓ}

]
+ exp

[
−1

5

n

g
1+3ρ/2
n

]
(185)

≤
⌈ 3n

g
1+3ρ/2
n

⌉
∑

ℓ=0

P

[{
1

n

n∑

i=1

Xi − gn ≥ t

}⋂
{L = ℓ}

]
+ on(1), (186)

where (a) follows from the assumption n = Ω(g1+ζ
n ) and ρ ≤ 2ζ

3 . We focus on a single term in the summation

above. Given that L = ℓ there are ℓ indices for which Xi 6= X̃i,1. There are
(
n
ℓ

)
possible ways to choose those

indices, and further conditioning on one specific choice, all the conditional probabilities are the same. Hence,

P

[{
1

n

n∑

i=1

X i − gn ≥ t

}⋂
{L = ℓ}

]

(a)

≤
(
n

ℓ

)
· P
[{

1

n

(
ℓ∑

i=1

X i +

n∑

i=ℓ+1

X̃i,1

)
− gn ≥ t

}
∩

ℓ⋂

i=1

{X i 6= X̃i,1} ∩
n⋂

i=ℓ+1

{X i = X̃i,1}
]

(187)

≤
(
n

ℓ

)
· P
[
1

n

(
ℓ∑

i=1

Xi +

n∑

i=ℓ+1

X̃i,1

)
− gn ≥ t

]
(188)

(b)

≤
(
n

ℓ

)
· P
[
1

n

(
n∑

i=ℓ+1

X̃i,1

)
+ ℓ

g1+ρ
n

n
− gn ≥ t

]
(189)

=

(
n

ℓ

)
· P
[

1

n− ℓ

n∑

i=ℓ+1

(
X̃i,1 − gn

)
+

ℓ(g1+ρ
n − gn)

n− ℓ
≥ n

n− ℓ
t

]
(190)

(c)

≤
(
n

ℓ

)
· P
[

1

n− ℓ

n∑

i=ℓ+1

(
X̃i,1 − gn

)
≥ t− 1

]
(191)

(d)

≤
(
n

ℓ

)
·
{
exp

[
−(n− ℓ)(t− 1)

4gn

]
+ exp

[
−(n− ℓ)(t− 1)2

8g2n

]}
(192)

(e)

≤ exp

[
15n

g
1+3ρ/2
n

log(gn)

]
·
{
exp

[
−(n− ℓ)(t− 1)

4gn

]
+ exp

[
−(n− ℓ)(t− 1)2

8g2n

]}
, (193)

where (a) follows from the union bound, (b) follows since Xi ∈ Sn = [g
−(1+3ρ)
n , g1+ρ

n ] with probability 1, (c)
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follows since n = Ω(gn) and so

ℓ(g1+ρ
n − gn)

n− ℓ
≤

3n
g1+3ρ/2
n

g1+ρ
n

n− 3n
g1+3ρ/2
n

=
3

g
ρ/2
n − 3

g1+ρ
n

≤ 1 (194)

for all n large enough (which depends on {gn}) as gn → ∞, (d) holds since 1
n−ℓ

∑n
i=ℓ+1 X̃i,1 ∼ Gamma(n−ℓ

2 , 2gn
n−ℓ)

so that E[ 1
n−ℓ

∑n
i=ℓ+1 X̃i,1] = gn, and using the tail inequality of sub-gamma RVs in Lemma 26 (Appendix C),

(e) follows since ℓ < n
2 , and as

(
n
ℓ

)
is monotonic non-increasing for ℓ < n

2 ; Then, by Stirling’s bound (Fact 17

in Appendix A) (
n

ℓ

)
≤ exp

[
n · hbin

(
3

g
1+3ρ/2
n

)]
≤ exp

[
15n

g
1+3ρ/2
n

log(gn)

]
, (195)

where the last inequality assumes that ρ ∈ (0, 1), and uses hbin(t) ≤ −2t log t for t ∈ [0, 12 ], which is valid

since 3
g1+3ρ/2
n

≤ 1
2 for all n ≥ n0(ρ) as gn → ∞. So, choosing t = g

3/4+ρ
n + 1 := t in (193) assures that

P

[{
1

n

n∑

i=1

X i − gn ≥ t

}⋂
{L = ℓ}

]

≤ exp

[
15n

g
1+3ρ/2
n

log(gn)

]
·
{
exp

[
−n(1− ℓ

n)g
3/4+ρ
n

4gn

]
+ exp

[
−n(1− ℓ

n)g
3/2+2ρ
n

8g2n

]}
(196)

≤ exp

[
−c

n

g
1/4−ρ
n

]
, (197)

where the last inequality holds since (1 − ℓ
n) → 1 as n → ∞ assuming ℓ ≤ ⌈ 3n

g1+3ρ/2
n

⌉ = o(n). Hence, from

(186)

P

[{
1

n

n∑

i=1

Xi − gn ≥ t

}⋂
Gc

]
≤ ⌈ 3n

g
1+3ρ/2
n

⌉ · exp
[
−c

n

g
1/4−ρ
n

]
= on(1), (198)

which, by substituting back to 186 then implies that

P

[
1

n

n∑

i=1

Xi − gn ≥ t

]
= on(1). (199)

Consequently, and as ρ ∈ (0, 1/4) was assumed, it holds for all n sufficiently large that

n∑

i=1

X i ≤ n
(
gn + g3/4+ρ

n + 1
)
=: ngn(1 + ςn) (200)

with probability larger than 1/2, where ςn := g
−1/4+ρ
n +g−1

n = on(1). Now, the upward integer rounding implies

that Xi = ⌈X i⌉ for all i ∈ [n]. Letting ςn := g
−1/4+ρ
n + 2g−1

n = on(1), it also holds that

n∑

i=1

Xi ≤
n∑

i=1

(X i + 1) ≤ ngn(1 + ςn) (201)

with probability larger than 1/2. Since
∑n

i=1 Xi is integer, there must exists k ∈ N such that 0 ≤ k ≤ ngn(1+ςn)
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such that

P

[
n∑

i=1

Xi = k

]
≥ 1

2ngn(1 + ςn)
≥ 1

3ngn
, (202)

for all n large enough.

We are now ready to prove the achievability bound of Theorem 2.

Proof of the achievability bound of Theorem 2 : Recall the assumption n = Ω(g1+ζ
n ). Choose ρ ∈ (0, 14∧

ζ
4),

and χ ∈ (0, 1) and set g
n
= gn

1+χ . Then, using Prop. 9 for g
n

instead of gn implies that there exists τn ∈ [gn]

such that

PXn [Fn(τn)] ≥
1

3ng
n

(203)

for all n sufficiently large. We also note that the input distribution of X used by Prop. 9 is supported on [1, sn]

with sn = ⌈g1+ρ
n ⌉. Let us choose δn = g

−ζ/8
n = on(1). Then, under the theorem assumptions δn ∈ (0, rngn sn)

as and so the condition of Prop. 5 is fulfilled. It then implies that there is a codebook of cardinality M which

satisfies

1

n
logM ≥ I(X;Z) − 3δn − 1

2n
log(6πnrn) (204)

(a)

≥ 1

2
log rn − on(1) −Ψ

(
rn
g
n

)
(205)

(b)

≥ 1

2
log rn − on(1)−Ψ

(
rn
g
n

)
, (206)

where the last inequality follows from Prop. 7. At the same time, the maximal error probability of the codebook

satisfies

ǫn
(a)

≤ 33ng
n


√nrn exp


−nδ2n ·


 2

log2
(
rngρn

) ∧ 1

19rngρn(1 + ρ)2 log2 g
n




+ e−nδn


 (207)

(b)

≤ n4

[
exp

[
−c

nδ2n

g1+2ρ
n

·
]
+ e−nδn

]
(208)

(c)

≤ n4
[
exp

[
−cgζ−2ρ

n δ2n·
]
+ e−nδn

]
(209)

(d)

≤ n4
[
exp

[
−cgζ/2n δ2n·

]
+ e−nδn

]
(210)

(e)
= on(1), (211)

where (a) is obtained from (203) and setting sn = g1+ρ
n

, (b) follows by simplifying with n ≥ g
n
≥ gρ

n
,and

n ≥ √
rn as well as n ≥ 33 and rn ≤ egn ≤ e(1 + χ)gn, which all hold for sufficiently large n, and some

numerical constant c > 0, (c) holds since n = Ω(g1+ζ
n ) for some ζ > 0, (d) holds due to the choice ρ ≤ ζ

4 , and

(e) holds by the choice δn = g
−ζ/8
n = on(1). The result then follows by taking n → ∞, and then χ → 0.
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V. CONCLUSION AND FUTURE RESEARCH

In this paper, we have considered the capacity of frequency-based channel with multinomial sampling, provided

upper and lower bounds on its capacity, and applied it to the log-cardinality scaling of optimal DNA-storage

codebooks in the short-molecule regime. There are multiple avenues for future research. First, while our bounds

are rather tight, there is still a gap between the upper and lower bound, and specifically, it is interesting to

settle the optimal choice of the normalized number of samples rn. Second, the achievable bound of Theorem

2 is only applicable under the condition n = Ω(g1+ζ
n ). This condition is limiting, and specifically, it limits the

application of the achievable bound to the DNA storage channel to β > 1
2 log|A| , that is, very short molecules

are excluded. Inspecting the proof, this condition stems from the concentration inequality for the information

spectrum in the Poisson channel in Prop. 5, which results an upper bound on the concentration probability,

for which one of the terms is exp[−nδ2n · gn
19rnsn log2 sn

], under the assumption that the input X is supported

on [sn]. However, in order for the truncation of the optimal input of the Poisson channel to [sn] to have a

negligible effect on the mutual information, Prop. 7 requires that sn = ⌈g1+ρ
n ⌉ for some ρ > 0. In turn, roughly

speaking, the above probability only decays when n = ω(gn), and this is the source of the condition in the

theorem. Consequently, possible removal of this condition requires finding tighter bounds on the concentration

of the information spectrum of the Poisson channel, or a completely different approach. Third, it is of interest

to analyze noisy sequencing channels. Inspecting the proof of Theorem 2, it appears that this would require

analyzing the capacity of a channel with input Xn and output Zn | Xn ∼ Poisson(X̂nWn) (where X̂n is

the normalized version of Xn). This is a Poisson channel with non-standard memory between the symbols,

that is, inter-symbol interference [63], or a multiple-input multiple-output (MIMO) Poisson channel. Informally

speaking, even if Wn is a invertible matrix, there are two differences compared to the noiseless case. First,

the input Xn is still restricted as
∑

X̂i ≤ 1, and the channel X̂nWn may reduce this sum at the input of the

Poisson channel. Second, the achievable lower bound on the capacity of the Poisson channel is obtained by

lower bounding the output entropy H(Zn) with the differential entropy of the input H(Zn) ≥ h(Xn) [16, Prop.

11]. Here, h(X̂nWn) has a reduced differential entropy by log detWn, which will further reduce the capacity.

A rigorous analysis appears challenging, and thus is left for future work. Finally, as common, a more accurate

analysis of the decay of the error probability ǫn and establishing a strong converse are also of interest.

APPENDIX A

USEFUL MATHEMATICAL RESULTS

Fact 16 (Stirling’s bound). For n ∈ N

√
2πn

(n
e

)n
≤ n!≤

√
2πen

(n
e

)n
. (A.1)



35

Fact 17. For kn = o(n) as n → ∞, it holds that

(
n

k

)
∼
(ne
k

)k 1√
2πk

exp

(
−k2(1 + o(1))

2n

)
(A.2)

where an ∼ bn means that limn→∞
an

bn
= 1. Also,

(
n

k

)
≤ 2nhbin(k/n). (A.3)

Fact 18 (Hoeffding’s inequality [64]). If {Xi}i∈[n] are independent RVs and ai ≤ Xi ≤ bi with probability 1

then

P

[
n∑

i=1

Xi − E[Xi] ≥ t

]
≤ exp

[
− 2t2∑n

i=1(bi − ai)2

]
. (A.4)

Fact 19 (The relative (multiplicative) Chernoff bound). For Bi ∼ Bernoulli(p) IID for i ∈ [n]

P

[
1

n

n∑

i=1

Bi − p ≥ ξp

]
≤ exp

[
− ξ2p

2 + ξ

]
(A.5)

for any ξ > 0.

APPENDIX B

PROPERTIES OF THE POISSON DISTRIBUTION

Fact 20 (Poissonization of the multinomial distribution). Let M̃ ∼ Poisson(M), and let G̃ be a random vector

such that G̃ ∼ Multinomial(M̃ , (p1, p2, . . . pJ}) conditioned on M̃ , where
∑

j∈[J ] pj = 1 and pj > 0. Then,

{G̃(j)}j∈[J ] are statistically independent and G̃(j) ∼ Poisson(Mpj) (unconditioned on M̃ ).

Fact 20 can be verified by spelling out the conditional PMF of G̃ conditioned on M̃ [62, Thm. 5.6] in case

{pj} are all equal, and can be easily extended to the non-uniform case (as in, e.g., [65, Lecture 11, Thm. 3.2]).

The following then follows from [62, Corollary 5.9]:

Lemma 21. Let G ∼ Multinomial(M, (p1, p2, . . . pJ}), and let G̃ be an independent Poisson vector of the

same dimension so that E[G̃(j)] = E[G(j)] = Mpj . Then, for any event E

P [G ∈ E ] ≤
√
eM · P

[
G̃ ∈ E

]
. (B.1)

Lemma 22 (Chernoff’s bound for Poisson RVs [62, Thm. 5.4]). Let Z ∼ Poisson(λ). Then, for α ≤ 1

P [Z ≤ αλ] ≤ e−λ
( e
α

)αλ
= e−λ(1−α log(e/α)) ≤ e−

λ

2
(1−α)2 . (B.2)

Lemma 23 (Poisson entropy). Let Zλ ∼ Poisson(λ). Then,

H(Zλ) =
1

2
log [2πeλ] +O

(
1

λ

)
. (B.3)
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Also,

H(Zλ) ≤
1

2
log

[
2πe

(
λ+

1

12

)]
. (B.4)

Finally, H(Zλ) is monotonic non-decreasing in λ.

Proof: For the first properties, see [16, Lemma 10, Lemma 17b, Lemma 19]. For the monotonicity property,

note that by the infinite divisibility of the Poisson distribution, if λ2 > λ1 then Zλ2

d
= Zλ1

+ Z̆ where Zλ1
and

Z̆ ∼ Poisson(λ2 − λ1) are independent. As conditioning reduces entropy

H(Zλ2
) = H(Zλ1

+ Z̆) ≥ H(Zλ1
+ Z̆ | Z̆) = H(Zλ1

| Z̆) = H(Zλ1
). (B.5)

Lemma 24. Let V ∼ Poisson(λ). Then,

E [V log V ] ≤ λ log(1 + λ). (B.6)

Proof: We follow the idea in [66]. For any v > 0 and u > 0 it holds that log v
u ≤ v

u − 1 and so

v log v = v log
v

u
+ v log u ≤ v2

u
+ v log

u

e
. (B.7)

Hence,

E [V log V ] ≤ E

[
V 2

u
+ V log

u

e

]
(B.8)

=
λ+ λ2

u
+ λ log

u

e
(B.9)

= λ log(1 + λ), (B.10)

when choosing u = 1 + λ.

APPENDIX C

PROPERTIES OF THE GAMMA DISTRIBUTION

Let X ∼ Gamma(k, θ) where k > 0 and θ > 0. Then, the PDF is

fGamma (x | k, θ) = 1

Γ(k)θk
xk−1e−x/θ (C.1)

and the CDF is

FGamma (x | k, θ) = 1

Γ(k)
γ(k,

x

θ
) (C.2)

where

γ (k, x) :=

∫ x

0
tk−1e−tdt (C.3)
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is the incomplete gamma function. For the special case of k = 1
2 it holds that Γ(12 ) =

√
π, and

γ

(
1

2
, x

)
=

√
π erf(

√
x) = 2

∫ √
x

0
e−t2dt, (C.4)

where erf(x) = 1 − 2Q(
√
2x) and Q(x) = 1√

2π

∫∞
z e−t2/2dt is the Q-function (the tail distribution function

of the standard normal distribution). Also recall that for X ∼ Gamma(k, θ) it holds that E[X] = kθ and

Var[X] = kθ2.

Lemma 25. Let X ∼ Gamma(12 , 2gn). Then, for η ∈ (−∞, 1)

P [X ≤ gηn] ≤
1

g
(1−η)/2
n

(C.5)

and for any ρ ∈ (0,∞)

P
[
X ≥ g1+ρ

n

]
≤ 2e−gρ

n/2. (C.6)

Thus,

P
[
X 6∈ [gρn, g

1+ρ
n ]

]
≤ [1 + on(1)] ·

1

g
(1−ρ)/2
n

. (C.7)

Proof: It holds that

P [X ≤ gηn] = FGamma

(
gηn | 1

2
, 2gn

)
(C.8)

=
2√
π

∫ √

g
η
n

2gn

0
e−t2dt (C.9)

≤ 2√
π
·
√

gηn
2gn

(C.10)

≤ 1

g
(1−η)/2
n

. (C.11)

Next,

P
[
X ≥ g1+ρ

n

]
≤ 1− FGamma

(
g1+ρ
n | 1

2
, 2gn

)
(C.12)

= 1− erf

(√
gρn
2

)
(C.13)

= 2Q(gρ/2n ) (C.14)

≤ 2e−gρ
n/2, (C.15)

using Chernoff’s bound on the Q-function.

Lemma 26. Let X ∼ Gamma(k, θ) where k > 0 and θ > 0. Then, for t > 0

P [X ≥ E[X] + t] = P [X ≥ kθ + t] (C.16)
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≤ e−
t

2θ + e−
t2

4kθ2 . (C.17)

Proof: It holds that Var[X] = kθ2. Now, [67, Sec. 2.4] states that X − E[X] is sub-gamma RV on the

right tail, with parameters (v, c) = (kθ2, θ). Hence, for any s ≥ 0

P

[
X − E[X] ≥

√
2kθ2s+ θs

]
≤ e−s. (C.18)

Taking t =
√
2kθ2s + θs we have that t ≤ 2(

√
2kθ2s ∨ θs) (a sum is less than twice the maximum), and so

s ≥ t
2θ ∧ t2

4kθ2 . Hence,

e−s ≤ exp

[
−
(

t

2θ
∧ t2

4kθ2

)]
≤ e−

t

2θ + e−
t2

4kθ2 . (C.19)

APPENDIX D

POISSON CONCENTRATION OF LIPSCHITZ FUNCTIONS

Assume that V ∼ Poisson(λ). Then, Bobkov and Ledoux have shown the following logarithmic Sobolev

inequality [55, Corollary 4]: It holds for any strictly positive function f :N → R+ that

Ent [f(V )] := E [f(V ) log(f(V )]− E [f(V )]E [log(f(V )] (D.1)

≤ λE

[
1

f(V )
· |Df(V )|2

]
, (D.2)

where Df(v) := f(v + 1)− f(v) for v ∈ N is the discrete derivative. Consequently, they have shown that for

any function g:N → R with maxv∈N|Dg(v)|≤ τ it holds that [55, Eq. (24)]

Ent
[
eg(V )

]
≤ λe2τ · E

[
|Dg(V )|2·eg(V )

]
. (D.3)

In turn, this implies the following concentration result:

Lemma 27 (Poisson concentration of Lipschitz functions, a variant of [55, Prop. 11]). Let Vi ∼ Poisson(λi)

for i ∈ [n] be independent, and let λ ≥ maxi∈[n] λi be given. Also let f :Nn → R be such that

max
vn∈Nn

|f(vn + en(i))− f(vn)| ≤ β (D.4)

where en(i) is the ith standard basis vector in R
n. Then, for any t > 0

P [f(V n)− E[f(V n)] > nδ] ≤ exp

[
−n · δ2

16β2λ+ 3βδ

]
(D.5)

Proof: The condition in the lemma trivially implies that choosing α2 = nβ2 results

n∑

i=1

|f(vn + en(i))− f(vn)|2 ≤ α2 (D.6)
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in the notation of [55, Prop. 11]. The proof therein then relies on the tensorization property (subadditivity) of the

entropy functional, which is stated for IID {Vi}i∈[n], but holds more generally when they are just independent

[67, Thm. 4.22]. Then, since

Ent
[
eg(Vi)

]
≤ λe2τ · E

[
|Dg(Vi)|2·eg(Vi)

]
, (D.7)

Herbst argument and the entropy method can be used in the exact same manner to show that

P [f(V n)− E[f(V n)] > nδ] ≤ exp

[
−nδ

4β
log

(
1 +

δ

2βλ

)]
. (D.8)

(we set α2 = nβ2, c1 = λ and c2 = 2 in the bound therein). Finally, we note that

u log (1 + u) = (1 + u) log(1 + u)− u+ u− log(1 + u) (D.9)

(∗)
≥ u2

2(1 + u/3)
+ u− log(1 + u) (D.10)

(∗∗)
≥ u2

2(1 + u/3)
, (D.11)

where (∗) was stated in [67, Exercise 2.8], and (∗∗) follows from u ≥ log(1 + u) for u ≥ 0. Using this bound

in (D.8) with u = δ
2βλ

establishes the claim of the lemma.
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