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Abstract

Vortices produce locally concentrated field configurations and are solutions to the

nonlinear partial differential equations systems of complicated structures. In this pa-

per, we establish the existence and uniqueness for solutions of the gauged non–Abelian

vortices in a coupled 4D–2D quantum field theory by researching the nonlinear elliptic

equations systems with exponential terms in R
2 using the calculus of variations. In ad-

dition, we obtain the asymptotic behavior of the solutions at infinity and the quantized

integrals in R
2.
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1 Introduction

Gauge fields originated from classical electromagnetism and have become the cornerstone

of modern physics after Yang and Mills [34] generalized to non–Abelian. The study of the

partial differential equation problems arising in field theory is of great importance for research

areas at the intersection of fundamental mathematics and mathematical physics. Depending

on the spatial dimensions, the static topological solutions for the gauge field equations can be

categorized into four types of solutions, namely, instantons, monopoles, vortices and domain

walls, which are collectively referred to as solitons [22]. Solitons play a fundamental role in

gauge field theory, including quantum field theory and classical field theory and are crucial

for describing a variety of fundamental interactions and rich phenomena [22].

Vortices, as two–dimensional static solutions of the gauge field equations, have always

attracted attention and interest due to their essential applications in various fundamental

areas of theoretical physics. While describing physical theories in different contexts, vortices

∗E-mail address: 104753180630@vip.henu.edu.cn.
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usually play very significant roles in understanding key phenomena. In the Ginzburg–Landau

superconductivity theory, magnetically charged vortices, the simplest Abelian vortices, were

first discovered in 1957 by Abrikosov [2] in the form of a typical mixed state in a type II

superconductor [16]. In 1973, Nielsen and Olesen [23] demonstrated that vortices exist in

the Abelian–Higgs model in the context of quantum field theory. Furthermore, according

to the Julia–Zee theorem [17], the vortex equations in the classical Abelian Higgs model

are known as the Ginzburg–Landau equations in the static limit. In high–energy physics,

cosmic strings [15] are the gravitational vortices created when the Einstein gravity theory

is coupled to the Abelian–Higgs model, which contributed to the formation of matter in

the early universe [1, 31]. Subsequently, non–Abelian vortices which generally arise in the

color–flavor locked [26] phases of the non–Abelian gauge theory have attracted lots of at-

tention as a consequence of their meaningful roles in grand unified theories. In the unified

theory of the Glasgow–Weinberg–Salam weak forces and the electromagnetic forces, vortex

solutions are generated by W and Z particle fields [4] and lead to the anti–Meissner ef-

fect [5, 33]. Currently, the electroweak theory of Glashow–Weinberg–Salam [3] is not only

a vital unified field theory available to describe fundamental interactions, but also one of

the most successful non–Abelian gauge field theories. One of the fundamental problems in

particle physics is that of quark confinement [21,26] which is the inability of the quarks that

make up elementary particles to be observed in isolation. The vortices generated by non–

Abelian gauge fields can make the attraction between quarks and anti–quarks independent

of their distance, thus achieving linear confinement between quarks, theoretical physicists

have conducted extensive research on them and derived a wide range of nonlinear vortex

equations with rich features [13,30]. In addition, both electrically and magnetically charged

vortices have applications in a vast range of areas in condensed matter physics such as the

quantum Hall effect [27], high temperature superconductors [19], the Bose–Einstein con-

densates [18], holographic superconductors [14, 29], superfluids [25], optics [6] and quantum

chromodynamics [11].

It is worth noting that we will refer to vortices generated by systems where the gauge

fields are coupled to part or all of the color–flavor diagonal global symmetry as gauged

non–Abelian vortices in this paper. The purpose of the present paper is to establish the

existence and uniqueness theorem for the gauged non–Abelian vortex model in a coupled

4D–2D quantum field theory proposed in the work of Bolognesi et al. [7]. Inspired by the

methods of [8–10,20,33], we obtain existence and uniqueness results for non–Abelian vortex

solutions and build the explicit decay estimates for planar solutions.

We complete this section with a brief overview of the paper, explaining how the above

results are organized. The paper is setup as follows. In Section 2, we introduce a sys-

tem of nonlinear ordinary differential equations from the gauged non–Abelian vortex model

proposed in [7]. In Section 3, we derive the governing system which is a nonlinear elliptic

equations system with exponential terms from the model in Section 2, and present the ex-

istence and uniqueness theorem over the full plane. In Section 4, we establish the existence

and uniqueness result for solutions of the vortex equations over the full plane, applying the

calculus of variations first developed by Jaffe and Taubes [16] for the Abelian Higgs model
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and the convexity of an action functional. Furthermore, we demonstrate the exponential

decay properties of the solutions and their derivative at infinity and utilize them to acquire

the anticipated quantized integrals in R
2.

2 Gauged non–Abelian vortex model

In this section, we start by a review of the non–Abelian vortex model with gauge group

derived by Bolognesi et al. [7]. Here we will give a rough description, as details can be found

in [7]. In the classical Abelian Higgs model, one starts from a complex scalar field Q that lies

in the fundamental or defining representation of U(1). Bolognesi et al. study the extension

of this theory into the situation that the gauge group of the type

G = U0(1)×GL ×GR, (2.1)

where GL = GR = SU(N). The matter sector is composed of a complex scalar field Q in the

dual fundamental representation of the two SU(N) factors with unit charge with respect to

U0(1). Following Bolognesi et al. [7], we consider the truncated bosonic sector of the N = 2

supersymmetric theory BPS–saturated action as

L = −1

2
Tr(F (l)

µνF
(l)µν)− 1

2
Tr(F (r)

µν F
(r)µν)− 1

4
fµνf

µν + Tr(DµQ
†DµQ)

− g20
2
(TrQ†Q− v20)

2 − g2l
2
(TrtaQQ†)2 − g2r

2
(TrtaQ†Q)2, (2.2)

where v20 = Nξ and † denotes the Hermitian conjugate. The covariant derivative is defined

by

DµQ = ∂µQ− iglA
(l)
µ Q− ig0aµQ+ igrQA

(r)
µ . (2.3)

In the vacuum, the scalar–field condensate takes the form

〈Q〉 =
√

ξ1N , (2.4)

leaving a diagonal SU(N) gauge group unbroken. The fields

Aµ =
1

√

g2r + g2l

(

grA
(l)
µ + glA

(r)
µ

)

(2.5)

keep massless in the bulk, however the orthogonal combination

Bµ =
1

√

g2r + g2l

(

grA
(l)
µ − glA

(r)
µ

)

(2.6)

and the U(1) field aµ become massive. The nontrivial first homotopy group

π1

(

U0(1)× SUL(N)× SUR(N)

SUL+R(N)

)

= Z, (2.7)

implies that the system allows stable vortices.
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We are interested in stable vortices. Now, we assume that all the field configurations

depend on the transverse coordinates x and y only. Therefore, the vortex solutions can be

derived by the BPS completion of the expression for the tension:

T =

∫

d2x

{

1

2

(

f12 + g0
(

TrQ†Q−Nξ
))2

+ Tr

[

(

F
(r)
12 − grt

aTr
(

Q†Qta
)

)2

+
(

F
(l)
12 + glt

aTr
(

Q†taQ
)

)2
]

+ Tr|D1Q + iD2Q|2 + g0Nξf12

}

. (2.8)

According to (2.8), we arrive at the BPS equations

D1Q+ iD2Q = 0, (2.9)

f12 + g0 (TrQ†Q−Nξ) = 0, (2.10)

F
(r)
12 − grt

aTr (Q†Qta) = 0, (2.11)

F
(l)
12 + glt

aTr (Q†taQ) = 0. (2.12)

For a minimal vortex with a fixed orientation in color–flavor, for example (1, 1N−1), we can

choose the radially symmetric ansatz in the scalar field

Q =

(

eiθQ1(r) 0

0 Q2(r)1N−1

)

, (2.13)

while the Abelian and non–Abelian gauge fields can be expressed as the diagonal form

ai = − 1

g0

ǫijxj

r2
1− f

N
, (2.14)

A
(l)
i = − gl

g′2
ǫijxj

r2
1− fNA

NCN

TN2−1, (2.15)

A
(r)
i =

gr

g′2
ǫijxj

r2
1− fNA

NCN

TN2−1, (2.16)

where

TN2−1 ≡ CN

(

N − 1 0

0 −1N−1

)

, CN ≡ 1
√

2N(N − 1)
, g′ ≡

√

g2l + g2r . (2.17)

From the BPS equation (2.9)–(2.12) and the above ansatz, setting r = |x|, then we can get

that the profile functions satisfy

f ′

r
− g20N

[

Q2
1 + (N − 1)Q2

2 −Nξ
]

= 0, (2.18)

f ′
NA

r
− g′2

Q2
1 −Q2

2

2
= 0, (2.19)

rQ′
1 −Q1

(

(N − 1)fNA + f

N

)

= 0, (2.20)

rQ′
2 −Q2

(−fNA + f

N

)

= 0 (2.21)
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and the boundary conditions

f(r) = 1, fNA(r) = 1, as r → 0, (2.22)

f(r) = 0, fNA(r) = 0, Q1(r) =
√

ξ, Q2(r) =
√

ξ, as r → ∞. (2.23)

It should be noted that the finite vortex points of both Q1 and Q2 are concentrated at

the origin in the radial symmetry situation, that is to say, Q1(r) = Q2(r) = 0 as r → 0.

Moreover, in view of the equations (2.18)–(2.21), we see that f is not equal to fNA and Q1

is not equal to Q2. For the nonlinear ordinary differential equations (2.18)–(2.21) subject

to the boundary conditions (2.22)–(2.23), we know that the existence of solutions can be

obtained by numerical methods in literature [7].

3 Governing system of nonlinear elliptic equations

In this section, we derive the nonlinear elliptic equations to be studied and state our main

result. Writing g20 = g′2 = ξ = 1, we can render the nonlinear ordinary differential equations

(2.18)–(2.21) into

f ′

r
−N

[

Q2
1 + (N − 1)Q2

2 −N
]

= 0, (3.1)

f ′
NA

r
− Q2

1 −Q2
2

2
= 0, (3.2)

rQ′
1 −Q1

(

(N − 1)fNA + f

N

)

= 0, (3.3)

rQ′
2 −Q2

(−fNA + f

N

)

= 0. (3.4)

It is worth noting that Q1(r) 6= 0 for all r ∈ (0,+∞). If otherwise, Q1(r) = 0 at some

r ∈ (0,+∞), then Q1(r) ≡ 0 for all r ∈ (0,+∞) by the continuous dependence theorem for

solutions of the initial value problems of ordinary differential equations. Similarly, Q2(r) 6= 0

for all r ∈ (0,+∞). As a consequence, when r > 0 the equations (3.3)–(3.4) are recast into

Nr (lnQ1)
′ = (N − 1)fNA + f, (3.5)

Nr (lnQ2)
′ = −fNA + f. (3.6)

For convenience, we may introduce the new variable u1 = lnQ1, u2 = lnQ2. Then inserting

the above equations into (3.1)–(3.2), we arrive at the following equations

1

r
(ru′′1 + u′1 + (N − 1) (ru′′2 + u′2)) = N

(

e2u1 + (N − 1)e2u2 −N
)

, (3.7)

1

r
(ru′′1 + u′1 − (ru′′2 + u′2)) =

1

2

(

e2u1 − e2u2

)

, (3.8)
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where N > 1 is an integer. By a direct computation, we obtain the following system of

nonlinear elliptic equations over R2

△u1(x) =
(

3

2
− 1

2N

)

(

e2u1(x) − 1
)

+

(

N − 3

2
+

1

2N

)

(

e2u2(x) − 1
)

+ 4πn1δ(x), (3.9)

△u2(x) =
(

1− 1

2N

)

(

e2u1(x) − 1
)

+

(

N − 1 +
1

2N

)

(

e2u2(x) − 1
)

+ 4πn2δ(x), (3.10)

where δ(x) is the Dirac distribution on R
2 concentrated at the origin and the positive integers

n1, n2 are the multiplicities of the vortices corresponding to u1 and u2. We are interested in

the existence of solutions of (3.9)–(3.10) for the case of the full plane. Therefore, we consider

the system (3.9)–(3.10) over the plane with the topological boundary condition

u1(x) → 0, u2(x) → 0, as |x| → ∞. (3.11)

Defining the matrix A

A =







3

2
− 1

2N
N − 3

2
+

1

2N

1− 1

2N
N − 1 +

1

2N






,







α β

α− 1

2
β +

1

2






, (3.12)

then the equations (3.9)–(3.10) can be rewritten in a compact form

△ui =
2
∑

j=1

aij
(

e2uj − 1
)

+ 4πniδ(x), i = 1, 2. (3.13)

It is easily to see that our model has motion equations with the similar structure as those

studied by Yang [32]. We optimize the approach in [9, 10, 24, 32, 33] to handle this system.

In fact, letting N = 2 in (3.13) gives the same equations as those arising in the generalized

Abelian Higgs theory with (U(1)m) model studied in [32, 33],

△u1 =
5

4

(

e2u1 − 1
)

+
3

4

(

e2u2 − 1
)

+ 4πn1δ(x), (3.14)

△u2 =
3

4

(

e2u1 − 1
)

+
5

4

(

e2u2 − 1
)

+ 4πn2δ(x). (3.15)

As shown in [32], it is possible to establish an existence and uniqueness theorem of the

system (3.13) in R
2 for more general matrices A. An explicit fulfillment of this idea is

provided by our equations. Special attention should be paid here to the fact that even

though the existence and uniqueness for solutions of the system (3.13) established in R
2 is

similar to the theorem shown in [32], our matrix A does not satisfy the assumptions used to

derive the decay estimates in [32] since the matrix A is not a positive definite real symmetric

matrix. It should be emphasized that we can transform the real matrix A into a positive

definite real symmetric matrix thereby obtaining the demonstration of the decay estimates.

Furthermore this decay estimates are closely related to the quantized integrals in the full

plane. Next we will use the variational method of Jaffe and Taubes [16] to get the existence

for solutions of the nonlinear elliptic equations (3.9)–(3.10) over the full plane.

Concerning above situations, our main existence and uniqueness theorem for solutions of

(3.9)–(3.10) are stated as follows.
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Theorem 3.1. The nonlinear elliptic equations (3.9)–(3.10) over the full plane R
2 subject

to the topological boundary condition (3.11) always have a unique solution. Furthermore,

this solution fulfills the boundary condition (3.11) exponentially fast. More precisely, for any

small number ε ∈ (0, 1), there hold the following sharp decay estimates at infinity,

|pu1(x)|2 + |2u2(x)|2 ≤ C(ε)e−(1−ε)
√
λ0|x|, (3.16)

|∇ (mu1(x) + 2u2(x))|2 + |∇ (pu1(x) + qu2(x))|2 ≤ C(ε)e−(1−ε)
√
λ|x|, (3.17)

where

m =
(2α− 1)2

2β (λ3 − α)
, p =

2α− 1

β
, q =

4 (λ4 − α)

2α− 1
, (3.18)

C(ε) is a positive constant depending only on ε and λ0, λ, λ3, λ4 are as defined by (4.47),

(4.58) and (4.55). Besides, there hold the quantized integrals in the full plane,

∫

R2

{

[(m+ 2)α− 1]
(

e2u1(x) − 1
)

+ [(m+ 2)β + 1]
(

e2u2(x) − 1
)}

dx = −4π (mn1 + 2n2) ,

∫

R2

{[

(p+ q)α− q

2

]

(

e2u1(x) − 1
)

+
[

(p+ q) β +
q

2

]

(

e2u2(x) − 1
)

}

dx = −4π (pn1 + qn2) ,

(3.19)

where α, β are shown in (3.12) and n1, n2 are the multiplicities of the vortices corresponding

to u1 and u2.

It is worth stressing that the facts stated in (3.19) actually appear in the form of the flux

quantization in the corresponding quantum field theory model. The above theorem will be

established in the subsequent sections.

4 Proof of the main theorem

In this section, we study the existence and uniqueness of solutions to equations (3.9)–(3.10)

under the topological boundary condition (3.11) and establish the decay estimates for the

solutions, which allow us to obtain the quantized integrals over the full plane.

4.1 Existence and uniqueness of the critical point

As in [16], we need to take the background function

u0i (x) = −niln
(

1 + τ |x|−2
)

, i = 1, 2, τ > 0, (4.1)

then we can see that

△u0i (x) = −ϕi(x) + 4πniδ(x), ϕi(x) =
4niτ

(τ + |x|2)2
, i = 1, 2. (4.2)
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It is significant noting that
∫

R2 ϕi(x)dx = 4πni(i = 1, 2). Setting ui(x) = u0i (x) + Pi(x)(i =

1, 2), the system (3.13) becomes

△P1(x) =α
(

e2(u
0

1
(x)+P1(x)) − 1

)

+β
(

e2(u
0

2
(x)+P2(x)) − 1

)

+ ϕ1(x), (4.3)

△P2(x) =

(

α− 1

2

)

(

e2(u
0

1
(x)+P1(x)) − 1

)

+

(

β +
1

2

)

(

e2(u
0

2
(x)+P2(x)) − 1

)

+ ϕ2(x). (4.4)

To proceed, we use boldfaced letters to indicate column vectors in R
2. With

P = (P1, P2)
τ
, E =

(

e2(u
0

1
+P1) − 1, e2(u

0

2
+P2) − 1

)τ

, Φ = (ϕ1, ϕ2)
τ (4.5)

and the notation set in (3.12), the equations (4.3)–(4.4) can be written in the matrix form

△P = AE+Φ. (4.6)

This system is challenging since the coefficient matrix A is not a positive definite or not even

symmetric. Then in order to tackle it, we try to look for a variational principle.

To seek the variational principle, we will apply the property of the matrix A. It is clear

that the matrix A is simply nonsingular. According to the more general Crout decomposition

theorem, we can see that there exist two 2× 2 matrices, L = (Ljk) which is lower triangular

and R = (Rjk) which is upper triangular, such that

A = LR. (4.7)

Furthermore, by the scheme [28], we can expictly constructed L and R from the coefficient

matrix A as follows

L =







1 0

2N − 1

3N − 1
1






=







1 0

1− 1

2α
1






, (4.8)

R =









3

2
− 1

2N
N − 3

2
+

1

2N

0
N2

3N − 1









=







α β

0
α + β

2α






, (4.9)

which will be conducive to the existence of a solution of the system (4.6). With the new

variable vector

w = L−1P or P = Lw, (4.10)

then the transformed system becomes

△w = RE+ L−1Φ. (4.11)

Moreover, it is convenient to rewrite the above system in the component form

△w1 = α
(

e2(u
0

1
+w1) − 1

)

+ β
(

e2[u
0

2
+(1− 1

2α)w1+w2] − 1
)

+ ψ1, (4.12)

△w2 =
α + β

2α

(

e2[u
0

2
+(1− 1

2α)w1+w2] − 1
)

+ ψ2, (4.13)
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where ψ1 = ϕ1, ψ2 = ( 1
2α
−1)ϕ1+ϕ2. In order to see the variational structure of (4.12)–(4.13)

clearly, it is beneficial to reformulate them equivalently as

2α− 1

αβ
△w1 =

2α− 1

β

(

e2(u
0

1
+w1) − 1

)

+

(

2− 1

α

)

(

e2[u
0

2
+(1− 1

2α)w1+w2] − 1
)

+
2α− 1

αβ
ψ1, (4.14)

4α

α + β
△w2 = 2

(

e2[u
0

2
+(1− 1

2α)w1+w2] − 1
)

+
4α

α + β
ψ2. (4.15)

To accommodate the boundary condition (3.11), we will work on the standard Sobolev

space W 1,2(R2)×W 1,2(R2). It is obvious to see that equations (4.14)–(4.15) are the Euler-

Lagrange equations of the following action functional

I(w1, w2) =

∫

R2

{

2α− 1

2αβ
|∇w1|2 +

2α

α + β
|∇w2|2 + e2u

0

2

(

e2[(1−
1

2α)w1+w2] − 1
)

+
2α− 1

2β
e2u

0

1

(

e2w1 − 1
)

+
2α− 1

αβ
ψ1w1 −

(2α− 1) (α + β)

αβ
w1

+
4α

α + β
ψ2w2 − 2w2

}

dx. (4.16)

There is no difficulty in checking that the functional I is indeed a C1-functional for w1,

w2 ∈ W 1,2(R2). Then we need only to find the critical points of the functional I defined

in (4.16) for purpose of solving the equations (4.12)–(4.13). To this end, we apply a direct

method developed in [10].

To obtain the critical points of the functional I, our first step is to show that it is coercive

over W 1,2(R2). The form of (4.16) allows us to get that its Fréchet derivative satisfies

DI(w1, w2)(w1, w2) =

∫

R2

{

2α− 1

αβ
|∇w1|2 +

4α

α+ β
|∇w2|2 +

(

e2u
0

2 − 1
)

[(

2− 1

α

)

w1 + 2w2

]

+
2α− 1

β

(

e2u
0

1 − 1
)

w1 +
2α− 1

β
e2u

0

1

(

e2w1 − 1
)

w1

+ e2u
0

2

(

e(2−
1

α)w1+2w2 − 1
)

[(

2− 1

α

)

w1 + 2w2

]

+
2α− 1

αβ
ψ1w1 +

4α

α + β
ψ2w2

}

dx. (4.17)

Noting that

|∇w1|2 + |∇w2|2 = |∇P1|2 + |∇ (P2 − γP1)|2

≤ |∇P1|2 + |∇P2|2 + γ2 |∇P1|2 + 2γ |(∇P1,∇P2)|
≤
(

1 + γ + γ2
)

|∇P1|2 + (1 + γ) |∇P2|2

< 3
(

|∇P1|2 + |∇P2|2
)

, (4.18)
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where γ = 2N−1
3N−1

∈
(

1
2
, 2
3

)

. On the other hand, we have

|∇w1|2 + |∇w2|2 ≥
(

1 + γ2
)

|∇P1|2 + |∇P2|2 − 2γ |(∇P1,∇P2)|
≥
(

1 + γ2 − γ

2ε

)

|∇P1|2 + (1− 2γε) |∇P2|2

≥
(

5

4
− 1

3ε

)

|∇P1|2 +
(

1− 4ε

3

)

|∇P2|2 , (4.19)

for any ε ∈
(

4
15
, 3
4

)

. Taking ε = 1
3
, then

|∇w1|2 + |∇w2|2 ≥
1

4
|∇P1|2 +

5

9
|∇P2|2 >

5

9

(

|∇P1|2 + |∇P2|2
)

. (4.20)

Combining (4.18) and (4.20), we can get

5

9

(

|∇P1|2 + |∇P2|2
)

< |∇w1|2 + |∇w2|2 < 3
(

|∇P1|2 + |∇P2|2
)

. (4.21)

Similarly, it can be inferred that

5

9

(

P 2
1 + P 2

2

)

< w2
1 + w2

2 < 3
(

P 2
1 + P 2

2

)

. (4.22)

In view of (4.17), (4.21) and (4.22), we observe that

DI(w1, w2)(w1, w2)−
5

9
min

{

2α− 1

2β
,

4α

α + β

}∫

R2

(

|∇P1|2 + |∇P2|2
)

dx

≥
∫

R2

{

2α− 1

β

(

e2(u
0

1
+P1) − 1

)

P1 + 2

[

2α− 1

2αβ
ψ1 +

1− 2α

α + β
ψ2

]

P1

+ 2
(

e2(u
0

2
+P2) − 1

)

P2 +
4α

α + β
ψ2P2

}

dx

=
2α− 1

2β

∫

R2

2P1

(

e2(u
0

1
+P1) − 1 +X1

)

dx+

∫

R2

2P2

(

e2(u
0

2
+P2) − 1 +X2

)

dx

≡ 2α− 1

2β
M1(P1) +M2(P2), (4.23)

where

X1 =
1

α
ψ1 −

2β

α + β
ψ2, X2 =

2α

α + β
ψ2.

Next we need to estimate the term Mi(Pi)(i = 1, 2) on the right-hand side of the above. To

proceed further, as in [16], we can choose a decomposition Pi = Pi+ − Pi−(i = 1, 2) with

P+ = max{0, P} and P− = max{0,−P} for P ∈ R. Then Mi(Pi) =Mi(Pi+) +Mi(−Pi−).

According to the elementary inequality et − 1 ≥ t for t ∈ R, we can obtain

M1(P1+) ≥
∫

R2

(2P1+)
2dx+

∫

R2

2P1+

(

2u01 +X1

)

dx

≥ 1

2
‖2P1+‖22 −

1

2

∫

R2

(

2u01 +X1

)2
dx

≥ 1

2

∫

R2

(2P1+)
2

1 + 2P1+
dx− C, (4.24)
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where we have used the fact u01, X1 ∈ L2(R2). Here and what follows we use C to denote

a general positive constant that can take different values at different places. Then applying

the inequality

1− e−t ≥ t

1 + t
, ∀t ≥ 0,

we can estimate M1(−P1−) as follows

M1(−P1−) =

∫

R2

2P1−

(

1− e2(u
0

1
−P1−) −X1

)

dx

=

∫

R2

2P1−

[

e2u
0

1

(

1− e−2P1−

)

− e2u
0

1 + 1−X1

]

dx

≥
∫

R2

2P1−

(

e2u
0

1

2P1−
1 + 2P1−

− e2u
0

1 + 1−X1

)

dx

=

∫

R2

2P1−
1 + 2P1−

[

(1 + 2P1−)
(

1−X1 − e2u
0

1

)

+ 2P1−e
2u0

1

]

dx

=

∫

R2

2P1−
1 + 2P1−

(

1−X1 − e2u
0

1

)

dx+

∫

R2

(2P1−)
2

1 + 2P1−
(1−X1) dx. (4.25)

Noting the definition of (4.2), then we can choose τ > 0 sufficiently large such that

X1(x) <
1

2
, ∀x ∈ R

2.

In view of the fact 1− e2u
0

1 and X1 both belong to L2(R2), we see that

∫

R2

2P1−
1 + 2P1−

∣

∣

∣
1−X1 − e2u

0

1

∣

∣

∣
dx ≤ ε

∫

R2

(2P1−)
2

(1 + 2P1−)2
dx+ C(ε), (4.26)

where ε > 0 could be taken to be arbitrarily small. Therefore, combining (4.26) and (4.25),

we find that

M1(−P1−) ≥
1

4

∫

R2

(2P1−)
2

(1 + 2P1−)2
dx− C1(ε), (4.27)

provided that ε < 1
4
. Recall the lower estimate for M1(P1+) obtained earlier. As a conse-

quence, we find that

M1(P1) ≥
1

4

∫

R2

(2P1)
2

(1 + |2P1|)2
dx− C. (4.28)

Analogous estimates could be made for M2(P2)

M2(P2) ≥
1

4

∫

R2

(2P2)
2

(1 + |2P2|)2
dx− C. (4.29)

Hence, from (4.28) and (4.29), we arrive at

DI(w1, w2)(w1, w2)−
5

9
min

{

2α− 1

2β
,

4α

α + β

}
∫

R2

(

|∇P1|2 + |∇P2|2
)

dx

≥ 2α− 1

8β

∫

R2

(2P1)
2

(1 + |2P1|)2
dx+

1

4

∫

R2

(2P2)
2

(1 + |2P2|)2
dx− C. (4.30)
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In order to analyze ‖2Pi‖L2(R2) (i = 1, 2), we now stress the Gagliardo–Nirenberg–Sobolev

embedding inequality [12] over W 1,2(R2)
∫

R2

f 4dx ≤ 2

∫

R2

f 2dx

∫

R2

|∇f |2dx, ∀f ∈ W 1,2(R2). (4.31)

We will use (4.31) to prove the desired coercivity inequality. In reality, by virtue of (4.31),

we can obtain
(
∫

R2

(2Pi)
2dx

)2

=

(
∫

R2

|2Pi|
1 + |2Pi|

(1 + |2Pi|) |2Pi|dx
)2

≤
∫

R2

(2Pi)
2

(1 + |2Pi|)2
dx

∫

R2

(1 + |2Pi|)2 |2Pi|2dx

≤ 4

∫

R2

(2Pi)
2

(1 + |2Pi|)2
dx

∫

R2

|2Pi|2dx
(

1 +

∫

R2

|2∇Pi|2dx
)

≤ 1

2

(
∫

R2

|2Pi|2dx
)2

+ 32

{

1 +

[

∫

R2

(2Pi)
2

(1 + |2Pi|)2
dx

]4

+

(
∫

R2

|2∇Pi|2dx
)4
}

, i = 1, 2 (4.32)

which yields

‖2Pi‖L2(R2) ≤ C

[

1 +

∫

R2

(2Pi)
2

(1 + |2Pi|)2
dx+

∫

R2

|2∇Pi|2dx
]

, i = 1, 2, (4.33)

where C denote a positive constant. Therefore, inserting (4.21), (4.22) and (4.33) into (4.30),

we get

DI(w1, w2)(w1, w2) ≥ C1

(

‖w1‖W 1,2(R2) + ‖w2‖W 1,2(R2)

)

− C2 (4.34)

for suitable positive constants C1 and C2, which gives the expected coerciveness of the

functional I over W 1,2(R2). As a result of the coercive lower bound (4.34), we can now infer

that the action functional I admits a critical point in the space W 1,2(R2), which follows in

a standard path [33].

Our next step is to utilize (4.34) to show that the system (4.12)–(4.13) has a solution by

confirming that (4.16) has a critical point. In fact, in view of (4.34), we can let R > 0 large

enough such that

inf
{

DI(w1, w2)
∣

∣

∣
w1, w2 ∈ W 1,2(R2), ‖w1‖W 1,2(R2) + ‖w2‖W 1,2(R2) = R

}

≥ 1 (4.35)

and consider the optimization problem

η = min
{

I(w1, w2)
∣

∣

∣
‖w1‖W 1,2(R2) + ‖w2‖W 1,2(R2) ≤ R

}

. (4.36)

Let {(w(n)
1 , w

(n)
2 )} be a minimizing sequence of the problem (4.36). Since {(w(n)

1 , w
(n)
2 )} is

bounded in W 1,2(R2), then its subsequence is weakly convergent. Without loss of generality,

12



we may assume {(w(n)
1 , w

(n)
2 )} is also weakly converges to {(w1, w2)} in W 1,2(R2). It is

worth noting that the functional (4.16) is continuous, differentiable and convex in W 1,2(R2),

thus the functional I is weakly lower semi-continuous. According to the Fatou lemma, we

have I(w1, w2) ≤ lim
n→∞

I(w
(n)
1 , w

(n)
2 ) = η. On the other hand, since the norm of W 1,2(R2)

is also weakly lower semicontinuous, we obtain ‖w1‖W 1,2(R2) + ‖w2‖W 1,2(R2) ≤ R, that is

I(w1, w2) ∈ η. Hence I(w1, w2) ≥ η. In summary, I(w1, w2) = η. In other words, the

minimization problem (4.36) admits a solution (w1, w2).

In the following, to show that (w1, w2) is a critical point of I which is a weak solution of

equations (4.12)–(4.13), we only need to argue that (w1, w2) is an interior point or

‖w1‖W 1,2(R2) + ‖w2‖W 1,2(R2) < R.

Suppose by contradiction that ‖w1‖W 1,2(R2) + ‖w2‖W 1,2(R2) = R. Since

‖(w1, w2)− t (w1, w2)‖W 1,2(R2) = (1− t)R < R, ∀t ∈ (0, 1), (4.37)

that is, (wt
1, w

t
2) = (1− t)(w1, w2) is an interior point for any t ∈ (0, 1), then we can get

I
(

wt
1, w

t
2

)

≥ I (w1, w2) = η. (4.38)

However, due to (4.35), we arrive that

lim
t→0

I (wt
1, w

t
2)− I (w1, w2)

t
=

d

dt

(

I
(

wt
1, w

t
2

))

∣

∣

∣

t=0
= −DI (w1, w2) (w1, w2) ≤ −1. (4.39)

Consequently, when t > 0 is sufficiently small, in virtue of (4.39), we can know that

I
(

wt
1, w

t
2

)

< I (w1, w2) = η, (4.40)

which contradicts (4.38). Thus we can attain that (w1, w2) must be an interior point for the

problem (4.36) which as a critical point of I in W 1,2(R2) solves the system (4.12)–(4.13).

Finally, the strict convexity of I already says that such a critical point must be unique.

Therefore, the functional I can only have at most one critical point in the space W 1,2(R2)

and uniqueness of a solution to (4.12)–(4.13) follows. Indeed, such a uniqueness outcome

follows in a more straightforward manner from the structure of the functional. It is worth to

emphasize that the part in the integrand of the functional (4.16) can be recast in addition

to the derivative terms of (w1, w2) as

F (w1, w2) = e2u
0

2

(

e2[(1−
1

2α)w1+w2] − 1
)

+
2α− 1

2β
e2u

0

1

(

e2w1 − 1
)

+
2α− 1

αβ
ψ1w1

− (2α− 1) (α + β)

αβ
w1 +

4α

α + β
ψ2w2 − 2w2, (4.41)

whose Hessian matrix is not hard verified to be positive definite. As a consequence, the

functional I is strictly convex, which implies (w1, w2) is the unique critical point of I in the

space W 1,2(R2). Then the existence and uniqueness of a critical point of I in W 1,2(R2) is

obtained. Furthermore, this critical point is a smooth solution of the system (4.12)–(4.13)

in view of the standard elliptic regularity theory.
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4.2 Asymptotic behavior and quantized integrals

Now we research the behavior the solution at infinity. For the solution gained in the previous

part, we first derive some pointwise decay properties by elliptic Lp–estimates and the stan-

dard embedding inequalities, and then estimate the asymptotic decay rates of the solutions

and their derivatives near infinity through the maximum principle. As an application of the

decay estimate, we can compute the quantized integrals described in Theorem 3.1.

In the following, we claim that if h ∈ W 1,2(R2), then eh − 1 ∈ L2(R2). Since the Sobolev

embedding inequality in two dimensions

‖h‖Lk(R2) ≤
(

π

(

k − 2

2

))
k−2

2k

‖h‖W 1,2(R2) , h ∈ W 1,2(R2), k > 2 (4.42)

and the MacLaurin series
(

eh − 1
)2

= h2 +
∞
∑

k=3

2k − 2

k!
hk, (4.43)

we have seen that

∥

∥eh − 1
∥

∥

2

L2(R2)
≤ ‖h‖2Lk(R2) +

∞
∑

k=3

2k − 2

k!

(

π

(

k − 2

2

))
k−2

2

‖h‖kW 1,2(R2) . (4.44)

Assume αk = 2k−2
k!

(

π
(

k−2
2

))
k−2

2 ‖h‖kW 1,2(R2), by virtue of the Stirling formula

n! ∼
√
2πn

(n

e

)n

(n→ ∞),

then by straightforward calculations we get

k
√
αk ∼

k
√
2k − 2

e−1k (2kπ)
1

2k

(

k − 2

2
π

)
k−2

2k

‖h‖W 1,2(R2)

∼ 2e
√
π

(

k − 2

2k2

)
1

2

‖h‖W 1,2(R2) → 0 (k → ∞).

Whence, it is easy to observe that the series on the right–hand side of (4.44) is convergent

which proves our claim.

It is worth noting that w1, w2 ∈ W 1,2(R2), applying the above claim we can infer that the

right–hand side of (4.12)–(4.13) all lie in L2(R2), which establishes w1, w2 ∈ W 2,2(R2) by the

well-known L2–estimate for elliptic equations. In addition, according to the standard Sobolev

embeddings and the fact that we are in two dimensions, we observe that w1(x), w2(x) → 0

as |x| → ∞ which gives the desired boundary condition (3.11) at infinity. Due to the fact

w1, w2 ∈ W 2,2(R2) and the embedding W 1,2(R2) →֒ Lp(R2)(p > 2), we can obtain that

the right–hand side of (4.12)–(4.13) all belongs to Lp(R2) for any p > 2. Furthermore,

the elliptic Lp estimate enable us to get that w1, w2 ∈ W 2,p(R2)(p > 2). Consequently,

|∇w1| (x) → 0, |∇w2| (x) → 0 when |x| → ∞, as expected.
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Finally, we estimate the decay rates for u1, u2 and |∇(mu1+2u2)|, |∇(pu1+ qu2)|, where
m, p, q are as defined by (3.18). For the coefficient matrix A of the system (3.13), there exists

a diagonal matrix B such that the matrix BA =M is positive definite and symmetric, where

B = (bij) =





2α− 1

β
0

0 2



 , B−1 =
(

b−1
ij

)

=

(

1

bij

)

=







β

2α− 1
0

0
1

2






, i, j = 1, 2,

BA =





2α− 1

β
0

0 2











α β

α− 1

2
β +

1

2






=





2α2 − α

β
2α− 1

2α− 1 2β + 1



 ,M.

Therefore, we reduce (3.9)–(3.10) in R
2\(0, 0) to

△vj =
2
∑

k=1

mjkvk +

2
∑

k=1

mjk

(

e
2

2∑

l=1

b−1

kl
vk − 1− vk

)

, j = 1, 2. (4.45)

Setting O be a 2× 2 orthogonal matrix such that

OτMO = diag {λ1, λ2} , λ1, λ2 > 0, (4.46)

where

λ0 = min {λ1, λ2} > 0. (4.47)

Hence, as to the new variable vector

g = (g1, g2)
τ = Oτ (v1, v2)

τ = Oτv, (4.48)

substitute (4.48) into (4.45), then according to the (4.46) and the behaviour of g(x) → 0 as

|x| → ∞, we have

△gj = λjgj +
2
∑

k=1

Cjk(x)gk, j = 1, 2, (4.49)

where Cjk(x)(j, k = 1, 2) depend on g(x) and Cjk(x) → 0 as |x| → ∞(j, k = 1, 2). Let

g2 = g21 + g22, then we arrive that

△g2 ≥ λ0g
2 − C(x)g2, x ∈ R

2\(0, 0), (4.50)

where C(x) → 0 as |x| → ∞. Thus, for any sufficiently small ε ∈ (0, 1), there is a suitably

large Rε > R so that

△g2 ≥
(

1− ε

2

)

λ0g
2, x ∈ R

2\(0, 0). (4.51)

As a consequence, in view of a comparison function argument and the property g21 + g22 = 0

at infinity, we attain a positive constant C(ε) to make

|v|2 = |g|2 = g2 ≤ C(ε)e−(1−ε)
√
λ0|x|, as |x| → ∞ (4.52)

valid, which leads to the desired decay estimates (3.16) stated in Theorem 3.1.
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Now we turn to the exponential decay estimate for the derivatives of v1 and v2, let ∂

denote any one of the two partial derivatives ∂1 and ∂2. Then we differentiate (4.45) to get

△ (∂vj) =
2
∑

k=1

mjke
2

2∑

l=1

b−1

kl
vk

(

2
2
∑

l=1

b−1
kl

)

(∂vk) , j, l = 1, 2. (4.53)

Introduce the notation

I = diag{1, 1}, E(x) = diag
{

e
2β

2α−1
v1(x), ev2(x)

}

, h = (∂v1, ∂v2)
τ
,

then we see that (4.53) takes the matrix form

△h = 2MB−1h+ 2MB−1 (E(x)− I)h

, 2Dh+ 2D (E(x)− I)h. (4.54)

Noting that there exists an invertible matrix

T =







2α− 1

2 (λ3 − α)
1

1
2 (λ4 − α)

2α− 1







such that TDT−1 = Λ = diag{λ3, λ4}, where α =
3

2
− 1

2N
and

λ3 =
2N + 1 + 2

√

N2 −N + 1
4

4
, λ4 =

2N + 1− 2
√

N2 −N + 1
4

4
(4.55)

are two positive eigenvalues of the matrix T . Setting H = Th, then (4.54) can be rewritten

as

△H = 2ΛH+ 2TD (E(x)− I)T−1H. (4.56)

By straightforward calculations we have

△|H|2 ≥ 2Hτ△H

= 4HτΛH+ 4HτTD (E(x)− I)T−1H

≥ λ|H|2 − b(x)|H|2, x ∈ R
2\(0, 0), (4.57)

where

λ = min {λ3, λ4} > 0 (4.58)

and the function b(x) satisfies b(x) → 0 as |x| → ∞. Consequently, as before, we infer that

there exists a constant C(ε) > 0 such that

|H|2 ≤ C(ε)e−(1−ε)
√
λ|x|, as |x| → ∞, (4.59)

which gets estimate (3.17) for the derivatives of solutions.
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We next are in a position to calculate the quantized integrals applying the decay esti-

mates. Indeed, we have obtained the unique solution (u1, u2) of the system (3.13) subject to

the boundary condition (3.11) which vanish at infinity exponentially fast. Additionally, we

deduce that |∇(mu1+2u2)|, |∇(pu1+qu2)| all vanish at infinity at least as fast as |x|−3, where

m, p, q are as defined by (3.18). Furthermore, from (4.1)–(4.2) and the exponential decay

property of |∇(mu1 + 2u2)| and |∇(pu1 + qu2)|, we can see that |∇(mP1 + 2P2)| = O(|x|−3)

and |∇(pP1 + qP2)| = O(|x|−3) at infinity. Thus, according to the divergence theorem, we

see that
∫

R2

△ (mP1(x) + 2P2(x)) dx =

∫

R2

△ (pP1(x) + qP2(x)) dx = 0. (4.60)

Now according to (4.3), (4.4), and (4.60) and the definitions of ϕi(i = 1, 2), we can get the

quantized integrals (3.19) as stated in Theorem 3.1.
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