COHOMOLOGY WITH Sym^g COEFFICIENTS FOR CONGRUENCE SUBGROUPS OF $SL_4(\mathbb{Z})$ AND GALOIS REPRESENTATIONS

AVNER ASH, PAUL E. GUNNELLS, AND MARK MCCONNELL

ABSTRACT. We extend the computations in [AGM02,AGM08,AGM10,AGM11, AGM20] to find the cohomology in degree five of a congruence subgroup Γ of $SL_4(\mathbb{Z})$ with coefficients in $Sym^g(K^4)$, twisted by a nebentype character η , along with the action of the Hecke algebra. This is the top cuspidal degree. In this paper we take $K = \mathbb{F}$, a finite field of large characteristic, as a proxy for \mathbb{C} . For each Hecke eigenclass found, we produce the unique Galois representation that appears to be attached to it.

The computations require modifications to our previous algorithms to accommodate the fact that the coefficients are not one-dimensional. Types of attached Galois representations arise that were not found in our previous papers, and we must modify the Galois Finder accordingly.

1. INTRODUCTION

The cohomology of arithmetic groups plays various roles in modern number theory. One of these concerns the connections between Hecke eigenclasses in the cohomology and Galois representations. This paper continues our series of computations in this area for subgroups of $SL_4(\mathbb{Z})$.

It is a highly nontrivial problem to compute the homology groups and the action of the Hecke operators on them. In this paper, we use the sharbly complex for these computations, as we have done in the previous papers of this series.

Definition 1.1. For any field K, $\operatorname{Sym}^g(K^4)$ denotes the space of homogeneous polynomials of degree g on K^4 . If η is a nebentype character valued in K^{\times} , $\operatorname{Sym}^g(K^4)_{\eta}$ is defined to be $\operatorname{Sym}^g(K^4) \otimes K_{\eta}$.

Choose a level N and let $\Gamma = \Gamma_0(N) \subseteq \text{SL}_4(\mathbb{Z})$ and let K be a field. The coefficient modules we study are $\text{Sym}^g(K^4)_\eta$ with a nebentype character η . Our earlier papers only considered one-dimensional coefficient modules, i.e., g = 0.

Since we are interested in automorphic representations, we would like to set $K = \mathbb{C}$. However, in order to avoid the inaccuracy of floating point numbers in our huge linear algebra computations, we instead set $K = \mathbb{F}$, with \mathbb{F} denoting a finite field \mathbb{F}_{p^r} , where p is some prime with five decimal digits and $r \ge 1$. This large finite field can be viewed as a proxy for \mathbb{C} .

We are thus interested in $H^*(\Gamma, \operatorname{Sym}^g(\mathbb{F}^4)_{\eta})$ for various N, g > 0, and η . For reasons explained in our earlier papers, we have only investigated * = 5, and that

²⁰²⁰ Mathematics Subject Classification. Primary 11F75; Secondary 11F67, 20J06, 20E42.

Key words and phrases. Cohomology of arithmetic groups, Galois representations, Voronoi complex, Steinberg module, modular symbols.

PG wishes to thank the National Science Foundation and the Simons Foundation.

is also the only degree we study in this paper. We compute $H^5(\Gamma, \operatorname{Sym}^g(\mathbb{F}^4)_\eta)$ as a module for a finite subset \mathcal{H} of the tame Hecke algebra (which is commutative), and we diagonalize the \mathcal{H} -action on this vector space.

Let $z \in H^*(\Gamma, \operatorname{Sym}^g(\mathbb{F}^4)_\eta)$ be an \mathcal{H} -eigenclass.

Definition 1.2. We say that a representation ρ of the absolute Galois group of \mathbb{Q} is *attached* to z with respect to \mathcal{H} if for every Hecke operator $T \in \mathcal{H}$, if T is supported at the prime ℓ , then its eigenvalue is that predicted by the equality of the characteristic polynomial of $\rho(\operatorname{Frob}_{\ell})$ and the Hecke polynomial of z at ℓ .

We say that ρ is *entirely attached* to z if for every Hecke operator T in the whole tame Hecke algebra, if T is supported at the prime ℓ , then its eigenvalue is so predicted.

In our previous papers we used the terminology that ρ "appears" to be attached to z, because we can only compute a finite number of Hecke operators T. The new terminology contains more information by including the set of T for which computations were made. Also, since Scholze has proved that there always exists a ρ attached to z, if there were a unique ρ attached to z with respect to \mathcal{H} , then ρ must be entirely attached to z. Of course, since we can find only a small number of Hecke eigenvalues (owing to the size of the matrices involved), even though our Galois finder returns only one ρ , it is still possible (though very unlikely) that this ρ is an "imposter" and the entirely attached ρ is some other Galois representation that agrees with ρ on Frob_{ℓ} for small ℓ .

For each Hecke eigenclass z computed in this paper, we find a Galois representation attached to it, and this attached Galois representation is uniquely determined by our data, in a sense to be explained in Theorem 3.1. As we just explained, it is logically possible (but very unlikely) that if we considered candidates for ρ not in the list of Section 2 we might find other ρ 's also attached to z with respect to \mathcal{H} .

If we could compute enough Hecke operators, then, using Scholze's theorem and the method of Faltings–Serre, we could prove that a given ρ is entirely attached to a given z. But it is not feasible to compute anywhere near enough Hecke operators to do this for the homology classes found in this paper.

As in our earlier papers, these computations give new examples of Scholze's theorem (recalled in Section 2) and new *a posteriori* tests of Serre-type conjectures for GL_4 .

The Galois representations in this paper are all reducible. We do not know why certain combinations of characters and cusp forms appear and others do not. This ignorance stems from the fact that the cohomology of \overline{X}/Γ and its boundary, let alone the restriction map from one to the other, is not known.

Our computations are complete for the following values of (N, g, η) . For g = 1 and 2, they are complete for all levels $N \leq 18$, both prime and composite. For $g = 3, \ldots, 7$, as the computations became slower, we computed only for certain prime levels $N \leq 17$. For N = 1, we computed for $g \leq 10$. When we computed for a given pair (N, g), we computed for all the η relevant to that pair.

The existence of attached Galois representations helps to corroborate the correctness of our computations. It is unimaginable that attached Galois representations could be found if the computed Hecke eigenvalues were random collections of numbers that had been calculated erroneously. This paper covers the same ground as [AGM20], except for the difference in the coefficient modules. Therefore we refer the reader to [AGM20] for most of the background information and the description of how the computations are performed. We will explain below the changes needed in order to deal with coefficient modules of dimension greater than 1, and modifications required in the Galois Finder. Then we will summarize our findings and provide complete tables of the results of our computations.

2. Definitions, notations, basic constructions

Definition 2.1. Fix $N \ge 1$.

 $\Gamma = \Gamma_0(N)$ will denote the subgroup of matrices in $SL_n(\mathbb{Z})$ whose bottom row is congruent to $(0, \ldots, 0, *)$ modulo N.

 η will denote a character of $(\mathbb{Z}/N)^{\times}$. It can be viewed as a character of Γ by being applied to the (n, n)-entry of an element in Γ .

V will denote the standard representation of GL_4 .

 Sh_{\bullet} denotes the sharbly resolution of the Steinberg module for GL_4 .

Recall that if K is a field, and η is a K^{\times} -valued character of $(\mathbb{Z}/N)^{\times}$, we defined K_{η} to be the one-dimensional vector space K regarded as a Γ -module with action via the nebentype character η . (We call η the *nebentype* even if it is trivial.)

Section 2 of [AGM20] gives the definitions of the Steinberg module, the sharbly complex, and of the Hecke polynomial at ℓ . It also explains why the sharbly homology is isomorphic to $H^*(\Gamma, \operatorname{Sym}^g(\mathbb{F}^4)_\eta)$. Section 3 of the same paper reviews how the sharbly homology is calculated as a Hecke module, and Section 4 describes the Galois Finder. We will assume knowledge of these matters in what follows.

There is an isomorphism of Hecke modules

$$H^{\mathfrak{s}}(\Gamma, M) \approx H_1(\Gamma, Sh_{\bullet} \otimes_{\mathbb{Z}} M),$$

where M is any module on which the orders of the finite subgroups in $\mathrm{SL}_4(\mathbb{Z})$ are invertible; this condition is satisfied for us since we will take $V = \mathbb{F}_{p^r}^4$ and $M = \mathrm{Sym}^g(V) \otimes \eta$, where p > 5.

Indeed, in order to avoid the inaccuracy of floating point numbers in our huge linear algebra computations, we use a finite field $\mathbb{F} = \mathbb{F}_{p^r}$ as a proxy for \mathbb{C} . If p > 5and if there is no *p*-torsion in the \mathbb{Z} -cohomology (which is very likely the case for large random *p*), then the \mathbb{C} - and mod *p*-betti numbers coincide. We use primes that have five decimal digits. We choose *p* and *r* as follows.

We choose p so that the exponent of $(\mathbb{Z}/N)^{\times}$ divides p-1. This makes the group of characters $(\mathbb{Z}/N)^{\times} \to \mathbb{F}_p^{\times}$ isomorphic to the group of characters $(\mathbb{Z}/N)^{\times} \to \mathbb{C}^{\times}$. (Note: this is not needed if $\eta = 1$. Some of our initial computations for $\eta = 1$ were performed for a prime that differs from the p we used at the same level for nontrivial η .) Later in the computation, we choose r to ensure that the various Hecke eigenvalues that we compute lie in \mathbb{F} .

Define S_{pN} to be the subsemigroup of integral matrices in $\operatorname{GL}_n(\mathbb{Q})$ satisfying the same congruence conditions mod N as Γ and having positive determinant relatively prime to pN. Then $\mathcal{H}(pN)$, the *tame Hecke algebra*, is the \mathbb{Z} -algebra of double cosets $\Gamma S_{pN}\Gamma$. It is a commutative algebra that acts on the cohomology and homology of Γ with coefficients in any S_{pN} -module. $\mathcal{H}(pN)$ is generated by all double cosets of the form $\Gamma D(\ell, k)\Gamma$, where ℓ is a prime not dividing pN, $0 \leq k \leq n$, and $D(\ell, k)$ is the diagonal matrix with the first n - k diagonal entries equal to 1 and the last k diagonal entries equal to ℓ . When we consider the double coset generated by $D(\ell, k)$ as a Hecke operator, we call it $T(\ell, k)$.

 \mathbb{F}_{η} is an S_{pN} -module, where a matrix $s \in S_{pN}$ acts on \mathbb{F} via $\eta(s_{nn})$, where s_{nn} is the lower right entry of the $n \times n$ matrix s.

Definition 2.2. Let V be an $\mathbb{F}[\mathcal{H}(pN)]$ -module. Suppose that $v \in V$ is a simultaneous eigenvector for all $T(\ell, k)$ and that $T(\ell, k)v = a(\ell, k)v$ with $a(\ell, k) \in \mathbb{F}$ for all prime $\ell \nmid pN$ and $0 \leq k \leq n$. If

$$\rho \colon G_{\mathbb{O}} \to \mathrm{GL}_n(\mathbb{F})$$

is a continuous representation of $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ unramified outside pN, and if

(1)
$$\sum_{k=0}^{n} (-1)^{k} \ell^{k(k-1)/2} a(\ell, k) X^{k} = \det(I - \rho(\operatorname{Frob}_{\ell})X)$$

for all $\ell \nmid pN$, then we say that ρ is *entirely attached* to v.

Here, $\operatorname{Frob}_{\ell}$ refers to an arithmetic Frobenius element, so that if ε is the cyclotomic character, we have $\varepsilon(\operatorname{Frob}_{\ell}) = \ell$.

The polynomial on the left-hand side of (1) is called the *Hecke polynomial* for v at ℓ .

Definition 2.3. Suppose we have v and ρ as above. If \mathcal{H} is a subset of $\mathcal{H}(pN)$ and the eigenvalues of all $T \in \mathcal{H}$ are those that would be predicted by ρ if ρ were entirely attached to v, then we say ρ is *attached* to v with respect to \mathcal{H} .

The following is a special case of a theorem of Scholze:

Theorem 2.4. Let $N \ge 1$. Let v be a Hecke eigenclass in $H^5(\Gamma_0(N), \operatorname{Sym}^g(\mathbb{F}^4)_\eta)$. Then there is entirely attached to v a continuous representation ρ , unramified outside pN:

$$\rho \colon G_{\mathbb{O}} \to \mathrm{GL}_n(\mathbb{F}).$$

Since ρ is entirely attached to v, it is unique up to isomorphism.

The coefficient modules M studied in this paper are $\operatorname{Sym}^g(\mathbb{F}^4)_\eta$ for various levels N, nebentypes η and degrees g. We compute homology and the Hecke action exactly as in [AGM20]. Of course we have to modify the programs to use $\operatorname{Sym}^g(\mathbb{F}^4)_\eta$ coefficients.

When we wrote our code for [AGM20], we had made sure to support arbitrary coefficient modules M for the cohomology. During [AGM20], this code was tested for M's that were one-dimensional over \mathbb{F} . As it turned out, the same code worked out of the box for the high-dimensional M used in the present paper, after a few small incompatibility bugs were fixed.

As explained in [AGM10, AGM20], computing the cohomology comes down to finding the kernels and images of certain large matrices coming from the cells of the well-rounded retract. The dimension of $\operatorname{Sym}^g(\mathbb{F}^4)$ is $\binom{g+3}{3} \sim g^3/6$. Thus, when $M = \operatorname{Sym}^g(\mathbb{F}^4) \otimes \eta$, the numbers of rows and columns in the matrices are larger by approximately this factor of $g^3/6$, compared to the size for $M = \mathbb{F}_{\eta}$ alone. In turn, the size for one-dimensional M grows roughly like $O(N^3)$ for both rows and columns. This explains why we stopped our computations at g = 7, and why we restricted ourselves to smaller ranges of g as N became large (or a slightly larger range for N = 1). The largest matrix we encountered was for N = 18 and $\operatorname{Sym}^2(V)$, where the matrix was 16204×56420 . This is far smaller than the largest matrix in [AGM10], which was about 1 million by 4 million (for the case N = 211, M = 1). However, in [AGM10], unlike in [AGM20] and the present paper, we were not computing bases for the kernels and images of the matrices, which are needed in order to compute the Hecke operators; we were only computing ranks of matrices mod p. That is why we could go to much larger matrices in [AGM10].

To find attached Galois representations, we use the Galois Finder program, which is part of our Sage code. We had to modify it for the current project, making two changes. First, it now considers cusp forms of all weights $2, \ldots, g+4$. In [AGM20], where g = 0, we only needed to consider weights 2, 3, 4. Secondly, it now considers powers ε^i of ε for all $i = 0, \ldots, g+3$, as opposed to $0, \ldots, 3$ for [AGM20].

We compute the action on $V = H_1(\Gamma_0(N), Sh_{\bullet} \otimes_{\mathbb{Z}} \operatorname{Sym}^g(\mathbb{F}^4)_{\eta})$ of the Hecke operators $T(\ell, k)$ for k = 1, 2, 3 and for ℓ ranging through a set

$$L = \{ \ell \mid \ell \text{ prime}, \ell \leq \ell_0, \ell \nmid pN \}.$$

The upper bound ℓ_0 depends on the level N and the nebentype η . What limits the choice of ℓ_0 is the size of the matrices involved in the computation and the time it takes.

In this paper, $5 \leq \ell_0 \leq 11$. For ℓ_0 itself we sometimes find only $T(\ell_0, 1)$ and not $T(\ell_0, k)$ for k = 2, 3 because of the size of the computations. For k = 0, 4, we do not have to do any computation: $T(\ell, 0)$ is the identity and $T(\ell, 4)$ is $\eta(\ell)\ell^g$ times the identity. To check our work, we always verify that the Hecke operators commute pairwise.

3. Observations from the data

In the range of our computations, all the Galois representations that occur are reducible with constituents of dimension 1 and 2. One-dimensional constituents come from Dirichlet characters mod N taking values in the cyclotomic field K_0 generated by a primitive N-th root of unity. Two-dimensional constituents come from newforms of level dividing N and weights $2, \ldots, g+4$. Any of these constituents may be multiplied by a power of the cyclotomic character.

Let K_1, K_2, \ldots be the fields of coefficients of the *q*-expansions of the newforms we have listed, together with K_0 . The Galois Finder works in the residue class fields for the various primes \mathfrak{P} over *p* in the various K_i 's. We define *r* to be the smallest integer so that all these residue class fields embed in $\mathbb{F} = \mathbb{F}_{p^r}$. We choose *p* to make *r* as small as possible, given the constraint that *p* should be no more than five digits (which is needed for speed). The field \mathbb{F} is recorded at the top of each table in Section 5. The table also specifies, for each N, η, g , the set of Hecke operators making up our choice of \mathcal{H} for those parameters.

We summarize our first observation as follows:

Theorem 3.1. For N, p^r , η , ℓ , and g as covered in the tables in Section 5, the Hecke operators $T \in \mathcal{H}$ on $H^5(\Gamma_0(N), \operatorname{Sym}^g(\mathbb{F}_{p^r})_{\eta})$ are all semisimple. For every Hecke eigenvector z, there exists a unique reducible Galois representation $\rho : G_{\mathbb{Q}} \to$ $\operatorname{GL}_4(\mathbb{F}_{p^r})$ (within the scope of the Galois finder) that is attached to z with respect to \mathcal{H} . Each such ρ is either the sum of four characters or the sum of two characters plus the Galois representation of a newform tensored with a character.

Let E denote a simultaneous eigenspace of \mathcal{H} on $V = H^5(\Gamma_0(N), \operatorname{Sym}^g(\mathbb{F}^4)_\eta)$, where $\mathbb{F} = \mathbb{F}_{p^r}$. We define two kinds of multiplicity for E. **Definition 3.2.** The *Hecke multiplicity* of *E* equals $\dim_{\mathbb{F}} E$.

Let G_{η} be the stabilizer of η in the Galois group of \mathbb{F}/\mathbb{F}_p . Then G_{η} acts on V and permutes the Hecke eigenspaces.

Definition 3.3. The *Galois multiplicity* of *E* equals the cardinality of the orbit of *E* under G_{η} .

The Galois finder works exactly as it did in [AGM20]. If the Galois finder returns the same ρ exactly d times, for Hecke eigenspaces E_1, \ldots, E_d , then the Galois multiplicity of each E_i equals d and we list only one of them in the tables. Although it seems like it is returning the same ρ , this is not true: it is using a different prime \mathfrak{P} for each one.

We now describe in detail the list of Galois representations ρ which our Galois Finder used for this paper.

First are the Dirichlet characters χ with values in \mathbb{F} , which we identify with onedimensional Galois representations as usual. We take all the characters of conductor N_1 for all $N_1 \mid N$. Sage's class DirichletGroup enumerates the χ automatically. The characteristic polynomial of Frobenius at ℓ for χ is $1 + \chi(\ell)X$, for all $\ell \nmid pN$.

Another one-dimensional character is the cyclotomic character ε . We look at ε^w for w = 0, 1, 2..., g+3, because these are the powers predicted by the generalizations of Serre's conjecture for mod p Galois representations [Sch09, ADP02].

We define the *Hodge-Tate (HT) numbers* for Galois representations as follows. For a character $\chi \otimes \varepsilon^w$, there is a list of one integer [w]. To a representation coming from a newform ρ of weight k, there is a list of two integers, [0, k-1]. More generally, for $\chi \otimes \varepsilon^w \otimes \rho$, the list is [w, w+k-1]. For direct sums of representations, the lists are concatenated and then ordered by increasing values of the entries. For the fourdimensional Galois representations we find that fit our data, we always observe that the list is [0, 1, 2, g+3] after sorting. This is predicted by the Serre-type conjectures and gives us a check on our computations.

Another check on our computations comes from considering the relationship between the nebentype character and the determinant of the attached representation. Suppose a Galois representation ρ is attached to a Hecke eigenclass in $H^5(\Gamma_0(N), \operatorname{Sym}^g(\mathbb{F}^4)_\eta)$. Then the determinant of $\rho(\operatorname{Frob}_\ell)$ must equal the coefficient of X^4 in the Hecke polynomial, namely $\eta(\ell)\ell^{g+6}$. We observe that this is always the case in our data.

4. Other observed regularities in the data

In this section, we set $V = \mathbb{F}^4$. A Hecke eigenclass in $H^5(\Gamma_0(N), \operatorname{Sym}^g(V)_\eta)$ will be denoted by the letter z, and its attached Galois representation by ρ .

4.1. **Oddness.** We observe that ρ is always odd. In other words, the eigenvalues of $\rho(c)$ are +1, -1, +1, -1, where c denotes complex conjugation. This must be the case, as follows from a theorem of Caraiani and LeHung [CLH16].

4.2. **Multiplicities.** We observe that the Galois multiplicity of eigenspaces in our data can be any integer from 1 to 6, while the Hecke multiplicity of eigenspaces in our data can be 1, 3, 4, 6, or 9. We do not have an explanation for why other multiplicities do not occur. It is possible that more computations would reveal other multiplicities.

4.3. **Patterns.** Recall that N denotes the level of the Hecke eigenspace and η denotes the nebentype of the coefficients.

Each Galois representation in the tables is one of the following types. We let χ and ψ denote 1-dimensional Galois representations with conductor dividing N and σ_k an irreducible 2-dimensional Galois representation corresponding to a newform of weight k and level dividing N.

1) $\chi \varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \oplus \varepsilon^{g+3}$ and $\varepsilon^0 \oplus \varepsilon^1 \oplus \chi \varepsilon^2 \oplus \varepsilon^{g+3}$, $\chi \neq 1$. These always occur in such pairs.

2) $\chi \varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \oplus \psi \varepsilon^{g+3}$ and $\varepsilon^0 \oplus \varepsilon^1 \oplus \chi \varepsilon^2 \oplus \psi \varepsilon^{g+3}$, $\chi \neq 1$, $\psi \neq 1$. These always occur in such pairs. They are much rarer than type 1).

3) $\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{g+2}$. (Notice that no summand here gets multiplied by a nontrivial character.) This always occurs unless there is no σ_{g+2} with nebentype equal to η .

4) $\varepsilon^1 \oplus \varepsilon^{g+3} \oplus \varepsilon^0 \sigma_3$. (Notice that no summand here gets multiplied by a nontrivial character.) Whenever type 4) occurs for given N, g, η , there also occurs type 3) and type 1).

5) $\chi \varepsilon^0 \oplus \varepsilon^2 \oplus \varepsilon^1 \sigma_{g+3}$ and $\varepsilon^0 \oplus \chi \varepsilon^2 \oplus \varepsilon^1 \sigma_{g+3}$, $\chi \neq 1$. These always occur in such pairs. This type occurs in our data for N = 12, 15, 16, 18.

4.4. Differences from our previous findings for g = 0. Unlike in [AGM20], neither ε^1 nor σ_k is ever multiplied by a nontrivial character. Of course, more data might disturb this observation.

In [AGM20], if η factors nontrivially as $\eta = \psi \chi$ then either all three of the following or none of the following occur:

$$\begin{split} \rho &= \psi \varepsilon^0 \oplus \chi \varepsilon^1 \oplus \varepsilon^2 \oplus \varepsilon^3 \\ \rho &= \psi \varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \oplus \chi \varepsilon^3 \\ \rho &= \varepsilon^0 \oplus \varepsilon^1 \oplus \psi \varepsilon^2 \oplus \chi \varepsilon^3. \end{split}$$

The natural analogue of this assertion for g > 0 is not true. See for example N = 16.

In [AGM20], $\varepsilon^2 \chi \sigma$ (χ possibly trivial) occurred as a summand for a given coefficient module if and only if $\varepsilon^0 \chi \sigma$ occurred. This is no longer true when g > 0. For example, see N = 3, Coeffs = Sym⁶(V).

4.5. Heuristics. We do not have explanations for most of the regularities observed above. In [AGM20] we gave a heuristic for the conductors of the characters and the levels and weights of the cuspforms that appear in the tables by referring to the homology of various parabolic subgroups of GL_4 intersected with Γ . We refer to [AGM20] for the details of this analysis, and very briefly discuss them as they apply to the tables below. In [AGM20, Section 5.6] the analysis was accompanied by five diagrams lettered (a) through (e), which we have reproduced in Figure 1 below.

The heuristic concerning the conductors of the characters and the levels of the cuspforms is the same as before. As for the weights of the cuspforms:

The Borel–Serre boundary B_{Γ} is the union of faces F(P), where P runs over a set of representatives of Γ -orbits of parabolic subgroups P of $GL_4(\mathbb{Q})$. Each parabolic subgroup P is conjugate to a standard one with block sizes (n_1, \ldots, n_{k+2}) down the diagonal. We call this tuple the "type" of P or of F(P). The nonnegative integer k equals the codimension of F(P) in B_{Γ} .

Our heuristic explanation assumes that each Hecke eigenspace restricts nontrivially to at least one of the faces. Our data all conforms to assuming this face is type (2, 2). By the Eichler–Shimura theorem, a block of size 2 will give rise to the Galois representation σ attached to a holomorphic cuspform with level dividing N, or to a sum of two characters (in the case of an Eisenstein series), with conductors dividing N. In general, σ and these characters may be multiplied by a power of the cyclotomic character.

We now use this heuristic to describe the various kinds of Galois representations that occur in our data in the tables. Write the parabolic subgroup of type (2,2) as $P = L_1 L_2 U$ where $L_i \approx \text{GL}_2$ for i = 1, 2 and U is the unipotent radical of P. Note that Sym^g restricted to L_2 has a submodule isomorphic to Sym^g for GL_2 , and another submodule isomorphic to Sym^0 for GL_2 .

FIGURE 1. Schematics of homology classes on faces of the Borel–Serre boundary

4.6. Holomorphic cusp forms of weight g+2. In this case (Figure 1(b)), when we restrict the coefficients $\operatorname{Sym}^g(V) \otimes \eta$ to L_2 we use the submodule W_g isomorphic to Sym^g for GL_2 . We place a cuspform on the L_2 block of weight g+2 (corresponding to the homology of the arithmetic group in the GL_2 -block with coefficients in $H_4(U) \otimes W_g$.) This gives classes of type 3).

4.7. Holomorphic cusp forms of weight g+3. In this case (Figure 1(c)), when we restrict the coefficients $\operatorname{Sym}^g(V) \otimes \eta$ to L_2 we use the submodule W_g isomorphic to Sym^g for GL_2 . We place a cuspform on the L_2 block of weight g+3 (corresponding to the homology of the arithmetic group in the GL_2 -block with coefficients in $H_3(U) \otimes W_g$.) We place an Eisenstein series on the L_1 block. This gives classes of type 5).

4.8. Holomorphic cusp forms of weight 3. In this case (also Figure 1(c)), when we restrict the coefficients $\operatorname{Sym}^g(V) \otimes \eta$ to L_2 we use the submodule W_0 isomorphic to Sym^0 for GL_2 . We place a cuspform on the L_2 block of weight 3 (corresponding to the homology of the arithmetic group in the GL_2 -block with coefficients in $H_3(U) \otimes W_0$.) We place an Eisenstein series on the L_1 block. This gives classes of type 4).

4.9. Sums of 4 characters. In this case (Figure 1(e)), when we restrict the coefficients $\operatorname{Sym}^g(V) \otimes \eta$ to L_2 we use the submodule W_g isomorphic to Sym^g for GL_2 . We place an Eisenstein series on the L_2 block of weight g + 3 (corresponding to the homology of the arithmetic group in the GL_2 -block with coefficients in $H_3(U) \otimes W_g$.) This gives classes of types 1) and 2).

We do not understand the finer details of the sums of characters, nor of the other types of attached Galois representations.

4.10. Missing patterns from [AGM20]. Nothing in our data corresponds to Figure 1(d) where P is a (1, 2, 1)-parabolic subgroup nor to Figure 1(a) where P is a (1, 3)-parabolic subgroup. We would expect Figure 1(a) to occur if GL₃ has a cuspidal cohomology class of level N, but such N are beyond the range of our computations. We do not have a guess as to whether Figure 1(d) would occur for larger levels N.

5. TABLES OF RESULTS

5.1. The tables in this section present the main results of the paper.

Let V denote the standard representation of GL_4 acting on a vector space of dimension 4. A given coefficient module will be denoted $\operatorname{Sym}^g(V) \otimes \eta$ for a nebentype η . (We used a subscript η earlier, but putting η on the line makes it easier to read). Dirichlet characters will be denoted by a subscripted χ , and 2-dimensional irreducible Galois representations will be denoted by a subscripted σ . We replace $\operatorname{Sym}^1(V)$ with V in the tables.

The topmost box in each table gives the level N, the coefficient module $\operatorname{Sym}^{k}(V) \otimes \eta$ with nebentype η , and the field $\mathbb{F}_{p^{r}} = GF(p^{r})$ that was our proxy for \mathbb{C} . We include only one representative for each Galois orbit of nebentype characters. Next, we list the Hecke operators we computed. T_{ℓ} means we computed $T_{\ell,1}$, $T_{\ell,2}$, and $T_{\ell,3}$. Listing $T_{\ell,1}$ means we computed only that part of T_{ℓ} .

The succeeding rows in each table give the Galois multiplicity (Def. 2.8), the Hecke multiplicity (Def. 2.7), and the Galois representation itself. The cyclotomic character is denoted ε .

 χ_N or $\chi_{N,i}$ are a basis for the mod p Dirichlet characters $(\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{F}_p$. They are listed in a separate table at the end. As explained above, we usually¹ choose p depending on N so that the exponent of $(\mathbb{Z}/N\mathbb{Z})^{\times}$ divides the order p-1 of \mathbb{F}_p^{\times} . It follows that the group of complex-valued Dirichlet characters is isomorphic to the group of mod p characters.

The symbol $\sigma_{N.k.a.x}$ denotes a classical cuspidal holomorphic newform. We label these following the conventions of the LMFDB [LMF23]. Thus N is the level of the newform, k is its weight, "a" is the LMFDB name for the nebentype character of the newform, and "x" denotes a specified Galois orbit of newforms. We use the same symbol $\sigma_{N.k.a.x}$ to stand for the two-dimensional Galois representation attached to the cusp form of that name.

For g = 1 and 2, we computed the cohomology for all levels $N \leq 18$, both prime and composite. For $g = 3, \ldots, 7$, as the computations became slower, we computed only for certain prime levels $N \leq 17$. For N = 1, we computed for $g \leq 10$. When we computed for a given pair (N, g), we computed for all the η relevant to that pair. In general, the range of N for which we computed became smaller as g grew larger.

Level 1.

Level $N = 1$.	Coeffs	$\operatorname{Sym}^g(V)$	for	g=2,4,	6, 8.	Field	$\mathbb{F} =$	GF((12379)
Dim $0.$									

¹In some computations with trivial nebentype $\eta = 1$, we were not concerned with the Dirichlet characters as a group. In these cases, we arbitrarily chose p = 12379, the fourth prime after 12345.

Le	evel	$N = 1$. Coeffs Sym ¹⁰ (V). Field $\mathbb{F} = GF(12379)$.
Co	omp	uted T_2, T_3 . Dim 1.
1	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{1.12.\mathrm{a.a}}$

Level 2.

Level $N = 2$. Coeffs Sym ² (V). Field $\mathbb{F} = GF(12379)$.
Dim 0.
Level $N = 2$. Coeffs Sym ⁴ (V). Field $\mathbb{F} = GF(12379)$.
Dim 0.
Level $N = 2$. Coeffs Sym ⁶ (V). Field $\mathbb{F} = GF(12379)$.
Computed $T_3, T_5, T_{7,1}$. Dim 1.
$1 1 \varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{2.8.a.a}$

Level 3.

	Le	evel	$N = 3$. Coeffs $V \otimes \chi_3$. Field $\mathbb{F} = GF(12379)$.
	$\mathbf{C}\mathbf{c}$	omp	puted T_2, T_5, T_7, T_{11} . Dim 2.
	1	1	$arepsilon^0\oplusarepsilon^1\oplus\chi_3arepsilon^2\oplusarepsilon^4$
	1	1	$\chi_3 arepsilon^0 \oplus arepsilon^1 \oplus arepsilon^2 \oplus arepsilon^4$
ĺ	Le	vel	$N = 3$. Coeffs Sym ² (V). Field $\mathbb{F} = GF(12379)$.
[Dir	n 0.	
\mathbf{L}	evel	N	= 3. Coeffs Sym ³ (V) $\otimes \chi_3$. Field $\mathbb{F} = GF(12379)$.
С	omp	oute	d T_2, T_5, T_7 . Dim 2.
1	1		$arepsilon^0\oplusarepsilon^1\oplus\chi_3arepsilon^2\oplusarepsilon^6$
1	1		$\chi_3arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\oplusarepsilon^6$
	Co:	mpu 1	inted T_2, T_5, T_7 . Dim 1. $\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{3.6.a.a}$
L	eve	M	-3 Coeffs Sym ⁵ (V) $\otimes \chi_0$ Field $\mathbb{E} - CF(12370)$
_	0,01	L 1 V	$=$ 5. Obens Sym (V) $\otimes \chi_3$. Field $\mathbf{r} = OF(12515)$.
C	omp	oute	$d_{T_2, T_5, T_{7,1}}$. Dim 3.
С 1	omp	oute	$\frac{d}{d} \frac{T_2, T_5, T_{7,1}. \text{ Dim } 3.}{\varepsilon^0 \oplus \varepsilon^1 \oplus \chi_3 \varepsilon^2 \oplus \varepsilon^8}$
С 1 1	omp 1		$\frac{d T_2, T_5, T_{7,1}. \text{ Dim 3.}}{\frac{\varepsilon^0 \oplus \varepsilon^1 \oplus \chi_3 \varepsilon^2 \oplus \varepsilon^8}{\chi_3 \varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \oplus \varepsilon^8}}$
C 1 1 1	omp 1 1 1	oute	$ \begin{array}{c} = 5. \text{Coeffs Sym} (v) \otimes \chi_3^*. \text{Field } \mathbb{F} = 01 \ (12515). \\ \text{d} \ T_2, \ T_5, \ T_{7,1}. \ \text{Dim } 3. \\ \hline \\ $
C 1 1 1	omp 1 1 1 Le	vel	$ \begin{array}{c} = 3. \text{ Coeffs Sym} (V) \otimes \chi_3^*. \text{ Field } \mathbb{F} = OT (12313). \\ \text{d} T_2, T_5, T_{7,1}. \text{ Dim } 3. \\ \hline \varepsilon^0 \oplus \varepsilon^1 \oplus \chi_3 \varepsilon^2 \oplus \varepsilon^8 \\ \hline \chi_3 \varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \oplus \varepsilon^8 \\ \hline \varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{3.7.\text{b.a}} \\ \hline N = 3. \text{ Coeffs Sym}^6(V). \text{ Field } \mathbb{F} = GF(12379). \end{array} $
C 1 1 1	omp 1 1 1 Le ^v Cor	vel	$\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{3}\varepsilon^{2} \oplus \varepsilon^{8}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{8}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{3}\varepsilon^{2} \oplus \varepsilon^{8}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{8}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{8}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{3.7.b.a}}$ $N = 3. \text{ Coeffs Sym}^{6}(V). \text{ Field } \mathbb{F} = GF(12379).$ $\text{nted } T_{2}, T_{5}, T_{7,1}. \text{ Dim } 1.$
C 1 1 1	omp 1 1 1 Le Con 1	vel 1	$\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{3}\varepsilon^{2} \oplus \varepsilon^{8}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{2} \oplus \varepsilon^{8}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{2} \oplus \varepsilon^{8}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{3}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{3}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{3.7.b.a}}$ $\frac{W = 3. \text{ Coeffs Sym}^{6}(V). \text{ Field } \mathbb{F} = GF(12379).}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{3.8.a.a}}$
C 1 1 1 1 1 1	omp 1 1 1 Le ^v Cor 1	vel N	$= 3. \text{ Coeffs Sym} (V) \otimes \chi_3. \text{ Field } \mathbb{F} = GF(12379).$ $\frac{d T_2, T_5, T_{7,1}. \text{ Dim } 3.}{\varepsilon^0 \oplus \varepsilon^1 \oplus \chi_3 \varepsilon^2 \oplus \varepsilon^8}$ $\frac{\chi_3 \varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \oplus \varepsilon^8}{\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{3.7.\text{b.a}}}$ $\overline{N = 3. \text{ Coeffs Sym}^6(V). \text{ Field } \mathbb{F} = GF(12379).}$ $\frac{1}{\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{3.8.a.a}}$ $= 3. \text{ Coeffs Sym}^7(V) \otimes \chi_3. \text{ Field } \mathbb{F} = GF(12379^2).$
C 1 1 1 1 Lee Co	omp 1 1 1 Le Cor 1 evel	vel npu 1 N =	$\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{3}\varepsilon^{2} \oplus \varepsilon^{8}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{8}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{8}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{8}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{8}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{3.7.b.a}}$ $\frac{W = 3. \text{ Coeffs Sym}^{6}(V). \text{ Field } \mathbb{F} = GF(12379).$ $\frac{1}{12} = 3. \text{ Coeffs Sym}^{7}(V) \otimes \chi_{3}. \text{ Field } \mathbb{F} = GF(12379^{2}).$ $\frac{1}{12} = 3. \text{ Coeffs Sym}^{7}(V) \otimes \chi_{3}. \text{ Field } \mathbb{F} = GF(12379^{2}).$
C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	omp 1 1 1 Le ^v Cor 1 evel omp ^v 1	vel N 1 N utec	$\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{3}\varepsilon^{2} \oplus \varepsilon^{8}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{2} \oplus \varepsilon^{8}}$ $\frac{R}{2} = \frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{3}\varepsilon^{2} \oplus \varepsilon^{8}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{2} \oplus \varepsilon^{8}}$ $\frac{R}{2} = \frac{R}{2} = \frac{R}{2$
C 1 1 1 1 1 1 1 Co 1 1 1	omp 1	vel mpu 1 N	$ \begin{array}{c} = \mathbf{3. Coeffs Sym} (\mathbf{v}) \otimes \chi_{3}^{*}. \text{ Field } \mathbb{F} = OF(12313). \\ \text{d} \ T_{2}, \ T_{5}, \ T_{7,1}. \ \text{Dim } 3. \\ \hline \varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{3}\varepsilon^{2} \oplus \varepsilon^{8} \\ \hline \chi_{3}\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{8} \\ \hline \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{3.7.\text{b.a}} \end{array} \\ \hline N = \mathbf{3. Coeffs Sym}^{6}(V). \ \text{Field } \mathbb{F} = GF(12379). \\ \text{ited } \ T_{2}, \ T_{5}, \ T_{7,1}. \ \text{Dim } 1. \\ \hline \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{3.8.a.a} \\ \hline = \mathbf{3. Coeffs Sym}^{7}(V) \otimes \chi_{3}. \ \text{Field } \mathbb{F} = GF(12379^{2}). \\ \text{ited } \ T_{2}, \ T_{5,1}, \ T_{7,1}. \ \text{Dim } 4. \\ \hline \varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{3}\varepsilon^{2} \oplus \varepsilon^{10} \\ \hline \chi_{3}\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10} \end{array} $

Level 4.

Le	evel	$N = 4$. Coeffs $V \otimes \chi_4$. Field $\mathbb{F} = GF(12379)$.
Co	omp	buted T_3, T_5, T_7 . Dim 2.
1	1	$arepsilon^0\oplusarepsilon^1\oplus\chi_4arepsilon^2\oplusarepsilon^4$
1	1	$\chi_4arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\oplusarepsilon^4$

Level $N = 4$.	Coeffs Syn	$n^2(V)$. Field	$\mathbb{F} = GF(12379).$
Dim 0.			

Level 5.

Le	evel $N = 5$. Coeffs $V \otimes \chi_5$. Field $\mathbb{F} = GF(16001)$.
Co	pupped T_2, T_3, T_7 . Dim 2.
1	1 $\varepsilon^0 \oplus \varepsilon^1 \oplus \chi_5 \varepsilon^2 \oplus \varepsilon^4$
1	1 $\chi_5 \varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \oplus \varepsilon^4$
Lev	rel $N = 5$. Coeffs Sym ² (V). Field $\mathbb{F} = GF(12379^2)$.
Con	nputed T_2, T_3, T_7, T_{11} . Dim 1.
1 1	$1 \qquad \qquad \varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{5.4.\mathrm{a.a}}$
Level	$N = 5$. Coeffs Sym ² (V) $\otimes \chi_5^2$. Field $\mathbb{F} = GF(16001)$.
Dim 0	
Level	$N = 5$. Coeffs Sym ³ (V) $\otimes \gamma_5$. Field $\mathbb{F} = GF(16001^2)$.
Compu	ited T_2, T_3, T_7 . Dim 3.
1 1	$arepsilon^0\oplusarepsilon^1\oplus\chi_5arepsilon^2\oplusarepsilon^6$
1 1	$\chi_5arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\oplusarepsilon^6$
1 1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{5.5. ext{c.a}}$
Lev	el $N = 5$. Coeffs Sym ⁴ (V). Field $\mathbb{F} = GF(16001^2)$.
Con	puted T_2, T_3, T_7 . Dim 1.
1 1	$1 \qquad \qquad \varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{5.6.a.a}$
Level	$N = 5$. Coeffs Sym ⁴ (V) $\otimes \chi_5^2$. Field $\mathbb{F} = GF(16001^2)$.
Compu	ited T_2, T_3, T_7 . Dim 2.
2 1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{5.6.\mathrm{b.a}}$
Level	$N = 5$. Coeffs Sym ⁵ (V) $\otimes \chi_5$. Field $\mathbb{F} = GF(16001^6)$.
Compu	ited $T_2, T_3, T_{7,1}$. Dim 4.
1 1	$\varepsilon^0 \oplus \varepsilon^1 \oplus \chi_5^3 \varepsilon^2 \oplus \varepsilon^8$
1 1	$\frac{\chi_5^3\varepsilon^0\oplus\varepsilon^1\oplus\varepsilon^2\oplus\varepsilon^8}{0\oplus1\pm2}$
2 1	$\varepsilon^{\circ} \oplus \varepsilon^{\circ} \oplus \varepsilon^{2} \sigma_{5.7.c.a}$
Lev	el $N = 5$. Coeffs Sym ⁶ (V). Field $\mathbb{F} = GF(16001^6)$.
Con	puted $T_2, T_3, T_{7,1}$. Dim 3.
1 1	$\frac{1}{\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{5.8.a.a}}$
2	$\varepsilon^{\circ} \oplus \varepsilon^{*} \oplus \varepsilon^{*} \sigma_{5.8.a.b}$
Level	$N = 5$. Coeffs Sym ⁶ $(V) \otimes \chi_5^2$. Field $\mathbb{F} = GF(16001^6)$.
Compu	ited $T_2, T_3, T_{7,1}$. Dim 2.
2 1	$\varepsilon^0\oplus \varepsilon^1\oplus \varepsilon^2\sigma_{5.8.\mathrm{b.a}}$
Level	$N = 5$. Coeffs Sym ⁷ $(V) \otimes \chi_5$. Field $\mathbb{F} = GF(16001^6)$.
Compu	ited T_2, T_3 . Dim 5.
1 1	
1 1	$\frac{\varepsilon^0 \oplus \varepsilon^1 \oplus \chi_5^3 \varepsilon^2 \oplus \varepsilon^{10}}{3 \oplus 2 \oplus 2}$
1 1 1	$\frac{\varepsilon^0 \oplus \varepsilon^1 \oplus \chi_5^3 \varepsilon^2 \oplus \varepsilon^{10}}{\chi_5^3 \varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \oplus \varepsilon^{10}}$

Level 6.

L	eve	I $N = 6$. Coeffs $V \otimes \chi_6$. Field $\mathbb{F} = GF(12379)$.			
С	Computed T_5 , T_7 . Dim 6.				
1	3	$arepsilon^0\oplusarepsilon^1\oplus\chi_6arepsilon^2\oplusarepsilon^4$			
1	3	$\chi_6arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\oplusarepsilon^4$			
Le Co	evel	$N = 6.$ Coeffs Sym ² (V). Field $\mathbb{F} = GF(12379).$ uted T_5, T_7, T_{11} . Dim 1.			
1	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{6.4.\mathrm{a.a.}}$			

Level 7.

	L	vel $N = 7$. Coeffs $V \otimes \chi_7$. Field $\mathbb{F} = GF($	12037^2).	
	Co	nputed T_2, T_3, T_5 . Dim 2.		
	1	$1 \qquad \qquad \varepsilon^0 \oplus \varepsilon^1 \oplus \chi_7 \varepsilon^2 \oplus \varepsilon^4$		
	1	1 $\chi_7 \varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \oplus \varepsilon^4$		
		vel $N = 7$. Coeffs $V \otimes \chi_7^3$. Field $\mathbb{F} = GF($	12037^2).	
	1	$\frac{1}{1} \qquad \qquad$		
	1	$\frac{1}{1} \qquad \qquad$		
	1	$\frac{1}{\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{7.3,\text{b.a}}}$		
	1	$1 \qquad \qquad \varepsilon^1 \oplus \varepsilon^4 \oplus \varepsilon^0 \sigma_{7.3.\mathrm{b.a}}$		
ſ	Le	el $N = 7$. Coeffs $\operatorname{Sym}^2(V)$. Field $\mathbb{F} = GF$	$(12379^2).$	
	Co	puted T_2, T_3, T_5, T_{11} . Dim 1.		
l	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{7.4.{ m a.a.}}$		
L	eve	$N = 7$. Coeffs $\operatorname{Sym}^2(V) \otimes \chi_7^2$. Field $\mathbb{F} = C$	$F(12037^2)$).
С	omp	ted T_2, T_3, T_5 . Dim 1.		
1	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{7.4. ext{c.a}}$		
L	evel	$N = 7$. Coeffs Sym ³ (V) $\otimes \chi_7$. Field $\mathbb{F} = 0$	$F(12037^2)$).
С	omp	ted T_2, T_3, T_5 . Dim 4.	, ,	
1	1	$arepsilon^0\oplusarepsilon^1\oplus\chi_7arepsilon^2\oplusarepsilon^6$		
1	1	$\chi_7\varepsilon^0\oplus\varepsilon^1\oplus\varepsilon^2\oplus\varepsilon^6$		
2	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{7.5. ext{d.a}}$		
L	eve	$N = 7$. Coeffs Sym ³ (V) $\otimes \chi_7^3$. Field $\mathbb{F} = C$	$GF(12037^2)$).
С	omp	ted T_2, T_3, T_5 . Dim 4.		
1	1	$arepsilon^0 \oplus arepsilon^1 \oplus \chi_7^3 arepsilon^2 \oplus arepsilon^6$		
1	1	$\chi_7^3 \varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \oplus \varepsilon^6$		
1	1	$\varepsilon^1 \oplus \varepsilon^0 \oplus \varepsilon^0 \sigma_{7.3.b.a}$		
1	1	$\varepsilon^0\oplus \varepsilon^1\oplus \varepsilon^2\sigma_{7.5.\mathrm{b.a}}$		
ſ	Le	el $N = 7$. Coeffs $\text{Sym}^4(V)$. Field $\mathbb{F} = GF$	(12037^6) .	
	Co	puted T_2, T_3, T_5 . Dim 3.		
	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{7.6.\mathrm{a.a.}}$		
[2	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{7.6.\mathrm{a.b}}$		
L	eve	$N = 7$. Coeffs Sym ⁴ (V) $\otimes \chi_7^2$. Field $\mathbb{F} = C$	$GF(12037^{6})$).
С	omp	ted T_2, T_3, T_5 . Dim 2.		
$\overline{2}$	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{7.6.\mathrm{c.a}}$		

L T G	evel	$N = 7$. Coeffs Sym ⁵ (V) $\otimes \chi_7$. Field $\mathbb{F} = GF(12037^6)$.
Co	omp	uted $T_2, T_3, T_{5,1}$. Dim 5.
1	1	$arepsilon^0\oplusarepsilon^1\oplus\chi_7^5arepsilon^2\oplusarepsilon^8$
1	1	$\chi^5_7 arepsilon^0 \oplus arepsilon^1 \oplus arepsilon^2 \oplus arepsilon^8$
1	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{7.7.{ m d.a}}$
2	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{7.7. m d.b}$
L		$N = 7$ Coeffs Sym ⁵ (V) $\otimes \chi^3$ Field $\mathbb{F} = CF(12037^6)$
	h	uted T_2 T_2 T_7 Dim 6
1	1	$\frac{\varepsilon^0 \oplus \varepsilon^1 \oplus \gamma^2 \varepsilon^2 \oplus \varepsilon^8}{\varepsilon^0 \oplus \varepsilon^1 \oplus \gamma^2 \varepsilon^2 \oplus \varepsilon^8}$
1	1	$\frac{2}{\chi_{12}^{3}\varepsilon^{0}\oplus\varepsilon^{1}\oplus\varepsilon^{2}\oplus\varepsilon^{8}}$
1	1	$\epsilon^1 \oplus \epsilon^8 \oplus \epsilon^0 \sigma_7$ 3 h 2
1	1	$\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{7.7 \text{ b}}$
2	1	$\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{7.7.b.b}$
 Г	T	$\mathbf{h}_{\mathbf{h}} = \mathbf{C} \cdot \mathbf{C} \cdot \mathbf{C} \cdot \mathbf{C} \cdot \mathbf{L} = \mathbf{C} \cdot $
	Le	vel $N = 7$. Coeffs Sym ^o (V). Field $\mathbb{F} = GF(12037^{\circ})$.
-	1	mputed I_2, I_3, I_5 . Dim 3.
	1	$\mathcal{E} \oplus \mathcal{E} \oplus \mathcal{E} = \mathcal{I} \oplus \mathcal{I} = \mathcal{I}$
	0	1 0 c 1 c 2
Ľ	2	$1 \qquad \qquad \varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{7.8.a.b}$
Le	2 evel	$1 \qquad \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}$ $N = 7. \text{ Coeffs Sym}^{6}(V) \otimes \chi^{2}_{7}. \text{ Field } \mathbb{F} = GF(12037^{6}).$ but ed $T_{2}, T_{3}, T_{5}.$ Dim 4.
Le Co 4	2 evel omp 1	$\frac{1}{\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{7.8.a.b}}$ $N = 7. \text{ Coeffs Sym}^6(V) \otimes \chi_7^2. \text{ Field } \mathbb{F} = GF(12037^6).$ $\frac{1}{\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{7.8.c.a}}$
Le Co 4	2 evel omp 1 evel	$1 \qquad \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}$ $N = 7. \text{ Coeffs Sym}^{6}(V) \otimes \chi_{7}^{2}. \text{ Field } \mathbb{F} = GF(12037^{6}).$ $\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.c.a}$ $N = 7. \text{ Coeffs Sym}^{7}(V) \otimes \chi_{7}. \text{ Field } \mathbb{F} = GF(12037^{6}).$
Le Ca 4	2 omp 1 evel	$1 \qquad \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}$ $N = 7. \text{ Coeffs Sym}^{6}(V) \otimes \chi_{7}^{2}. \text{ Field } \mathbb{F} = GF(12037^{6}).$ $\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.c.a}$ $N = 7. \text{ Coeffs Sym}^{7}(V) \otimes \chi_{7}. \text{ Field } \mathbb{F} = GF(12037^{6}).$ $W = 7. \text{ Coeffs Sym}^{7}(V) \otimes \chi_{7}. \text{ Field } \mathbb{F} = GF(12037^{6}).$ $W = 7. \text{ Coeffs Sym}^{7}(V) \otimes \chi_{7}. \text{ Field } \mathbb{F} = GF(12037^{6}).$ $W = 7. \text{ Coeffs Sym}^{7}(V) \otimes \chi_{7}. \text{ Field } \mathbb{F} = GF(12037^{6}).$
Le Ca 4 Le Ca 1	2 omp 1 evel	$1 \qquad \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}$ $N = 7. \text{ Coeffs Sym}^{6}(V) \otimes \chi_{7}^{2}. \text{ Field } \mathbb{F} = GF(12037^{6}).$ $\omega ted T_{2}, T_{3}, T_{5}. \text{ Dim } 4.$ $\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.c.a}$ $N = 7. \text{ Coeffs Sym}^{7}(V) \otimes \chi_{7}. \text{ Field } \mathbb{F} = GF(12037^{6}).$ $\omega ted T_{2}, T_{3}, T_{5,1}. \text{ Dim } 6.$ $\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{7}\varepsilon^{2} \oplus \varepsilon^{10}$
Le Co 4 Le Co 1	2 evel pmp 1 evel pmp 1 1 1	$\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.c.a}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.c.a}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.c.a}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{1} \oplus \chi_{7} \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{7} \varepsilon^{2} \oplus \varepsilon^{10}}{\chi_{7} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$
Le Co 4 Le Co 1 1 4	2 evel pmp 1 evel pmp 1 1 1 1	$1 \qquad \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}$ $1 \qquad \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}$ $N = 7. \text{ Coeffs Sym}^{6}(V) \otimes \chi_{7}^{2}. \text{ Field } \mathbb{F} = GF(12037^{6}).$ $\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.c.a}$ $1 \qquad N = 7. \text{ Coeffs Sym}^{7}(V) \otimes \chi_{7}. \text{ Field } \mathbb{F} = GF(12037^{6}).$ $\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}$ $\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{7}\varepsilon^{2} \oplus \varepsilon^{10}$ $\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}$ $\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.9.d.a}$
Lee Co 4 Lee Co 1 1 4	2 omp 1 omp 1 1 1 1	$1 \qquad \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}$ $1 \qquad \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}$ $N = 7. \text{ Coeffs Sym}^{6}(V) \otimes \chi_{7}^{2}. \text{ Field } \mathbb{F} = GF(12037^{6}).$ $\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.c.a}$ $1 \qquad N = 7. \text{ Coeffs Sym}^{7}(V) \otimes \chi_{7}. \text{ Field } \mathbb{F} = GF(12037^{6}).$ $\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{7}\varepsilon^{2} \oplus \varepsilon^{10}$ $\chi_{7}\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}$ $\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}$ $\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}$ $\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.9.d.a}$ $N = 7. \text{ Coeffs Sym}^{7}(V) \otimes \chi_{7}^{2}. \text{ Field } \mathbb{F} = GF(12037^{6}).$
Lee Co 4 Lee Co 1 1 4	2 pmpp 1 pmpp 1 1 1 1 2 pmppp 2 pmppp 2 pmppp 2 pmppp 2 pmppp 2 pmppp 2 pmppp 2 pmpppp 2 pmpppp 2 pmpppp 2 pmpppp 2 pmpppp 2 pmpppp 2 pmppppp 2 pmppppp 2 pmpppppppppp	$\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.c.a}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.c.a}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{1} \oplus \chi_{7} \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.9.d.a}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.9.d.a}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$
Lee Co 4 Lee Co 1 1 4 Lee Co 1	2 evel pmp 1 evel pmp 1 1 1 1 1 1 1 1 1 1 1 1 1	$\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.c.a}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.c.a}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{7} \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.9.d.a}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{1} \oplus \chi_{7}^{3} \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \psi^{2} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \psi^{2} \oplus \varepsilon^{10} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \psi^{2} \oplus \varepsilon^{10} \oplus \varepsilon^{1} \oplus \varepsilon^{10} $
Lee Co 4 Lee Co 1 1 4 Lee Co 1 1 1	2 evel pmp 1 1 1 1 1 evel pmp 1 1 1 1 1 1 1 1 1 1 1 1 1	$\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.c.a}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.c.a}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{1} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{1} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{1} \oplus \varepsilon^{1}$
Lee Coi 4 Lee Coi 1 1 4 Lee Coi 1 1 1 1	2 evel pmp 1 1 1 1 1 1 1 1 1 1 1 1 1	$\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.c.a}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.c.a}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{1} \oplus \chi_{7} \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{7} \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{7} \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{7}^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{7}^{2} \oplus \varepsilon^{10}}{\varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{7}^{2} \oplus \varepsilon^{10}}{\varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{1} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{0} \oplus$
Lee Coi 4 Lee Coi 1 1 4 Lee Coi 1 1 1 1 1 1	2 pmp 1 2 pmp 2 pmp 2 pmp 2 pmp 2 pmp 2 1 1 1 1 1 1 1 1 1 1 1 1 1	$\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.a.b}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.c.a}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8.c.a}}$ $\frac{1}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{1} \oplus \chi_{7} \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{7} \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.9.d.a}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{7}^{2} \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{7}^{2} \oplus \varepsilon^{10}}{\varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \xi^{2} \oplus \varepsilon^{10}}{\chi_{7}^{2} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{1} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{1} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{1} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$ $\frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}{\varepsilon^{1} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}}$

Level 8.

Γ	Level $N = 8$. Coeffs $V \otimes \chi_{8,0}$. Field $\mathbb{F} = GF(12037^2)$.					
	Computed T_3, T_5, T_7 . Dim 6.					
	1 :	$arepsilon^0\oplusarepsilon^1\oplus\chi_{8,0}arepsilon^2\oplusarepsilon^4$				
	1 :	$\chi_{8,0}\varepsilon^0\oplus\varepsilon^1\oplus\varepsilon^2\oplus\varepsilon^4$				
Т		$N = 9$ Cooffe $V \otimes \chi$ χ Field $\mathbb{E} = CE(19027^2)$				
L	eve	$N = 6$. Coeffs $V \otimes \chi_{8,0}\chi_{8,1}$. Field $\Gamma = GF(12057^{-})$.				
С	omp	uted T_3, T_5, T_7 . Dim 4.				
1	1	$arepsilon^0\oplusarepsilon^1\oplus\chi_{8,0}\chi_{8,1}arepsilon^2\oplusarepsilon^4$				
1	1	$\chi_{8,0}\chi_{8,1}arepsilon^{0}\oplusarepsilon^{1}\oplusarepsilon^{2}\oplusarepsilon^{4}$				
1	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{8.3.\mathrm{d.a}}$				
1	1	$arepsilon^1\oplusarepsilon^4\oplusarepsilon^0\sigma_{8.3. m d.a}$				

	Le	evel $N = 8$. Coeffs Sym ² (V). Field $\mathbb{F} = GF(12379^4)$.		
	Co	Description of T_3, T_5, T_7, T_{11} . Dim 1.		
	1	1 $\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{8.4.a.a}$		
Level $N = 8$. Coeffs $\operatorname{Sym}^2(V) \otimes \chi_{8,1}$. Field $\mathbb{F} = GF(12037^2)$.				
$\mathbf{C}\mathbf{c}$	omp	buted T_3, T_5, T_7 . Dim 2.		
2	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{8.4.\mathrm{b.a}}$		

Level 9.

L	Level $N = 9$. Coeffs $V \otimes \chi_9$. Field $\mathbb{F} = GF(12037^2)$.		
С	Computed T_2, T_5, T_7 . Dim 4.		
1	1	$arepsilon^0\oplusarepsilon^1\oplus\chi_9arepsilon^2\oplusarepsilon^4$	
1	1	$\chi_9arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\oplusarepsilon^4$	
1	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{9.3. ext{d.a}}$	
1	1	$arepsilon^1\oplusarepsilon^4\oplusarepsilon^0\sigma_{9.3. ext{d.a}}$	
L C	eve	I $N = 9$. Coeffs $V \otimes \chi_9^3$. Field $\mathbb{F} = GF(12037^2)$. puted T_2, T_5, T_7 . Dim 6.	
1	3	$\frac{\chi_{9}^{2}\varepsilon^{0}\oplus\varepsilon^{1}\oplus\varepsilon^{2}\oplus\varepsilon^{4}}{\chi_{9}^{2}\varepsilon^{0}\oplus\varepsilon^{1}\oplus\varepsilon^{2}\oplus\varepsilon^{4}}$	
Le	Level $N = 9$. Coeffs $\operatorname{Sym}^2(V)$. Field $\mathbb{F} = GF(12379^4)$.		
Co	omp	uted $T_2, T_5, T_7, T_{11,1}$. Dim 3.	
1	1	$arepsilon^0\oplusarepsilon^1\oplus\chi_9^3arepsilon^2\oplus\chi_9^3arepsilon^5$	
1	1	$\chi_9^3arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\oplus\chi_9^3arepsilon^5$	

Level	$N = 9$. Coeffs Sym ² (V) $\otimes \chi_9^2$. Field $\mathbb{F} = GF(12037^6)$.
Comp	buted T_2, T_5, T_7 . Dim 2.
$2 \ 1$	$\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_0$ ()

 $\oplus \varepsilon^2 \sigma_{9.4.a.a}$

 $\varepsilon^0\oplus \varepsilon^1$

Level 10.

1

Le	evel	$I N = 10.$ Coeffs $V \otimes \chi_{10}$. Field $\mathbb{F} = GF(12037)$.
Co	omp	buted T_3 , T_7 . Dim 8.
1	3	$arepsilon^0\oplusarepsilon^1\oplus\chi_{10}arepsilon^2\oplusarepsilon^4$
1	3	$\chi_{10}arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\oplusarepsilon^4$
1	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{10.3. ext{c.a}}$
1	1	$arepsilon^1\oplusarepsilon^4\oplusarepsilon^0\sigma_{10.3. ext{c.a}}$

Level N = 10. Coeffs $\operatorname{Sym}^2(V)$. Field $\mathbb{F} = GF(12379^2)$. Computed T_3, T_7 . Dim 4. 1 1 $\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{10.4.a.a}$

 3
 1
 $\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{5.4.a.a}$

 Level N = 10. Coeffs Sym²(V) $\otimes \chi^2_{10}$. Field $\mathbb{F} = GF(12037)$. Computed T_3, T_7 . Dim 2.

1 $\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{10.4.\text{b.a}}$

Level 11.

2

	Le	evel	$N = 11$. Coeffs $V \otimes \chi_{11}$. Field $\mathbb{F} = GF(16001^2)$.	
	Co	omp	buted T_2, T_3, T_5, T_7 . Dim 4.	
	1	1	$arepsilon^0\oplusarepsilon^1\oplus\chi_{11}arepsilon^2\oplusarepsilon^4$	
	1	1	$\chi_{11}arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\oplusarepsilon^4$	
	1	1	$\varepsilon^0\oplus\varepsilon^1\oplus\varepsilon^2\sigma_{11.3.\rm d.a}$	
	1	1	$arepsilon^1\oplusarepsilon^4\oplusarepsilon^0\sigma_{11.3. m d.a}$	
	Le	evel	$N = 11$. Coeffs $V \otimes \chi_{11}^5$. Field $\mathbb{F} = GF(16001^2)$.	
	Co	omp	buted T_2, T_3, T_5, T_7 . Dim 4.	
	1	1	$arepsilon^0\oplusarepsilon^1\oplus\chi^5_{11}arepsilon^2\oplusarepsilon^4$	
	1	1	$\chi^5_{11}arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\oplusarepsilon^4$	
	1	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{11.3.\mathrm{b.a}}$	
	1	1	$arepsilon^1\oplusarepsilon^4\oplusarepsilon^0\sigma_{11.3.\mathrm{b.a}}$	
	Le	vel	$N = 11$. Coeffs Sym ² (V). Field $\mathbb{F} = GF(12379^2)$.	
	Co	mp	uted T_2, T_3, T_5, T_7 . Dim 2.	
	2	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{11.4.\mathrm{a.a.}}$	
L	evel	N	= 11. Coeffs Sym ² (V) $\otimes \chi^2_{11}$. Field $\mathbb{F} = GF(16001^6)$.	
С	omp	oute	d T_2, T_3, T_5, T_7 . Dim 2.	
2	1		$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{11.4. ext{c.a}}$	
Le	evel	N	= 11. Coeffs Sym ³ (V) $\otimes \chi_{11}$. Field $\mathbb{F} = GF(16001^{60})$.	-
Сс	omp	uteo	T_2, T_3, T_5, T_7 . Dim 6.	
1	1		$arepsilon^0\oplusarepsilon^1\oplus\chi^3_{11}arepsilon^2\oplusarepsilon^6$	-
1	1		$\chi^3_{11}arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\oplusarepsilon^6$	
1	1		$arepsilon^1\oplusarepsilon^6\oplusarepsilon^0\sigma_{11.3. m d.a}$	
3	1		$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{ m 11.5.d.a}$	
Le	evel	N	= 11. Coeffs Sym ³ (V) $\otimes \chi_{11}^5$. Field $\mathbb{F} = GF(16001^{60})$.	
Co	omp	uteo	$T_2, T_3, T_5, T_{7,1}$. Dim 6.	
1	1		$arepsilon^0\oplusarepsilon^1\oplus\chi^5_{11}arepsilon^2\oplusarepsilon^6$	
1	1		$\chi_{11}^5arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\oplusarepsilon^6$	
1	1		$\varepsilon^1 \oplus \varepsilon^6 \oplus \varepsilon^0 \sigma_{11.3.\mathrm{b.a}}$	
1	1		$\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{11.5.b.a}$	
2	1		$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{ m 11.5.b.b}$	
ſ	Le	vel	$N = 11.$ Coeffs Sym ⁴ (V). Field $\mathbb{F} = GF(16001^{60}).$	
	Cor	mpι	ited T_2, T_3, T_5, T_7 . Dim 4.	
ſ	1	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{ m 11.6.a.a}$	
l	3	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{ m 11.6.a.b}$	
Le	evel	N	= 11. Coeffs Sym ⁴ (V) $\otimes \chi^2_{11}$. Field $\mathbb{F} = GF(16001^{60})$.	
Сс	omp	uteo	T_2, T_3, T_5, T_7 . Dim 4.	
4	1		$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{ m 11.6.c.a}$	
Le	evel	N	= 11. Coeffs Sym ⁵ (V) $\otimes \chi_{11}$. Field $\mathbb{F} = GF(16001^{60})$.	-
Co	omp	uteo	$T_2, T_3, T_{5,1}$. Dim 8.	
1	1		$arepsilon^0\oplusarepsilon^1\oplus\chi_{11}^9arepsilon^2\oplusarepsilon^8$	
1	1		$\chi_{11}^9 \varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \oplus \varepsilon^8$	-
1	1		$\overline{arepsilon^1\oplusarepsilon^8\oplusarepsilon^0\sigma_{11.3.\mathrm{d.a}}}$	
õ	1		$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{ m 11.7.d.a}$	

Le	Level $N = 11$. Coeffs Sym ⁵ $(V) \otimes \chi_{11}^5$. Field $\mathbb{F} = GF(16001^{60})$.		
Co	Computed $T_2, T_3, T_{5,1}$. Dim 8.		
1	1	$arepsilon^0\oplusarepsilon^1\oplus\chi_{11}^5arepsilon^2\oplusarepsilon^8$	
1	1	$\chi^5_{11}arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\oplusarepsilon^8$	
1	1	$arepsilon^1\oplusarepsilon^8\oplusarepsilon^0\sigma_{11.3.\mathrm{b.a}}$	
1	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{11.7.\mathrm{b.a}}$	
4	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{11.7.\mathrm{b.b}}$	

Level 12.

Le	evel	$N = 12$. Coeffs $V \otimes \chi_{12,0}$. Field $\mathbb{F} = GF(16001^2)$.
Co	omp	buted T_5, T_7 . Dim 10.
1	3	$arepsilon^0\oplusarepsilon^1\oplus\chi_{12,0}arepsilon^2\oplusarepsilon^4$
1	3	$\chi_{12,0}arepsilon^{0}\oplusarepsilon^{1}\oplusarepsilon^{2}\oplusarepsilon^{4}$
2	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{12.3. m d.a}$
2	1	$arepsilon^1\oplusarepsilon^4\oplusarepsilon^0\sigma_{12.3. ext{d.a}}$

Le	evel	$N = 12$. Coeffs $V \otimes \chi_{12,1}$. Field $\mathbb{F} = GF(16001^2)$.
Co	omp	uted T_5, T_7 . Dim 14.
1	6	$arepsilon^0\oplusarepsilon^1\oplus\chi_{12,1}arepsilon^2\oplusarepsilon^4$
1	6	$\chi_{12,1}arepsilon^{0}\oplusarepsilon^{1}\oplusarepsilon^{2}\oplusarepsilon^{4}$
1	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{12.3.{ m c.a}}$
1	1	$\varepsilon^1 \oplus \varepsilon^4 \oplus \varepsilon^0 \sigma_{12,3,c,a}$

Level $N = 12$. Coeffs Sym ² (V). Field $\mathbb{F} = GF(12379^4)$.			
Co	Computed T_5, T_7, T_{11} . Dim 4.		
1	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{12.4.{ m a.a.}}$	
3	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{6.4.\mathrm{a.a.}}$	

Le	Level $N = 12$. Coeffs $\operatorname{Sym}^2(V) \otimes \chi_{12,0}\chi_{12,1}$. Field $\mathbb{F} = GF(16001^4)$.		
Co	Computed T_5 , $T_{7,1}$. Dim 10. [NEWv06]		
1	1	$arepsilon^0\oplusarepsilon^1\oplus\chi_{12,0}arepsilon^2\oplus\chi_{12,1}arepsilon^5$	
1	1	$arepsilon^0\oplusarepsilon^1\oplus\chi_{12,1}arepsilon^2\oplus\chi_{12,0}arepsilon^5$	
1	1	$\chi_{12,0}\varepsilon^0\oplus\varepsilon^1\oplus\varepsilon^2\oplus\chi_{12,1}\varepsilon^5$	
1	1	$\chi_{12,1}arepsilon^{0}\oplusarepsilon^{1}\oplusarepsilon^{2}\oplus\chi_{12,0}arepsilon^{5}$	
4	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{12.4.\mathrm{b.a}}$	
1	1	$arepsilon^0 \oplus \chi_{12,1} arepsilon^2 \oplus arepsilon^1 \sigma_{4.5.\mathrm{b.a}}$	
1	1	$\chi_{12,1}arepsilon^{0}\oplusarepsilon^{2}\oplusarepsilon^{1}\sigma_{4.5.\mathrm{b.a}}$	

Level 13.

Le	Level $N = 13$. Coeffs $V \otimes \chi_{13}$. Field $\mathbb{F} = GF(12037^{12})$.		
Co	Computed T_2, T_3, T_5, T_7 . Dim 4.		
1	1	$arepsilon^0\oplusarepsilon^1\oplus\chi^{11}_{13}arepsilon^2\oplusarepsilon^4$	
1	1	$\chi^{11}_{13}arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\oplusarepsilon^4$	
1	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{13.3.{ m f.a}}$	
1	1	$arepsilon^1\oplusarepsilon^4\oplusarepsilon^0\sigma_{13.3.{ m f.a}}$	

	Le	evel $N = 13$. Coeffs $V \otimes \chi_{13}^3$. Field $\mathbb{F} = GF(12037^{12})$.
	Co	Description of T_2, T_3, T_5, T_7 . Dim 6.
	1	$1 \qquad \varepsilon^0 \oplus \varepsilon^1 \oplus \chi_{13}^9 \varepsilon^2 \oplus \varepsilon^4$
	1	$\frac{1}{\chi_{13}^9}\varepsilon^0\oplus\varepsilon^1\oplus\varepsilon^2\oplus\varepsilon^4$
	2	$1 \qquad \varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{13.3.d.a}$
	2	1 $\varepsilon^1 \oplus \varepsilon^4 \oplus \varepsilon^0 \sigma_{13.3.d.a}$
	Le Co	evel $N = 13$. Coeffs $\text{Sym}^2(V)$. Field $\mathbb{F} = GF(12379^6)$.
	1	$1 \qquad \qquad \varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{134aa}$
	2	1 $\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{13.4.a.b}$
T /		$N = 12$ Cooffe Sum ² (U) $\otimes \chi^2$ Field $\mathbb{E} = CE(12027^{12})$
Le Ca	omn	$T = 13$. Coefficients sym $(V) \otimes \chi_{13}$. Field $\mathbb{F} = GF(12037)$.
1	1	$\frac{\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{12,4,\alpha,\alpha}}{\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{12,4,\alpha,\alpha}}$
1	1	$\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{13,4,e,h}$
T		10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
Le C	evel	$N = 13$. Coeffs Sym ⁻ (V) $\otimes \chi_{13}^*$. Field $\mathbb{F} = GF(12037^{12})$.
1	əmp 1	$c^0 \oplus c^1 \oplus c^2 \sigma_{c^0}$
1 2	1	$\varepsilon \oplus \varepsilon \oplus \varepsilon \oplus \varepsilon 0_{13.4.c.a}$
2	1	е ⊕е ⊕е 013.4.с.ь
Le	evel	$N = 13$. Coeffs Sym ² (V) $\otimes \chi_{13}^6$. Field $\mathbb{F} = GF(12037^{12})$.
Co	omp	buted T_2, T_3, T_5, T_7 . Dim 2.
2	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{13.4.\mathrm{b.a}}$
Le	evel	$N = 13$. Coeffs Sym ³ (V) $\otimes \chi_{13}$. Field $\mathbb{F} = GF(12037^{12})$.
Co	omp	buted $T_2, T_3, T_5, T_{7,1}$. Dim 7.
1	1	$arepsilon^0\oplusarepsilon^1\oplus\chi_{13}^5arepsilon^2\oplusarepsilon^6$
1	1	$\chi^5_{13}arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\oplusarepsilon^6$
1	1	$\varepsilon^1\oplus \varepsilon^6\oplus \varepsilon^0\sigma_{13.3.{ m f.a}}$
4	1	$arepsilon^{0}\oplusarepsilon^{1}\oplusarepsilon^{2}\sigma_{13.5.\mathrm{f.a}}$
Le	evel	$N = 13$. Coeffs Sym ³ (V) $\otimes \chi^3_{13}$. Field $\mathbb{F} = GF(12037^{12})$.
Co	omp	buted $T_2, T_3, T_5, T_{7,1}$. Dim 7.
1	1	$arepsilon^0\oplusarepsilon^1\oplus\chi^3_{13}arepsilon^2\oplusarepsilon^6$
1	1	$\chi^3_{13}arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\oplusarepsilon^6$
2	1	$arepsilon^1\oplusarepsilon^6\oplusarepsilon^0\sigma_{13.3.\mathrm{d.a}}$
3	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{13.5. ext{d.a}}$
ſ	Le	vel $N = 13$. Coeffs $\text{Sym}^4(V)$. Field $\mathbb{F} = GF(12037^{60})$.
	Co	mputed T_2, T_3, T_5, T_7 . Dim 5.
	2	1 $\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{13.6.a.a}$
	3	1 $\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{13.6.a.b}$
י די		$N = 13$ Coeffs Sym ⁴ (V) $\otimes \chi^2$ Field $\mathbb{E} = CF(1902760)$
L C	omn	$T_{1} = 15$. Coefficients Sym $(V) \otimes \chi_{13}$. Field $\mathbb{F} = GF(12057^{-1})$.
$\frac{5}{5}$	1	$\frac{\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{13} \epsilon_{02}}{\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{13} \epsilon_{02}}$
- -		$A = \frac{1}{2} + $
L€ ⊂	evel	$N = 13$. Coeffs Sym [*] (V) $\otimes \chi_{13}^4$. Field $\mathbb{F} = GF(12037^{60})$.
	omp	butted I_2, I_3, I_5, I_7 . DIM 4.
4	1	$arepsilon^* \oplus arepsilon^- \oplus arepsilon^- \sigma_{13.6. ext{c.a}}$

Le	evel	$N = 13$. Coeffs Sym ⁴ (V) $\otimes \chi_{13}^6$. Field $\mathbb{F} = GF(12037^{60})$.
Co	omp	uted T_2, T_3, T_5, T_7 . Dim 6.
6	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{13.6.\mathrm{b.a}}$
Le	evel	$N = 13$. Coeffs Sym ⁵ (V) $\otimes \chi_{13}$. Field $\mathbb{F} = GF(12037^{60})$.
Co	omp	uted $T_2, T_3, T_{5,1}$. Dim 9.
1	1	$arepsilon^0\oplusarepsilon^1\oplus\chi^{11}_{13}arepsilon^2\oplusarepsilon^8$
1	1	$\chi^{11}_{13}arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\oplusarepsilon^8$
1	1	$arepsilon^1\oplusarepsilon^8\oplusarepsilon^0\sigma_{13.3.{ m f.a}}$
6	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{13.7.{ m f.a}}$
Le	evel	$N = 13$. Coeffs Sym ⁵ (V) $\otimes \chi_{13}^3$. Field $\mathbb{F} = GF(12037^{60})$.
Co	omp	uted $T_2, T_3, T_{5,1}$. Dim 10.
1	1	$arepsilon^0\oplusarepsilon^1\oplus\chi^3_{13}arepsilon^2\oplusarepsilon^8$
1	1	$\chi^3_{13}arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\oplusarepsilon^8$
2	1	$arepsilon^1\oplusarepsilon^8\oplusarepsilon^0\sigma_{13.3.{ m d.a}}$
6	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{13.7. m d.a}$

Level 14.

	Le	evel	$N = 14$. Coeffs $V \otimes \chi_{14}$. Field $\mathbb{F} = GF(12037^4)$.	
	Co	omp	buted T_3, T_5 . Dim 10.	
	1	3	$arepsilon^0\oplusarepsilon^1\oplus\chi_{14}arepsilon^2\oplusarepsilon^4$	
	1	3	$\chi_{14}arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\oplusarepsilon^4$	
	2	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{14.3. m d.a}$	
	2	1	$arepsilon^1\oplusarepsilon^4\oplusarepsilon^0\sigma_{14.3.{ m d.a.}}$	
	Le	evel	$N = 14$. Coeffs $V \otimes \chi_{14}^3$. Field $\mathbb{F} = GF(12037^4)$.	
	Co	omp	buted $T_3, T_5, T_{11,1}$. Dim 13. [NEWv06]	
	1	3	$arepsilon^0\oplusarepsilon^1\oplus\chi^3_{14}arepsilon^2\oplusarepsilon^4$	
	1	3	$\chi^3_{14}arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\oplusarepsilon^4$	
	1	3	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{7.3.\mathrm{b.a}}$	
	1	4		
	1	4	$\varepsilon^{\mathtt{r}} \oplus \varepsilon^{\mathtt{r}} \oplus \varepsilon^{\mathtt{o}} \sigma_{7.3.\mathrm{b.a}}$	
ĺ	1 Le	4 vel	$\frac{\varepsilon^{*} \oplus \varepsilon^{*} \oplus \varepsilon^{o} \sigma_{7.3.b.a}}{N = 14. \text{ Coeffs Sym}^{2}(V). \text{ Field } \mathbb{F} = GF(12379^{2}).$	
	1 Le Co	4 vel mp	$\frac{\varepsilon^{*} \oplus \varepsilon^{*} \oplus \varepsilon^{0} \sigma_{7.3.\text{b.a}}}{N = 14. \text{ Coeffs Sym}^{2}(V). \text{ Field } \mathbb{F} = GF(12379^{2}).}$ uted T_{3}, T_{5}, T_{11} . Dim 5.	
	1 Le Co 1	$\frac{4}{\text{vel}}$ $\frac{\text{mp}}{1}$	$ \frac{\varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{0} \sigma_{7.3.b.a}}{N = 14. \text{ Coeffs } \text{Sym}^{2}(V). \text{ Field } \mathbb{F} = GF(12379^{2}). $ uted $T_{3}, T_{5}, T_{11}.$ Dim 5. $ \frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{14.4.a.a}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{14.4.a.a}} $	
	1 Co 1 1	4 wel mp ⁻ 1 1	$ \frac{\varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{0} \sigma_{7.3.b.a}}{N = 14. \text{ Coeffs } \text{Sym}^{2}(V). \text{ Field } \mathbb{F} = GF(12379^{2}).} $ $ \frac{\text{uted } T_{3}, T_{5}, T_{11}. \text{ Dim } 5.}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{14.4.a.a}} $ $ \frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{14.4.a.b}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{14.4.a.b}} $	
	1 Co 1 3	4 vel 1 1 1	$ \frac{\varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{0} \sigma_{7.3.b.a}}{N = 14. \text{ Coeffs Sym}^{2}(V). \text{ Field } \mathbb{F} = GF(12379^{2}).} $ $ \frac{v^{1} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{14.4.a.a}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{14.4.a.b}} $ $ \frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.4.a.a}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.4.a.a}} $	
Le	1 Co 1 3 vel	$ \begin{array}{c} 4 \\ \text{vel} \\ 1 \\ 1 \\ 1 \\ N \end{array} $	$ \frac{\varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{0} \sigma_{7.3.b.a}}{N = 14. \text{ Coeffs Sym}^{2}(V). \text{ Field } \mathbb{F} = GF(12379^{2}).} $ uted $T_{3}, T_{5}, T_{11}.$ Dim 5. $ \frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{14.4.a.a}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{14.4.a.b}} $ $ \frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.4.a.a}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.4.a.a}} $ $ = 14. \text{ Coeffs Sym}^{2}(V) \otimes \chi_{14}^{2}. \text{ Field } \mathbb{F} = GF(12037^{4}) $).
Le	1 Le Co 1 1 3 vel	$ \begin{array}{c} 4\\ \text{vel}\\ 1\\ 1\\ 1\\ N\\ \text{ute}\\ \end{array} $	$ \begin{array}{c} \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{0} \sigma_{7.3.b.a} \\ \hline N = 14. \text{ Coeffs } \operatorname{Sym}^{2}(V). \text{ Field } \mathbb{F} = GF(12379^{2}). \\ \hline uted \ T_{3}, \ T_{5}, \ T_{11}. \ \operatorname{Dim 5.} \\ \hline \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{14.4.a.a} \\ \hline \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{14.4.a.b} \\ \hline \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.4.a.a} \\ \hline = 14. \text{ Coeffs } \operatorname{Sym}^{2}(V) \otimes \chi_{14}^{2}. \text{ Field } \mathbb{F} = GF(12037^{4}) \\ \operatorname{d} \ T_{3}, \ T_{5}, \ T_{11,1}. \ \operatorname{Dim 5.} \ [\operatorname{NEWv06}] \\ \end{array} $).
Lee Co 1	1 Le Co 1 1 3 vel mp 1	$ \begin{array}{c} 4 \\ \text{vel} \\ 1 \\ 1 \\ 1 \\ N \\ \text{ute} \end{array} $	$ \frac{\varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{3} \sigma_{7.3.b.a}}{N = 14. \text{ Coeffs Sym}^{2}(V). \text{ Field } \mathbb{F} = GF(12379^{2}).} $ $ \frac{14. \text{ Coeffs Sym}^{2}(V) \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{14.4.a.b}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.4.a.a}} $ $ = 14. \text{ Coeffs Sym}^{2}(V) \otimes \chi_{14}^{2}. \text{ Field } \mathbb{F} = GF(12037^{4}) $ $ \frac{14. \text{ Coeffs Sym}^{2}(V) \otimes \chi_{14}^{2}. \text{ Field } \mathbb{F} = GF(12037^{4}) $ $ \frac{14. \text{ Coeffs Sym}^{2}(V) \otimes \chi_{14}^{2}. \text{ Field } \mathbb{F} = GF(12037^{4}) $).
Le Co 1 1	1 Co 1 1 3 vel	$ \begin{array}{c} 4 \\ \hline \mathbf{vel} \\ \underline{mp} \\ 1 \\ 1 \\ 1 \\ \hline N \\ \underline{ute} \\ \hline \\ \end{array} $	$ \frac{\varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{0} \sigma_{7.3.b.a}}{N = 14. \text{ Coeffs Sym}^{2}(V). \text{ Field } \mathbb{F} = GF(12379^{2}).} $ uted $T_{3}, T_{5}, T_{11}.$ Dim 5. $ \frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{14.4.a.a}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{14.4.a.b}} $ $ = 14. \text{ Coeffs Sym}^{2}(V) \otimes \chi^{2}_{14}. \text{ Field } \mathbb{F} = GF(12037^{4}) $ $ \frac{d T_{3}, T_{5}, T_{11,1}. \text{ Dim 5. [NEWv06]}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{14.4.c.a}} $ $ \frac{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{14.4.c.a}}{\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{14.4.c.b}} $).

Level 15.			
	Le	evel	$N = 15$. Coeffs $V \otimes \chi_{15,1}$. Field $\mathbb{F} = GF(12037^4)$.
	Co	omp	uted T_2, T_7 . Dim 10.
	1	3	$arepsilon^0\oplusarepsilon^1\oplus\chi_{15,1}arepsilon^2\oplusarepsilon^4$
	1	3	$\chi_{15,1}arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\oplusarepsilon^4$
	2	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{15.3.{ m f.a}}$
	2	1	$arepsilon^1\oplusarepsilon^4\oplusarepsilon^0\sigma_{15.3.{ m f.a}}$

Le	Level $N = 15$. Coeffs $V \otimes \chi_{15,0}$. Field $\mathbb{F} = GF(12037^4)$.		
Co	omp	buted T_2, T_7 . Dim 12.	
1	3	$arepsilon^0\oplusarepsilon^1\oplus\chi_{15,0}arepsilon^2\oplusarepsilon^4$	
1	3	$\chi_{15,0}arepsilon^{0}\oplusarepsilon^{1}\oplusarepsilon^{2}\oplusarepsilon^{4}$	
2	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{15.3.{ m c.a}}$	
2	1	$arepsilon^1\oplusarepsilon^4\oplusarepsilon^0\sigma_{15.3. ext{c.a}}$	
1	1	$arepsilon^0 \oplus \chi_{15,0} arepsilon^2 \oplus arepsilon^1 \sigma_{5.4.\mathrm{a.a.}}$	
1	1	$\chi_{15,0}arepsilon^{0}\oplusarepsilon^{2}\oplusarepsilon^{1}\sigma_{5.4.\mathrm{a.a.}}$	

Le	Level $N = 15$. Coeffs $V \otimes \chi_{15,0} \chi_{15,1}^2$. Field $\mathbb{F} = GF(12037^4)$.				
Co	Computed T_2, T_7 . Dim 8.				
1	1	$arepsilon^0\oplusarepsilon^1\oplus\chi_{15,0}arepsilon^2\oplus\chi^2_{15,1}arepsilon^4$			
1	1	$arepsilon^0\oplusarepsilon^1\oplus\chi_{15,0}\chi_{15,1}^2arepsilon^2\oplusarepsilon^4$			
1	1	$\chi_{15,0}\varepsilon^0\oplus\varepsilon^1\oplus\varepsilon^2\oplus\chi^2_{15,1}\varepsilon^4$			
1	1	$\chi_{15,0}\chi^2_{15,1}arepsilon^{0}\oplusarepsilon^{1}\oplusarepsilon^{2}\oplusarepsilon^{4}$			
1	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{15.3. m d.a}$			
1	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{15.3. ext{d.b}}$			
1	1	$arepsilon^1\oplusarepsilon^4\oplusarepsilon^0\sigma_{15.3. m d.a}$			
1	1	$arepsilon^1\oplusarepsilon^4\oplusarepsilon^0\sigma_{15.3. m d.b}$			

Le	Level $N = 15$. Coeffs $\text{Sym}^2(V)$. Field $\mathbb{F} = GF(12379^2)$.		
Computed $T_2, T_7, T_{11,1}$. Dim 5.			
1	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{15.4.\mathrm{a.a.}}$	
1	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{15.4.\mathrm{a.b.}}$	
3	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{5.4.{ m a.a.}}$	

Le	Level $N = 15$. Coeffs $\text{Sym}^2(V) \otimes \chi_{15,0}\chi_{15,1}$. Field $\mathbb{F} = GF(12037^{12})$.				
Co	Computed $T_2, T_{7,1}, T_{11,1}$. Dim 10. [NEWv06]				
1	1	$arepsilon^0\oplusarepsilon^1\oplus\chi_{15,0}arepsilon^2\oplus\chi_{15,1}arepsilon^5$			
1	1	$arepsilon^0\oplusarepsilon^1\oplus\chi_{15,1}arepsilon^2\oplus\chi_{15,0}arepsilon^5$			
1	1	$\chi_{15,0}arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\oplus\chi_{15,1}arepsilon^5$			
1	1	$\chi_{15,1}arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\oplus\chi_{15,0}arepsilon^5$			
4	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{15.4.{ m e.a}}$			
1	1	$arepsilon^0\oplus\chi_{15,0}arepsilon^2\oplusarepsilon^1\sigma_{5.5. ext{c.a}}$			
1	1	$\chi_{15,0}arepsilon^{0}\oplusarepsilon^{2}\oplusarepsilon^{1}\sigma_{5.5. ext{c.a}}$			

Le	Level $N = 15$. Coeffs $\operatorname{Sym}^2(V) \otimes \chi^2_{15,1}$. Field $\mathbb{F} = GF(12037^{12})$.		
Co	Computed $T_2, T_7, T_{11,1}$. Dim 4. [NEWv06]		
4	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{15.4.\mathrm{b.a}}$	

Level 16.

Le	Level $N = 16$. Coeffs $V \otimes \chi_{16,0}$. Field $\mathbb{F} = GF(16001^{12})$.		
Co	Computed T_3, T_5, T_7 . Dim 14.		
1	6	$arepsilon^0\oplusarepsilon^1\oplus\chi_{16,0}arepsilon^2\oplusarepsilon^4$	
1	6	$\chi_{16,0}arepsilon^{0}\oplusarepsilon^{1}\oplusarepsilon^{2}\oplusarepsilon^{4}$	
1	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{16.3. ext{c.a}}$	
1	1	$arepsilon^1\oplusarepsilon^4\oplusarepsilon^0\sigma_{16.3. ext{c.a}}$	

\mathbf{L}	eve	l $N = 16$. Coeffs $V \otimes \chi_{16,0} \chi_{16,1}$. Field $\mathbb{F} = GF(16001^{12})$.
С	omj	puted T_3, T_5, T_7 . Dim 8.
1	1	$arepsilon^0\oplusarepsilon^1\oplus\chi_{16,0}\chi_{16,1}arepsilon^2\oplusarepsilon^4$
1	1	$\chi_{16,0}\chi_{16,1}arepsilon^{0}\oplusarepsilon^{1}\oplusarepsilon^{2}\oplusarepsilon^{4}$
3	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{16.3.{ m f.a}}$
3	1	$arepsilon^1\oplusarepsilon^4\oplusarepsilon^0\sigma_{16.3.{ m f.a}}$
L C	eve omj	l $N = 16$. Coeffs $V \otimes \chi_{16,0} \chi^2_{16,1}$. Field $\mathbb{F} = GF(16001^{12})$. puted T_3, T_5, T_7 . Dim 13.
1	3	$arepsilon^0\oplusarepsilon^1\oplus\chi_{16,0}\chi_{16,1}^2arepsilon^2\oplusarepsilon^4$
1	3	$\chi_{16,0}\chi^2_{16,1}\varepsilon^0\oplus\varepsilon^1\oplus\varepsilon^2\oplus\varepsilon^4$
1	3	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{8.3.{ m d.a}}$
1	4	$arepsilon^1\oplusarepsilon^4\oplusarepsilon^0\sigma_{8.3. ext{d.a}}$
-	Le Co 1 1 1 1 1 1 1	vel $N = 16$. Coeffs $\operatorname{Sym}^2(V)$. Field $\mathbb{F} = GF(12379^{40})$. mputed $T_3, T_5, T_{7,1}, T_{11,1}$. Dim 8. $1 \qquad \varepsilon^0 \oplus \varepsilon^1 \oplus \chi_{16,0}\varepsilon^2 \oplus \chi_{16,0}\varepsilon^5$ $1 \qquad \chi_{16,0}\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \oplus \chi_{16,0}\varepsilon^5$ $1 \qquad \varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{16,4.a.a}$ $3 \qquad \varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{8,4.a.a}$ $1 \qquad \varepsilon^0 \oplus \chi_{16,0}\varepsilon^2 \oplus \varepsilon^1 \sigma_{4.5.b.a}$ $1 \qquad \chi_{16,0}\varepsilon^0 \oplus \varepsilon^2 \oplus \varepsilon^1 \sigma_{4.5.b.a}$
Le	vel	$N = 16.$ Coeffs Sym ² (V) $\otimes \chi_{16,1}$. Field $\mathbb{F} = GF(16001^{12})$.
Co	mp	ited T_3, T_5, T_7 . Dim 5. [NEWv06]
5	1	$arepsilon^{ullet}\oplusarepsilon^{ullet}\oplusarepsilon^{ullet}\sigma_{ m 16.4.e.a}$
Le	vel	$N = 16.$ Coeffs Sym ² (V) $\otimes \chi^2_{16,1}$. Field $\mathbb{F} = GF(16001^{12})$.
Co	mp	ited T_3, T_5, T_7 . Dim 6. [NEWv06]
2	3	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{8.4.\mathrm{b.a}}$

Level 17.

Le	Level $N = 17$. Coeffs $V \otimes \chi_{17}$. Field $\mathbb{F} = GF(16001^{60})$.		
Co	omp	buted T_2, T_3, T_5, T_7 . Dim 6.	
1	1	$arepsilon^0\oplusarepsilon^1\oplus\chi^{13}_{17}arepsilon^2\oplusarepsilon^4$	
1	1	$\chi^{13}_{17}arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\oplusarepsilon^4$	
1	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{17.3.\mathrm{e.a}}$	
1	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{17.3.\mathrm{e.b}}$	
1	1	$arepsilon^1\oplusarepsilon^4\oplusarepsilon^0\sigma_{17.3.\mathrm{e.a}}$	
1	1	$arepsilon^1\oplusarepsilon^4\oplusarepsilon^0\sigma_{17.3.\mathrm{e.b}}$	

Le	Level $N = 17$. Coeffs Sym ² (V). Field $\mathbb{F} = GF(16001^{60})$.			
Co	Computed $T_2, T_3, T_5, T_7, T_{11}$. Dim 4.			
1	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{17.4.\mathrm{a.a.}}$		
3	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{17.4.\mathrm{a.b}}$		

Level N = 17. Coeffs $\operatorname{Sym}^2(V) \otimes \chi^2_{17}$. Field $\mathbb{F} = GF(16001^{60})$. Computed T_2, T_3, T_5, T_7 . Dim 3. 3 1 $\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{17.4.d.a}$

Le	Level $N = 17$. Coeffs $\operatorname{Sym}^2(V) \otimes \chi_{17}^4$. Field $\mathbb{F} = GF(16001^{60})$.		
Co	Computed T_2, T_3, T_5, T_7 . Dim 4.		
4	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{17.4. ext{c.a}}$	
Le	evel	$N = 17$. Coeffs Sym ² (V) $\otimes \chi_{17}^8$. Field $\mathbb{F} = GF(16001^{60})$.	
Co	omp	buted T_2, T_3, T_5, T_7 . Dim 4.	
4	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{17.4.\mathrm{b.a}}$	

Level 18.

	Level $N = 18$. Coeffs $V \otimes \chi_{18}$. Field $\mathbb{F} = GF(12379^2)$.							
	Co	Description of $T_5, T_{7,1}, T_{11,1}$. Dim 17. [NEWv06]						
	1	$3 \qquad \qquad \varepsilon^0 \oplus \varepsilon^1 \oplus \chi_{18} \varepsilon^2 \oplus \varepsilon^4$						
	1	3	$3 \qquad \qquad \chi_{18}\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \oplus \varepsilon^4$					
	1	3	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{9.3. ext{d.a}}$					
	1	4 $\varepsilon^1 \oplus \varepsilon^4 \oplus \varepsilon^0 \sigma_{9.3.d.a}$						
	2	1 $\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{18.3.d.a}$						
	2	1	$arepsilon^1\oplusarepsilon^4\oplusarepsilon^0\sigma_{18.3. m d.a}$					
	Level $N = 18$. Coeffs $V \otimes \chi_{12}^3$. Field $\mathbb{F} = GF(12379^2)$.							
	Co	Computed $T_5, T_7, T_{11,1}$. Dim 24. [NEWv06]						
	1	9	$arepsilon^0\oplusarepsilon^1\oplus\chi^3_{18}arepsilon^2\oplusarepsilon^4$					
	1	9	$\chi^3_{18} arepsilon^0 \oplus arepsilon^1 \oplus arepsilon^2 \oplus arepsilon^4$					
	2	1	$arepsilon^0\oplusarepsilon^1\oplusarepsilon^2\sigma_{18.3.\mathrm{b.a}}$					
	2	1 $\varepsilon^1 \oplus \varepsilon^4 \oplus \varepsilon^0 \sigma_{18.3.b.a}$						
	1	1 $\varepsilon^0 \oplus \chi^3_{18} \varepsilon^2 \oplus \varepsilon^1 \sigma_{6.4.a.a}$						
	1	1 $\chi_{18}^3 \varepsilon^0 \oplus \varepsilon^2 \oplus \varepsilon^1 \sigma_{6.4.a.a}$						
[Le	vel	$N = 18$, Coeffs Sym ² (V), Field $\mathbb{F} = GF(12379^4)$,					
	Co	Computed T_5 , T_7 , $T_{11,1}$, Dim 17.						
	1	$\begin{array}{c} \text{ompared } 13, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17$						
	1	3	$\chi^3_{18} \varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \oplus \chi^3_{18} \varepsilon^5$					
ľ	1	$\frac{1}{3} \qquad \qquad$						
ľ	1	$1 \qquad \varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{18,4,a,a}$						
Ì	1	3 $\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{6,4,\mathbf{a},\mathbf{a}}$						
Ì	2	1 $\varepsilon^0 \oplus \chi^3_{18} \varepsilon^2 \oplus \varepsilon^1 \sigma_{6.5, b, a}$						
	2	1	$\chi^3_{18} arepsilon^0 \oplus arepsilon^2 \oplus arepsilon^1 \sigma_{6.5.\mathrm{b.a}}$					
Le	Level $N = 18$ Coeffe Sym ² (V) $\otimes \chi^2$ Field $\mathbb{E} = CE(12370^4)$							
Co	Computed $T_r = T_{r,1} = T_{1,1,1}$ Dim 9 [NEWv06]							
1	$1 \qquad \qquad$							
2	1	$\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{18.4.6.a}$						
2	3		$\varepsilon^0 \oplus \varepsilon^1 \oplus \varepsilon^2 \sigma_{9.4 \text{ c.a}}$					

5.2. For each N, the next table specifies the basis that Sage chooses for the group of characters $(\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{F}_p$. If there is one basis element, it is denoted χ_N . If there is more than one, they are denoted $\chi_{N,0}$, $\chi_{N,1}$, etc. The *order* of χ is the smallest positive n so that χ^n is trivial on $(\mathbb{Z}/N\mathbb{Z})^{\times}$. The *parity* is even if $\chi(-1) = +1$ and odd if $\chi(-1) = -1$.

$\chi_{N,i}$	p	order	parity	definition
χ_1	12379	1	even	trivial
χ_2	12379	1	even	trivial
χ_3	12379	2	odd	$2 \mapsto -1$
χ_4	12379	2	odd	$3 \mapsto -1$
χ_5	16001	4	odd	$2 \mapsto -645$
χ_6	12379	2	odd	$5 \mapsto -1$
χ_7	12037	6	odd	$3 \mapsto -1293$
$\chi_{8,0}$	12037	2	odd	$7 \mapsto -1, 5 \mapsto 1$
$\chi_{8,1}$	12037	2	even	$7\mapsto 1,5\mapsto -1$
χ_9	12037	6	odd	$2 \mapsto -1293$
χ_{10}	12037	4	odd	$7 \mapsto 3417$
χ_{11}	16001	10	odd	$2 \mapsto 3018$
$\chi_{12,0}$	16001	2	odd	$7 \mapsto -1, 5 \mapsto 1$
$\chi_{12,1}$	16001	2	odd	$7 \mapsto 1, 5 \mapsto -1$
χ_{13}	12037	12	odd	$2 \mapsto 4019$
χ_{14}	12037	6	odd	$3 \mapsto -1293$
$\chi_{15,0}$	12037	2	odd	$11 \mapsto -1, 7 \mapsto 1$
$\chi_{15,1}$	12037	4	odd	$11 \mapsto 1, 7 \mapsto 3417$
$\chi_{16,0}$	16001	2	odd	$15 \mapsto -1, 5 \mapsto 1$
$\chi_{16,1}$	16001	4	even	$15 \mapsto 1, 5 \mapsto -645$
χ_{17}	16001	16	odd	$3 \mapsto 83$
χ_{18}	12379	6	odd	$11 \mapsto 5770$

References

- [ADP02] Avner Ash, Darrin Doud, and David Pollack, Galois representations with conjectural connections to arithmetic cohomology, Duke Math. J. **112** (2002), no. 3, 521–579.
- [AGM02] Avner Ash, Paul E. Gunnells, and Mark McConnell, Cohomology of congruence subgroups of SL₄(Z), J. Number Theory 94 (2002), no. 1, 181–212.
- [AGM08] _____, Cohomology of congruence subgroups of SL₄(ℤ). II, J. Number Theory 128 (2008), no. 8, 2263–2274.
- [AGM10] _____, Cohomology of congruence subgroups of SL₄(ℤ). III, Math. Comp. 79 (2010), no. 271, 1811–1831.
- [AGM11] _____, Torsion in the cohomology of congruence subgroups of $SL(4, \mathbb{Z})$ and Galois representations, J. Algebra **325** (2011), 404–415.

- [CLH16] Ana Caraiani and Bao V. Le Hung, On the image of complex conjugation in certain galois representations, Compositio Math. 152 (2016), no. 7, 1476–1488.
- [LMF23] The LMFDB Collaboration, *The L-functions and modular forms database*, https://www.lmfdb.org, 2023, [Online; accessed 30 July 2023].
- [Sch09] Achill Schürmann, Enumerating perfect forms, Quadratic forms—algebra, arithmetic, and geometry, Contemp. Math., vol. 493, Amer. Math. Soc., Providence, RI, 2009, pp. 359–377.

BOSTON COLLEGE, CHESTNUT HILL, MA 02445 *Email address:* Avner.Ash@bc.edu

UNIVERSITY OF MASSACHUSETTS AMHERST, AMHERST, MA 01003 *Email address:* gunnells@umass.edu

PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08540 Email address: markwm@princeton.edu