COHOMOLOGY WITH Sym g COEFFICIENTS FOR CONGRUENCE SUBGROUPS OF $\mathrm{SL}_{4}(\mathbb{Z})$ AND GALOIS REPRESENTATIONS

AVNER ASH, PAUL E. GUNNELLS, AND MARK MCCONNELL

Abstract

We extend the computations in AGM02 AGM08|AGM10|AGM11 AGM20 to find the cohomology in degree five of a congruence subgroup Γ of $\mathrm{SL}_{4}(\mathbb{Z})$ with coefficients in $\operatorname{Sym}^{g}\left(K^{4}\right)$, twisted by a nebentype character η, along with the action of the Hecke algebra. This is the top cuspidal degree. In this paper we take $K=\mathbb{F}$, a finite field of large characteristic, as a proxy for \mathbb{C}. For each Hecke eigenclass found, we produce the unique Galois representation that appears to be attached to it.

The computations require modifications to our previous algorithms to accommodate the fact that the coefficients are not one-dimensional. Types of attached Galois representations arise that were not found in our previous papers, and we must modify the Galois Finder accordingly.

1. Introduction

The cohomology of arithmetic groups plays various roles in modern number theory. One of these concerns the connections between Hecke eigenclasses in the cohomology and Galois representations. This paper continues our series of computations in this area for subgroups of $\mathrm{SL}_{4}(\mathbb{Z})$.

It is a highly nontrivial problem to compute the homology groups and the action of the Hecke operators on them. In this paper, we use the sharbly complex for these computations, as we have done in the previous papers of this series.

Definition 1.1. For any field $K, \operatorname{Sym}^{g}\left(K^{4}\right)$ denotes the space of homogeneous polynomials of degree g on K^{4}. If η is a nebentype character valued in K^{\times}, $\operatorname{Sym}^{g}\left(K^{4}\right)_{\eta}$ is defined to be $\operatorname{Sym}^{g}\left(K^{4}\right) \otimes K_{\eta}$.

Choose a level N and let $\Gamma=\Gamma_{0}(N) \subseteq \mathrm{SL}_{4}(\mathbb{Z})$ and let K be a field. The coefficient modules we study are $\operatorname{Sym}^{g}\left(K^{4}\right)_{\eta}$ with a nebentype character η. Our earlier papers only considered one-dimensional coefficient modules, i.e., $g=0$.

Since we are interested in automorphic representations, we would like to set $K=\mathbb{C}$. However, in order to avoid the inaccuracy of floating point numbers in our huge linear algebra computations, we instead set $K=\mathbb{F}$, with \mathbb{F} denoting a finite field $\mathbb{F}_{p^{r}}$, where p is some prime with five decimal digits and $r \geqslant 1$. This large finite field can be viewed as a proxy for \mathbb{C}.

We are thus interested in $H^{*}\left(\Gamma, \operatorname{Sym}^{g}\left(\mathbb{F}^{4}\right)_{\eta}\right)$ for various $N, g>0$, and η. For reasons explained in our earlier papers, we have only investigated $*=5$, and that

[^0]is also the only degree we study in this paper. We compute $H^{5}\left(\Gamma, \operatorname{Sym}^{g}\left(\mathbb{F}^{4}\right)_{\eta}\right)$ as a module for a finite subset \mathcal{H} of the tame Hecke algebra (which is commutative), and we diagonalize the \mathcal{H}-action on this vector space.

Let $z \in H^{*}\left(\Gamma, \operatorname{Sym}^{g}\left(\mathbb{F}^{4}\right)_{\eta}\right)$ be an \mathcal{H}-eigenclass.

Definition 1.2. We say that a representation ρ of the absolute Galois group of \mathbb{Q} is attached to z with respect to \mathcal{H} if for every Hecke operator $T \in \mathcal{H}$, if T is supported at the prime ℓ, then its eigenvalue is that predicted by the equality of the characteristic polynomial of $\rho\left(\mathrm{Frob}_{\ell}\right)$ and the Hecke polynomial of z at ℓ.

We say that ρ is entirely attached to z if for every Hecke operator T in the whole tame Hecke algebra, if T is supported at the prime ℓ, then its eigenvalue is so predicted.

In our previous papers we used the terminology that ρ "appears" to be attached to z, because we can only compute a finite number of Hecke operators T. The new terminology contains more information by including the set of T for which computations were made. Also, since Scholze has proved that there always exists a ρ attached to z, if there were a unique ρ attached to z with respect to \mathcal{H}, then ρ must be entirely attached to z. Of course, since we can find only a small number of Hecke eigenvalues (owing to the size of the matrices involved), even though our Galois finder returns only one ρ, it is still possible (though very unlikely) that this ρ is an "imposter" and the entirely attached ρ is some other Galois representation that agrees with ρ on Frob_{ℓ} for small ℓ.

For each Hecke eigenclass z computed in this paper, we find a Galois representation attached to it, and this attached Galois representation is uniquely determined by our data, in a sense to be explained in Theorem 3.1. As we just explained, it is logically possible (but very unlikely) that if we considered candidates for ρ not in the list of Section 2 we might find other ρ 's also attached to z with respect to \mathcal{H}.

If we could compute enough Hecke operators, then, using Scholze's theorem and the method of Faltings-Serre, we could prove that a given ρ is entirely attached to a given z. But it is not feasible to compute anywhere near enough Hecke operators to do this for the homology classes found in this paper.

As in our earlier papers, these computations give new examples of Scholze's theorem (recalled in Section (2) and new a posteriori tests of Serre-type conjectures for GL_{4}.

The Galois representations in this paper are all reducible. We do not know why certain combinations of characters and cusp forms appear and others do not. This ignorance stems from the fact that the cohomology of \bar{X} / Γ and its boundary, let alone the restriction map from one to the other, is not known.

Our computations are complete for the following values of (N, g, η). For $g=1$ and 2 , they are complete for all levels $N \leqslant 18$, both prime and composite. For $g=3, \ldots, 7$, as the computations became slower, we computed only for certain prime levels $N \leqslant 17$. For $N=1$, we computed for $g \leqslant 10$. When we computed for a given pair (N, g), we computed for all the η relevant to that pair.

The existence of attached Galois representations helps to corroborate the correctness of our computations. It is unimaginable that attached Galois representations could be found if the computed Hecke eigenvalues were random collections of numbers that had been calculated erroneously.

This paper covers the same ground as AGM20, except for the difference in the coefficient modules. Therefore we refer the reader to AGM20 for most of the background information and the description of how the computations are performed. We will explain below the changes needed in order to deal with coefficient modules of dimension greater than 1, and modifications required in the Galois Finder. Then we will summarize our findings and provide complete tables of the results of our computations.

2. Definitions, notations, Basic constructions

Definition 2.1. Fix $N \geqslant 1$.

$\Gamma=\Gamma_{0}(N)$ will denote the subgroup of matrices in $\operatorname{SL}_{n}(\mathbb{Z})$ whose bottom row is congruent to $(0, \ldots, 0, *)$ modulo N.
η will denote a character of $(\mathbb{Z} / N)^{\times}$. It can be viewed as a character of Γ by being applied to the (n, n)-entry of an element in Γ.
V will denote the standard representation of GL_{4}.
$S h \bullet$ denotes the sharbly resolution of the Steinberg module for GL_{4}.
Recall that if K is a field, and η is a K^{\times}-valued character of $(\mathbb{Z} / N)^{\times}$, we defined K_{η} to be the one-dimensional vector space K regarded as a Γ-module with action via the nebentype character η. (We call η the nebentype even if it is trivial.)

Section 2 of AGM20 gives the definitions of the Steinberg module, the sharbly complex, and of the Hecke polynomial at ℓ. It also explains why the sharbly homology is isomorphic to $H^{*}\left(\Gamma, \operatorname{Sym}^{g}\left(\mathbb{F}^{4}\right)_{\eta}\right)$. Section 3 of the same paper reviews how the sharbly homology is calculated as a Hecke module, and Section 4 describes the Galois Finder. We will assume knowledge of these matters in what follows.

There is an isomorphism of Hecke modules

$$
H^{5}(\Gamma, M) \approx H_{1}\left(\Gamma, S h_{\bullet} \otimes_{\mathbb{Z}} M\right)
$$

where M is any module on which the orders of the finite subgroups in $\mathrm{SL}_{4}(\mathbb{Z})$ are invertible; this condition is satisfied for us since we will take $V=\mathbb{F}_{p^{r}}^{4}$ and $M=\operatorname{Sym}^{g}(V) \otimes \eta$, where $p>5$.

Indeed, in order to avoid the inaccuracy of floating point numbers in our huge linear algebra computations, we use a finite field $\mathbb{F}=\mathbb{F}_{p^{r}}$ as a proxy for \mathbb{C}. If $p>5$ and if there is no p-torsion in the \mathbb{Z}-cohomology (which is very likely the case for large random p), then the \mathbb{C} - and mod p-betti numbers coincide. We use primes that have five decimal digits. We choose p and r as follows.

We choose p so that the exponent of $(\mathbb{Z} / N)^{\times}$divides $p-1$. This makes the group of characters $(\mathbb{Z} / N)^{\times} \rightarrow \mathbb{F}_{p}^{\times}$isomorphic to the group of characters $(\mathbb{Z} / N)^{\times} \rightarrow \mathbb{C}^{\times}$. (Note: this is not needed if $\eta=1$. Some of our initial computations for $\eta=1$ were performed for a prime that differs from the p we used at the same level for nontrivial η.) Later in the computation, we choose r to ensure that the various Hecke eigenvalues that we compute lie in \mathbb{F}.

Define $S_{p N}$ to be the subsemigroup of integral matrices in $\mathrm{GL}_{n}(\mathbb{Q})$ satisfying the same congruence conditions mod N as Γ and having positive determinant relatively prime to $p N$. Then $\mathcal{H}(p N)$, the tame Hecke algebra, is the \mathbb{Z}-algebra of double cosets $\Gamma S_{p N} \Gamma$. It is a commutative algebra that acts on the cohomology and homology of Γ with coefficients in any $S_{p N}$-module. $\mathcal{H}(p N)$ is generated by all double cosets of the form $\Gamma D(\ell, k) \Gamma$, where ℓ is a prime not dividing $p N, 0 \leqslant k \leqslant n$, and $D(\ell, k)$ is the diagonal matrix with the first $n-k$ diagonal entries equal to 1 and the last
k diagonal entries equal to ℓ. When we consider the double coset generated by $D(\ell, k)$ as a Hecke operator, we call it $T(\ell, k)$.
\mathbb{F}_{η} is an $S_{p N}$-module, where a matrix $s \in S_{p N}$ acts on \mathbb{F} via $\eta\left(s_{n n}\right)$, where $s_{n n}$ is the lower right entry of the $n \times n$ matrix s.
Definition 2.2. Let V be an $\mathbb{F}[\mathcal{H}(p N)]$-module. Suppose that $v \in V$ is a simultaneous eigenvector for all $T(\ell, k)$ and that $T(\ell, k) v=a(\ell, k) v$ with $a(\ell, k) \in \mathbb{F}$ for all prime $\ell \nmid p N$ and $0 \leqslant k \leqslant n$. If

$$
\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{n}(\mathbb{F})
$$

is a continuous representation of $G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ unramified outside $p N$, and if

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k} \ell^{k(k-1) / 2} a(\ell, k) X^{k}=\operatorname{det}\left(I-\rho\left(\operatorname{Frob}_{\ell}\right) X\right) \tag{1}
\end{equation*}
$$

for all $\ell \nmid p N$, then we say that ρ is entirely attached to v.
Here, Frob_{ℓ} refers to an arithmetic Frobenius element, so that if ε is the cyclotomic character, we have $\varepsilon\left(\right.$ Frob $\left._{\ell}\right)=\ell$.

The polynomial on the left-hand side of (11) is called the Hecke polynomial for v at ℓ.

Definition 2.3. Suppose we have v and ρ as above. If \mathcal{H} is a subset of $\mathcal{H}(p N)$ and the eigenvalues of all $T \in \mathcal{H}$ are those that would be predicted by ρ if ρ were entirely attached to v, then we say ρ is attached to v with respect to \mathcal{H}.

The following is a special case of a theorem of Scholze:
Theorem 2.4. Let $N \geqslant 1$. Let v be a Hecke eigenclass in $H^{5}\left(\Gamma_{0}(N), \operatorname{Sym}^{g}\left(\mathbb{F}^{4}\right)_{\eta}\right)$. Then there is entirely attached to v a continuous representation ρ, unramified outside $p N$:

$$
\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{n}(\mathbb{F})
$$

Since ρ is entirely attached to v, it is unique up to isomorphism.
The coefficient modules M studied in this paper are $\operatorname{Sym}^{g}\left(\mathbb{F}^{4}\right)_{\eta}$ for various levels N, nebentypes η and degrees g. We compute homology and the Hecke action exactly as in AGM20. Of course we have to modify the programs to use $\operatorname{Sym}^{g}\left(\mathbb{F}^{4}\right)_{\eta}$ coefficients.

When we wrote our code for AGM20, we had made sure to support arbitrary coefficient modules M for the cohomology. During AGM20, this code was tested for M 's that were one-dimensional over \mathbb{F}. As it turned out, the same code worked out of the box for the high-dimensional M used in the present paper, after a few small incompatibility bugs were fixed.

As explained in AGM10, AGM20, computing the cohomology comes down to finding the kernels and images of certain large matrices coming from the cells of the well-rounded retract. The dimension of $\operatorname{Sym}^{g}\left(\mathbb{F}^{4}\right)$ is $\binom{g+3}{3} \sim g^{3} / 6$. Thus, when $M=\operatorname{Sym}^{g}\left(\mathbb{F}^{4}\right) \otimes \eta$, the numbers of rows and columns in the matrices are larger by approximately this factor of $g^{3} / 6$, compared to the size for $M=\mathbb{F}_{\eta}$ alone. In turn, the size for one-dimensional M grows roughly like $O\left(N^{3}\right)$ for both rows and columns. This explains why we stopped our computations at $g=7$, and why we restricted ourselves to smaller ranges of g as N became large (or a slightly larger range for $N=1$). The largest matrix we encountered was for $N=18$ and $\operatorname{Sym}^{2}(V)$, where the matrix was 16204×56420. This is far smaller than the largest
matrix in AGM10, which was about 1 million by 4 million (for the case $N=211$, $M=1$). However, in AGM10, unlike in AGM20] and the present paper, we were not computing bases for the kernels and images of the matrices, which are needed in order to compute the Hecke operators; we were only computing ranks of matrices $\bmod p$. That is why we could go to much larger matrices in AGM10.

To find attached Galois representations, we use the Galois Finder program, which is part of our Sage code. We had to modify it for the current project, making two changes. First, it now considers cusp forms of all weights $2, \ldots, g+4$. In AGM20, where $g=0$, we only needed to consider weights $2,3,4$. Secondly, it now considers powers ε^{i} of ε for all $i=0, \ldots, g+3$, as opposed to $0, \ldots, 3$ for AGM20.

We compute the action on $V=H_{1}\left(\Gamma_{0}(N), S h \bullet \otimes_{\mathbb{Z}} \operatorname{Sym}^{g}\left(\mathbb{F}^{4}\right)_{\eta}\right)$ of the Hecke operators $T(\ell, k)$ for $k=1,2,3$ and for ℓ ranging through a set

$$
L=\left\{\ell \mid \ell \text { prime }, \ell \leqslant \ell_{0}, \ell \nmid p N\right\} .
$$

The upper bound ℓ_{0} depends on the level N and the nebentype η. What limits the choice of ℓ_{0} is the size of the matrices involved in the computation and the time it takes.

In this paper, $5 \leqslant \ell_{0} \leqslant 11$. For ℓ_{0} itself we sometimes find only $T\left(\ell_{0}, 1\right)$ and not $T\left(\ell_{0}, k\right)$ for $k=2,3$ because of the size of the computations. For $k=0,4$, we do not have to do any computation: $T(\ell, 0)$ is the identity and $T(\ell, 4)$ is $\eta(\ell) \ell^{g}$ times the identity. To check our work, we always verify that the Hecke operators commute pairwise.

3. Observations from the data

In the range of our computations, all the Galois representations that occur are reducible with constituents of dimension 1 and 2 . One-dimensional constituents come from Dirichlet characters mod N taking values in the cyclotomic field K_{0} generated by a primitive N-th root of unity. Two-dimensional constituents come from newforms of level dividing N and weights $2, \ldots, g+4$. Any of these constituents may be multiplied by a power of the cyclotomic character.

Let K_{1}, K_{2}, \ldots be the fields of coefficients of the q-expansions of the newforms we have listed, together with K_{0}. The Galois Finder works in the residue class fields for the various primes \mathfrak{P} over p in the various K_{i} 's. We define r to be the smallest integer so that all these residue class fields embed in $\mathbb{F}=\mathbb{F}_{p^{r}}$. We choose p to make r as small as possible, given the constraint that p should be no more than five digits (which is needed for speed). The field \mathbb{F} is recorded at the top of each table in Section 5. The table also specifies, for each N, η, g, the set of Hecke operators making up our choice of \mathcal{H} for those parameters.

We summarize our first observation as follows:
Theorem 3.1. For N, p^{r}, η, ℓ, and g as covered in the tables in Section 5, the Hecke operators $T \in \mathcal{H}$ on $H^{5}\left(\Gamma_{0}(N), \operatorname{Sym}^{g}\left(\mathbb{F}_{p^{r}}\right)_{\eta}\right)$ are all semisimple. For every Hecke eigenvector z, there exists a unique reducible Galois representation $\rho: G_{\mathbb{Q}} \rightarrow$ $\mathrm{GL}_{4}\left(\mathbb{F}_{p^{r}}\right)$ (within the scope of the Galois finder) that is attached to z with respect to \mathcal{H}. Each such ρ is either the sum of four characters or the sum of two characters plus the Galois representation of a newform tensored with a character.

Let E denote a simultaneous eigenspace of \mathcal{H} on $V=H^{5}\left(\Gamma_{0}(N), \operatorname{Sym}^{g}\left(\mathbb{F}^{4}\right)_{\eta}\right)$, where $\mathbb{F}=\mathbb{F}_{p^{r}}$. We define two kinds of multiplicity for E.

Definition 3.2. The Hecke multiplicity of E equals $\operatorname{dim}_{\mathbb{F}} E$.
Let G_{η} be the stabilizer of η in the Galois group of $\mathbb{F} / \mathbb{F}_{p}$. Then G_{η} acts on V and permutes the Hecke eigenspaces.

Definition 3.3. The Galois multiplicity of E equals the cardinality of the orbit of E under G_{η}.

The Galois finder works exactly as it did in AGM20. If the Galois finder returns the same ρ exactly d times, for Hecke eigenspaces E_{1}, \ldots, E_{d}, then the Galois multiplicity of each E_{i} equals d and we list only one of them in the tables. Although it seems like it is returning the same ρ, this is not true: it is using a different prime \mathfrak{P} for each one.

We now describe in detail the list of Galois representations ρ which our Galois Finder used for this paper.

First are the Dirichlet characters χ with values in \mathbb{F}, which we identify with onedimensional Galois representations as usual. We take all the characters of conductor N_{1} for all $N_{1} \mid N$. Sage's class DirichletGroup enumerates the χ automatically. The characteristic polynomial of Frobenius at ℓ for χ is $1+\chi(\ell) X$, for all $\ell \nmid p N$.

Another one-dimensional character is the cyclotomic character ε. We look at ε^{w} for $w=0,1,2 \ldots, g+3$, because these are the powers predicted by the generalizations of Serre's conjecture for mod p Galois representations Sch09, ADP02.

We define the Hodge-Tate (HT) numbers for Galois representations as follows. For a character $\chi \otimes \varepsilon^{w}$, there is a list of one integer $[w]$. To a representation coming from a newform ρ of weight k, there is a list of two integers, $[0, k-1]$. More generally, for $\chi \otimes \varepsilon^{w} \otimes \rho$, the list is $[w, w+k-1]$. For direct sums of representations, the lists are concatenated and then ordered by increasing values of the entries. For the fourdimensional Galois representations we find that fit our data, we always observe that the list is $[0,1,2, g+3]$ after sorting. This is predicted by the Serre-type conjectures and gives us a check on our computations.

Another check on our computations comes from considering the relationship between the nebentype character and the determinant of the attached representation. Suppose a Galois representation ρ is attached to a Hecke eigenclass in $H^{5}\left(\Gamma_{0}(N), \operatorname{Sym}^{g}\left(\mathbb{F}^{4}\right)_{\eta}\right)$. Then the determinant of $\rho\left(\right.$ Frob $\left._{\ell}\right)$ must equal the coefficient of X^{4} in the Hecke polynomial, namely $\eta(\ell) \ell^{g+6}$. We observe that this is always the case in our data.

4. Other observed regularities in the data

In this section, we set $V=\mathbb{F}^{4}$. A Hecke eigenclass in $H^{5}\left(\Gamma_{0}(N), \operatorname{Sym}^{g}(V)_{\eta}\right)$ will be denoted by the letter z, and its attached Galois representation by ρ.
4.1. Oddness. We observe that ρ is always odd. In other words, the eigenvalues of $\rho(c)$ are $+1,-1,+1,-1$, where c denotes complex conjugation. This must be the case, as follows from a theorem of Caraiani and LeHung CLH16.
4.2. Multiplicities. We observe that the Galois multiplicity of eigenspaces in our data can be any integer from 1 to 6 , while the Hecke multiplicity of eigenspaces in our data can be $1,3,4,6$, or 9 . We do not have an explanation for why other multiplicities do not occur. It is possible that more computations would reveal other multiplicities.
4.3. Patterns. Recall that N denotes the level of the Hecke eigenspace and η denotes the nebentype of the coefficients.

Each Galois representation in the tables is one of the following types. We let χ and ψ denote 1-dimensional Galois representations with conductor dividing N and σ_{k} an irreducible 2-dimensional Galois representation corresponding to a newform of weight k and level dividing N.

1) $\chi \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{g+3}$ and $\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi \varepsilon^{2} \oplus \varepsilon^{g+3}, \chi \neq 1$. These always occur in such pairs.
2) $\chi \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \psi \varepsilon^{g+3}$ and $\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi \varepsilon^{2} \oplus \psi \varepsilon^{g+3}, \chi \neq 1, \psi \neq 1$. These always occur in such pairs. They are much rarer than type 1).
3) $\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{g+2}$. (Notice that no summand here gets multiplied by a nontrivial character.) This always occurs unless there is no σ_{g+2} with nebentype equal to η.
4) $\varepsilon^{1} \oplus \varepsilon^{g+3} \oplus \varepsilon^{0} \sigma_{3}$. (Notice that no summand here gets multiplied by a nontrivial character.) Whenever type 4) occurs for given N, g, η, there also occurs type 3) and type 1).
5) $\chi \varepsilon^{0} \oplus \varepsilon^{2} \oplus \varepsilon^{1} \sigma_{g+3}$ and $\varepsilon^{0} \oplus \chi \varepsilon^{2} \oplus \varepsilon^{1} \sigma_{g+3}, \chi \neq 1$. These always occur in such pairs. This type occurs in our data for $N=12,15,16,18$.
4.4. Differences from our previous findings for $g=0$. Unlike in AGM20, neither ε^{1} nor σ_{k} is ever multiplied by a nontrivial character. Of course, more data might disturb this observation.

In AGM20, if η factors nontrivially as $\eta=\psi \chi$ then either all three of the following or none of the following occur:

$$
\begin{aligned}
& \rho=\psi \varepsilon^{0} \oplus \chi \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{3} \\
& \rho=\psi \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \chi \varepsilon^{3} \\
& \rho=\varepsilon^{0} \oplus \varepsilon^{1} \oplus \psi \varepsilon^{2} \oplus \chi \varepsilon^{3} .
\end{aligned}
$$

The natural analogue of this assertion for $g>0$ is not true. See for example $N=16$.
In AGM20, $\varepsilon^{2} \chi \sigma$ (χ possibly trivial) occurred as a summand for a given coefficient module if and only if $\varepsilon^{0} \chi \sigma$ occurred. This is no longer true when $g>0$. For example, see $N=3$, Coeffs $=\operatorname{Sym}^{6}(V)$.
4.5. Heuristics. We do not have explanations for most of the regularities observed above. In AGM20 we gave a heuristic for the conductors of the characters and the levels and weights of the cuspforms that appear in the tables by referring to the homology of various parabolic subgroups of GL_{4} intersected with Γ. We refer to AGM20] for the details of this analysis, and very briefly discuss them as they apply to the tables below. In AGM20, Section 5.6] the analysis was accompanied by five diagrams lettered (a) through (e), which we have reproduced in Figure 1 below.

The heuristic concerning the conductors of the characters and the levels of the cuspforms is the same as before. As for the weights of the cuspforms:

The Borel-Serre boundary B_{Γ} is the union of faces $F(P)$, where P runs over a set of representatives of Γ-orbits of parabolic subgroups P of $\mathrm{GL}_{4}(\mathbb{Q})$. Each parabolic subgroup P is conjugate to a standard one with block sizes $\left(n_{1}, \ldots, n_{k+2}\right)$ down the diagonal. We call this tuple the "type" of P or of $F(P)$. The nonnegative integer k equals the codimension of $F(P)$ in B_{Γ}.

Our heuristic explanation assumes that each Hecke eigenspace restricts nontrivially to at least one of the faces. Our data all conforms to assuming this face is type $(2,2)$. By the Eichler-Shimura theorem, a block of size 2 will give rise to the

Galois representation σ attached to a holomorphic cuspform with level dividing N, or to a sum of two characters (in the case of an Eisenstein series), with conductors dividing N. In general, σ and these characters may be multiplied by a power of the cyclotomic character.

We now use this heuristic to describe the various kinds of Galois representations that occur in our data in the tables. Write the parabolic subgroup of type $(2,2)$ as $P=L_{1} L_{2} U$ where $L_{i} \approx \mathrm{GL}_{2}$ for $i=1,2$ and U is the unipotent radical of P. Note that Sym^{g} restricted to L_{2} has a submodule isomorphic to Sym^{g} for GL_{2}, and another submodule isomorphic to Sym^{0} for GL_{2}.

Figure 1. Schematics of homology classes on faces of the BorelSerre boundary
4.6. Holomorphic cusp forms of weight $g+2$. In this case (Figure 1(b)), when we restrict the coefficients $\operatorname{Sym}^{g}(V) \otimes \eta$ to L_{2} we use the submodule W_{g} isomorphic to Sym^{g} for GL_{2}. We place a cuspform on the L_{2} block of weight $g+2$ (corresponding to the homology of the arithmetic group in the GL_{2}-block with coefficients in $H_{4}(U) \otimes W_{g}$.) This gives classes of type 3).
4.7. Holomorphic cusp forms of weight $g+3$. In this case (Figure 1(c)), when we restrict the coefficients $\operatorname{Sym}^{g}(V) \otimes \eta$ to L_{2} we use the submodule W_{g} isomorphic to Sym^{g} for $G L_{2}$. We place a cuspform on the L_{2} block of weight $g+3$ (corresponding to the homology of the arithmetic group in the $G L_{2}$-block with coefficients in $H_{3}(U) \otimes W_{g}$.) We place an Eisenstein series on the L_{1} block. This gives classes of type 5).
4.8. Holomorphic cusp forms of weight 3. In this case (also Figure 1(c)), when we restrict the coefficients $\operatorname{Sym}^{g}(V) \otimes \eta$ to L_{2} we use the submodule W_{0} isomorphic to Sym^{0} for $G L_{2}$. We place a cuspform on the L_{2} block of weight 3 (corresponding to the homology of the arithmetic group in the $G L_{2}$-block with coefficients in $H_{3}(U) \otimes W_{0}$.) We place an Eisenstein series on the L_{1} block. This gives classes of type 4).
4.9. Sums of 4 characters. In this case (Figure $1(\mathrm{e})$), when we restrict the coefficients $\operatorname{Sym}^{g}(V) \otimes \eta$ to L_{2} we use the submodule W_{g} isomorphic to Sym^{g} for $G L_{2}$. We place an Eisenstein series on the L_{2} block of weight $g+3$ (corresponding to the homology of the arithmetic group in the $G L_{2}$-block with coefficients in $\left.H_{3}(U) \otimes W_{g}.\right)$ This gives classes of types 1) and 2).

We do not understand the finer details of the sums of characters, nor of the other types of attached Galois representations.
4.10. Missing patterns from AGM20]. Nothing in our data corresponds to Figure $1(\mathrm{~d})$ where P is a $(1,2,1)$-parabolic subgroup nor to Figure 1 (a) where P is a (1,3)-parabolic subgroup. We would expect Figure 1(a) to occur if GL_{3} has a cuspidal cohomology class of level N, but such N are beyond the range of our computations. We do not have a guess as to whether Figure 1(d) would occur for larger levels N.

5. Tables of Results

5.1. The tables in this section present the main results of the paper.

Let V denote the standard representation of GL_{4} acting on a vector space of dimension 4. A given coefficient module will be denoted $\operatorname{Sym}^{g}(V) \otimes \eta$ for a nebentype η. (We used a subscript η earlier, but putting η on the line makes it easier to read). Dirichlet characters will be denoted by a subscripted χ, and 2-dimensional irreducible Galois representations will be denoted by a subscripted σ. We replace $\operatorname{Sym}^{1}(V)$ with V in the tables.

The topmost box in each table gives the level N, the coefficient module $\operatorname{Sym}^{k}(V) \otimes$ η with nebentype η, and the field $\mathbb{F}_{p^{r}}=G F\left(p^{r}\right)$ that was our proxy for \mathbb{C}. We include only one representative for each Galois orbit of nebentype characters. Next, we list the Hecke operators we computed. T_{ℓ} means we computed $T_{\ell, 1}, T_{\ell, 2}$, and $T_{\ell, 3}$. Listing $T_{\ell, 1}$ means we computed only that part of T_{ℓ}.

The succeeding rows in each table give the Galois multiplicity (Def. 2.8), the Hecke multiplicity (Def. 2.7), and the Galois representation itself. The cyclotomic character is denoted ε.
χ_{N} or $\chi_{N, i}$ are a basis for the $\bmod p$ Dirichlet characters $(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{F}_{p}$. They are listed in a separate table at the end. As explained above, we usually choose p depending on N so that the exponent of $(\mathbb{Z} / N \mathbb{Z})^{\times}$divides the order $p-1$ of \mathbb{F}_{p}^{\times}. It follows that the group of complex-valued Dirichlet characters is isomorphic to the group of $\bmod p$ characters.

The symbol $\sigma_{N . k . a . x}$ denotes a classical cuspidal holomorphic newform. We label these following the conventions of the LMFDB LMF23. Thus N is the level of the newform, k is its weight, "a" is the LMFDB name for the nebentype character of the newform, and "x" denotes a specified Galois orbit of newforms. We use the same symbol $\sigma_{N . k . a . x}$ to stand for the two-dimensional Galois representation attached to the cusp form of that name.

For $g=1$ and 2 , we computed the cohomology for all levels $N \leqslant 18$, both prime and composite. For $g=3, \ldots, 7$, as the computations became slower, we computed only for certain prime levels $N \leqslant 17$. For $N=1$, we computed for $g \leqslant 10$. When we computed for a given pair (N, g), we computed for all the η relevant to that pair. In general, the range of N for which we computed became smaller as g grew larger.

Level 1.
Level $N=1$. Coeffs $\operatorname{Sym}^{g}(V)$ for $g=2,4,6,8$. Field $\mathbb{F}=G F(12379)$. Dim 0.

[^1]| Level $N=1$. Coeffs $\operatorname{Sym}^{10}(V)$. Field $\mathbb{F}=G F(12379)$. | | |
| :--- | :---: | :---: |
| Computed T_{2}, T_{3}. $\operatorname{Dim} 1$. | | |
| 1 | 1 | $\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{1.12 . \mathrm{a.a}}$ |

Level 2.

$$
\text { Level } N=2 . \text { Coeffs } \operatorname{Sym}^{2}(V) . \text { Field } \mathbb{F}=G F(12379) .
$$

$$
\begin{array}{|l|}
\hline \text { Dim } 0 . \\
\hline
\end{array}
$$

| Level $N=2$. Coeffs $\operatorname{Sym}^{4}(V)$. Field $\mathbb{F}=G F(12379)$. |
| :--- | :--- |
| Dim 0. |

Level $N=2$. Coeffs $\operatorname{Sym}^{6}(V)$. Field $\mathbb{F}=G F(12379)$. Computed $T_{3}, T_{5}, T_{7,1}$. $\operatorname{Dim} 1$.

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{2.8 \text {.a.a }}$

Level 3.

Level $N=3$. Coeffs $V \otimes \chi_{3}$. Field $\mathbb{F}=G F(12379)$		
Computed $T_{2}, T_{5}, T_{7}, T_{11}$. Dim 2.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{3} \varepsilon^{2} \oplus \varepsilon^{4}$
1	1	$\chi_{3} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$

Level $N=3$. Coeffs $\operatorname{Sym}^{2}(V)$. Field $\mathbb{F}=G F(12379)$. Dim 0.

Level $N=3$. Coeffs $\operatorname{Sym}^{3}(V) \otimes \chi_{3}$. Field $\mathbb{F}=G F(12379)$		
Computed T_{2}, T_{5}, T_{7}. Dim 2.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{3} \varepsilon^{2} \oplus \varepsilon^{6}$
1	1	$\chi_{3} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{6}$

Level $N=3$. Coeffs $\operatorname{Sym}^{4}(V)$. Field $\mathbb{F}=G F(12379)$. Computed T_{2}, T_{5}, T_{7}. Dim 1 .

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{3.6 \text { a.a }}$

Level $N=3$. Coeffs $\operatorname{Sym}^{5}(V) \otimes \chi_{3}$. Field $\mathbb{F}=G F(12379)$		
Computed $T_{2}, T_{5}, T_{7,1}$. $\operatorname{Dim} 3$.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{3} \varepsilon^{2} \oplus \varepsilon^{8}$
1	1	$\chi_{3} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{8}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{3.7 . \text {..a }}$

Level $N=3$. Coeffs $\operatorname{Sym}^{6}(V)$. Field $\mathbb{F}=G F(12379)$. Computed $T_{2}, T_{5}, T_{7,1}$. Dim 1.

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{3.8 . \mathrm{a} . \mathrm{a}}$

Level $N=3$. Coeffs $\operatorname{Sym}^{7}(V) \otimes \chi_{3}$. Field $\mathbb{F}=G F\left(12379^{2}\right)$		
Computed $T_{2}, T_{5,1}, T_{7,1}$. Dim 4.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{3} \varepsilon^{2} \oplus \varepsilon^{10}$
1	1	$\chi_{3} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}$
2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{3.9 . \text { b.a }}$

Level 4.

Level $N=4$. Coeffs $V \otimes \chi_{4}$. Field $\mathbb{F}=G F(12379)$		
Computed T_{3}, T_{5}, T_{7}. Dim 2.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{4} \varepsilon^{2} \oplus \varepsilon^{4}$
1	1	$\chi_{4} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$

| Level $N=4$. Coeffs $\operatorname{Sym}^{2}(V)$. Field $\mathbb{F}=G F(12379)$. |
| :--- | :--- |
| $\operatorname{Dim} 0$. |

Level 5.

Level $N=5$. Coeffs $V \otimes \chi_{5}$. Field $\mathbb{F}=G F(16001)$		
Computed T_{2}, T_{3}, T_{7}. Dim 2.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{5} \varepsilon^{2} \oplus \varepsilon^{4}$
1	1	$\chi_{5} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$

Level $N=5$. Coeffs $\operatorname{Sym}^{2}(V)$. Field $\mathbb{F}=G F\left(12379^{2}\right)$. Computed $T_{2}, T_{3}, T_{7}, T_{11}$. Dim 1.

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{5.4 . \mathrm{a} . \mathrm{a}}$

Level $N=5$. Coeffs $\operatorname{Sym}^{2}(V) \otimes \chi_{5}^{2}$. Field $\mathbb{F}=G F(16001)$. Dim 0.

Level $N=5$. Coeffs $\operatorname{Sym}^{3}(V) \otimes \chi_{5}$. Field $\mathbb{F}=G F\left(16001^{2}\right)$.		
Computed T_{2}, T_{3}, T_{7}. $\operatorname{Dim} 3$		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{5} \varepsilon^{2} \oplus \varepsilon^{6}$
1	1	$\chi_{5} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{6}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{5.5 . c . a}$

Level $N=5$. Coeffs $\operatorname{Sym}^{4}(V)$. Field $\mathbb{F}=G F\left(16001^{2}\right)$. Computed T_{2}, T_{3}, T_{7}. Dim 1.

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{5.6 . \text { a.a }}$

Level $N=5$. Coeffs $\operatorname{Sym}^{5}(V) \otimes \chi_{5}$. Field $\mathbb{F}=G F\left(16001^{6}\right)$. Computed $T_{2}, T_{3}, T_{7,1}$. $\operatorname{Dim} 4$.

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{5}^{3} \varepsilon^{2} \oplus \varepsilon^{8}$
1	1	$\chi_{5}^{3} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{8}$
2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{5.7 . \mathrm{c} . \mathrm{a}}$

Level $N=5$. Coeffs $\operatorname{Sym}^{6}(V)$. Field $\mathbb{F}=G F\left(16001^{6}\right)$		
Computed $T_{2}, T_{3}, T_{7,1}$. $\operatorname{Dim} 3$.		

Level $N=5$. Coeffs $\operatorname{Sym}^{6}(V) \otimes \chi_{5}^{2}$. Field $\mathbb{F}=G F\left(16001^{6}\right)$		
Computed $T_{2}, T_{3}, T_{7,1}$. $\operatorname{Dim} 2$.		
2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{5.8 . b . a}$

Level $N=5$. Coeffs $\operatorname{Sym}^{7}(V) \otimes \chi_{5}$. Field $\mathbb{F}=G F\left(16001^{6}\right)$.		
Computed T_{2}, T_{3}. Dim 5.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{5}^{3} \varepsilon^{2} \oplus \varepsilon^{10}$
1	1	$\chi_{5}^{3} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}$
3	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{5.9 . \text {... }}$

Level 6.

Level $N=6$. Coeffs $V \otimes \chi_{6}$. Field $\mathbb{F}=G F(12379)$		
Computed T_{5}, T_{7}. Dim 6.		
1	3	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{6} \varepsilon^{2} \oplus \varepsilon^{4}$
1	3	$\chi_{6} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$

Level $N=6$. Coeffs $\operatorname{Sym}^{2}(V)$. Field $\mathbb{F}=G F(12379)$		
Computed T_{5}, T_{7}, T_{11}. $\operatorname{Dim} 1$.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{6.4 . \text { a.a }}$

Level 7.

Level $N=7$. Coeffs $V \otimes \chi_{7}$. Field $\mathbb{F}=G F\left(12037^{2}\right)$		
Computed T_{2}, T_{3}, T_{5}. Dim 2.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{7} \varepsilon^{2} \oplus \varepsilon^{4}$
1	1	$\chi_{7} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$

Level $N=7$. Coeffs $V \otimes \chi_{7}^{3}$. Field $\mathbb{F}=G F\left(12037^{2}\right)$		
Computed T_{2}, T_{3}, T_{5}. Dim 4.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{7}^{3} \varepsilon^{2} \oplus \varepsilon^{4}$
1	1	$\chi_{7}^{3} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.3 . \mathrm{b} . \mathrm{a}}$
1	1	$\varepsilon^{1} \oplus \varepsilon^{4} \oplus \varepsilon^{0} \sigma_{7.3 . \mathrm{b} . \mathrm{a}}$

Level $N=7$. Coeffs $\operatorname{Sym}^{2}(V)$. Field $\mathbb{F}=G F\left(12379^{2}\right)$. Computed $T_{2}, T_{3}, T_{5}, T_{11}$. Dim 1 .

1 | 1 | 1 | $\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.4 \text {.a.a }}$ |
| :--- | :--- | :--- |

Level $N=7$. Coeffs $\operatorname{Sym}^{2}(V) \otimes \chi_{7}^{2}$. Field $\mathbb{F}=G F\left(12037^{2}\right)$. Computed T_{2}, T_{3}, T_{5}. Dim 1.

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.4 . c . a}$

Level $N=7$. Coeffs $\operatorname{Sym}^{3}(V) \otimes \chi_{7}$. Field $\mathbb{F}=G F\left(12037^{2}\right)$. Computed T_{2}, T_{3}, T_{5}. Dim 4.

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{7} \varepsilon^{2} \oplus \varepsilon^{6}$
1	1	$\chi_{7} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{6}$
2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.5 . \text { d.a }}$

Level $N=7$. Coeffs $\operatorname{Sym}^{3}(V) \otimes \chi_{7}^{3}$. Field $\mathbb{F}=G F\left(12037^{2}\right)$.		
Computed T_{2}, T_{3}, T_{5}. Dim 4.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{7}^{3} \varepsilon^{2} \oplus \varepsilon^{6}$
1	1	$\chi_{7}^{3} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{6}$
1	1	$\varepsilon^{1} \oplus \varepsilon^{6} \oplus \varepsilon^{0} \sigma_{7.3 . \mathrm{b} . \mathrm{a}}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.5 . \mathrm{b} . \mathrm{a}}$

Level $N=7$. Coeffs $\operatorname{Sym}^{4}(V)$. Field $\mathbb{F}=G F\left(12037^{6}\right)$. Computed T_{2}, T_{3}, T_{5}. Dim 3 .

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.6 \mathrm{a.a}}$
2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.6 \mathrm{a} . \mathrm{b}}$

Level $N=7$. Coeffs $\operatorname{Sym}^{4}(V) \otimes \chi_{7}^{2}$. Field $\mathbb{F}=G F\left(12037^{6}\right)$		
Computed $T_{2}, T_{3}, T_{5} . \operatorname{Dim} 2$.		
2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.6 . \text {..a }}$

Level $N=7$. Coeffs $\operatorname{Sym}^{5}(V) \otimes \chi_{7}$. Field $\mathbb{F}=G F\left(12037^{6}\right)$		
Computed $T_{2}, T_{3}, T_{5,1}$. $\operatorname{Dim} 5$.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{7}^{5} \varepsilon^{2} \oplus \varepsilon^{8}$
1	1	$\chi_{7}^{5} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{8}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.7 . \text {..a }}$
2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.7 . \text {.d.b }}$

Level $N=7$. Coeffs $\operatorname{Sym}^{5}(V) \otimes \chi_{7}^{3}$. Field $\mathbb{F}=G F\left(12037^{6}\right)$.		
Computed T_{2}, T_{3}, T_{5}. Dim 6.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{7}^{3} \varepsilon^{2} \oplus \varepsilon^{8}$
1	1	$\chi_{7}^{3} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{8}$
1	1	$\varepsilon^{1} \oplus \varepsilon^{8} \oplus \varepsilon^{0} \sigma_{7.3 . \text { b.a }}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.7 . b . a}$
2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.7 . \text { b.b }}$

Level $N=7$. Coeffs $\operatorname{Sym}^{6}(V)$. Field $\mathbb{F}=G F\left(12037^{6}\right)$. Computed T_{2}, T_{3}, T_{5}. Dim 3.

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8 . \mathrm{a.a}}$
2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8 . \mathrm{a.b}}$

Level $N=7$. Coeffs $\operatorname{Sym}^{6}(V) \otimes \chi_{7}^{2}$. Field $\mathbb{F}=G F\left(12037^{6}\right)$. Computed $T_{2}, T_{3}, T_{5} . \operatorname{Dim} 4$.

4	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.8 . \mathrm{c.a}}$

Level $N=7$. Coeffs $\operatorname{Sym}^{7}(V) \otimes \chi_{7}$. Field $\mathbb{F}=G F\left(12037^{6}\right)$. Computed $T_{2}, T_{3}, T_{5,1}$. $\operatorname{Dim} 6$.

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{7} \varepsilon^{2} \oplus \varepsilon^{10}$
1	1	$\chi_{7} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}$
4	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.9 . \text { d.a }}$

Level $N=7$. Coeffs $\operatorname{Sym}^{7}(V) \otimes \chi_{7}^{3}$. Field $\mathbb{F}=G F\left(12037^{6}\right)$. Computed T_{2}, T_{3}. Dim 8.

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{7}^{3} \varepsilon^{2} \oplus \varepsilon^{10}$
1	1	$\chi_{7}^{3} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{10}$
1	1	$\varepsilon^{1} \oplus \varepsilon^{10} \oplus \varepsilon^{0} \sigma_{7.3 . \mathrm{b.a}}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.9 . \mathrm{b} . \mathrm{a}}$
4	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.9 . \mathrm{b} . \mathrm{b}}$

Level 8.

Level $N=8$. Coeffs $V \otimes \chi_{8,0}$. Field $\mathbb{F}=G F\left(12037^{2}\right)$		
Computed T_{3}, T_{5}, T_{7}. Dim 6.		
1	3	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{8,0} \varepsilon^{2} \oplus \varepsilon^{4}$
1	3	$\chi_{8,0} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$

Level $N=8$. Coeffs $V \otimes \chi_{8,0} \chi_{8,1}$. Field $\mathbb{F}=G F\left(12037^{2}\right)$		
Computed T_{3}, T_{5}, T_{7}. Dim 4.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{8,0} \chi_{8,1} \varepsilon^{2} \oplus \varepsilon^{4}$
1	1	$\chi_{8,0} \chi_{8,1} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{8.3 . d . a}$
1	1	$\varepsilon^{1} \oplus \varepsilon^{4} \oplus \varepsilon^{0} \sigma_{8.3 . d . a}$

Level $N=8$. Coeffs $\operatorname{Sym}^{2}(V)$. Field $\mathbb{F}=G F\left(12379^{4}\right)$.		
Computed $T_{3}, T_{5}, T_{7}, T_{11}$. $\operatorname{Dim} 1$.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{8.4 . \mathrm{a} . \mathrm{a}}$

Level $N=8$. Coeffs $\operatorname{Sym}^{2}(V) \otimes \chi_{8,1}$. Field $\mathbb{F}=G F\left(12037^{2}\right)$. Computed T_{3}, T_{5}, T_{7}. Dim 2.

2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{8.4 \text {.b.a }}$

Level 9.

Level $N=9$. Coeffs $V \otimes \chi_{9}$. Field $\mathbb{F}=G F\left(12037^{2}\right)$		
Computed T_{2}, T_{5}, T_{7}. Dim 4.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{9} \varepsilon^{2} \oplus \varepsilon^{4}$
1	1	$\chi_{9} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{9.3 . \text {..a }}$
1	1	$\varepsilon^{1} \oplus \varepsilon^{4} \oplus \varepsilon^{0} \sigma_{9.3 . d . a}$

Level $N=9$. Coeffs $V \otimes \chi_{9}^{3}$. Field $\mathbb{F}=G F\left(12037^{2}\right)$		
Computed T_{2}, T_{5}, T_{7}. Dim 6.		
1	3	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{9}^{3} \varepsilon^{2} \oplus \varepsilon^{4}$
1	3	$\chi_{9}^{3} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$

Level $N=9$. Coeffs $\operatorname{Sym}^{2}(V)$. Field $\mathbb{F}=G F\left(12379^{4}\right)$. Computed $T_{2}, T_{5}, T_{7}, T_{11,1}$. $\operatorname{Dim} 3$.

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{9}^{3} \varepsilon^{2} \oplus \chi_{9}^{3} \varepsilon^{5}$
1	1	$\chi_{9}^{3} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \chi_{9}^{3} \varepsilon^{5}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{9.4 . \text { a.a }}$

Level $N=9$. Coeffs $\operatorname{Sym}^{2}(V) \otimes \chi_{9}^{2}$. Field $\mathbb{F}=G F\left(12037^{6}\right)$. Computed T_{2}, T_{5}, T_{7}. Dim 2.

2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{9.4 . \mathrm{c} . \mathrm{a}}$

Level 10.
Level $N=10$. Coeffs $V \otimes \chi_{10}$. Field $\mathbb{F}=G F(12037)$. Computed T_{3}, T_{7}. Dim 8.

1	3	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{10} \varepsilon^{2} \oplus \varepsilon^{4}$
1	3	$\chi_{10} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{10.3 . \mathrm{c.a}}$
1	1	$\varepsilon^{1} \oplus \varepsilon^{4} \oplus \varepsilon^{0} \sigma_{10.3 . \mathrm{c.a}}$

Level $N=10$. Coeffs $\operatorname{Sym}^{2}(V)$. Field $\mathbb{F}=G F\left(12379^{2}\right)$		
Computed T_{3}, T_{7}. Dim 4.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{10.4 . \mathrm{a} . \mathrm{a}}$
3	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{5.4 \mathrm{a} . \mathrm{a}}$

Level $N=10$. Coeffs $\operatorname{Sym}^{2}(V) \otimes \chi_{10}^{2}$. Field $\mathbb{F}=G F(12037)$. Computed T_{3}, T_{7}. Dim 2.

2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{10.4 . \mathrm{b} . \mathrm{a}}$

Level 11.

Level $N=11$. Coeffs $V \otimes \chi_{11}$. Field $\mathbb{F}=G F\left(16001^{2}\right)$		
Computed $T_{2}, T_{3}, T_{5}, T_{7}$. Dim 4.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{11} \varepsilon^{2} \oplus \varepsilon^{4}$
1	1	$\chi_{11} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{11.3 . d . a}$
1	1	$\varepsilon^{1} \oplus \varepsilon^{4} \oplus \varepsilon^{0} \sigma_{11.3 . d . a}$

Level $N=11$. Coeffs $V \otimes \chi_{11}^{5}$. Field $\mathbb{F}=G F\left(16001^{2}\right)$. Computed $T_{2}, T_{3}, T_{5}, T_{7} . \operatorname{Dim} 4$.

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{11}^{5} \varepsilon^{2} \oplus \varepsilon^{4}$
1	1	$\chi_{11}^{5} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{11.3 . \mathrm{b} . \mathrm{a}}$
1	1	$\varepsilon^{1} \oplus \varepsilon^{4} \oplus \varepsilon^{0} \sigma_{11.3 . \mathrm{b} . \mathrm{a}}$

Level $N=11$. Coeffs $\operatorname{Sym}^{2}(V)$. Field $\mathbb{F}=G F\left(12379^{2}\right)$. Computed $T_{2}, T_{3}, T_{5}, T_{7}$. Dim 2.

2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{11.4 . \mathrm{a.a}}$

Level $N=11$. Coeffs $\operatorname{Sym}^{2}(V) \otimes \chi_{11}^{2}$. Field $\mathbb{F}=G F\left(16001^{6}\right)$. Computed $T_{2}, T_{3}, T_{5}, T_{7}$. Dim 2.

2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{11.4 . \text {.. a }}$

Level $N=11$. Coeffs $\operatorname{Sym}^{3}(V) \otimes \chi_{11}$. Field $\mathbb{F}=G F\left(16001^{60}\right)$. Computed $T_{2}, T_{3}, T_{5}, T_{7}$. Dim 6.

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{11}^{3} \varepsilon^{2} \oplus \varepsilon^{6}$
1	1	$\chi_{11}^{3} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{6}$
1	1	$\varepsilon^{1} \oplus \varepsilon^{6} \oplus \varepsilon^{0} \sigma_{11.3 . \mathrm{d.a}}$
3	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{11.5 . \mathrm{d.a}}$

Level $N=11$. Coeffs $\operatorname{Sym}^{3}(V) \otimes \chi_{11}^{5}$. Field $\mathbb{F}=G F\left(16001^{60}\right)$. Computed $T_{2}, T_{3}, T_{5}, T_{7,1} . \operatorname{Dim} 6$.

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{11}^{5} \varepsilon^{2} \oplus \varepsilon^{6}$
1	1	$\chi_{11}^{5} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{6}$
1	1	$\varepsilon^{1} \oplus \varepsilon^{6} \oplus \varepsilon^{0} \sigma_{11.3 . \mathrm{b} . \mathrm{a}}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{11.5 . \mathrm{b} . \mathrm{a}}$
2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{11.5 . \mathrm{b} . \mathrm{b}}$

Level $N=11$. Coeffs $\operatorname{Sym}^{4}(V)$. Field $\mathbb{F}=G F\left(16001^{60}\right)$. Computed $T_{2}, T_{3}, T_{5}, T_{7}$. Dim 4.

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{11.6 . \mathrm{a.a}}$
3	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{11.6 . \mathrm{a.b}}$

Level $N=11$. Coeffs $\operatorname{Sym}^{4}(V) \otimes \chi_{11}^{2}$. Field $\mathbb{F}=G F\left(16001^{60}\right)$. Computed $T_{2}, T_{3}, T_{5}, T_{7}$. Dim 4.

4	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{11.6 . \mathrm{c.a}}$

Level $N=11$. Coeffs $\operatorname{Sym}^{5}(V) \otimes \chi_{11}$. Field $\mathbb{F}=G F\left(16001^{60}\right)$		
Computed $T_{2}, T_{3}, T_{5,1}$. $\operatorname{Dim} 8$.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{11}^{9} \varepsilon^{2} \oplus \varepsilon^{8}$
1	1	$\chi_{11}^{9} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{8}$
1	1	$\varepsilon^{1} \oplus \varepsilon^{8} \oplus \varepsilon^{0} \sigma_{11.3 . d . a}$
5	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{11.7 . \text { d.a }}$

Level $N=11$. Coeffs $\operatorname{Sym}^{5}(V) \otimes \chi_{11}^{5}$. Field $\mathbb{F}=G F\left(16001^{60}\right) \cdot$		
Computed $T_{2}, T_{3}, T_{5,1}$. Dim 8.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{11}^{5} \varepsilon^{2} \oplus \varepsilon^{8}$
1	1	$\chi_{11}^{5} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{8}$
1	1	$\varepsilon^{1} \oplus \varepsilon^{8} \oplus \varepsilon^{0} \sigma_{11.3 . b . a}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{11.7 . b . a}$
4	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{11.7 . \mathrm{b.b}}$

Level 12.

Level $N=12$. Coeffs $V \otimes \chi_{12,0}$. Field $\mathbb{F}=G F\left(16001^{2}\right)$		
Computed T_{5}, T_{7}. Dim 10.		
1	3	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{12,0} \varepsilon^{2} \oplus \varepsilon^{4}$
1	3	$\chi_{12,0} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$
2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{12.3 . d . a}$
2	1	$\varepsilon^{1} \oplus \varepsilon^{4} \oplus \varepsilon^{0} \sigma_{12.3 . d . a}$

Level $N=12$. Coeffs $V \otimes \chi_{12,1}$. Field $\mathbb{F}=G F\left(16001^{2}\right)$. Computed T_{5}, T_{7}. Dim 14.

1	6	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{12,1} \varepsilon^{2} \oplus \varepsilon^{4}$
1	6	$\chi_{12,1} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{12.3 . c . a}$
1	1	$\varepsilon^{1} \oplus \varepsilon^{4} \oplus \varepsilon^{0} \sigma_{12.3 . c . a}$

Level $N=12$. Coeffs $\operatorname{Sym}^{2}(V)$. Field $\mathbb{F}=G F\left(12379^{4}\right)$		
Computed T_{5}, T_{7}, T_{11}. $\operatorname{Dim} 4$.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{12.4 . \mathrm{a} \text { a }}$
3	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{6.4 \text { a.a }}$

Level $N=12$. Coeffs $\operatorname{Sym}^{2}(V) \otimes \chi_{12,0} \chi_{12,1}$. Field $\mathbb{F}=G F\left(16001^{4}\right)$.		
Computed $T_{5}, T_{7,1}$. Dim 10. [NEWv06]		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{12,0} \varepsilon^{2} \oplus \chi_{12,1} \varepsilon^{5}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{12,1} \varepsilon^{2} \oplus \chi_{12,0} \varepsilon^{5}$
1	1	$\chi_{12,0} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \chi_{12,1,} \varepsilon^{5}$
1	1	$\chi_{12,1} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \chi_{12,0} \varepsilon^{5}$
4	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{12.4 . \mathrm{b.a}}$
1	1	$\varepsilon^{0} \oplus \chi_{12,1} \varepsilon^{2} \oplus \varepsilon^{1} \sigma_{4.5 . \mathrm{b.a}}$
1	1	$\chi_{12,1} \varepsilon^{0} \oplus \varepsilon^{2} \oplus \varepsilon^{1} \sigma_{4.5 . b . a}$

Level 13.

Level $N=13$. Coeffs $V \otimes \chi_{13}$. Field $\mathbb{F}=G F\left(12037^{12}\right)$		
Computed $T_{2}, T_{3}, T_{5}, T_{7}$. Dim 4.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{13}^{11} \varepsilon^{2} \oplus \varepsilon^{4}$
1	1	$\chi_{13}^{11} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{13.3 . f . a}$
1	1	$\varepsilon^{1} \oplus \varepsilon^{4} \oplus \varepsilon^{0} \sigma_{13.3 . f . a}$

Level $N=13$. Coeffs $V \otimes \chi_{13}^{3}$. Field $\mathbb{F}=G F\left(12037^{12}\right)$ Computed $T_{2}, T_{3}, T_{5}, T_{7}$. Dim 6. 1 1 $\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{13}^{9} \varepsilon^{2} \oplus \varepsilon^{4}$ 1 1 $\chi_{13}^{9} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$ 2 1 $\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{13.3 . d . a}$ 2 1 $\varepsilon^{1} \oplus \varepsilon^{4} \oplus \varepsilon^{0} \sigma_{13.3 . d . a}$

Level $N=13$. Coeffs $\operatorname{Sym}^{2}(V)$. Field $\mathbb{F}=G F\left(12379^{6}\right)$		
Computed $T_{2}, T_{3}, T_{5}, T_{7}$. Dim 3.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{13.4 . \mathrm{a} . \mathrm{a}}$
2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{13.4 \mathrm{a} . \mathrm{b}}$

Level $N=13$. Coeffs $\operatorname{Sym}^{2}(V) \otimes \chi_{13}^{2}$. Field $\mathbb{F}=G F\left(12037^{12}\right)$. Computed $T_{2}, T_{3}, T_{5}, T_{7}$. Dim 2.

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{13.4 . \mathrm{e.a}}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{13.4 . \mathrm{e.b}}$

Level $N=13$. Coeffs $\operatorname{Sym}^{2}(V) \otimes \chi_{13}^{4}$. Field $\mathbb{F}=G F\left(12037^{12}\right)$. Computed $T_{2}, T_{3}, T_{5}, T_{7}$. Dim 3 .

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{13.4 . \text { c.a }}$
2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{13.4 . \text { c.b }}$

Level $N=13$. Coeffs $\operatorname{Sym}^{2}(V) \otimes \chi_{13}^{6}$. Field $\mathbb{F}=G F\left(12037^{12}\right)$. Computed $T_{2}, T_{3}, T_{5}, T_{7}$. Dim 2.

2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{13.4 . \mathrm{b} . \mathrm{a}}$

Level $N=13$. Coeffs $\operatorname{Sym}^{3}(V) \otimes \chi_{13}$. Field $\mathbb{F}=G F\left(12037^{12}\right)$. Computed $T_{2}, T_{3}, T_{5}, T_{7,1}$. Dim 7 .

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{13}^{5} \varepsilon^{2} \oplus \varepsilon^{6}$
1	1	$\chi_{13}^{5} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{6}$
1	1	$\varepsilon^{1} \oplus \varepsilon^{6} \oplus \varepsilon^{0} \sigma_{13.3 . f . \mathrm{a}}$
4	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{13.5 . f . \mathrm{a}}$

Level $N=13$. Coeffs $\operatorname{Sym}^{3}(V) \otimes \chi_{13}^{3}$. Field $\mathbb{F}=G F\left(12037^{12}\right)$. Computed $T_{2}, T_{3}, T_{5}, T_{7,1}$. Dim 7 .

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{13}^{3} \varepsilon^{2} \oplus \varepsilon^{6}$
1	1	$\chi_{13}^{3} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{6}$
2	1	$\varepsilon^{1} \oplus \varepsilon^{6} \oplus \varepsilon^{0} \sigma_{13.3 . \text { d.a }}$
3	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{13.5 . d . a}$

Level $N=13$. Coeffs $\operatorname{Sym}^{4}(V)$. Field $\mathbb{F}=G F\left(12037^{60}\right)$. Computed $T_{2}, T_{3}, T_{5}, T_{7}$. Dim 5 .

2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{13.6 . a . a}$
3	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{13.6 \text { a.b }}$

Level $N=13$. Coeffs $\operatorname{Sym}^{4}(V) \otimes \chi_{13}^{2}$. Field $\mathbb{F}=G F\left(12037^{60}\right)$. Computed $T_{2}, T_{3}, T_{5}, T_{7}$. Dim 5.

5	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{13.6 . \mathrm{e.a}}$

Level $N=13$. Coeffs $\operatorname{Sym}^{4}(V) \otimes \chi_{13}^{6}$. Field $\mathbb{F}=G F\left(12037^{60}\right)$	
Computed $T_{2}, T_{3}, T_{5}, T_{7}$. Dim 6.	
6	1

Level $N=13$. Coeffs $\operatorname{Sym}^{5}(V) \otimes \chi_{13}^{3}$. Field $\mathbb{F}=G F\left(12037^{60}\right)$		
Computed $T_{2}, T_{3}, T_{5,1}$. $\operatorname{Dim} 10$.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{13}^{3} \varepsilon^{2} \oplus \varepsilon^{8}$
1	1	$\chi_{13}^{3} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{8}$
2	1	$\varepsilon^{1} \oplus \varepsilon^{8} \oplus \varepsilon^{0} \sigma_{13.3 . \text {..a }}$
6	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{13.7 . \text {..a }}$

Level 14.

Level $N=14$. Coeffs $V \otimes \chi_{14}$. Field $\mathbb{F}=G F\left(12037^{4}\right)$.		
Computed T_{3}, T_{5}. Dim 10.		
1	3	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{14} \varepsilon^{2} \oplus \varepsilon^{4}$
1	3	$\chi_{14} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$
2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{14.3 . \text { d.a }}$
2	1	$\varepsilon^{1} \oplus \varepsilon^{4} \oplus \varepsilon^{0} \sigma_{14.3 . d . a}$

Level $N=14$. Coeffs $V \otimes \chi_{14}^{3}$. Field $\mathbb{F}=G F\left(12037^{4}\right)$. Computed $T_{3}, T_{5}, T_{11,1}$. Dim 13. [NEWv06]

1	3	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{14}^{3} \varepsilon^{2} \oplus \varepsilon^{4}$
1	3	$\chi_{14}^{3} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$
1	3	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.3 . \mathrm{b} . \mathrm{a}}$
1	4	$\varepsilon^{1} \oplus \varepsilon^{4} \oplus \varepsilon^{0} \sigma_{7.3 . \mathrm{b} . \mathrm{a}}$

Level $N=14$. Coeffs $\operatorname{Sym}^{2}(V)$. Field $\mathbb{F}=G F\left(12379^{2}\right)$. Computed T_{3}, T_{5}, T_{11}. Dim 5 .

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{14.4 . \mathrm{a.a}}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{14.4 . \mathrm{a} . \mathrm{b}}$
3	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.4 . \mathrm{a} . \mathrm{a}}$

Level $N=14$. Coeffs $\operatorname{Sym}^{2}(V) \otimes \chi_{14}^{2}$. Field $\mathbb{F}=G F\left(12037^{4}\right)$. Computed $T_{3}, T_{5}, T_{11,1}$. Dim 5. [NEWv06]

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{14.4 . \text {..a }}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{14.4 . \mathrm{c.b}}$
1	3	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{7.4 . \mathrm{c.a}}$

Level 15.

Level $N=15$. Coeffs $V \otimes \chi_{15,1}$. Field $\mathbb{F}=G F\left(12037^{4}\right)$		
Computed T_{2}, T_{7}. Dim 10.		
1	3	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{15,1} \varepsilon^{2} \oplus \varepsilon^{4}$
1	3	$\chi_{15,1} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$
2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{15.3 . \mathrm{f.a}}$
2	1	$\varepsilon^{1} \oplus \varepsilon^{4} \oplus \varepsilon^{0} \sigma_{15.3 . \mathrm{f.a}}$

Level $N=15$. Coeffs $V \otimes \chi_{15,0}$. Field $\mathbb{F}=G F\left(12037^{4}\right)$		
Computed T_{2}, T_{7}. Dim 12.		
1	3	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{15,0} \varepsilon^{2} \oplus \varepsilon^{4}$
1	3	$\chi_{15,0} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$
2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{15.3 . c . a}$
2	1	$\varepsilon^{1} \oplus \varepsilon^{4} \oplus \varepsilon^{0} \sigma_{15.3 . c . a}$
1	1	$\varepsilon^{0} \oplus \chi_{15,0} \varepsilon^{2} \oplus \varepsilon^{1} \sigma_{5.4 . a . a}$
1	1	$\chi_{15,0} \varepsilon^{0} \oplus \varepsilon^{2} \oplus \varepsilon^{1} \sigma_{5.4 . a . a}$

Level $N=15$. Coeffs $V \otimes \chi_{15,0} \chi_{15,1}^{2}$. Field $\mathbb{F}=G F\left(12037^{4}\right)$		
Computed T_{2}, T_{7}. Dim 8.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{15,0} \varepsilon^{2} \oplus \chi_{15,1}^{2} \varepsilon^{4}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{15,0} \chi_{15,1}^{2} \varepsilon^{2} \oplus \varepsilon^{4}$
1	1	$\chi_{15,0} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \chi_{15,1}^{2} \varepsilon^{4}$
1	1	$\chi_{15,0} \chi_{15,1}^{2} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{15.3 . d . a}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{15.3 . d . b}$
1	1	$\varepsilon^{1} \oplus \varepsilon^{4} \oplus \varepsilon^{0} \sigma_{15.3 . d . a}$
1	1	$\varepsilon^{1} \oplus \varepsilon^{4} \oplus \varepsilon^{0} \sigma_{15.3 . d . b}$

Level $N=15$. Coeffs $\operatorname{Sym}^{2}(V)$. Field $\mathbb{F}=G F\left(12379^{2}\right)$.
Computed $T_{2}, T_{7}, T_{11,1}$. Dim 5.

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{15.4 \text {.a.a }}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{15.4 . \mathrm{a} \text { b }}$
3	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{5.4 . \mathrm{a} . \mathrm{a}}$

Level $N=15$. Coeffs $\operatorname{Sym}^{2}(V) \otimes \chi_{15,0} \chi_{15,1}$. Field $\mathbb{F}=G F\left(12037^{12}\right)$		
Computed $T_{2}, T_{7,1}, T_{11,1 .}$ Dim 10. [NEWv06]		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{15,0} \varepsilon^{2} \oplus \chi_{15,1} \varepsilon^{5}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{15,1} \varepsilon^{2} \oplus \chi_{15,0} \varepsilon^{5}$
1	1	$\chi_{15,0} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \chi_{15,1} \varepsilon^{5}$
1	1	$\chi_{15,1} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \chi_{15,0} \varepsilon^{5}$
4	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{15.4 . e . a}$
1	1	$\varepsilon^{0} \oplus \chi_{15,0} \varepsilon^{2} \oplus \varepsilon^{1} \sigma_{5.5 . c . a}$
1	1	$\chi_{15,0} \varepsilon^{0} \oplus \varepsilon^{2} \oplus \varepsilon^{1} \sigma_{5.5 . c . a}$

Level $N=15$. Coeffs $\operatorname{Sym}^{2}(V) \otimes \chi_{15,1}^{2}$. Field $\mathbb{F}=G F\left(12037^{12}\right)$. Computed $T_{2}, T_{7}, T_{11,1}$. Dim 4. [NEWv06]

4	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{15.4 . \mathrm{b} . \mathrm{a}}$

Level 16.

Level $N=16$. Coeffs $V \otimes \chi_{16,0}$. Field $\mathbb{F}=G F\left(16001^{12}\right)$		
Computed T_{3}, T_{5}, T_{7}. Dim 14.		
1	6	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{16,0} \varepsilon^{2} \oplus \varepsilon^{4}$
1	6	$\chi_{16,0} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{16.3 . \mathrm{c.a}}$
1	1	$\varepsilon^{1} \oplus \varepsilon^{4} \oplus \varepsilon^{0} \sigma_{16.3 . \mathrm{c.a}}$

Level $N=16$. Coeffs $V \otimes \chi_{16,0} \chi_{16,1}$. Field $\mathbb{F}=G F\left(16001^{12}\right)$. Computed T_{3}, T_{5}, T_{7}. Dim 8. 1 1 $\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{16,0} \chi_{16,1} \varepsilon^{2} \oplus \varepsilon^{4}$ 1 1 $\chi_{16,0} \chi_{16,1} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$ 3 1 $\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{16.3 . f . a}$ 3 1 $\varepsilon^{1} \oplus \varepsilon^{4} \oplus \varepsilon^{0} \sigma_{16.3 . f . a}$

Level $N=16$. Coeffs $V \otimes \chi_{16,0} \chi_{16,1}^{2}$. Field $\mathbb{F}=G F\left(16001^{12}\right)$. Computed T_{3}, T_{5}, T_{7}. Dim 13.

1	3	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{16,0} \chi_{16,1}^{2} \varepsilon^{2} \oplus \varepsilon^{4}$
1	3	$\chi_{16,0} \chi_{16,1}^{2} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$
1	3	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{8.3 . \mathrm{d.a}}$
1	4	$\varepsilon^{1} \oplus \varepsilon^{4} \oplus \varepsilon^{0} \sigma_{8.3 . \mathrm{d.a}}$

Level $N=16$. Coeffs $\operatorname{Sym}^{2}(V)$. Field $\mathbb{F}=G F\left(12379^{40}\right)$. Computed $T_{3}, T_{5}, T_{7,1}, T_{11,1}$. Dim 8.

1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{16,0} \varepsilon^{2} \oplus \chi_{16,0} \varepsilon^{5}$
1	1	$\chi_{16,0} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \chi_{16,0} \varepsilon^{5}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{16.4 . \mathrm{a} . \mathrm{a}}$
1	3	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{8.4 . \mathrm{a} . \mathrm{a}}$
1	1	$\varepsilon^{0} \oplus \chi_{16,0} \varepsilon^{2} \oplus \varepsilon^{1} \sigma_{4.5 . \mathrm{b} . \mathrm{a}}$
1	1	$\chi_{16,0} \varepsilon^{0} \oplus \varepsilon^{2} \oplus \varepsilon^{1} \sigma_{4.5 . \mathrm{b} . \mathrm{a}}$

Level $N=16$. Coeffs $\operatorname{Sym}^{2}(V) \otimes \chi_{16,1}$. Field $\mathbb{F}=G F\left(16001^{12}\right)$. Computed T_{3}, T_{5}, T_{7}. Dim 5. [NEWv06]

5	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{16.4 . \mathrm{e.a}}$

Level $N=16$. Coeffs $\operatorname{Sym}^{2}(V) \otimes \chi_{16,1}^{2}$. Field $\mathbb{F}=G F\left(16001^{12}\right)$.	
Computed T_{3}, T_{5}, T_{7}. Dim 6. [NEWv06]	
2	3

Level 17.

Level $N=17$. Coeffs $V \otimes \chi_{17}$. Field $\mathbb{F}=G F\left(16001^{60}\right)$		
Computed $T_{2}, T_{3}, T_{5}, T_{7}$. Dim 6.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{17}^{13} \varepsilon^{2} \oplus \varepsilon^{4}$
1	1	$\chi_{17}^{13} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{17.3 . e . a}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{17.3 . e . b}$
1	1	$\varepsilon^{1} \oplus \varepsilon^{4} \oplus \varepsilon^{0} \sigma_{17.3 . e . a}$
1	1	$\varepsilon^{1} \oplus \varepsilon^{4} \oplus \varepsilon^{0} \sigma_{17.3 . e . b}$

Level $N=17$. Coeffs $\operatorname{Sym}^{2}(V)$. Field $\mathbb{F}=G F\left(16001^{60}\right) \cdot$		
Computed $T_{2}, T_{3}, T_{5}, T_{7}, T_{11}$. Dim 4.		
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{17.4 . \text { a.a }}$
3	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{17.4 . \text { a.b }}$

Level $N=17$. Coeffs $\operatorname{Sym}^{2}(V) \otimes \chi_{17}^{2}$. Field $\mathbb{F}=G F\left(16001^{60}\right)$. Computed $T_{2}, T_{3}, T_{5}, T_{7}$. Dim 3 .

3	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{17.4 . \text { d.a }}$

Level $N=17$. Coeffs $\operatorname{Sym}^{2}(V) \otimes \chi_{17}^{4}$. Field $\mathbb{F}=G F\left(16001^{60}\right)$		
Computed $T_{2}, T_{3}, T_{5}, T_{7}$. $\operatorname{Dim} 4$.		
4	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{17.4 . \text { c.a }}$

Level $N=17$. Coeffs $\operatorname{Sym}^{2}(V) \otimes \chi_{17}^{8}$. Field $\mathbb{F}=G F\left(16001^{60}\right)$	
Computed $T_{2}, T_{3}, T_{5}, T_{7} . \operatorname{Dim} 4$.	
4	1

Level 18.

Level $N=18$. Coeffs $V \otimes \chi_{18}$. Field $\mathbb{F}=G F\left(12379^{2}\right)$.		
Computed $T_{5}, T_{7,1}, T_{11,1}$. Dim 17. [NEWv06]		
1	3	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{18} \varepsilon^{2} \oplus \varepsilon^{4}$
1	3	$\chi_{18} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$
1	3	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{9.3 . d . a}$
1	4	$\varepsilon^{1} \oplus \varepsilon^{4} \oplus \varepsilon^{0} \sigma_{9.3 . d . a}$
2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{18.3 . \text { d.a }}$
2	1	$\varepsilon^{1} \oplus \varepsilon^{4} \oplus \varepsilon^{0} \sigma_{18.3 . d . a}$

Level $N=18$. Coeffs $V \otimes \chi_{18}^{3}$. Field $\mathbb{F}=G F\left(12379^{2}\right)$.
Computed $T_{5}, T_{7}, T_{11,1}$. Dim 24. [NEWv06]

1	9	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{18}^{3} \varepsilon^{2} \oplus \varepsilon^{4}$
1	9	$\chi_{18}^{3} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \varepsilon^{4}$
2	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{18.3 . \mathrm{b} . \mathrm{a}}$
2	1	$\varepsilon^{1} \oplus \varepsilon^{4} \oplus \varepsilon^{0} \sigma_{18.3 . \mathrm{b.a}}$
1	1	$\varepsilon^{0} \oplus \chi_{18}^{3} \varepsilon^{2} \oplus \varepsilon^{1} \sigma_{6.4 . \mathrm{a} . \mathrm{a}}$
1	1	$\chi_{18}^{3} \varepsilon^{0} \oplus \varepsilon^{2} \oplus \varepsilon^{1} \sigma_{6.4 . \mathrm{a} . \mathrm{a}}$

Level $N=18$. Coeffs $\operatorname{Sym}^{2}(V)$. Field $\mathbb{F}=G F\left(12379^{4}\right)$.		
Computed $T_{5}, T_{7,1}, T_{11,1 .} \operatorname{Dim} 17$		
1	3	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \chi_{18}^{3} \varepsilon^{2} \oplus \chi_{18}^{3} \varepsilon^{5}$
1	3	$\chi_{18}^{3} \varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \oplus \chi_{18}^{3} \varepsilon^{5}$
1	3	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{9.4 . \mathrm{a} . \mathrm{a}}$
1	1	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{18.4 . \mathrm{a} . \mathrm{a}}$
1	3	$\varepsilon^{0} \oplus \varepsilon^{1} \oplus \varepsilon^{2} \sigma_{6.4 . \mathrm{a} . \mathrm{a}}$
2	1	$\varepsilon^{0} \oplus \chi_{18}^{3} \varepsilon^{2} \oplus \varepsilon^{1} \sigma_{6.5 . \mathrm{b} . \mathrm{a}}$
2	1	$\chi_{18}^{3} \varepsilon^{0} \oplus \varepsilon^{2} \oplus \varepsilon^{1} \sigma_{6.5 . \mathrm{b.a}}$

Level $N=18$. Coeffs $\operatorname{Sym}^{2}(V) \otimes \chi_{18}^{2}$. Field $\mathbb{F}=G F\left(12379^{4}\right)$.	
Computed $T_{5}, T_{7,1}, T_{11,1}$. Dim 9. [NEWv06]	
1	1

5.2. For each N, the next table specifies the basis that Sage chooses for the group of characters $(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{F}_{p}$. If there is one basis element, it is denoted χ_{N}. If there is more than one, they are denoted $\chi_{N, 0}, \chi_{N, 1}$, etc. The order of χ is the smallest positive n so that χ^{n} is trivial on $(\mathbb{Z} / N \mathbb{Z})^{\times}$. The parity is even if $\chi(-1)=+1$ and odd if $\chi(-1)=-1$.

$\chi_{N, i}$	p	order	parity	definition
χ_{1}	12379	1	even	trivial
χ_{2}	12379	1	even	trivial
χ_{3}	12379	2	odd	$2 \mapsto-1$
χ_{4}	12379	2	odd	$3 \mapsto-1$
χ_{5}	16001	4	odd	$2 \mapsto-645$
χ_{6}	12379	2	odd	$5 \mapsto-1$
χ_{7}	12037	6	odd	$3 \mapsto-1293$
$\chi_{8,0}$	12037	2	odd	$7 \mapsto-1,5 \mapsto 1$
$\chi_{8,1}$	12037	2	even	$7 \mapsto 1,5 \mapsto-1$
χ_{9}	12037	6	odd	$2 \mapsto-1293$
χ_{10}	12037	4	odd	$7 \mapsto 3417$
χ_{11}	16001	10	odd	$2 \mapsto 3018$
$\chi_{12,0}$	16001	2	odd	$7 \mapsto-1,5 \mapsto 1$
$\chi_{12,1}$	16001	2	odd	$7 \mapsto 1,5 \mapsto-1$
χ_{13}	12037	12	odd	$2 \mapsto 4019$
χ_{14}	12037	6	odd	$3 \mapsto-1293$
$\chi_{15,0}$	12037	2	odd	$11 \mapsto-1,7 \mapsto 1$
$\chi_{15,1}$	12037	4	odd	$11 \mapsto 1,7 \mapsto 3417$
$\chi_{16,0}$	16001	2	odd	$15 \mapsto-1,5 \mapsto 1$
$\chi_{16,1}$	16001	4	even	$15 \mapsto 1,5 \mapsto-645$
χ_{17}	16001	16	odd	$3 \mapsto 83$
χ_{18}	12379	6	odd	$11 \mapsto 5770$

References

[ADP02] Avner Ash, Darrin Doud, and David Pollack, Galois representations with conjectural connections to arithmetic cohomology, Duke Math. J. 112 (2002), no. 3, 521-579.
[AGM02] Avner Ash, Paul E. Gunnells, and Mark McConnell, Cohomology of congruence subgroups of $\mathrm{SL}_{4}(\mathbb{Z}), \mathrm{J}$. Number Theory 94 (2002), no. 1, 181-212.
[AGM08] \qquad , Cohomology of congruence subgroups of $\mathrm{SL}_{4}(\mathbb{Z})$. II, J. Number Theory 128 (2008), no. 8, 2263-2274.
[AGM10] —— Cohomology of congruence subgroups of $\mathrm{SL}_{4}(\mathbb{Z})$. III, Math. Comp. 79 (2010), no. 271, 1811-1831.
[AGM11] ——, Torsion in the cohomology of congruence subgroups of $\operatorname{SL}(4, \mathbb{Z})$ and Galois representations, J. Algebra 325 (2011), 404-415.
[AGM20]
_ Cohomology with twisted one-dimensional coefficients for congruence subgroups of $\mathrm{SL}_{4}(\mathbb{Z})$ and Galois representations, J. Algebra 553 (2020), 211-247.
[CLH16] Ana Caraiani and Bao V. Le Hung, On the image of complex conjugation in certain galois representations, Compositio Math. 152 (2016), no. 7, 1476-1488.
[LMF23] The LMFDB Collaboration, The L-functions and modular forms database, https://www.lmfdb.org, 2023, [Online; accessed 30 July 2023].
[Sch09] Achill Schürmann, Enumerating perfect forms, Quadratic forms-algebra, arithmetic, and geometry, Contemp. Math., vol. 493, Amer. Math. Soc., Providence, RI, 2009, pp. 359-377.

Boston College, Chestnut Hill, MA 02445
Email address: Avner.Ash@bc.edu
University of Massachusetts Amherst, Amherst, MA 01003
Email address: gunnells@umass.edu
Princeton University, Princeton, New Jersey 08540
Email address: markwm@princeton.edu

[^0]: 2020 Mathematics Subject Classification. Primary 11F75; Secondary 11F67, 20J06, 20 E 42.
 Key words and phrases. Cohomology of arithmetic groups, Galois representations, Voronoi complex, Steinberg module, modular symbols.

 PG wishes to thank the National Science Foundation and the Simons Foundation.

[^1]: ${ }^{1}$ In some computations with trivial nebentype $\eta=1$, we were not concerned with the Dirichlet characters as a group. In these cases, we arbitrarily chose $p=12379$, the fourth prime after 12345 .

