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COHOMOLOGY WITH Symg COEFFICIENTS FOR

CONGRUENCE SUBGROUPS OF SL4(Z) AND GALOIS

REPRESENTATIONS

AVNER ASH, PAUL E. GUNNELLS, AND MARK MCCONNELL

Abstract. We extend the computations in [AGM02,AGM08,AGM10,AGM11,
AGM20] to find the cohomology in degree five of a congruence subgroup Γ of
SL4(Z) with coefficients in Symg(K4), twisted by a nebentype character η,
along with the action of the Hecke algebra. This is the top cuspidal degree. In
this paper we take K = F, a finite field of large characteristic, as a proxy for C.
For each Hecke eigenclass found, we produce the unique Galois representation
that appears to be attached to it.

The computations require modifications to our previous algorithms to ac-
commodate the fact that the coefficients are not one-dimensional. Types of
attached Galois representations arise that were not found in our previous pa-
pers, and we must modify the Galois Finder accordingly.

1. Introduction

The cohomology of arithmetic groups plays various roles in modern number the-
ory. One of these concerns the connections between Hecke eigenclasses in the coho-
mology and Galois representations. This paper continues our series of computations
in this area for subgroups of SL4(Z).

It is a highly nontrivial problem to compute the homology groups and the action
of the Hecke operators on them. In this paper, we use the sharbly complex for these
computations, as we have done in the previous papers of this series.

Definition 1.1. For any field K, Symg(K4) denotes the space of homogeneous
polynomials of degree g on K4. If η is a nebentype character valued in K×,
Symg(K4)η is defined to be Symg(K4)⊗Kη.

Choose a level N and let Γ = Γ0(N) ⊆ SL4(Z) and let K be a field. The
coefficient modules we study are Symg(K4)η with a nebentype character η. Our
earlier papers only considered one-dimensional coefficient modules, i.e., g = 0.

Since we are interested in automorphic representations, we would like to set
K = C. However, in order to avoid the inaccuracy of floating point numbers in our
huge linear algebra computations, we instead set K = F, with F denoting a finite
field Fpr , where p is some prime with five decimal digits and r > 1. This large finite
field can be viewed as a proxy for C.

We are thus interested in H∗(Γ, Symg(F4)η) for various N, g > 0, and η. For
reasons explained in our earlier papers, we have only investigated ∗ = 5, and that
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is also the only degree we study in this paper. We compute H5(Γ, Symg(F4)η) as
a module for a finite subset H of the tame Hecke algebra (which is commutative),
and we diagonalize the H-action on this vector space.

Let z ∈ H∗(Γ, Symg(F4)η) be an H-eigenclass.

Definition 1.2. We say that a representation ρ of the absolute Galois group of
Q is attached to z with respect to H if for every Hecke operator T ∈ H, if T is
supported at the prime ℓ, then its eigenvalue is that predicted by the equality of
the characteristic polynomial of ρ(Frobℓ) and the Hecke polynomial of z at ℓ.

We say that ρ is entirely attached to z if for every Hecke operator T in the
whole tame Hecke algebra, if T is supported at the prime ℓ, then its eigenvalue is
so predicted.

In our previous papers we used the terminology that ρ “appears” to be attached
to z, because we can only compute a finite number of Hecke operators T . The
new terminology contains more information by including the set of T for which
computations were made. Also, since Scholze has proved that there always exists
a ρ attached to z, if there were a unique ρ attached to z with respect to H, then ρ
must be entirely attached to z. Of course, since we can find only a small number
of Hecke eigenvalues (owing to the size of the matrices involved), even though our
Galois finder returns only one ρ, it is still possible (though very unlikely) that this
ρ is an “imposter” and the entirely attached ρ is some other Galois representation
that agrees with ρ on Frobℓ for small ℓ.

For each Hecke eigenclass z computed in this paper, we find a Galois representa-
tion attached to it, and this attached Galois representation is uniquely determined
by our data, in a sense to be explained in Theorem 3.1. As we just explained, it is
logically possible (but very unlikely) that if we considered candidates for ρ not in
the list of Section 2 we might find other ρ’s also attached to z with respect to H.

If we could compute enough Hecke operators, then, using Scholze’s theorem and
the method of Faltings–Serre, we could prove that a given ρ is entirely attached to
a given z. But it is not feasible to compute anywhere near enough Hecke operators
to do this for the homology classes found in this paper.

As in our earlier papers, these computations give new examples of Scholze’s
theorem (recalled in Section 2) and new a posteriori tests of Serre-type conjectures
for GL4.

The Galois representations in this paper are all reducible. We do not know why
certain combinations of characters and cusp forms appear and others do not. This
ignorance stems from the fact that the cohomology of X/Γ and its boundary, let
alone the restriction map from one to the other, is not known.

Our computations are complete for the following values of (N, g, η). For g = 1
and 2, they are complete for all levels N 6 18, both prime and composite. For
g = 3, . . . , 7, as the computations became slower, we computed only for certain
prime levels N 6 17. For N = 1, we computed for g 6 10. When we computed for
a given pair (N, g), we computed for all the η relevant to that pair.

The existence of attached Galois representations helps to corroborate the correct-
ness of our computations. It is unimaginable that attached Galois representations
could be found if the computed Hecke eigenvalues were random collections of num-
bers that had been calculated erroneously.
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This paper covers the same ground as [AGM20], except for the difference in the
coefficient modules. Therefore we refer the reader to [AGM20] for most of the back-
ground information and the description of how the computations are performed.
We will explain below the changes needed in order to deal with coefficient modules
of dimension greater than 1, and modifications required in the Galois Finder. Then
we will summarize our findings and provide complete tables of the results of our
computations.

2. Definitions, notations, basic constructions

Definition 2.1. Fix N > 1.
Γ = Γ0(N) will denote the subgroup of matrices in SLn(Z) whose bottom row is

congruent to (0, . . . , 0, ∗) modulo N .
η will denote a character of (Z/N)×. It can be viewed as a character of Γ by

being applied to the (n, n)-entry of an element in Γ.
V will denote the standard representation of GL4.
Sh• denotes the sharbly resolution of the Steinberg module for GL4.

Recall that if K is a field, and η is a K×-valued character of (Z/N)×, we defined
Kη to be the one-dimensional vector space K regarded as a Γ-module with action
via the nebentype character η. (We call η the nebentype even if it is trivial.)

Section 2 of [AGM20] gives the definitions of the Steinberg module, the sharbly
complex, and of the Hecke polynomial at ℓ. It also explains why the sharbly ho-
mology is isomorphic to H∗(Γ, Symg(F4)η). Section 3 of the same paper reviews
how the sharbly homology is calculated as a Hecke module, and Section 4 describes
the Galois Finder. We will assume knowledge of these matters in what follows.

There is an isomorphism of Hecke modules

H5(Γ,M) ≈ H1(Γ, Sh• ⊗Z M),

where M is any module on which the orders of the finite subgroups in SL4(Z)
are invertible; this condition is satisfied for us since we will take V = F4

pr and
M = Symg(V )⊗ η, where p > 5.

Indeed, in order to avoid the inaccuracy of floating point numbers in our huge
linear algebra computations, we use a finite field F = Fpr as a proxy for C. If p > 5
and if there is no p-torsion in the Z-cohomology (which is very likely the case for
large random p), then the C- and mod p-betti numbers coincide. We use primes
that have five decimal digits. We choose p and r as follows.

We choose p so that the exponent of (Z/N)× divides p−1. This makes the group
of characters (Z/N)× → F×

p isomorphic to the group of characters (Z/N)× → C×.
(Note: this is not needed if η = 1. Some of our initial computations for η = 1
were performed for a prime that differs from the p we used at the same level for
nontrivial η.) Later in the computation, we choose r to ensure that the various
Hecke eigenvalues that we compute lie in F.

Define SpN to be the subsemigroup of integral matrices in GLn(Q) satisfying the
same congruence conditions mod N as Γ and having positive determinant relatively
prime to pN . ThenH(pN), the tame Hecke algebra, is the Z-algebra of double cosets
ΓSpNΓ. It is a commutative algebra that acts on the cohomology and homology of
Γ with coefficients in any SpN -module. H(pN) is generated by all double cosets of
the form ΓD(ℓ, k)Γ, where ℓ is a prime not dividing pN , 0 6 k 6 n, and D(ℓ, k)
is the diagonal matrix with the first n− k diagonal entries equal to 1 and the last
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k diagonal entries equal to ℓ. When we consider the double coset generated by
D(ℓ, k) as a Hecke operator, we call it T (ℓ, k).

Fη is an SpN -module, where a matrix s ∈ SpN acts on F via η(snn), where snn
is the lower right entry of the n× n matrix s.

Definition 2.2. Let V be an F[H(pN)]-module. Suppose that v ∈ V is a simulta-
neous eigenvector for all T (ℓ, k) and that T (ℓ, k)v = a(ℓ, k)v with a(ℓ, k) ∈ F for all
prime ℓ ∤ pN and 0 6 k 6 n. If

ρ : GQ → GLn(F)

is a continuous representation of GQ = Gal(Q/Q) unramified outside pN , and if

(1)

n
∑

k=0

(−1)kℓk(k−1)/2a(ℓ, k)Xk = det(I − ρ(Frobℓ)X)

for all ℓ ∤ pN , then we say that ρ is entirely attached to v.

Here, Frobℓ refers to an arithmetic Frobenius element, so that if ε is the cyclo-
tomic character, we have ε(Frobℓ) = ℓ.

The polynomial on the left-hand side of (1) is called the Hecke polynomial for v
at ℓ.

Definition 2.3. Suppose we have v and ρ as above. If H is a subset of H(pN)
and the eigenvalues of all T ∈ H are those that would be predicted by ρ if ρ were
entirely attached to v, then we say ρ is attached to v with respect to H.

The following is a special case of a theorem of Scholze:

Theorem 2.4. Let N > 1. Let v be a Hecke eigenclass in H5(Γ0(N), Symg(F4)η).
Then there is entirely attached to v a continuous representation ρ, unramified out-
side pN :

ρ : GQ → GLn(F).

Since ρ is entirely attached to v, it is unique up to isomorphism.
The coefficient modulesM studied in this paper are Symg(F4)η for various levels

N , nebentypes η and degrees g. We compute homology and the Hecke action exactly
as in [AGM20]. Of course we have to modify the programs to use Symg(F4)η
coefficients.

When we wrote our code for [AGM20], we had made sure to support arbitrary
coefficient modules M for the cohomology. During [AGM20], this code was tested
for M ’s that were one-dimensional over F. As it turned out, the same code worked
out of the box for the high-dimensional M used in the present paper, after a few
small incompatibility bugs were fixed.

As explained in [AGM10,AGM20], computing the cohomology comes down to
finding the kernels and images of certain large matrices coming from the cells of
the well-rounded retract. The dimension of Symg(F4) is

(

g+3
3

)

∼ g3/6. Thus, when

M = Symg(F4) ⊗ η, the numbers of rows and columns in the matrices are larger
by approximately this factor of g3/6, compared to the size for M = Fη alone. In
turn, the size for one-dimensional M grows roughly like O(N3) for both rows and
columns. This explains why we stopped our computations at g = 7, and why
we restricted ourselves to smaller ranges of g as N became large (or a slightly
larger range for N = 1). The largest matrix we encountered was for N = 18 and
Sym2(V ), where the matrix was 16204× 56420. This is far smaller than the largest
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matrix in [AGM10], which was about 1 million by 4 million (for the case N = 211,
M = 1). However, in [AGM10], unlike in [AGM20] and the present paper, we were
not computing bases for the kernels and images of the matrices, which are needed
in order to compute the Hecke operators; we were only computing ranks of matrices
mod p. That is why we could go to much larger matrices in [AGM10].

To find attached Galois representations, we use the Galois Finder program, which
is part of our Sage code. We had to modify it for the current project, making two
changes. First, it now considers cusp forms of all weights 2, . . . , g+4. In [AGM20],
where g = 0, we only needed to consider weights 2, 3, 4. Secondly, it now considers
powers εi of ε for all i = 0, . . . , g + 3, as opposed to 0, . . . , 3 for [AGM20].

We compute the action on V = H1(Γ0(N), Sh• ⊗Z Symg(F4)η) of the Hecke
operators T (ℓ, k) for k = 1, 2, 3 and for ℓ ranging through a set

L =
{

ℓ
∣

∣ ℓ prime, ℓ 6 ℓ0, ℓ ∤ pN
}

.

The upper bound ℓ0 depends on the level N and the nebentype η. What limits the
choice of ℓ0 is the size of the matrices involved in the computation and the time it
takes.

In this paper, 5 6 ℓ0 6 11. For ℓ0 itself we sometimes find only T (ℓ0, 1) and not
T (ℓ0, k) for k = 2, 3 because of the size of the computations. For k = 0, 4, we do not
have to do any computation: T (ℓ, 0) is the identity and T (ℓ, 4) is η(ℓ)ℓg times the
identity. To check our work, we always verify that the Hecke operators commute
pairwise.

3. Observations from the data

In the range of our computations, all the Galois representations that occur are
reducible with constituents of dimension 1 and 2. One-dimensional constituents
come from Dirichlet characters mod N taking values in the cyclotomic field K0

generated by a primitive N -th root of unity. Two-dimensional constituents come
from newforms of level dividingN and weights 2, . . . , g+4. Any of these constituents
may be multiplied by a power of the cyclotomic character.

Let K1,K2, . . . be the fields of coefficients of the q-expansions of the newforms
we have listed, together with K0. The Galois Finder works in the residue class
fields for the various primes P over p in the various Ki’s. We define r to be the
smallest integer so that all these residue class fields embed in F = Fpr . We choose
p to make r as small as possible, given the constraint that p should be no more
than five digits (which is needed for speed). The field F is recorded at the top of
each table in Section 5. The table also specifies, for each N, η, g, the set of Hecke
operators making up our choice of H for those parameters.

We summarize our first observation as follows:

Theorem 3.1. For N , pr, η, ℓ, and g as covered in the tables in Section 5, the
Hecke operators T ∈ H on H5(Γ0(N), Symg(Fpr )η) are all semisimple. For every

Hecke eigenvector z, there exists a unique reducible Galois representation ρ : GQ →
GL4(Fpr ) (within the scope of the Galois finder) that is attached to z with respect
to H. Each such ρ is either the sum of four characters or the sum of two characters
plus the Galois representation of a newform tensored with a character.

Let E denote a simultaneous eigenspace of H on V = H5(Γ0(N), Symg(F4)η),
where F = Fpr . We define two kinds of multiplicity for E.
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Definition 3.2. The Hecke multiplicity of E equals dimFE.

Let Gη be the stabilizer of η in the Galois group of F/Fp. Then Gη acts on V
and permutes the Hecke eigenspaces.

Definition 3.3. The Galois multiplicity of E equals the cardinality of the orbit of
E under Gη.

The Galois finder works exactly as it did in [AGM20]. If the Galois finder
returns the same ρ exactly d times, for Hecke eigenspaces E1, . . . , Ed, then the
Galois multiplicity of each Ei equals d and we list only one of them in the tables.
Although it seems like it is returning the same ρ, this is not true: it is using a
different prime P for each one.

We now describe in detail the list of Galois representations ρ which our Galois
Finder used for this paper.

First are the Dirichlet characters χ with values in F, which we identify with one-
dimensional Galois representations as usual. We take all the characters of conductor
N1 for all N1 | N . Sage’s class DirichletGroup enumerates the χ automatically.
The characteristic polynomial of Frobenius at ℓ for χ is 1 + χ(ℓ)X , for all ℓ ∤ pN .

Another one-dimensional character is the cyclotomic character ε. We look at εw

for w = 0, 1, 2 . . . , g + 3, because these are the powers predicted by the generaliza-
tions of Serre’s conjecture for mod p Galois representations [Sch09,ADP02].

We define the Hodge-Tate (HT) numbers for Galois representations as follows.
For a character χ⊗εw, there is a list of one integer [w]. To a representation coming
from a newform ρ of weight k, there is a list of two integers, [0, k−1]. More generally,
for χ⊗ εw ⊗ ρ, the list is [w,w+ k− 1]. For direct sums of representations, the lists
are concatenated and then ordered by increasing values of the entries. For the four-
dimensional Galois representations we find that fit our data, we always observe that
the list is [0, 1, 2, g+3] after sorting. This is predicted by the Serre-type conjectures
and gives us a check on our computations.

Another check on our computations comes from considering the relationship
between the nebentype character and the determinant of the attached represen-
tation. Suppose a Galois representation ρ is attached to a Hecke eigenclass in
H5(Γ0(N), Symg(F4)η). Then the determinant of ρ(Frobℓ) must equal the coeffi-
cient of X4 in the Hecke polynomial, namely η(ℓ)ℓg+6. We observe that this is
always the case in our data.

4. Other observed regularities in the data

In this section, we set V = F4. A Hecke eigenclass in H5(Γ0(N), Symg(V )η) will
be denoted by the letter z, and its attached Galois representation by ρ.

4.1. Oddness. We observe that ρ is always odd. In other words, the eigenvalues
of ρ(c) are +1,−1,+1,−1, where c denotes complex conjugation. This must be the
case, as follows from a theorem of Caraiani and LeHung [CLH16].

4.2. Multiplicities. We observe that the Galois multiplicity of eigenspaces in our
data can be any integer from 1 to 6, while the Hecke multiplicity of eigenspaces
in our data can be 1, 3, 4, 6, or 9. We do not have an explanation for why other
multiplicities do not occur. It is possible that more computations would reveal
other multiplicities.
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4.3. Patterns. Recall that N denotes the level of the Hecke eigenspace and η
denotes the nebentype of the coefficients.

Each Galois representation in the tables is one of the following types. We let χ
and ψ denote 1-dimensional Galois representations with conductor dividing N and
σk an irreducible 2-dimensional Galois representation corresponding to a newform
of weight k and level dividing N .

1) χε0 ⊕ ε1 ⊕ ε2 ⊕ εg+3 and ε0 ⊕ ε1 ⊕ χε2 ⊕ εg+3, χ 6= 1. These always occur in
such pairs.

2) χε0 ⊕ ε1 ⊕ ε2 ⊕ψεg+3 and ε0 ⊕ ε1 ⊕χε2 ⊕ψεg+3, χ 6= 1, ψ 6= 1. These always
occur in such pairs. They are much rarer than type 1).

3) ε0⊕ε1⊕ε2σg+2. (Notice that no summand here gets multiplied by a nontrivial
character.) This always occurs unless there is no σg+2 with nebentype equal to η.

4) ε1⊕εg+3⊕ε0σ3. (Notice that no summand here gets multiplied by a nontrivial
character.) Whenever type 4) occurs for given N, g, η, there also occurs type 3) and
type 1).

5) χε0 ⊕ ε2 ⊕ ε1σg+3 and ε0 ⊕ χε2 ⊕ ε1σg+3, χ 6= 1. These always occur in such
pairs. This type occurs in our data for N = 12, 15, 16, 18.

4.4. Differences from our previous findings for g = 0. Unlike in [AGM20],
neither ε1 nor σk is ever multiplied by a nontrivial character. Of course, more data
might disturb this observation.

In [AGM20], if η factors nontrivially as η = ψχ then either all three of the
following or none of the following occur:
ρ = ψε0 ⊕ χε1 ⊕ ε2 ⊕ ε3

ρ = ψε0 ⊕ ε1 ⊕ ε2 ⊕ χε3

ρ = ε0 ⊕ ε1 ⊕ ψε2 ⊕ χε3.
The natural analogue of this assertion for g > 0 is not true. See for example N = 16.

In [AGM20], ε2χσ (χ possibly trivial) occurred as a summand for a given coeffi-
cient module if and only if ε0χσ occurred. This is no longer true when g > 0. For
example, see N = 3, Coeffs = Sym6(V ).

4.5. Heuristics. We do not have explanations for most of the regularities observed
above. In [AGM20] we gave a heuristic for the conductors of the characters and
the levels and weights of the cuspforms that appear in the tables by referring to
the homology of various parabolic subgroups of GL4 intersected with Γ. We refer
to [AGM20] for the details of this analysis, and very briefly discuss them as they
apply to the tables below. In [AGM20, Section 5.6] the analysis was accompanied
by five diagrams lettered (a) through (e), which we have reproduced in Figure 1
below.

The heuristic concerning the conductors of the characters and the levels of the
cuspforms is the same as before. As for the weights of the cuspforms:

The Borel–Serre boundary BΓ is the union of faces F (P ), where P runs over a set
of representatives of Γ-orbits of parabolic subgroups P of GL4(Q). Each parabolic
subgroup P is conjugate to a standard one with block sizes (n1, . . . , nk+2) down the
diagonal. We call this tuple the “type” of P or of F (P ). The nonnegative integer
k equals the codimension of F (P ) in BΓ.

Our heuristic explanation assumes that each Hecke eigenspace restricts nontriv-
ially to at least one of the faces. Our data all conforms to assuming this face is
type (2, 2). By the Eichler–Shimura theorem, a block of size 2 will give rise to the
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Galois representation σ attached to a holomorphic cuspform with level dividing N ,
or to a sum of two characters (in the case of an Eisenstein series), with conductors
dividing N . In general, σ and these characters may be multiplied by a power of the
cyclotomic character.

We now use this heuristic to describe the various kinds of Galois representations
that occur in our data in the tables. Write the parabolic subgroup of type (2, 2)
as P = L1L2U where Li ≈ GL2 for i = 1, 2 and U is the unipotent radical of P .
Note that Symg restricted to L2 has a submodule isomorphic to Symg for GL2, and
another submodule isomorphic to Sym0 for GL2.

2

3

cusp

(a)

1

4

cusp

(b)

1

1

3

cusp

eis

(c)

1

11

1
cusp

(d)

1

4

eis

(e)

Figure 1. Schematics of homology classes on faces of the Borel–
Serre boundary

4.6. Holomorphic cusp forms of weight g+2. In this case (Figure 1(b)), when
we restrict the coefficients Symg(V )⊗η to L2 we use the submodule Wg isomorphic
to Symg for GL2. We place a cuspform on the L2 block of weight g+2 (correspond-
ing to the homology of the arithmetic group in the GL2-block with coefficients in
H4(U)⊗Wg.) This gives classes of type 3).

4.7. Holomorphic cusp forms of weight g+3. In this case (Figure 1(c)), when
we restrict the coefficients Symg(V )⊗η to L2 we use the submodule Wg isomorphic
to Symg for GL2. We place a cuspform on the L2 block of weight g+3 (correspond-
ing to the homology of the arithmetic group in the GL2-block with coefficients in
H3(U)⊗Wg.) We place an Eisenstein series on the L1 block. This gives classes of
type 5).

4.8. Holomorphic cusp forms of weight 3. In this case (also Figure 1(c)),
when we restrict the coefficients Symg(V ) ⊗ η to L2 we use the submodule W0

isomorphic to Sym0 for GL2. We place a cuspform on the L2 block of weight 3
(corresponding to the homology of the arithmetic group in the GL2-block with
coefficients in H3(U) ⊗W0.) We place an Eisenstein series on the L1 block.This
gives classes of type 4).

4.9. Sums of 4 characters. In this case (Figure 1(e)), when we restrict the co-
efficients Symg(V ) ⊗ η to L2 we use the submodule Wg isomorphic to Symg for
GL2. We place an Eisenstein series on the L2 block of weight g + 3 (correspond-
ing to the homology of the arithmetic group in the GL2-block with coefficients in
H3(U)⊗Wg.) This gives classes of types 1) and 2).

We do not understand the finer details of the sums of characters, nor of the other
types of attached Galois representations.
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4.10. Missing patterns from [AGM20]. Nothing in our data corresponds to
Figure 1(d) where P is a (1, 2, 1)-parabolic subgroup nor to Figure 1(a) where P
is a (1, 3)-parabolic subgroup. We would expect Figure 1(a) to occur if GL3 has
a cuspidal cohomology class of level N , but such N are beyond the range of our
computations. We do not have a guess as to whether Figure 1(d) would occur for
larger levels N .

5. Tables of results

5.1. The tables in this section present the main results of the paper.
Let V denote the standard representation of GL4 acting on a vector space of

dimension 4. A given coefficient module will be denoted Symg(V )⊗ η for a neben-
type η. (We used a subscript η earlier, but putting η on the line makes it easier to
read). Dirichlet characters will be denoted by a subscripted χ, and 2-dimensional
irreducible Galois representations will be denoted by a subscripted σ. We replace
Sym1(V ) with V in the tables.

The topmost box in each table gives the levelN , the coefficient module Symk(V )⊗
η with nebentype η, and the field Fpr = GF (pr) that was our proxy for C. We
include only one representative for each Galois orbit of nebentype characters. Next,
we list the Hecke operators we computed. Tℓ means we computed Tℓ,1, Tℓ,2, and
Tℓ,3. Listing Tℓ,1 means we computed only that part of Tℓ.

The succeeding rows in each table give the Galois multiplicity (Def. 2.8), the
Hecke multiplicity (Def. 2.7), and the Galois representation itself. The cyclotomic
character is denoted ε.
χN or χN,i are a basis for the mod p Dirichlet characters (Z/NZ)× → Fp. They

are listed in a separate table at the end. As explained above, we usually1 choose p
depending on N so that the exponent of (Z/NZ)× divides the order p− 1 of F×

p . It
follows that the group of complex-valued Dirichlet characters is isomorphic to the
group of mod p characters.

The symbol σN.k.a.x denotes a classical cuspidal holomorphic newform. We label
these following the conventions of the LMFDB [LMF23]. Thus N is the level of
the newform, k is its weight, “a” is the LMFDB name for the nebentype character
of the newform, and “x” denotes a specified Galois orbit of newforms. We use
the same symbol σN.k.a.x to stand for the two-dimensional Galois representation
attached to the cusp form of that name.

For g = 1 and 2, we computed the cohomology for all levels N 6 18, both prime
and composite. For g = 3, . . . , 7, as the computations became slower, we computed
only for certain prime levels N 6 17. For N = 1, we computed for g 6 10. When
we computed for a given pair (N, g), we computed for all the η relevant to that
pair. In general, the range of N for which we computed became smaller as g grew
larger.

Level 1.

Level N = 1. Coeffs Symg(V ) for g = 2, 4, 6, 8. Field F = GF (12379).
Dim 0.

1In some computations with trivial nebentype η = 1, we were not concerned with the Dirichlet
characters as a group. In these cases, we arbitrarily chose p = 12379, the fourth prime after 12345.
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Level N = 1. Coeffs Sym10(V ). Field F = GF (12379).
Computed T2, T3. Dim 1.
1 1 ε0 ⊕ ε1 ⊕ ε2σ1.12.a.a

Level 2.

Level N = 2. Coeffs Sym2(V ). Field F = GF (12379).
Dim 0.

Level N = 2. Coeffs Sym4(V ). Field F = GF (12379).
Dim 0.

Level N = 2. Coeffs Sym6(V ). Field F = GF (12379).
Computed T3, T5, T7,1. Dim 1.
1 1 ε0 ⊕ ε1 ⊕ ε2σ2.8.a.a

Level 3.
Level N = 3. Coeffs V ⊗ χ3. Field F = GF (12379).
Computed T2, T5, T7, T11. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ χ3ε

2 ⊕ ε4

1 1 χ3ε
0 ⊕ ε1 ⊕ ε2 ⊕ ε4

Level N = 3. Coeffs Sym2(V ). Field F = GF (12379).
Dim 0.

Level N = 3. Coeffs Sym3(V )⊗ χ3. Field F = GF (12379).
Computed T2, T5, T7. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ χ3ε

2 ⊕ ε6

1 1 χ3ε
0 ⊕ ε1 ⊕ ε2 ⊕ ε6

Level N = 3. Coeffs Sym4(V ). Field F = GF (12379).
Computed T2, T5, T7. Dim 1.
1 1 ε0 ⊕ ε1 ⊕ ε2σ3.6.a.a

Level N = 3. Coeffs Sym5(V )⊗ χ3. Field F = GF (12379).
Computed T2, T5, T7,1. Dim 3.
1 1 ε0 ⊕ ε1 ⊕ χ3ε

2 ⊕ ε8

1 1 χ3ε
0 ⊕ ε1 ⊕ ε2 ⊕ ε8

1 1 ε0 ⊕ ε1 ⊕ ε2σ3.7.b.a

Level N = 3. Coeffs Sym6(V ). Field F = GF (12379).
Computed T2, T5, T7,1. Dim 1.
1 1 ε0 ⊕ ε1 ⊕ ε2σ3.8.a.a

Level N = 3. Coeffs Sym7(V )⊗ χ3. Field F = GF (123792).
Computed T2, T5,1, T7,1. Dim 4.
1 1 ε0 ⊕ ε1 ⊕ χ3ε

2 ⊕ ε10

1 1 χ3ε
0 ⊕ ε1 ⊕ ε2 ⊕ ε10

2 1 ε0 ⊕ ε1 ⊕ ε2σ3.9.b.a

Level 4.

Level N = 4. Coeffs V ⊗ χ4. Field F = GF (12379).
Computed T3, T5, T7. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ χ4ε

2 ⊕ ε4

1 1 χ4ε
0 ⊕ ε1 ⊕ ε2 ⊕ ε4
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Level N = 4. Coeffs Sym2(V ). Field F = GF (12379).
Dim 0.

Level 5.

Level N = 5. Coeffs V ⊗ χ5. Field F = GF (16001).
Computed T2, T3, T7. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ χ5ε

2 ⊕ ε4

1 1 χ5ε
0 ⊕ ε1 ⊕ ε2 ⊕ ε4

Level N = 5. Coeffs Sym2(V ). Field F = GF (123792).
Computed T2, T3, T7, T11. Dim 1.
1 1 ε0 ⊕ ε1 ⊕ ε2σ5.4.a.a

Level N = 5. Coeffs Sym2(V )⊗ χ2
5. Field F = GF (16001).

Dim 0.

Level N = 5. Coeffs Sym3(V )⊗ χ5. Field F = GF (160012).
Computed T2, T3, T7. Dim 3.
1 1 ε0 ⊕ ε1 ⊕ χ5ε

2 ⊕ ε6

1 1 χ5ε
0 ⊕ ε1 ⊕ ε2 ⊕ ε6

1 1 ε0 ⊕ ε1 ⊕ ε2σ5.5.c.a

Level N = 5. Coeffs Sym4(V ). Field F = GF (160012).
Computed T2, T3, T7. Dim 1.
1 1 ε0 ⊕ ε1 ⊕ ε2σ5.6.a.a

Level N = 5. Coeffs Sym4(V )⊗ χ2
5. Field F = GF (160012).

Computed T2, T3, T7. Dim 2.
2 1 ε0 ⊕ ε1 ⊕ ε2σ5.6.b.a

Level N = 5. Coeffs Sym5(V )⊗ χ5. Field F = GF (160016).
Computed T2, T3, T7,1. Dim 4.
1 1 ε0 ⊕ ε1 ⊕ χ3

5ε
2 ⊕ ε8

1 1 χ3
5ε

0 ⊕ ε1 ⊕ ε2 ⊕ ε8

2 1 ε0 ⊕ ε1 ⊕ ε2σ5.7.c.a

Level N = 5. Coeffs Sym6(V ). Field F = GF (160016).
Computed T2, T3, T7,1. Dim 3.
1 1 ε0 ⊕ ε1 ⊕ ε2σ5.8.a.a
2 1 ε0 ⊕ ε1 ⊕ ε2σ5.8.a.b

Level N = 5. Coeffs Sym6(V )⊗ χ2
5. Field F = GF (160016).

Computed T2, T3, T7,1. Dim 2.
2 1 ε0 ⊕ ε1 ⊕ ε2σ5.8.b.a

Level N = 5. Coeffs Sym7(V )⊗ χ5. Field F = GF (160016).
Computed T2, T3. Dim 5.
1 1 ε0 ⊕ ε1 ⊕ χ3

5ε
2 ⊕ ε10

1 1 χ3
5ε

0 ⊕ ε1 ⊕ ε2 ⊕ ε10

3 1 ε0 ⊕ ε1 ⊕ ε2σ5.9.c.a

Level 6.
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Level N = 6. Coeffs V ⊗ χ6. Field F = GF (12379).
Computed T5, T7. Dim 6.
1 3 ε0 ⊕ ε1 ⊕ χ6ε

2 ⊕ ε4

1 3 χ6ε
0 ⊕ ε1 ⊕ ε2 ⊕ ε4

Level N = 6. Coeffs Sym2(V ). Field F = GF (12379).
Computed T5, T7, T11. Dim 1.
1 1 ε0 ⊕ ε1 ⊕ ε2σ6.4.a.a

Level 7.

Level N = 7. Coeffs V ⊗ χ7. Field F = GF (120372).
Computed T2, T3, T5. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ χ7ε

2 ⊕ ε4

1 1 χ7ε
0 ⊕ ε1 ⊕ ε2 ⊕ ε4

Level N = 7. Coeffs V ⊗ χ3
7. Field F = GF (120372).

Computed T2, T3, T5. Dim 4.
1 1 ε0 ⊕ ε1 ⊕ χ3

7ε
2 ⊕ ε4

1 1 χ3
7ε

0 ⊕ ε1 ⊕ ε2 ⊕ ε4

1 1 ε0 ⊕ ε1 ⊕ ε2σ7.3.b.a
1 1 ε1 ⊕ ε4 ⊕ ε0σ7.3.b.a

Level N = 7. Coeffs Sym2(V ). Field F = GF (123792).
Computed T2, T3, T5, T11. Dim 1.
1 1 ε0 ⊕ ε1 ⊕ ε2σ7.4.a.a

Level N = 7. Coeffs Sym2(V )⊗ χ2
7. Field F = GF (120372).

Computed T2, T3, T5. Dim 1.
1 1 ε0 ⊕ ε1 ⊕ ε2σ7.4.c.a

Level N = 7. Coeffs Sym3(V )⊗ χ7. Field F = GF (120372).
Computed T2, T3, T5. Dim 4.
1 1 ε0 ⊕ ε1 ⊕ χ7ε

2 ⊕ ε6

1 1 χ7ε
0 ⊕ ε1 ⊕ ε2 ⊕ ε6

2 1 ε0 ⊕ ε1 ⊕ ε2σ7.5.d.a

Level N = 7. Coeffs Sym3(V )⊗ χ3
7. Field F = GF (120372).

Computed T2, T3, T5. Dim 4.
1 1 ε0 ⊕ ε1 ⊕ χ3

7ε
2 ⊕ ε6

1 1 χ3
7ε

0 ⊕ ε1 ⊕ ε2 ⊕ ε6

1 1 ε1 ⊕ ε6 ⊕ ε0σ7.3.b.a
1 1 ε0 ⊕ ε1 ⊕ ε2σ7.5.b.a

Level N = 7. Coeffs Sym4(V ). Field F = GF (120376).
Computed T2, T3, T5. Dim 3.
1 1 ε0 ⊕ ε1 ⊕ ε2σ7.6.a.a
2 1 ε0 ⊕ ε1 ⊕ ε2σ7.6.a.b

Level N = 7. Coeffs Sym4(V )⊗ χ2
7. Field F = GF (120376).

Computed T2, T3, T5. Dim 2.
2 1 ε0 ⊕ ε1 ⊕ ε2σ7.6.c.a
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Level N = 7. Coeffs Sym5(V )⊗ χ7. Field F = GF (120376).
Computed T2, T3, T5,1. Dim 5.
1 1 ε0 ⊕ ε1 ⊕ χ5

7ε
2 ⊕ ε8

1 1 χ5
7ε

0 ⊕ ε1 ⊕ ε2 ⊕ ε8

1 1 ε0 ⊕ ε1 ⊕ ε2σ7.7.d.a
2 1 ε0 ⊕ ε1 ⊕ ε2σ7.7.d.b

Level N = 7. Coeffs Sym5(V )⊗ χ3
7. Field F = GF (120376).

Computed T2, T3, T5. Dim 6.
1 1 ε0 ⊕ ε1 ⊕ χ3

7ε
2 ⊕ ε8

1 1 χ3
7ε

0 ⊕ ε1 ⊕ ε2 ⊕ ε8

1 1 ε1 ⊕ ε8 ⊕ ε0σ7.3.b.a
1 1 ε0 ⊕ ε1 ⊕ ε2σ7.7.b.a
2 1 ε0 ⊕ ε1 ⊕ ε2σ7.7.b.b

Level N = 7. Coeffs Sym6(V ). Field F = GF (120376).
Computed T2, T3, T5. Dim 3.
1 1 ε0 ⊕ ε1 ⊕ ε2σ7.8.a.a
2 1 ε0 ⊕ ε1 ⊕ ε2σ7.8.a.b

Level N = 7. Coeffs Sym6(V )⊗ χ2
7. Field F = GF (120376).

Computed T2, T3, T5. Dim 4.
4 1 ε0 ⊕ ε1 ⊕ ε2σ7.8.c.a

Level N = 7. Coeffs Sym7(V )⊗ χ7. Field F = GF (120376).
Computed T2, T3, T5,1. Dim 6.
1 1 ε0 ⊕ ε1 ⊕ χ7ε

2 ⊕ ε10

1 1 χ7ε
0 ⊕ ε1 ⊕ ε2 ⊕ ε10

4 1 ε0 ⊕ ε1 ⊕ ε2σ7.9.d.a

Level N = 7. Coeffs Sym7(V )⊗ χ3
7. Field F = GF (120376).

Computed T2, T3. Dim 8.
1 1 ε0 ⊕ ε1 ⊕ χ3

7ε
2 ⊕ ε10

1 1 χ3
7ε

0 ⊕ ε1 ⊕ ε2 ⊕ ε10

1 1 ε1 ⊕ ε10 ⊕ ε0σ7.3.b.a
1 1 ε0 ⊕ ε1 ⊕ ε2σ7.9.b.a
4 1 ε0 ⊕ ε1 ⊕ ε2σ7.9.b.b

Level 8.

Level N = 8. Coeffs V ⊗ χ8,0. Field F = GF (120372).
Computed T3, T5, T7. Dim 6.
1 3 ε0 ⊕ ε1 ⊕ χ8,0ε

2 ⊕ ε4

1 3 χ8,0ε
0 ⊕ ε1 ⊕ ε2 ⊕ ε4

Level N = 8. Coeffs V ⊗ χ8,0χ8,1. Field F = GF (120372).
Computed T3, T5, T7. Dim 4.
1 1 ε0 ⊕ ε1 ⊕ χ8,0χ8,1ε

2 ⊕ ε4

1 1 χ8,0χ8,1ε
0 ⊕ ε1 ⊕ ε2 ⊕ ε4

1 1 ε0 ⊕ ε1 ⊕ ε2σ8.3.d.a
1 1 ε1 ⊕ ε4 ⊕ ε0σ8.3.d.a
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Level N = 8. Coeffs Sym2(V ). Field F = GF (123794).
Computed T3, T5, T7, T11. Dim 1.
1 1 ε0 ⊕ ε1 ⊕ ε2σ8.4.a.a

Level N = 8. Coeffs Sym2(V )⊗ χ8,1. Field F = GF (120372).
Computed T3, T5, T7. Dim 2.
2 1 ε0 ⊕ ε1 ⊕ ε2σ8.4.b.a

Level 9.

Level N = 9. Coeffs V ⊗ χ9. Field F = GF (120372).
Computed T2, T5, T7. Dim 4.
1 1 ε0 ⊕ ε1 ⊕ χ9ε

2 ⊕ ε4

1 1 χ9ε
0 ⊕ ε1 ⊕ ε2 ⊕ ε4

1 1 ε0 ⊕ ε1 ⊕ ε2σ9.3.d.a
1 1 ε1 ⊕ ε4 ⊕ ε0σ9.3.d.a

Level N = 9. Coeffs V ⊗ χ3
9. Field F = GF (120372).

Computed T2, T5, T7. Dim 6.
1 3 ε0 ⊕ ε1 ⊕ χ3

9ε
2 ⊕ ε4

1 3 χ3
9ε

0 ⊕ ε1 ⊕ ε2 ⊕ ε4

Level N = 9. Coeffs Sym2(V ). Field F = GF (123794).
Computed T2, T5, T7, T11,1. Dim 3.
1 1 ε0 ⊕ ε1 ⊕ χ3

9ε
2 ⊕ χ3

9ε
5

1 1 χ3
9ε

0 ⊕ ε1 ⊕ ε2 ⊕ χ3
9ε

5

1 1 ε0 ⊕ ε1 ⊕ ε2σ9.4.a.a

Level N = 9. Coeffs Sym2(V )⊗ χ2
9. Field F = GF (120376).

Computed T2, T5, T7. Dim 2.
2 1 ε0 ⊕ ε1 ⊕ ε2σ9.4.c.a

Level 10.

Level N = 10. Coeffs V ⊗ χ10. Field F = GF (12037).
Computed T3, T7. Dim 8.
1 3 ε0 ⊕ ε1 ⊕ χ10ε

2 ⊕ ε4

1 3 χ10ε
0 ⊕ ε1 ⊕ ε2 ⊕ ε4

1 1 ε0 ⊕ ε1 ⊕ ε2σ10.3.c.a
1 1 ε1 ⊕ ε4 ⊕ ε0σ10.3.c.a

Level N = 10. Coeffs Sym2(V ). Field F = GF (123792).
Computed T3, T7. Dim 4.
1 1 ε0 ⊕ ε1 ⊕ ε2σ10.4.a.a
3 1 ε0 ⊕ ε1 ⊕ ε2σ5.4.a.a

Level N = 10. Coeffs Sym2(V )⊗ χ2
10. Field F = GF (12037).

Computed T3, T7. Dim 2.
2 1 ε0 ⊕ ε1 ⊕ ε2σ10.4.b.a

Level 11.
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Level N = 11. Coeffs V ⊗ χ11. Field F = GF (160012).
Computed T2, T3, T5, T7. Dim 4.
1 1 ε0 ⊕ ε1 ⊕ χ11ε

2 ⊕ ε4

1 1 χ11ε
0 ⊕ ε1 ⊕ ε2 ⊕ ε4

1 1 ε0 ⊕ ε1 ⊕ ε2σ11.3.d.a
1 1 ε1 ⊕ ε4 ⊕ ε0σ11.3.d.a

Level N = 11. Coeffs V ⊗ χ5
11. Field F = GF (160012).

Computed T2, T3, T5, T7. Dim 4.
1 1 ε0 ⊕ ε1 ⊕ χ5

11ε
2 ⊕ ε4

1 1 χ5
11ε

0 ⊕ ε1 ⊕ ε2 ⊕ ε4

1 1 ε0 ⊕ ε1 ⊕ ε2σ11.3.b.a
1 1 ε1 ⊕ ε4 ⊕ ε0σ11.3.b.a

Level N = 11. Coeffs Sym2(V ). Field F = GF (123792).
Computed T2, T3, T5, T7. Dim 2.
2 1 ε0 ⊕ ε1 ⊕ ε2σ11.4.a.a

Level N = 11. Coeffs Sym2(V )⊗ χ2
11. Field F = GF (160016).

Computed T2, T3, T5, T7. Dim 2.
2 1 ε0 ⊕ ε1 ⊕ ε2σ11.4.c.a

Level N = 11. Coeffs Sym3(V )⊗ χ11. Field F = GF (1600160).
Computed T2, T3, T5, T7. Dim 6.
1 1 ε0 ⊕ ε1 ⊕ χ3

11ε
2 ⊕ ε6

1 1 χ3
11ε

0 ⊕ ε1 ⊕ ε2 ⊕ ε6

1 1 ε1 ⊕ ε6 ⊕ ε0σ11.3.d.a
3 1 ε0 ⊕ ε1 ⊕ ε2σ11.5.d.a

Level N = 11. Coeffs Sym3(V )⊗ χ5
11. Field F = GF (1600160).

Computed T2, T3, T5, T7,1. Dim 6.
1 1 ε0 ⊕ ε1 ⊕ χ5

11ε
2 ⊕ ε6

1 1 χ5
11ε

0 ⊕ ε1 ⊕ ε2 ⊕ ε6

1 1 ε1 ⊕ ε6 ⊕ ε0σ11.3.b.a
1 1 ε0 ⊕ ε1 ⊕ ε2σ11.5.b.a
2 1 ε0 ⊕ ε1 ⊕ ε2σ11.5.b.b

Level N = 11. Coeffs Sym4(V ). Field F = GF (1600160).
Computed T2, T3, T5, T7. Dim 4.
1 1 ε0 ⊕ ε1 ⊕ ε2σ11.6.a.a
3 1 ε0 ⊕ ε1 ⊕ ε2σ11.6.a.b

Level N = 11. Coeffs Sym4(V )⊗ χ2
11. Field F = GF (1600160).

Computed T2, T3, T5, T7. Dim 4.
4 1 ε0 ⊕ ε1 ⊕ ε2σ11.6.c.a

Level N = 11. Coeffs Sym5(V )⊗ χ11. Field F = GF (1600160).
Computed T2, T3, T5,1. Dim 8.
1 1 ε0 ⊕ ε1 ⊕ χ9

11ε
2 ⊕ ε8

1 1 χ9
11ε

0 ⊕ ε1 ⊕ ε2 ⊕ ε8

1 1 ε1 ⊕ ε8 ⊕ ε0σ11.3.d.a
5 1 ε0 ⊕ ε1 ⊕ ε2σ11.7.d.a
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Level N = 11. Coeffs Sym5(V )⊗ χ5
11. Field F = GF (1600160).

Computed T2, T3, T5,1. Dim 8.
1 1 ε0 ⊕ ε1 ⊕ χ5

11ε
2 ⊕ ε8

1 1 χ5
11ε

0 ⊕ ε1 ⊕ ε2 ⊕ ε8

1 1 ε1 ⊕ ε8 ⊕ ε0σ11.3.b.a
1 1 ε0 ⊕ ε1 ⊕ ε2σ11.7.b.a
4 1 ε0 ⊕ ε1 ⊕ ε2σ11.7.b.b

Level 12.

Level N = 12. Coeffs V ⊗ χ12,0. Field F = GF (160012).
Computed T5, T7. Dim 10.
1 3 ε0 ⊕ ε1 ⊕ χ12,0ε

2 ⊕ ε4

1 3 χ12,0ε
0 ⊕ ε1 ⊕ ε2 ⊕ ε4

2 1 ε0 ⊕ ε1 ⊕ ε2σ12.3.d.a
2 1 ε1 ⊕ ε4 ⊕ ε0σ12.3.d.a

Level N = 12. Coeffs V ⊗ χ12,1. Field F = GF (160012).
Computed T5, T7. Dim 14.
1 6 ε0 ⊕ ε1 ⊕ χ12,1ε

2 ⊕ ε4

1 6 χ12,1ε
0 ⊕ ε1 ⊕ ε2 ⊕ ε4

1 1 ε0 ⊕ ε1 ⊕ ε2σ12.3.c.a
1 1 ε1 ⊕ ε4 ⊕ ε0σ12.3.c.a

Level N = 12. Coeffs Sym2(V ). Field F = GF (123794).
Computed T5, T7, T11. Dim 4.
1 1 ε0 ⊕ ε1 ⊕ ε2σ12.4.a.a
3 1 ε0 ⊕ ε1 ⊕ ε2σ6.4.a.a

Level N = 12. Coeffs Sym2(V )⊗ χ12,0χ12,1. Field F = GF (160014).
Computed T5, T7,1. Dim 10. [NEWv06]
1 1 ε0 ⊕ ε1 ⊕ χ12,0ε

2 ⊕ χ12,1ε
5

1 1 ε0 ⊕ ε1 ⊕ χ12,1ε
2 ⊕ χ12,0ε

5

1 1 χ12,0ε
0 ⊕ ε1 ⊕ ε2 ⊕ χ12,1ε

5

1 1 χ12,1ε
0 ⊕ ε1 ⊕ ε2 ⊕ χ12,0ε

5

4 1 ε0 ⊕ ε1 ⊕ ε2σ12.4.b.a
1 1 ε0 ⊕ χ12,1ε

2 ⊕ ε1σ4.5.b.a
1 1 χ12,1ε

0 ⊕ ε2 ⊕ ε1σ4.5.b.a

Level 13.

Level N = 13. Coeffs V ⊗ χ13. Field F = GF (1203712).
Computed T2, T3, T5, T7. Dim 4.
1 1 ε0 ⊕ ε1 ⊕ χ11

13ε
2 ⊕ ε4

1 1 χ11
13ε

0 ⊕ ε1 ⊕ ε2 ⊕ ε4

1 1 ε0 ⊕ ε1 ⊕ ε2σ13.3.f.a
1 1 ε1 ⊕ ε4 ⊕ ε0σ13.3.f.a
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Level N = 13. Coeffs V ⊗ χ3
13. Field F = GF (1203712).

Computed T2, T3, T5, T7. Dim 6.
1 1 ε0 ⊕ ε1 ⊕ χ9

13ε
2 ⊕ ε4

1 1 χ9
13ε

0 ⊕ ε1 ⊕ ε2 ⊕ ε4

2 1 ε0 ⊕ ε1 ⊕ ε2σ13.3.d.a
2 1 ε1 ⊕ ε4 ⊕ ε0σ13.3.d.a

Level N = 13. Coeffs Sym2(V ). Field F = GF (123796).
Computed T2, T3, T5, T7. Dim 3.
1 1 ε0 ⊕ ε1 ⊕ ε2σ13.4.a.a
2 1 ε0 ⊕ ε1 ⊕ ε2σ13.4.a.b

Level N = 13. Coeffs Sym2(V )⊗ χ2
13. Field F = GF (1203712).

Computed T2, T3, T5, T7. Dim 2.
1 1 ε0 ⊕ ε1 ⊕ ε2σ13.4.e.a
1 1 ε0 ⊕ ε1 ⊕ ε2σ13.4.e.b

Level N = 13. Coeffs Sym2(V )⊗ χ4
13. Field F = GF (1203712).

Computed T2, T3, T5, T7. Dim 3.
1 1 ε0 ⊕ ε1 ⊕ ε2σ13.4.c.a
2 1 ε0 ⊕ ε1 ⊕ ε2σ13.4.c.b

Level N = 13. Coeffs Sym2(V )⊗ χ6
13. Field F = GF (1203712).

Computed T2, T3, T5, T7. Dim 2.
2 1 ε0 ⊕ ε1 ⊕ ε2σ13.4.b.a

Level N = 13. Coeffs Sym3(V )⊗ χ13. Field F = GF (1203712).
Computed T2, T3, T5, T7,1. Dim 7.
1 1 ε0 ⊕ ε1 ⊕ χ5

13ε
2 ⊕ ε6

1 1 χ5
13ε

0 ⊕ ε1 ⊕ ε2 ⊕ ε6

1 1 ε1 ⊕ ε6 ⊕ ε0σ13.3.f.a
4 1 ε0 ⊕ ε1 ⊕ ε2σ13.5.f.a

Level N = 13. Coeffs Sym3(V )⊗ χ3
13. Field F = GF (1203712).

Computed T2, T3, T5, T7,1. Dim 7.
1 1 ε0 ⊕ ε1 ⊕ χ3

13ε
2 ⊕ ε6

1 1 χ3
13ε

0 ⊕ ε1 ⊕ ε2 ⊕ ε6

2 1 ε1 ⊕ ε6 ⊕ ε0σ13.3.d.a
3 1 ε0 ⊕ ε1 ⊕ ε2σ13.5.d.a

Level N = 13. Coeffs Sym4(V ). Field F = GF (1203760).
Computed T2, T3, T5, T7. Dim 5.
2 1 ε0 ⊕ ε1 ⊕ ε2σ13.6.a.a
3 1 ε0 ⊕ ε1 ⊕ ε2σ13.6.a.b

Level N = 13. Coeffs Sym4(V )⊗ χ2
13. Field F = GF (1203760).

Computed T2, T3, T5, T7. Dim 5.
5 1 ε0 ⊕ ε1 ⊕ ε2σ13.6.e.a

Level N = 13. Coeffs Sym4(V )⊗ χ4
13. Field F = GF (1203760).

Computed T2, T3, T5, T7. Dim 4.
4 1 ε0 ⊕ ε1 ⊕ ε2σ13.6.c.a
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Level N = 13. Coeffs Sym4(V )⊗ χ6
13. Field F = GF (1203760).

Computed T2, T3, T5, T7. Dim 6.
6 1 ε0 ⊕ ε1 ⊕ ε2σ13.6.b.a

Level N = 13. Coeffs Sym5(V )⊗ χ13. Field F = GF (1203760).
Computed T2, T3, T5,1. Dim 9.
1 1 ε0 ⊕ ε1 ⊕ χ11

13ε
2 ⊕ ε8

1 1 χ11
13ε

0 ⊕ ε1 ⊕ ε2 ⊕ ε8

1 1 ε1 ⊕ ε8 ⊕ ε0σ13.3.f.a
6 1 ε0 ⊕ ε1 ⊕ ε2σ13.7.f.a

Level N = 13. Coeffs Sym5(V )⊗ χ3
13. Field F = GF (1203760).

Computed T2, T3, T5,1. Dim 10.
1 1 ε0 ⊕ ε1 ⊕ χ3

13ε
2 ⊕ ε8

1 1 χ3
13ε

0 ⊕ ε1 ⊕ ε2 ⊕ ε8

2 1 ε1 ⊕ ε8 ⊕ ε0σ13.3.d.a
6 1 ε0 ⊕ ε1 ⊕ ε2σ13.7.d.a

Level 14.

Level N = 14. Coeffs V ⊗ χ14. Field F = GF (120374).
Computed T3, T5. Dim 10.
1 3 ε0 ⊕ ε1 ⊕ χ14ε

2 ⊕ ε4

1 3 χ14ε
0 ⊕ ε1 ⊕ ε2 ⊕ ε4

2 1 ε0 ⊕ ε1 ⊕ ε2σ14.3.d.a
2 1 ε1 ⊕ ε4 ⊕ ε0σ14.3.d.a

Level N = 14. Coeffs V ⊗ χ3
14. Field F = GF (120374).

Computed T3, T5, T11,1. Dim 13. [NEWv06]
1 3 ε0 ⊕ ε1 ⊕ χ3

14ε
2 ⊕ ε4

1 3 χ3
14ε

0 ⊕ ε1 ⊕ ε2 ⊕ ε4

1 3 ε0 ⊕ ε1 ⊕ ε2σ7.3.b.a
1 4 ε1 ⊕ ε4 ⊕ ε0σ7.3.b.a

Level N = 14. Coeffs Sym2(V ). Field F = GF (123792).
Computed T3, T5, T11. Dim 5.
1 1 ε0 ⊕ ε1 ⊕ ε2σ14.4.a.a
1 1 ε0 ⊕ ε1 ⊕ ε2σ14.4.a.b
3 1 ε0 ⊕ ε1 ⊕ ε2σ7.4.a.a

Level N = 14. Coeffs Sym2(V )⊗ χ2
14. Field F = GF (120374).

Computed T3, T5, T11,1. Dim 5. [NEWv06]
1 1 ε0 ⊕ ε1 ⊕ ε2σ14.4.c.a
1 1 ε0 ⊕ ε1 ⊕ ε2σ14.4.c.b
1 3 ε0 ⊕ ε1 ⊕ ε2σ7.4.c.a

Level 15.
Level N = 15. Coeffs V ⊗ χ15,1. Field F = GF (120374).
Computed T2, T7. Dim 10.
1 3 ε0 ⊕ ε1 ⊕ χ15,1ε

2 ⊕ ε4

1 3 χ15,1ε
0 ⊕ ε1 ⊕ ε2 ⊕ ε4

2 1 ε0 ⊕ ε1 ⊕ ε2σ15.3.f.a
2 1 ε1 ⊕ ε4 ⊕ ε0σ15.3.f.a
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Level N = 15. Coeffs V ⊗ χ15,0. Field F = GF (120374).
Computed T2, T7. Dim 12.
1 3 ε0 ⊕ ε1 ⊕ χ15,0ε

2 ⊕ ε4

1 3 χ15,0ε
0 ⊕ ε1 ⊕ ε2 ⊕ ε4

2 1 ε0 ⊕ ε1 ⊕ ε2σ15.3.c.a
2 1 ε1 ⊕ ε4 ⊕ ε0σ15.3.c.a
1 1 ε0 ⊕ χ15,0ε

2 ⊕ ε1σ5.4.a.a
1 1 χ15,0ε

0 ⊕ ε2 ⊕ ε1σ5.4.a.a

Level N = 15. Coeffs V ⊗ χ15,0χ
2
15,1. Field F = GF (120374).

Computed T2, T7. Dim 8.
1 1 ε0 ⊕ ε1 ⊕ χ15,0ε

2 ⊕ χ2
15,1ε

4

1 1 ε0 ⊕ ε1 ⊕ χ15,0χ
2
15,1ε

2 ⊕ ε4

1 1 χ15,0ε
0 ⊕ ε1 ⊕ ε2 ⊕ χ2

15,1ε
4

1 1 χ15,0χ
2
15,1ε

0 ⊕ ε1 ⊕ ε2 ⊕ ε4

1 1 ε0 ⊕ ε1 ⊕ ε2σ15.3.d.a
1 1 ε0 ⊕ ε1 ⊕ ε2σ15.3.d.b
1 1 ε1 ⊕ ε4 ⊕ ε0σ15.3.d.a
1 1 ε1 ⊕ ε4 ⊕ ε0σ15.3.d.b

Level N = 15. Coeffs Sym2(V ). Field F = GF (123792).
Computed T2, T7, T11,1. Dim 5.
1 1 ε0 ⊕ ε1 ⊕ ε2σ15.4.a.a
1 1 ε0 ⊕ ε1 ⊕ ε2σ15.4.a.b
3 1 ε0 ⊕ ε1 ⊕ ε2σ5.4.a.a

Level N = 15. Coeffs Sym2(V )⊗ χ15,0χ15,1. Field F = GF (1203712).
Computed T2, T7,1, T11,1. Dim 10. [NEWv06]
1 1 ε0 ⊕ ε1 ⊕ χ15,0ε

2 ⊕ χ15,1ε
5

1 1 ε0 ⊕ ε1 ⊕ χ15,1ε
2 ⊕ χ15,0ε

5

1 1 χ15,0ε
0 ⊕ ε1 ⊕ ε2 ⊕ χ15,1ε

5

1 1 χ15,1ε
0 ⊕ ε1 ⊕ ε2 ⊕ χ15,0ε

5

4 1 ε0 ⊕ ε1 ⊕ ε2σ15.4.e.a
1 1 ε0 ⊕ χ15,0ε

2 ⊕ ε1σ5.5.c.a
1 1 χ15,0ε

0 ⊕ ε2 ⊕ ε1σ5.5.c.a

Level N = 15. Coeffs Sym2(V )⊗ χ2
15,1. Field F = GF (1203712).

Computed T2, T7, T11,1. Dim 4. [NEWv06]
4 1 ε0 ⊕ ε1 ⊕ ε2σ15.4.b.a

Level 16.

Level N = 16. Coeffs V ⊗ χ16,0. Field F = GF (1600112).
Computed T3, T5, T7. Dim 14.
1 6 ε0 ⊕ ε1 ⊕ χ16,0ε

2 ⊕ ε4

1 6 χ16,0ε
0 ⊕ ε1 ⊕ ε2 ⊕ ε4

1 1 ε0 ⊕ ε1 ⊕ ε2σ16.3.c.a
1 1 ε1 ⊕ ε4 ⊕ ε0σ16.3.c.a
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Level N = 16. Coeffs V ⊗ χ16,0χ16,1. Field F = GF (1600112).
Computed T3, T5, T7. Dim 8.
1 1 ε0 ⊕ ε1 ⊕ χ16,0χ16,1ε

2 ⊕ ε4

1 1 χ16,0χ16,1ε
0 ⊕ ε1 ⊕ ε2 ⊕ ε4

3 1 ε0 ⊕ ε1 ⊕ ε2σ16.3.f.a
3 1 ε1 ⊕ ε4 ⊕ ε0σ16.3.f.a

Level N = 16. Coeffs V ⊗ χ16,0χ
2
16,1. Field F = GF (1600112).

Computed T3, T5, T7. Dim 13.
1 3 ε0 ⊕ ε1 ⊕ χ16,0χ

2
16,1ε

2 ⊕ ε4

1 3 χ16,0χ
2
16,1ε

0 ⊕ ε1 ⊕ ε2 ⊕ ε4

1 3 ε0 ⊕ ε1 ⊕ ε2σ8.3.d.a
1 4 ε1 ⊕ ε4 ⊕ ε0σ8.3.d.a

Level N = 16. Coeffs Sym2(V ). Field F = GF (1237940).
Computed T3, T5, T7,1, T11,1. Dim 8.
1 1 ε0 ⊕ ε1 ⊕ χ16,0ε

2 ⊕ χ16,0ε
5

1 1 χ16,0ε
0 ⊕ ε1 ⊕ ε2 ⊕ χ16,0ε

5

1 1 ε0 ⊕ ε1 ⊕ ε2σ16.4.a.a
1 3 ε0 ⊕ ε1 ⊕ ε2σ8.4.a.a
1 1 ε0 ⊕ χ16,0ε

2 ⊕ ε1σ4.5.b.a
1 1 χ16,0ε

0 ⊕ ε2 ⊕ ε1σ4.5.b.a

Level N = 16. Coeffs Sym2(V )⊗ χ16,1. Field F = GF (1600112).
Computed T3, T5, T7. Dim 5. [NEWv06]
5 1 ε0 ⊕ ε1 ⊕ ε2σ16.4.e.a

Level N = 16. Coeffs Sym2(V )⊗ χ2
16,1. Field F = GF (1600112).

Computed T3, T5, T7. Dim 6. [NEWv06]
2 3 ε0 ⊕ ε1 ⊕ ε2σ8.4.b.a

Level 17.

Level N = 17. Coeffs V ⊗ χ17. Field F = GF (1600160).
Computed T2, T3, T5, T7. Dim 6.
1 1 ε0 ⊕ ε1 ⊕ χ13

17ε
2 ⊕ ε4

1 1 χ13
17ε

0 ⊕ ε1 ⊕ ε2 ⊕ ε4

1 1 ε0 ⊕ ε1 ⊕ ε2σ17.3.e.a
1 1 ε0 ⊕ ε1 ⊕ ε2σ17.3.e.b
1 1 ε1 ⊕ ε4 ⊕ ε0σ17.3.e.a
1 1 ε1 ⊕ ε4 ⊕ ε0σ17.3.e.b

Level N = 17. Coeffs Sym2(V ). Field F = GF (1600160).
Computed T2, T3, T5, T7, T11. Dim 4.
1 1 ε0 ⊕ ε1 ⊕ ε2σ17.4.a.a
3 1 ε0 ⊕ ε1 ⊕ ε2σ17.4.a.b

Level N = 17. Coeffs Sym2(V )⊗ χ2
17. Field F = GF (1600160).

Computed T2, T3, T5, T7. Dim 3.
3 1 ε0 ⊕ ε1 ⊕ ε2σ17.4.d.a
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Level N = 17. Coeffs Sym2(V )⊗ χ4
17. Field F = GF (1600160).

Computed T2, T3, T5, T7. Dim 4.
4 1 ε0 ⊕ ε1 ⊕ ε2σ17.4.c.a

Level N = 17. Coeffs Sym2(V )⊗ χ8
17. Field F = GF (1600160).

Computed T2, T3, T5, T7. Dim 4.
4 1 ε0 ⊕ ε1 ⊕ ε2σ17.4.b.a

Level 18.

Level N = 18. Coeffs V ⊗ χ18. Field F = GF (123792).
Computed T5, T7,1, T11,1. Dim 17. [NEWv06]
1 3 ε0 ⊕ ε1 ⊕ χ18ε

2 ⊕ ε4

1 3 χ18ε
0 ⊕ ε1 ⊕ ε2 ⊕ ε4

1 3 ε0 ⊕ ε1 ⊕ ε2σ9.3.d.a
1 4 ε1 ⊕ ε4 ⊕ ε0σ9.3.d.a
2 1 ε0 ⊕ ε1 ⊕ ε2σ18.3.d.a
2 1 ε1 ⊕ ε4 ⊕ ε0σ18.3.d.a

Level N = 18. Coeffs V ⊗ χ3
18. Field F = GF (123792).

Computed T5, T7, T11,1. Dim 24. [NEWv06]
1 9 ε0 ⊕ ε1 ⊕ χ3

18ε
2 ⊕ ε4

1 9 χ3
18ε

0 ⊕ ε1 ⊕ ε2 ⊕ ε4

2 1 ε0 ⊕ ε1 ⊕ ε2σ18.3.b.a
2 1 ε1 ⊕ ε4 ⊕ ε0σ18.3.b.a
1 1 ε0 ⊕ χ3

18ε
2 ⊕ ε1σ6.4.a.a

1 1 χ3
18ε

0 ⊕ ε2 ⊕ ε1σ6.4.a.a

Level N = 18. Coeffs Sym2(V ). Field F = GF (123794).
Computed T5, T7,1, T11,1. Dim 17.
1 3 ε0 ⊕ ε1 ⊕ χ3

18ε
2 ⊕ χ3

18ε
5

1 3 χ3
18ε

0 ⊕ ε1 ⊕ ε2 ⊕ χ3
18ε

5

1 3 ε0 ⊕ ε1 ⊕ ε2σ9.4.a.a
1 1 ε0 ⊕ ε1 ⊕ ε2σ18.4.a.a
1 3 ε0 ⊕ ε1 ⊕ ε2σ6.4.a.a
2 1 ε0 ⊕ χ3

18ε
2 ⊕ ε1σ6.5.b.a

2 1 χ3
18ε

0 ⊕ ε2 ⊕ ε1σ6.5.b.a

Level N = 18. Coeffs Sym2(V )⊗ χ2
18. Field F = GF (123794).

Computed T5, T7,1, T11,1. Dim 9. [NEWv06]
1 1 ε0 ⊕ ε1 ⊕ ε2σ18.4.c.a
2 1 ε0 ⊕ ε1 ⊕ ε2σ18.4.c.b
2 3 ε0 ⊕ ε1 ⊕ ε2σ9.4.c.a

5.2. For each N , the next table specifies the basis that Sage chooses for the group
of characters (Z/NZ)× → Fp. If there is one basis element, it is denoted χN .
If there is more than one, they are denoted χN,0, χN,1, etc. The order of χ is
the smallest positive n so that χn is trivial on (Z/NZ)×. The parity is even if
χ(−1) = +1 and odd if χ(−1) = −1.
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χN,i p order parity definition

χ1 12379 1 even trivial
χ2 12379 1 even trivial
χ3 12379 2 odd 2 7→ −1
χ4 12379 2 odd 3 7→ −1
χ5 16001 4 odd 2 7→ −645
χ6 12379 2 odd 5 7→ −1
χ7 12037 6 odd 3 7→ −1293
χ8,0 12037 2 odd 7 7→ −1, 5 7→ 1
χ8,1 12037 2 even 7 7→ 1, 5 7→ −1
χ9 12037 6 odd 2 7→ −1293
χ10 12037 4 odd 7 7→ 3417
χ11 16001 10 odd 2 7→ 3018
χ12,0 16001 2 odd 7 7→ −1, 5 7→ 1
χ12,1 16001 2 odd 7 7→ 1, 5 7→ −1
χ13 12037 12 odd 2 7→ 4019
χ14 12037 6 odd 3 7→ −1293
χ15,0 12037 2 odd 11 7→ −1, 7 7→ 1
χ15,1 12037 4 odd 11 7→ 1, 7 7→ 3417
χ16,0 16001 2 odd 15 7→ −1, 5 7→ 1
χ16,1 16001 4 even 15 7→ 1, 5 7→ −645
χ17 16001 16 odd 3 7→ 83
χ18 12379 6 odd 11 7→ 5770
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