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COHOMOLOGY WITH Sym? COEFFICIENTS FOR
CONGRUENCE SUBGROUPS OF SL4(Z) AND GALOIS
REPRESENTATIONS

AVNER ASH, PAUL E. GUNNELLS, AND MARK MCCONNELL

ABSTRACT. We extend the computations in
[AGM20] to find the cohomology in degree five of a congruence subgroup I' of
SL4(Z) with coefficients in Sym9(K?), twisted by a nebentype character 7,
along with the action of the Hecke algebra. This is the top cuspidal degree. In
this paper we take K = F, a finite field of large characteristic, as a proxy for C.
For each Hecke eigenclass found, we produce the unique Galois representation
that appears to be attached to it.

The computations require modifications to our previous algorithms to ac-
commodate the fact that the coefficients are not one-dimensional. Types of
attached Galois representations arise that were not found in our previous pa-
pers, and we must modify the Galois Finder accordingly.

1. INTRODUCTION

The cohomology of arithmetic groups plays various roles in modern number the-
ory. One of these concerns the connections between Hecke eigenclasses in the coho-
mology and Galois representations. This paper continues our series of computations
in this area for subgroups of SL4(Z).

It is a highly nontrivial problem to compute the homology groups and the action
of the Hecke operators on them. In this paper, we use the sharbly complex for these
computations, as we have done in the previous papers of this series.

Definition 1.1. For any field K, Sym?(K*) denotes the space of homogeneous
polynomials of degree ¢ on K*. If n is a nebentype character valued in KX,
Sym?(K*),, is defined to be Sym?(K*) @ K.

Choose a level N and let ' = T'o(N) C SL4(Z) and let K be a field. The
coefficient modules we study are Sym?(K?),, with a nebentype character n. Our
earlier papers only considered one-dimensional coefficient modules, i.e., g = 0.

Since we are interested in automorphic representations, we would like to set
K = C. However, in order to avoid the inaccuracy of floating point numbers in our
huge linear algebra computations, we instead set K = F, with F denoting a finite
field F,,», where p is some prime with five decimal digits and » > 1. This large finite
field can be viewed as a proxy for C.

We are thus interested in H*(T, Sym?(F*),) for various N,g > 0, and 7. For
reasons explained in our earlier papers, we have only investigated * = 5, and that
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is also the only degree we study in this paper. We compute H®(T, Sym?(F*),) as
a module for a finite subset H of the tame Hecke algebra (which is commutative),
and we diagonalize the H-action on this vector space.

Let z € H*(I', Sym?(F*),) be an H-eigenclass.

Definition 1.2. We say that a representation p of the absolute Galois group of
Q is attached to z with respect to H if for every Hecke operator T' € H, if T is
supported at the prime ¢, then its eigenvalue is that predicted by the equality of
the characteristic polynomial of p(Frob,) and the Hecke polynomial of z at .

We say that p is entirely attached to z if for every Hecke operator T in the
whole tame Hecke algebra, if T is supported at the prime ¢, then its eigenvalue is
so predicted.

In our previous papers we used the terminology that p “appears” to be attached
to z, because we can only compute a finite number of Hecke operators 7. The
new terminology contains more information by including the set of 7' for which
computations were made. Also, since Scholze has proved that there always exists
a p attached to z, if there were a unique p attached to z with respect to H, then p
must be entirely attached to z. Of course, since we can find only a small number
of Hecke eigenvalues (owing to the size of the matrices involved), even though our
Galois finder returns only one p, it is still possible (though very unlikely) that this
p is an “imposter” and the entirely attached p is some other Galois representation
that agrees with p on Froby for small /.

For each Hecke eigenclass z computed in this paper, we find a Galois representa-
tion attached to it, and this attached Galois representation is uniquely determined
by our data, in a sense to be explained in Theorem 3.1l As we just explained, it is
logically possible (but very unlikely) that if we considered candidates for p not in
the list of Section 2l we might find other p’s also attached to z with respect to H.

If we could compute enough Hecke operators, then, using Scholze’s theorem and
the method of Faltings—Serre, we could prove that a given p is entirely attached to
a given z. But it is not feasible to compute anywhere near enough Hecke operators
to do this for the homology classes found in this paper.

As in our earlier papers, these computations give new examples of Scholze’s
theorem (recalled in Section [2)) and new a posteriori tests of Serre-type conjectures
for GL4.

The Galois representations in this paper are all reducible. We do not know why
certain combinations of characters and cusp forms appear and others do not. This
ignorance stems from the fact that the cohomology of X /T" and its boundary, let
alone the restriction map from one to the other, is not known.

Our computations are complete for the following values of (N, g,n). For g =1
and 2, they are complete for all levels N < 18, both prime and composite. For
g = 3,...,7, as the computations became slower, we computed only for certain
prime levels N < 17. For N = 1, we computed for g < 10. When we computed for
a given pair (N, g), we computed for all the n relevant to that pair.

The existence of attached Galois representations helps to corroborate the correct-
ness of our computations. It is unimaginable that attached Galois representations
could be found if the computed Hecke eigenvalues were random collections of num-
bers that had been calculated erroneously.
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This paper covers the same ground as [AGM20], except for the difference in the
coefficient modules. Therefore we refer the reader to [AGM20] for most of the back-
ground information and the description of how the computations are performed.
We will explain below the changes needed in order to deal with coefficient modules
of dimension greater than 1, and modifications required in the Galois Finder. Then
we will summarize our findings and provide complete tables of the results of our
computations.

2. DEFINITIONS, NOTATIONS, BASIC CONSTRUCTIONS

Definition 2.1. Fix N > 1.

I' = T'g(N) will denote the subgroup of matrices in SL,,(Z) whose bottom row is
congruent to (0,...,0,*) modulo N.

1 will denote a character of (Z/N)*. It can be viewed as a character of I by
being applied to the (n,n)-entry of an element in T'.

V' will denote the standard representation of GLy.

She denotes the sharbly resolution of the Steinberg module for GLy4.

Recall that if K is a field, and 7 is a K *-valued character of (Z/N)*, we defined
K, to be the one-dimensional vector space K regarded as a I'-module with action
via the nebentype character n. (We call ) the nebentype even if it is trivial.)

Section 2 of [AGM20] gives the definitions of the Steinberg module, the sharbly
complex, and of the Hecke polynomial at ¢. It also explains why the sharbly ho-
mology is isomorphic to H*(I', Sym?(F*),). Section 3 of the same paper reviews
how the sharbly homology is calculated as a Hecke module, and Section 4 describes
the Galois Finder. We will assume knowledge of these matters in what follows.

There is an isomorphism of Hecke modules

H5(', M) ~ H,(T", She @z M),

where M is any module on which the orders of the finite subgroups in SL4(Z)
are invertible; this condition is satisfied for us since we will take V = IF;T and
M = Sym? (V) ® ), where p > 5.

Indeed, in order to avoid the inaccuracy of floating point numbers in our huge
linear algebra computations, we use a finite field F = F),» as a proxy for C. If p > 5
and if there is no p-torsion in the Z-cohomology (which is very likely the case for
large random p), then the C- and mod p-betti numbers coincide. We use primes
that have five decimal digits. We choose p and r as follows.

We choose p so that the exponent of (Z/N)* divides p—1. This makes the group
of characters (Z/N)* — IS isomorphic to the group of characters (Z/N)* — C*.
(Note: this is not needed if n = 1. Some of our initial computations for n = 1
were performed for a prime that differs from the p we used at the same level for
nontrivial n.) Later in the computation, we choose r to ensure that the various
Hecke eigenvalues that we compute lie in F.

Define S,n to be the subsemigroup of integral matrices in GL,, (Q) satisfying the
same congruence conditions mod N as I' and having positive determinant relatively
prime to pN. Then H(pN), the tame Hecke algebra, is the Z-algebra of double cosets
I'S,nT. It is a commutative algebra that acts on the cohomology and homology of
I' with coefficients in any S,y-module. H(pN) is generated by all double cosets of
the form I'D(¢, k)I', where £ is a prime not dividing pN, 0 < k < n, and D(¢, k)
is the diagonal matrix with the first n — k diagonal entries equal to 1 and the last
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k diagonal entries equal to £. When we consider the double coset generated by
D(¢, k) as a Hecke operator, we call it T'(¢, k).

F, is an Spny-module, where a matrix s € Spn acts on F via n(snn), where s,
is the lower right entry of the n x n matrix s.

Definition 2.2. Let V be an F[H(pN)]-module. Suppose that v € V is a simulta-
neous eigenvector for all T'(¢, k) and that T'(¢, k)v = a(¢, k)v with a(¢, k) € T for all
prime £{pN and 0 < k < n. If

p: GQ — GLn(F)

is a continuous representation of Gg = Gal(Q/Q) unramified outside pN, and if
(1) > (—1)keHED2a(0, k) X P = det(I — p(Frobg) X)

k=0
for all £1 pN, then we say that p is entirely attached to v.

Here, Froby refers to an arithmetic Frobenius element, so that if € is the cyclo-
tomic character, we have (Frob,) = £.

The polynomial on the left-hand side of () is called the Hecke polynomial for v
at 4.

Definition 2.3. Suppose we have v and p as above. If H is a subset of H(pN)
and the eigenvalues of all T' € H are those that would be predicted by p if p were
entirely attached to v, then we say p is attached to v with respect to H.

The following is a special case of a theorem of Scholze:

Theorem 2.4. Let N > 1. Let v be a Hecke eigenclass in H5(Lo(N), Sym? (F?),).
Then there is entirely attached to v a continuous representation p, unramified out-
side pN :

p: Gg — GL,(F).

Since p is entirely attached to v, it is unique up to isomorphism.

The coefficient modules M studied in this paper are Sym?(F*),, for various levels
N, nebentypes 1 and degrees g. We compute homology and the Hecke action exactly
as in [AGM20]. Of course we have to modify the programs to use Sym?(F?*),
coefficients.

When we wrote our code for [AGM20], we had made sure to support arbitrary
coefficient modules M for the cohomology. During [AGM20], this code was tested
for M’s that were one-dimensional over F. As it turned out, the same code worked
out of the box for the high-dimensional M used in the present paper, after a few
small incompatibility bugs were fixed.

As explained in [AGM10,[AGM20], computing the cohomology comes down to
finding the kernels and images of certain large matrices coming from the cells of
the well-rounded retract. The dimension of Sym?(F*) is (“5?) ~ ¢°/6. Thus, when
M = Sym?(F*) ® n, the numbers of rows and columns in the matrices are larger
by approximately this factor of g/6, compared to the size for M = F,, alone. In
turn, the size for one-dimensional M grows roughly like O(N?3) for both rows and
columns. This explains why we stopped our computations at g = 7, and why
we restricted ourselves to smaller ranges of g as N became large (or a slightly
larger range for N = 1). The largest matrix we encountered was for N = 18 and
Sym?(V), where the matrix was 16204 x 56420. This is far smaller than the largest
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matrix in [AGM10], which was about 1 million by 4 million (for the case N = 211,
M =1). However, in [AGM10], unlike in [AGM20] and the present paper, we were
not computing bases for the kernels and images of the matrices, which are needed
in order to compute the Hecke operators; we were only computing ranks of matrices
mod p. That is why we could go to much larger matrices in [AGM10].

To find attached Galois representations, we use the Galois Finder program, which
is part of our Sage code. We had to modify it for the current project, making two
changes. First, it now considers cusp forms of all weights 2,...,g+4. In [AGM20],
where g = 0, we only needed to consider weights 2, 3,4. Secondly, it now considers
powers &' of ¢ for all i = 0,...,g + 3, as opposed to 0, ..., 3 for [AGM20].

We compute the action on V = H;(Io(N), She @z Sym?(F*),) of the Hecke
operators T'(¢, k) for k = 1,2,3 and for ¢ ranging through a set

Lz{E‘Zprime,fgfo,fpr}.

The upper bound ¢y depends on the level N and the nebentype . What limits the
choice of ¢y is the size of the matrices involved in the computation and the time it
takes.

In this paper, 5 < £y < 11. For ¢ itself we sometimes find only 7'(¢y, 1) and not
T(y, k) for k = 2,3 because of the size of the computations. For k = 0, 4, we do not
have to do any computation: T'(¢,0) is the identity and T'(¢,4) is n(¢£)¢9 times the
identity. To check our work, we always verify that the Hecke operators commute
pairwise.

3. OBSERVATIONS FROM THE DATA

In the range of our computations, all the Galois representations that occur are
reducible with constituents of dimension 1 and 2. One-dimensional constituents
come from Dirichlet characters mod N taking values in the cyclotomic field K
generated by a primitive N-th root of unity. Two-dimensional constituents come
from newforms of level dividing N and weights 2, ..., g+4. Any of these constituents
may be multiplied by a power of the cyclotomic character.

Let K1, Ks,... be the fields of coefficients of the g-expansions of the newforms
we have listed, together with K. The Galois Finder works in the residue class
fields for the various primes 3 over p in the various K;’s. We define r to be the
smallest integer so that all these residue class fields embed in F = F),». We choose
p to make r as small as possible, given the constraint that p should be no more
than five digits (which is needed for speed). The field F is recorded at the top of
each table in Section Bl The table also specifies, for each N, n, g, the set of Hecke
operators making up our choice of H for those parameters.

We summarize our first observation as follows:

Theorem 3.1. For N, p", n, £, and g as covered in the tables in Section [3, the
Hecke operators T € H on H5(Tog(N), Sym?(Fyr), ) are all semisimple. For every
Hecke eigenvector z, there exists a unique reducible Galois representation p : Gg —
GL4(Fpr) (within the scope of the Galois finder) that is attached to z with respect
to H. Fach such p is either the sum of four characters or the sum of two characters
plus the Galois representation of a newform tensored with a character.

Let E denote a simultaneous eigenspace of # on V = H®(I'o(N), Sym?(F*),),
where F = F),». We define two kinds of multiplicity for F.
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Definition 3.2. The Hecke multiplicity of E equals dimp F.

Let G, be the stabilizer of n in the Galois group of F/F,. Then G, acts on V'
and permutes the Hecke eigenspaces.

Definition 3.3. The Galois multiplicity of E equals the cardinality of the orbit of
E under G,,.

The Galois finder works exactly as it did in [AGM20]. If the Galois finder
returns the same p exactly d times, for Hecke eigenspaces FEi, ..., Eg, then the
Galois multiplicity of each E; equals d and we list only one of them in the tables.
Although it seems like it is returning the same p, this is not true: it is using a
different prime 3 for each one.

We now describe in detail the list of Galois representations p which our Galois
Finder used for this paper.

First are the Dirichlet characters x with values in F, which we identify with one-
dimensional Galois representations as usual. We take all the characters of conductor
N, for all Ny | N. Sage’s class DirichletGroup enumerates the x automatically.
The characteristic polynomial of Frobenius at ¢ for y is 1 + x(¢)X, for all £{pN.

Another one-dimensional character is the cyclotomic character e. We look at ¥
forw=20,1,2...,9+ 3, because these are the powers predicted by the generaliza-
tions of Serre’s conjecture for mod p Galois representations [Sch09.[ADP02].

We define the Hodge-Tate (HT) numbers for Galois representations as follows.
For a character y ® e™, there is a list of one integer [w]. To a representation coming
from a newform p of weight k, there is a list of two integers, [0, k—1]. More generally,
for x ® ¥ ® p, the list is [w, w + k — 1]. For direct sums of representations, the lists
are concatenated and then ordered by increasing values of the entries. For the four-
dimensional Galois representations we find that fit our data, we always observe that
the list is [0, 1,2, g+ 3] after sorting. This is predicted by the Serre-type conjectures
and gives us a check on our computations.

Another check on our computations comes from considering the relationship
between the nebentype character and the determinant of the attached represen-
tation. Suppose a Galois representation p is attached to a Hecke eigenclass in
H5(T(N), Sym?(F*),)). Then the determinant of p(Frob,) must equal the coeffi-
cient of X% in the Hecke polynomial, namely 7(£)¢9T¢. We observe that this is
always the case in our data.

4. OTHER OBSERVED REGULARITIES IN THE DATA

In this section, we set V = F*. A Hecke eigenclass in H*(To(N), Sym?(V),) will
be denoted by the letter z, and its attached Galois representation by p.

4.1. Oddness. We observe that p is always odd. In other words, the eigenvalues
of p(c) are +1,—1,+1, —1, where ¢ denotes complex conjugation. This must be the
case, as follows from a theorem of Caraiani and LeHung [CLHIG].

4.2. Multiplicities. We observe that the Galois multiplicity of eigenspaces in our
data can be any integer from 1 to 6, while the Hecke multiplicity of eigenspaces
in our data can be 1, 3, 4, 6, or 9. We do not have an explanation for why other
multiplicities do not occur. It is possible that more computations would reveal
other multiplicities.
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4.3. Patterns. Recall that N denotes the level of the Hecke eigenspace and 7
denotes the nebentype of the coefficients.

Each Galois representation in the tables is one of the following types. We let x
and ¥ denote 1-dimensional Galois representations with conductor dividing N and
ok an irreducible 2-dimensional Galois representation corresponding to a newform
of weight k and level dividing N.

1) xe' el @e? ®ed™ and ¥ @ el @ xe? ® 913, x # 1. These always occur in
such pairs.

2) xe' @el @ et and 2 el @ xe? @ edt3, x # 1, ¢ # 1. These always
occur in such pairs. They are much rarer than type 1).

3) e'@e!Pe?0y40. (Notice that no summand here gets multiplied by a nontrivial
character.) This always occurs unless there is no o442 with nebentype equal to 7.

4) el de93 @03, (Notice that no summand here gets multiplied by a nontrivial
character.) Whenever type 4) occurs for given N, g, n, there also occurs type 3) and
type 1).

5) xe' ®e? @eloyqs and ¥ @ xe? ®eloyis, x # 1. These always occur in such
pairs. This type occurs in our data for N = 12,15, 16, 18.

4.4. Differences from our previous findings for g = 0. Unlike in [AGM20],
neither ! nor oy, is ever multiplied by a nontrivial character. Of course, more data
might disturb this observation.

In [AGM20], if n factors nontrivially as n = x then either all three of the
following or none of the following occur:

=0 B yel @2 @ ed

p= P Bel @2 @ yed

p=c' el e @ xed.
The natural analogue of this assertion for g > 0 is not true. See for example N = 16.

In [AGM20), e2xo (x possibly trivial) occurred as a summand for a given coeffi-
cient module if and only if €%xo occurred. This is no longer true when g > 0. For
example, see N = 3, Coeffs = Sym®(V).

4.5. Heuristics. We do not have explanations for most of the regularities observed
above. In [AGM20] we gave a heuristic for the conductors of the characters and
the levels and weights of the cuspforms that appear in the tables by referring to
the homology of various parabolic subgroups of GL, intersected with I'. We refer
to [AGM20] for the details of this analysis, and very briefly discuss them as they
apply to the tables below. In [AGM20l Section 5.6] the analysis was accompanied
by five diagrams lettered (a) through (e), which we have reproduced in Figure [II
below.

The heuristic concerning the conductors of the characters and the levels of the
cuspforms is the same as before. As for the weights of the cuspforms:

The Borel-Serre boundary Br is the union of faces F'(P), where P runs over a set
of representatives of I-orbits of parabolic subgroups P of GL4(Q). Each parabolic
subgroup P is conjugate to a standard one with block sizes (n1, ..., ng4+2) down the
diagonal. We call this tuple the “type” of P or of F(P). The nonnegative integer
k equals the codimension of F'(P) in Br.

Our heuristic explanation assumes that each Hecke eigenspace restricts nontriv-
ially to at least one of the faces. Our data all conforms to assuming this face is
type (2,2). By the Eichler—Shimura theorem, a block of size 2 will give rise to the
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Galois representation o attached to a holomorphic cuspform with level dividing NV,
or to a sum of two characters (in the case of an Eisenstein series), with conductors
dividing N. In general, o and these characters may be multiplied by a power of the
cyclotomic character.

We now use this heuristic to describe the various kinds of Galois representations
that occur in our data in the tables. Write the parabolic subgroup of type (2,2)
as P = L1LoU where L; ~ GLy for i = 1,2 and U is the unipotent radical of P.
Note that Sym? restricted to Lo has a submodule isomorphic to Sym? for GLs, and
another submodule isomorphic to Sym® for GLo.

3 1 1 |1
4 gs | 3 : 4
2 cusp 1
cusp 1 1 1
cusp cusp eis

(a) (b) () (d) ©

FIGURE 1. Schematics of homology classes on faces of the Borel—
Serre boundary

4.6. Holomorphic cusp forms of weight g+ 2. In this case (Figure 1(b)), when
we restrict the coefficients Sym? (V) ®mn to Lo we use the submodule W, isomorphic
to Sym? for GLy. We place a cuspform on the L block of weight g+ 2 (correspond-
ing to the homology of the arithmetic group in the GLg-block with coefficients in
H4(U) ® W,.) This gives classes of type 3).

4.7. Holomorphic cusp forms of weight g+ 3. In this case (Figure 1(c)), when
we restrict the coefficients Sym? (V) ®mn to Lo we use the submodule W, isomorphic
to Sym? for GLs. We place a cuspform on the Ly block of weight g+ 3 (correspond-
ing to the homology of the arithmetic group in the G La-block with coefficients in
H3(U) ® W,.) We place an Eisenstein series on the L; block. This gives classes of

type 5).

4.8. Holomorphic cusp forms of weight 3. In this case (also Figure 1(c)),
when we restrict the coefficients Sym?(V) ® n to Ly we use the submodule W}
isomorphic to Sym® for GL,. We place a cuspform on the Ly block of weight 3
(corresponding to the homology of the arithmetic group in the GLa-block with
coefficients in H3(U) ® Wy.) We place an Eisenstein series on the L; block.This
gives classes of type 4).

4.9. Sums of 4 characters. In this case (Figure 1(e)), when we restrict the co-
efficients Sym?(V) @ n to Ly we use the submodule W, isomorphic to Sym? for
GLs. We place an Eisenstein series on the Lo block of weight g + 3 (correspond-
ing to the homology of the arithmetic group in the G Ls-block with coefficients in
H3(U) ® W,.) This gives classes of types 1) and 2).

We do not understand the finer details of the sums of characters, nor of the other
types of attached Galois representations.
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4.10. Missing patterns from [AGM20]. Nothing in our data corresponds to
Figure 1(d) where P is a (1,2, 1)-parabolic subgroup nor to Figure 1(a) where P
is a (1, 3)-parabolic subgroup. We would expect Figure 1(a) to occur if GL3 has
a cuspidal cohomology class of level N, but such N are beyond the range of our
computations. We do not have a guess as to whether Figure 1(d) would occur for
larger levels V.

5. TABLES OF RESULTS

5.1. The tables in this section present the main results of the paper.

Let V denote the standard representation of GL4 acting on a vector space of
dimension 4. A given coefficient module will be denoted Sym? (V') ® n for a neben-
type 1. (We used a subscript n earlier, but putting n on the line makes it easier to
read). Dirichlet characters will be denoted by a subscripted x, and 2-dimensional
irreducible Galois representations will be denoted by a subscripted o. We replace
Sym' (V) with V in the tables.

The topmost box in each table gives the level N, the coefficient module Sym* (V)&
7 with nebentype 7, and the field F,r = GF(p") that was our proxy for C. We
include only one representative for each Galois orbit of nebentype characters. Next,
we list the Hecke operators we computed. T, means we computed Ty 1, Ty 2, and
T, 3. Listing T, 1 means we computed only that part of Tp.

The succeeding rows in each table give the Galois multiplicity (Def. 2.8), the
Hecke multiplicity (Def. 2.7), and the Galois representation itself. The cyclotomic
character is denoted €.

XN Or Xn,; are a basis for the mod p Dirichlet characters (Z/NZ)* — F,. They
are listed in a separate table at the end. As explained above, we usuallyﬂ choose p
depending on N so that the exponent of (Z/NZ)* divides the order p—1 of IF\. It
follows that the group of complex-valued Dirichlet characters is isomorphic to the
group of mod p characters.

The symbol oy .a.x denotes a classical cuspidal holomorphic newform. We label
these following the conventions of the LMFDB [LMF23]. Thus N is the level of
the newform, k is its weight, “a” is the LMFDB name for the nebentype character
of the newform, and “x” denotes a specified Galois orbit of newforms. We use
the same symbol on k.a.x to stand for the two-dimensional Galois representation
attached to the cusp form of that name.

For g =1 and 2, we computed the cohomology for all levels N < 18, both prime
and composite. For g = 3,...,7, as the computations became slower, we computed
only for certain prime levels N < 17. For N = 1, we computed for g < 10. When
we computed for a given pair (IV, g), we computed for all the n relevant to that
pair. In general, the range of N for which we computed became smaller as g grew
larger.

Lewvel 1.
Level N = 1. Coeffs Sym?(V) for g = 2,4,6,8. Field F = GF(12379).
Dim 0.

1n some computations with trivial nebentype n = 1, we were not concerned with the Dirichlet
characters as a group. In these cases, we arbitrarily chose p = 12379, the fourth prime after 12345.
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Level N = 1. Coeffs Sym'"(V). Field F = GF(12379).
Computed Ts, T3. Dim 1.

1 | 1 | 50 ©® 51 ©® 5201.12.a.a

Level 2.
Level N = 2. Coeffs Sym*(V). Field F = GF(12379).
Dim 0.
Level N = 2. Coeffs Sym*(V). Field F = GF(12379).
Dim 0.
Level N = 2. Coeffs Sym®(V). Field F = GF(12379).
Computed Tg, T5, T7,1. Dim 1.
1 | 1 | 50 D 51 ©® 5202.8.a.a

Level 3.

Level N = 3. Coeffs V ® x3. Field F = GF(12379).
Computed TQ, T5, T7, T11. Dim 2.

111 Vpel @yxze? et

1)1 3 Bel e P et

Level N = 3. Coeffs Sym*(V). Field F = GF(12379).
Dim 0.

Level N = 3. Coeffs Sym”(V) ® 3. Field F = GF(12379).
Computed Ty, T5, T7. Dim 2.

111 VPl @ xze? P el

1)1 x3el el b el

Level N = 3. Coeffs Sym*(V). Field F = GF(12379).
Computed Ts, T5, T7. Dim 1.

1 | 1 | 50@51 @5203.6.21.&

Level N = 3. Coeffs Sym®(V) ® x3. Field F = GF(12379).
Computed T3, T5, T7,;. Dim 3.

111 VPl @yxze? @ e?
1)1 x3e' Del el el
1|1 ' Del Delozrpa

Level N = 3. Coeffs Sym®(V). Field F = GF(12379).
Computed T, T, T7,;. Dim 1.
1 | 1 | @l ®e?038aa

Level N = 3. Coeffs Sym’ (V) ® x3. Field F = GF(123792).
Computed TQ, T5,1, T771. Dim 4.

111 VPl @yse?@el
11 xseldelde?pel®
211 el ®eozgna

Level 4.

Level N = 4. Coeffs V ® x4. Field F = GF(12379).
Computed T3, T5, T7. Dim 2.

111 VPl @ye? et
11 xae? el et el




Level 5.

Level 6.

Sym? COHOMOLOGY FOR SL4(Z) AND GALOIS REPRESENTATIONS

Level N = 4. Coeffs Sym?(V). Field F = GF(12379).
Dim 0.

Level N = 5. Coeffs V ® x5. Field F = GF(16001).
Computed Ts, T3, T7. Dim 2.

1]1 @l @ xse? el

1)1 56 B el P P et

Level N = 5. Coeffs Sym?(V). Field F = GF(12379%).

Computed Ts, T3, T7, T11. Dim 1.
1]1] ®e' ®e’054aa

Level N = 5. Coeffs Sym*(V) @ x?. Field F = GF(16001).

Dim 0.

Level N = 5. Coeffs Sym”(V) ® x5. Field F = GF(16001?).
Computed Ts, T3, T7. Dim 3.

111 VPl @ xse? P el
1)1 X58' el @e? el
1|1 el ®eosson

Level N = 5. Coeffs Sym*(V). Field F = GF(16001?).
Computed T5, T3, T7. Dim 1.
1]1] e @e ®e’o56.aa

Level N = 5. Coeffs Sym*(V) ® x2. Field F = GF(160012).
Computed Ts, T3, T7. Dim 2.

2]1] el ®elosepa

Level N = 5. Coeffs Sym°(V) ® xs. Field F = GF(16001°).
Computed T, T3, T7,;. Dim 4.

11 el @yie? @ed
1)1 xsel el de? @ e’
2|1 o' @eo5rca

Level N = 5. Coeffs Sym°(V). Field F = GF(16001°).
Computed TQ, Tg, T771. Dim 3.

111 VBl deo55a0

2]1 @e' @ o580

Level N = 5. Coeffs Sym°(V) ® x2. Field F = GF(16001°).
Computed TQ, Tg, T771. Dim 2.

2 | 1 | ol ®e?o58pa

Level N = 5. Coeffs Sym’ (V) ® xs. Field F = GF(16001°).
Computed T, T5. Dim 5.

1[1 el @xge? ®el”
1)1 el det de? @eld
3|1 @ Peos9.ca
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Level N = 6. Coeffs V ® x¢. Field F = GF(12379).
Computed T35, T7. Dim 6.

1]3 9 Del @ xee? de?

1]3 X6’ Del Dt et

Level N = 6. Coeffs Sym*(V). Field F = GF(12379).
Computed T5, T7, T11. Dim 1.
1 | 1 | 50 D 51 ©® 5206.4.a.a

Level N =7. Coeffs V ® 7. Field F = GF(12037?).
Computed T, T3, T5. Dim 2.

1|1 D pel @ xre? @ et

11 x7e? Del detd et

Level N =7. Coeffs V ® x3. Field F = GF(12037?).
Computed T, T3, T5. Dim 4.

171 pel oxieldel
11 x7el D el e’ et
1)1 el ®eorspa
11 '@’ ®e0r3ba

Level N = 7. Coeffs Sym?(V). Field F = GF(12379%).
Computed Ts, T3, T5, T11. Dim 1.
1]1] e’ ©e0r4aa

Level N = 7. Coeffs Sym”(V) ® x2. Field F = GF(120372).
Computed Ts, T3, T5. Dim 1.

1 | 1 | ol @074

Level N = 7. Coeffs Sym®(V) ® x7. Field F = GF(120372).
Computed T5, T3, T5. Dim 4.

171 ol @ xret el
111 x750@51@52®56
21 @el de?or5.4a

Level N = 7. Coeffs Sym®(V) ® x2. Field F = GF(120372).
Computed Ts, T3, T5. Dim 4.

1)1 Ppel oxie? e
1|1 x3el Del pe? @el
11 el e’ 0e0r3ba
1)1 e @e @e’or5ba

Level N = 7. Coeffs Sym*(V). Field F = GF(12037°).
Computed T5, T3, T5. Dim 3.

111 VBl deor6an

211 50@61 @620'7_6&_1)

Level N = 7. Coeffs Sym*(V) ® x2. Field F = GF(12037°).
Computed T5, T3, T5. Dim 2.

2]1] e’ @e0r6.ca




Level 8.
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Level N = 7. Coeffs Sym®(V) ® x7. Field F = GF(12037).

Computed TQ, Tg, T571. Dim 5.

1)1 ol dxe?ped
1|1 el oelpelp el
1)1 el ®eorrda
211 2 @e! ®eorrab

Level N = 7. Coeffs Sym®(V) ® x3. Field F = GF(12037°).

Computed T5, T3, T5. Dim 6.

11 el @xle? @ed

Dl D D e

El &) 68 (&) 500'7.3.b.a

el ®eorrpa

UG Y Y NN

1
1
1
2

ol deorrbp

Level N = 7. Coeffs Sym°(V). Field F = GF(12037°).
Computed Ts, T3, T5. Dim 3.

1|1 50@51 69520'7.8_&.&

211 P Del Delorgan

Level N = 7. Coeffs Sym°(V) ® x2. Field F = GF(12037°).

Computed T5, T3, T5. Dim 4.

411] Del delor8.ca

Level N = 7. Coeffs Sym’ (V) ® x7. Field F = GF(12037°).

Computed TQ, Tg, T571. Dim 6.

111 D pel @ yre? @el®
11 xrel delde?pet?
411 Dl o794

Level N = 7. Coeffs Sym” (V) ® x2. Field F = GF(12037°).

Computed T5, T5. Dim 8.

1 50@51 @X;EQ@EIO

xzel el pe? @el?

el oe" D750

el ®eorgpa

g T e )
| =] =] =

ol @deoropp

Level N = 8. Coeffs V ® xs 0. Field F = GF(12037%).
Computed T3, T5, T7. Dim 6.

1]3 D Del dxgoe® @e?

113 Xsoel @el@e? pel

Level N = 8. Coeffs V ® ys0xs.1- Field F = GF(12037?).
Computed T3, T5, T7. Dim 4.

1/1 9 Pel @ xs0xs,182 Del
L1 Xs.0xs8,16° el @ e? P el
1)1 '@ Delossaa
1)1 @’ @534

13
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Level N = 8. Coeffs Sym?*(V). Field F = GF(12379%).
Computed Tg, T5, T7, T11. Dim 1.
1 | 1 | 50 D 51 ©® 5208.4.a.a

Level N = 8. Coeffs Sym?(V) ® xg 1. Field F = GF(12037?).
Computed T3, T5, T7. Dim 2.

2| 1] ' ®e PePosaba
Level 9.
Level N = 9. Coeffs V ® yo. Field F = GF(12037%).
Computed T, T5, T7. Dim 4.
171 P@el @ xoe? B el
1|1 xoe? B el P e P et
11 e o934
1)1 el e ®eV0934.a
Level N = 9. Coeffs V ® xj. Field F = GF(12037%).
Computed 15, T5, T7. Dim 6.
1]3 ol dxie? et
113 sl @el pe? el
Level N = 9. Coeffs Sym?(V). Field F = GF(12379%).
Computed TQ, T5, T7, T1171. Dim 3.
111 D Del ©x3e? @ x3ed
11 Xoe? D el De? @ x5e”
111 g &) el D 5209.4.a.a
Level N = 9. Coeffs Sym?(V) ® x2. Field F = GF(12037°).
Computed T5, T5, T7. Dim 2.
2[1] @e' ®e09aca
Level 10.
Level N = 10. Coeffs V ® x19. Field F = GF(12037).
Computed T3, T7. Dim 8.
113 2Dl @ xroe® Dt
1]3 x10e? el @2 et
11 el ®e%010.3.0
11 ' ®e' BeVoi03.0a

Level N = 10. Coeffs Sym*(V). Field F = GF(123792).
Computed T3, T7. Dim 4.

11 Dl ®e?o104aa

311 ol ®e%0540a

Level N = 10. Coeffs Sym*(V) ® x3,. Field F = GF(12037).
Computed T3, T7. Dim 2.

2]1] el ®eo104ba

Level 11.
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Level N = 11. Coeffs V ® x1;. Field F = GF(16001?).
Computed TQ, Tg, T5, T7. Dim 4.

111 Vel @X1152@54
1]1 x11e? @l ol et
111 e Peorrsda
1)1 loet %1340

Level N =11. Coeffs V @ x7,. Field F = GF(16001?).
Computed TQ, Tg, T5, T7. Dim 4.

1]1 pel dxie?det
11 xheldelde? ot
11 el ®eorispa
1[1 el de' @131

Level N = 11. Coeffs Sym*(V). Field F = GF(12379?).
Computed T, T3, T5, T7. Dim 2.
2 | 1 | 50 ©® 51 ©® 52011.4.a.a

Level N = 11. Coeffs Sym*(V) ® x3,. Field F = GF(160015).
Computed TQ, Tg, T5, T7. Dim 2.

2[1] el Deo1140m

Level N = 11. Coeffs Sym®(V) ® x1;. Field F = GF(16001%).
Computed T, T3, T5, T7. Dim 6.

171 pel dxiie?ped
1)1 il @elpe? @et
1|1 @b pe%154.a
31 el Peoiisaa

Level N = 11. Coeffs Sym®(V) ® x},. Field F = GF(16001%).
Computed Ty, T3, T5, T7,1. Dim 6.

11 Vpel @xiie? del
11 xheldelde?@eb
11 @b pe%13b.a
1|1 " Del ®e%0115b.a
21 @el deorisbn

Level N = 11. Coeffs Sym*(V). Field F = GF(16001%).
Computed T5, T3, T5, T7. Dim 4.

1]1 @l De?o116.0a

311 el ®eloripan

Level N = 11. Coeffs Sym*(V) ® x?,. Field F = GF(16001%).
Computed Ty, T3, T5, T7. Dim 4.

471 "Dl ®c?0116.0n

Level N = 11. Coeffs Sym®(V) ® x1;. Field F = GF(16001%).
Computed TQ, Tg, T571. Dim 8.

171 ol xi? @t
11 YL el el ®el
1|1 el ®e¥de%134.a
5] 1 el o174
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Level N = 11. Coeffs Sym®(V) ® x},. Field F = GF(16001%°).
Computed TQ, Tg, T571. Dim 8.

111 so@sl@x?152@58

111 i el el @ s

1[1 '@’ Pe0113ba

1[1 @' delonirba

41 @' @i

Level 12.

Level N = 12. Coeffs V @ x120. Field F = GF(16001?).
Computed T35, T7. Dim 10.

113 9 Del @ x12,082 De?
1]3 X120 @ el D e? et
21 ' Del De®01234.a
21 eloet®e%01234a

Level N = 12. Coeffs V @ x12,1. Field F = GF(16001?).
Computed T, T7. Dim 14.

116 O@el ®X127162®€4
116 Xlg,lgo@&'l ®elpel
1|1 el ®eloingea
11 e ®e? e012.3.0a

Level N = 12. Coeffs Sym*(V). Field F = GF(12379%).
Computed T5, T7, T11. Dim 4.

1)1 50 ©® 51 ©® 52012.4.a.a
311 ol ®c%064aa
Level N = 12. Coeffs Sym*(V) ® x12,0X12.1- Field F = GF(16001%).
Computed T5, T7,1. Dim 10. [NEWv06]
11 el )(12,082 S¥ )(12,155
111 @l B x12,187 D x12,08°
171 X12,06° D el D e? D x12,1€°
111 X1271€0 Dl X1270€5
411 @ Delo12.4b.a
1)1 D x12182 B eloasba
111 X127160 @62 ®€1U4.5.b.a
Level 13.
Level N = 13. Coeffs V ® x13. Field F = GF(12037'%).
Computed TQ, Tg, T5, T7. Dim 4.
111 ol o xils? @t
11 xiieldel g pet
11 el Peoissta
I[1 et de? del01351a
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Level N = 13. Coeffs V @ x3,. Field F = GF(12037'?).
Computed TQ, Tg, T5, T7. Dim 6.

I[1 el @yl oet
11 xhelwelde? ot
21 ' Del Deorzz.da
21 el de?®e%534a

Level N = 13. Coeffs Sym*(V). Field F = GF(12379°).
Computed T, T3, T5, T7. Dim 3.

1|1 el ®eoi340a

21 ' @e! peloizgab

Computed Ty, T3, T5, T7. Dim 2.

Level N = 13. Coeffs Sym*(V) ® x3,. Field F = GF(120371?).

111 "Dl ®e?01340a

11 Dt ®eoi13.4.0p

Computed T, T3, T5, T7. Dim 3.

Level N = 13. Coeffs Sym*(V) @ x{;. Field F = GF(12037'2).

171 Dt De?o13.4.0m

21 9@ el ®e?0134.0h

Level N = 13. Coeffs Sym*(V) @ x%;. Field F = GF(12037'2).

Computed T, T3, T5, T7. Dim 2.

2] 1] e @e! ®e’o13.4b.a

Level N = 13. Coeffs Sym®(V) ® x13. Field F = GF(120371?).

Computed TQ, Tg, T5, T771. Dim 7.

171 pel Pyl pel
11 X1l Delde? @ el
11 el ae®Peloi351a
411 2Dl ®eoi351

Level N = 13. Coeffs Sym®(V) @ x3;. Field F = GF(12037'2).

Computed T», T3, T5, T7,1. Dim 7.

1]1 Vpel @xize? del
11 il Delpe? @e®
21 Lo Pelri354.a
31 ol ®e%0135.4a

Level N = 13. Coeffs Sym*(V). Field F = GF(12037%0).
Computed Ts, T3, T5, T7. Dim 5.

21 ' del ®e?0136.0a

3|1 " ®el de?0136.00

Level N = 13. Coeffs Sym’(V) ® x3;. Field F = GF(12037%).

Computed T, T3, T5, T7. Dim 5.

5 | 1 | Dl De?0136.0a

Level N = 13. Coeffs Sym’(V) @ x{;. Field F = GF(12037%).

Computed T, T3, T5, T7. Dim 4.

4 | 1 | Lol 52013.6.c.a

17
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Level N = 13. Coeffs Sym*(V) ® x%;. Field F = GF(12037%0).

Computed Ty, T3, T5, T7. Dim 6.

61]

el ®eoisena

Level N = 13. Coeffs Sym®(V) ® x13. Field F = GF(12037%).

Computed Ty, T3, T5,;. Dim 9.

11 Vel @xize? ded
|1 xieldel e @ e’
1)1 'l 0013314
6|1 O @el 69520'13_7.1'.&

Level N = 13. Coeffs Sym®(V) @ x3;. Field F = GF(12037%).
Computed 15, T3, T5,;. Dim 10.

171 pel Pyl e’

11 X3l el de? @l

21 Lo Pel01354.

61 @l 013740
Level 14.

Level N = 14. Coeffs V @ x14. Field F = GF(12037%).
Computed T35, T5. Dim 10.

113 DDel ®xnue? det
1]3 x1el @l e et
21 " Del ®e%0143.4.a
21 eloet®e%01434a

Level N = 14. Coeffs V @ x3,. Field F = GF(12037%).
Computed Tg, T5, T11_’1. Dim 13. [NEWVOG]

1]3 ol xi et
113 xieldel gt pet
13 "Del de?0731a
1[4 lae'del73pa

Level N = 14. Coeffs Sym*(V). Field F = GF(12379?).
Computed Tg, T5, T11. Dim 5.

1)1 eV ©® el ©® 52014.4.a.a
111 '@l deloraaan
311 v D el ©® 5207.4.a.a

Level N = 14. Coeffs Sym*(V) ® x3,. Field F = GF(12037%).
Computed T3, T5, T11,1. Dim 5. [NEWv06]

1]1 Dt Deo144.0n

11 "D el ®e®0144.0h

1[3 pel deloraca
Level 15.

Level N = 15. Coeffs V ® x151. Field F = GF(12037%).
Computed T3, T7. Dim 10.

1(3 Vel @X15,152@54

X15.18° Del de? @ et

113
21 Dl De®o1535a
211 el 60015.3.f.a
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Level N = 15. Coeffs V ® x150. Field F = GF(12037%).
Computed Ts, T7. Dim 12.

3

U X15,0€2 D -

X150 @ el D e? et

el Deloissca

'@’ DeV0153.0a

0 T 1
€ @ X15,06° DE O5.4.a.a

NN ] =

= =] =] =] e

X15,o<€0 e Delosaaa

Level N = 15. Coeffs V ® x150x}5,- Field F = GF(12037%).
Computed T, T7. Dim 8.

1

1

0 T 2 2 1
e De DXxis,0e” D Xi5,1€

2 @el @ xi5,0xT516 DT

0T 2 1
X15,06" De” D e” D XT5,1€

X15,0Xi5160 De’ De” @ e’

' del Beloi53.da

el ®eoissan

ot ®el0155.4.a

== =] =] = =] =

= = =] =] = =] =

el de? ®elois 3.4

Level N = 15. Coeffs Sym*(V). Field F = GF(12379?).
Computed TQ, T7, T1171. Dim 5.

1

1

el deloi540a

1

1

el ®eloisaan

3

1

el ®eosaan

Level N = 15. Coeffs Sym*(V) ® x15,0X15.1- Field F = GF(12037'?).
Computed TQ, T771, T1171. Dim 10. [NEWVOﬁ]

1

0 T 2 5
€ De D Xxi15,08° D X15,1€

_
e ®el @ x15,182 D X15,06°

X15,06° D el @ e @ x15,1€°

X15,1<€0 G X15,085

el Be®0154.0a

0 p) T
€ @ X15,06° DE O55.ca

[ e N I e N

—_| =] =] = =] =

0 - 2 T
X15,06° DE” D E 055.c.a

Level N = 15. Coeffs Sym*(V) ® x3; ;. Field F = GF(120372).
Computed T5, T7, T11,1. Dim 4. [NEWv06)

4]1]

@l de?o154p.a

Level 16.

Level N = 16. Coeffs V ® x16,0. Field F = GF(16001'?).
Computed T3, T5, T7. Dim 14.

116 9D el @ x16,082 D e?
16 X16,08° el de? @t
1|1 el Deloigsca
1)1 cloete 50016.3.c.a

19
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Level N = 16. Coeffs V ® x16,0x16,1- Field F = GF(1600112).
Computed T3, T5, T7. Dim 8.

1]1 9D el ® xi6,0x16,18° D el
L1 X16.0X16,18° Del de? pel
311 ' @e' De®016.3+4.a
311 el o’ @631

Level N = 16. Coeffs V ® x16,0x7s,- Field F = GF(16001"%).
Computed T3, T5, T7. Dim 13.

13 e @e' @ xis0xT61E” PE
13 X16,0X16 160 el @e? det
1)3 P @e! Be’ossda
1]4 el ®elogsaa

Level N = 16. Coeffs Sym*(V). Field F = GF(12379%).
Computed T?,7 T5, T7717 T11,1. Dim 8.
1(1 el X16,052 D X16.,055
Xls,oSO delde?d X16,085
eV de! ®elorgaaa
P @e! Delossaa
eV ® x16,062 B €04 sb.a
X16,0E° D2 D el0ssba

= = = = =
e P i

Level N = 16. Coeffs Sym*(V) ® x16,1- Field F = GF(16001'2).
Computed T3, Ts, T7. Dim 5. [NEWv06]

5 | 1 | 2Dl De?0i6.4.0a

Level N = 16. Coeffs Sym”(V) ® x35,. Field F = GF(16001'%).
Computed T3, T, T7. Dim 6. [NEWv06]

2]3] " @el ©e’054ba

Level 17.

Level N = 17. Coeffs V @ x17. Field F = GF(16001%).
Computed TQ, Tg, T5, T7. Dim 6.

1 el o x%‘;’sQ ® el

Xﬁso oeloe?opet

2 Pe! ®e%0173.0a

Y ®el ®eloirgen

'@’ ®e%0173.0a

el de? D073

,_.H}_.H}_.}_.
= =] =] = =

Level N = 17. Coeffs Sym*(V). Field F = GF(16001%°).
Computed T5, T3, T5, 17, T11. Dim 4.

1)1 el ®eoi7.40a

301 el ®eloiraan

Level N = 17. Coeffs Sym*(V) @ x3,. Field F = GF(16001%°).
Computed T, T3, T5, T7. Dim 3.

3[1] L @e ®oir4da
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Level N = 17. Coeffs Sym*(V) ® x},. Field F = GF(16001%°).
Computed Ty, T3, T5, T7. Dim 4.

4] 1]

el ®eloiraca

Level N = 17. Coeffs Sym*(V) ® x§,. Field F = GF(16001%).
Computed 15, T3, T5, T7. Dim 4.

4]1]

el ®eoiraba

Level 18.

Level N = 18. Coeffs V @ x13. Field F = GF(12379?).
Computed T5, T771, T1171. Dim 17. [NEWVOG]

113

LU N

x18e? el @ e @ et

@l ®e%0934.a

51 (&) 64 (&) 500'9.3.d.a

el Peloigsda

== e W W

1
1
1
2
2

el ot @015 5.4

Level N = 18. Coeffs V @ x35. Field F = GF(12379?).
Computed T, T7, T11,1. Dim 24. [NEWv06]

119

Spel o x‘;’gsg ® el

Xise! el pe? pet

el Peoigsba

el ot ®elrissba

0 3 2 1
€ EBX185 De06.4.a.a

== o o] =

9
1
1
1
1

3 -0 2 T
XigE DE” D E Tp.4.a.a

Level N = 18. Coeffs Sym*(V). Field F = GF(12379%).
Computed T5, 1_'7717 T11_’1. Dim 17.

3

P @ e’ @ xTge” @ xige®

Xis® @ el D 2 @ Xige®

Dl ®eogaaa

el ®e?oi54aa

Dl ®eogaaa

0 3 2 1
€ D Xige” DET65ba

N[N | —| | —]—
= R B e R BN

3 0 2 T
X1s€ De“De065b.a

Level N = 18. Coeffs Sym*(V) ® x%;. Field F = GF(12379%).
Computed T5, T’7_’17 T1171. Dim 9. [NEWVOG]

1]1 "Dl ®c?0184.cn
211 pel o 52018.4.c.b
213 Del deogsca

5.2. For each N, the next table specifies the basis that Sage chooses for the group

21

of characters (Z/NZ)* — F,. If there is one basis element, it is denoted .

If there is more than one, they are denoted xn,0, Xn,1, etc. The order of x is
the smallest positive n so that x™ is trivial on (Z/NZ)*.

X(—1) = 41 and odd if x(-1) = —1.

The parity is even if
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| XN,i | P | order | parity | definition

x1 | 12379 1 even | trivial

x2 | 12379 1 even | trivial

x3 | 12379 2 odd |2+ —1

xa | 12379 2 odd | 3+— —1

x5 | 16001 4 odd |2+ —645

x6 | 12379 2 odd | 5+— —1

x7 | 12037 6 odd | 3+~ —1293
X80 | 12037 2 odd |7— —-1,5—1
xs,1 | 12037 2 even | 7—1,5+— —1
Xo | 12037 6 odd |2+~ —1293
X10 | 12037 4 odd | 7+ 3417

x11 | 16001 | 10 odd | 2+ 3018
X12,0 16001 2 odd 7 —1, 5—1
X12,1 | 16001 2 odd | 7— 1,5~ —1
x13 | 12037 | 12 odd | 2+ 4019

Y11 | 12037 6 odd |3+~ —1293

X150 | 12037 [ 2 odd [11— —1,7—1
X151 | 12037 | 4 odd |11+ 1, 7~ 3417
X160 | 16001 | 2 odd [15— —1,5— 1
X161 | 16001 | 4 | even |15+ 1,5 —645

x17 | 16001 | 16 odd | 3+— 83
x1s | 12379 6 odd | 11+ 5770
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