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A B S T R A C T

Time delays are ubiquitous in industry and nature, and they significantly affect both transient dynamics
and stability properties. Consequently, it is often necessary to identify and account for the delays when,
e.g., designing a model-based control strategy. However, identifying delays in differential equations
is not straightforward and requires specialized methods. Therefore, we propose an algorithm for
identifying distributed delays in delay differential equations (DDEs) that only involves simulation of
ordinary differential equations (ODEs). Specifically, we 1) approximate the kernel in the DDEs (also
called the memory function) by the probability density function of a mixed Erlang distribution and
2) use the linear chain trick (LCT) to transform the resulting DDEs into ODEs. Finally, the parameters
in the kernel approximation are estimated as the solution to a dynamical least-squares problem, and
we use a single-shooting approach to approximate this solution. We demonstrate the efficacy of the
algorithm using numerical examples that involve the logistic equation and a point reactor kinetics
model of a molten salt nuclear fission reactor.

1. Introduction
Time delays exist in many industrial, biological, ecolog-

ical, and environmental processes [27], and understanding
their nature is instrumental to accurately describing the
dynamics of a system. They can be caused by many different
phenomena, e.g., transport processes (flow in a pipe or a
river), mixing dynamics (diffusion), growth kinetics, and
communication delays. As they can significantly affect the
dynamics and stability properties of a process [37], they
must be accounted for when designing systems for moni-
toring, prediction, control, and optimization [43]. Further-
more, although it is possible to model the individual delay
processes in detail, it often requires more knowledge than is
readily available. Instead, the process can be described by
delay differential equations (DDEs) [51] and the delay can
be identified using measurements.

Delays are typically identified by minimizing a least-
squares criterion [44] or maximizing a likelihood criterion
(other criteria have been considered as well [28, 34]). The
resulting dynamical optimization problem is often solved
approximately using an iterative numerical [38] or meta-
heuristic [11] optimization method. Both types of methods
involve repeated numerical simulation of the DDEs. How-
ever, numerical simulation of DDEs requires specialized
methods [6]. The reason is that, in contrast to ordinary
differential equations (ODEs), the right-hand side of DDEs
is a function of the state variables in one or more time
intervals (distributed delays) or at multiple discrete points
in time (absolute delays) [2]. Distributed delays involve
an integral of all historical values of the states weighted

∗Corresponding author: T. K. S. Ritschel. Tel. +45 4525 3315.
tobk@dtu.dk (T.K.S. Ritschel); john.wyller@nmbu.no (J. Wyller)

ORCID(s):

by a kernel (also called a memory function). There ex-
ists general purpose software for numerical simulation of
DDEs with absolute delays [50, 60], but the solution is
not differentiable with respect to the delay [1]. Further-
more, to our knowledge, no such general purpose soft-
ware exists for DDEs with distributed delays (although the
Phoenix modeling language does contain some capabilities
for distributed delays [30]). In conclusion, identification of
delays in general nonlinear DDEs is not straightforward
and requires specialized methods. However, DDEs with
distributed delays can be transformed into ODEs if the
kernel is given by the probability density function of an
Erlang distribution [24]. This transformation is referred to
as the linear chain trick (LCT) [35, 40, 51], and it relies on
Leibniz’ integral rule [41]. Additionally, for an appropriate
choice of weights, the cumulative distribution function of an
infinite mixed Erlang distribution converges pointwise to the
integral of any sufficiently smooth kernel as the (common)
rate parameter goes to infinity [54, 12]. This motivates the
approximation of kernels by the probability density function
of a finite mixed Erlang distribution with a finite common
rate parameter.

Many authors have proposed methods for identifying
time delays in systems with a specific structure, e.g., AR-
MAX models [3, 4], transfer function models [58], and
linear discrete- [20, 19] and continuous-time state space
models [42, 14, 5]. Björklund [8] presents a comprehensive
survey of methods for linear systems. For differentially flat
systems [33], the time delay can be estimated by transform-
ing the DDEs into a set of algebraic equations [49, 48].
Graphical methods for visually identifying absolute delays
have also been proposed [17, 10, 16]. For general nonlinear
continuous-time systems with absolute delays, the DDEs can
be discretized in order to apply methods for discrete-time
systems [22, 28]. Alternatively, the delayed states can be
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Identification of distributed delays

linearized with respect to the delay [18], which also miti-
gates the issue of non-differentiability. Wang and Cao [57]
approximate the state variables using cubic B-splines and
penalize the violation of the DDEs in the objective function.
As non-differentiability is primarily a concern when using
gradient-based numerical optimization methods, Tang and
Guan [53] and Jamilla et al. [26] use metaheuristic meth-
ods to approximate the solution to the involved dynamical
optimization problem. Hauber et al. [23] use the LCT to
transform a set of DDEs into ODEs in order to estimate an
absolute delay.

For systems with distributed delays, it is common to
approximate either the kernel itself or the integral involving
the historical states and the kernel. Torkamani et al. [55]
use Gaussian quadrature to discretize the integral, and they
use a spectral element method to approximate the solution
to the DDEs. Krzyzanski et al. [30] identify distributed
delays using the Phoenix software, which approximates the
integral numerically. Zhou [61] proposes to either discretize
the integral or approximate the kernel using splines. Mur-
phy [36] uses linear splines to transform nonlinear determin-
istic DDEs into ODEs in order to identify both absolute and
distributed delays. Finally, Krzyzanski [29] uses a truncated
binomial expansion to approximate the integral for a kernel
given by the probability density function of a gamma distri-
bution. However, the LCT has not previously been used in
the identification of distributed delays.

The main contribution of this work is an algorithm
for approximately identifying distributed delays in DDEs,
which only requires off-the-shelf software for numerical
optimization and simulation of ODEs. First, we approximate
the kernel using a finite mixed Erlang distribution with a
finite common rate parameter. Next, we use the LCT to
transform the DDEs into ODEs, and (for simplicity) we
use a least-squares criterion to identify the parameters in
the approximate kernel as well as model parameters and
the initial states. We use a single-shooting approach [7]
to approximate the solution to the least-squares dynamical
optimization problem, and we implement it using MAT-
LAB’s [25] ode15s for numerical simulation and fmincon

for numerical optimization. The implementation is publicly
available [45]. Finally, we demonstrate the efficacy of the
approach using numerical examples involving 1) the logistic
equation and 2) a point reactor kinetics model of a molten
salt nuclear fission reactor.

The remainder of the paper is organized as follows. In
Section 2, we describe the DDEs with distributed delays
considered in this work, and in Section 3, we present the
approximation based on the mixed Erlang distribution. Next,
in Section 4, we describe the LCT, and in Section 5, we
present the proposed algorithm. The numerical examples
are presented in Section 6, and conclusions are given in
Section 7.

2. System
In this work, we consider continuous-discrete systems in

the form

𝑥(𝑡) = 𝑥0(𝑡), 𝑡 ∈ (−∞, 𝑡0], (1a)
𝑥̇(𝑡) = 𝑓 (𝑥(𝑡), 𝑧(𝑡), 𝑝), 𝑡 ∈ [𝑡0, 𝑡𝑓 ], (1b)
𝑦(𝑡𝑘) = 𝑔(𝑥(𝑡𝑘), 𝑝), 𝑘 = 0,… , 𝑁, (1c)

where the contribution from the historical values of the states
is given by

𝑧(𝑡) =

𝑡

∫
−∞

𝛼(𝑡 − 𝑠)𝑟(𝑠) d𝑠, (2a)

𝑟(𝑡) = ℎ(𝑥(𝑡), 𝑝). (2b)

Here, 𝑡 ∈ ℝ is time, 𝑡0, 𝑡𝑓 ∈ ℝ are the initial and final
time, respectively, 𝑥 ∶ ℝ → ℝ𝑛𝑥 are the states, 𝑥0 ∶
ℝ → ℝ𝑛𝑥 is the initial state function, 𝑧 ∶ ℝ → ℝ𝑛𝑧 is
the contribution from the delayed quantity 𝑟 ∶ ℝ → ℝ𝑛𝑧 ,
𝛼 ∶ [0,∞) → [0,∞) is the kernel, 𝑦 ∶ ℝ → ℝ𝑛𝑦 is a
vector of measurements, and 𝑝 ∈ ℝ𝑛𝑝 are model parameters.
Furthermore, 𝑓 ∶ ℝ𝑛𝑥 ×ℝ𝑛𝑧 ×ℝ𝑛𝑝 → ℝ𝑛𝑥 is the right-hand
side function of the dynamical system, 𝑔 ∶ ℝ𝑛𝑥×ℝ𝑛𝑝 → ℝ𝑛𝑦

is the measurement function, and ℎ ∶ ℝ𝑛𝑥 × ℝ𝑛𝑝 → ℝ𝑛𝑧

is the delay function. Measurements are obtained from the
system at 𝑁 + 1 ∈ ℕ discrete points in time, 𝑡𝑘 ∈ ℝ for
𝑘 = 0,… , 𝑁 , where 𝑡𝑁 = 𝑡𝑓 .

Assumption 1. The functions 𝑓 and ℎ are smooth on their
respective domains such that the initial value problem (1)–
(2) is well-posed. We refer to the book by Cushing [13] and
the paper by Posonov et al. [40] for more details.

Assumption 2. The kernel 𝛼 in (2a) is normalized, i.e.,

∞

∫
0

𝛼(𝑡) d𝑡 = 1. (3)

3. Mixed Erlang approximation
We approximate the kernel 𝛼 in (2a) by 𝛼̂(𝑀) ∶ [0,∞) →

[0,∞) given by

𝛼̂(𝑀)(𝑡) =
𝑀
∑

𝑚=0
𝑐𝑚𝛼̂𝑚(𝑡), (4)

where 𝛼̂𝑚 ∶ [0,∞) → [0,∞) is the probability density
function of an 𝑚 + 1’th order Erlang distribution [24]:

𝛼̂𝑚(𝑡) = 𝑏𝑚𝑡
𝑚𝑒−𝑎𝑡. (5)

The normalization factor 𝑏𝑚 is

𝑏𝑚 = 𝑎𝑚+1

𝑚!
, (6)
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and the parameters in the approximation are the coefficients
𝑐𝑚 ∈ [0, 1] for 𝑚 = 0,… ,𝑀 , the common rate parameter
𝑎 ∈ (0,∞), and 𝑀 ∈ ℕ. Furthermore, the coefficients must
satisfy

𝑀
∑

𝑚=0
𝑐𝑚 = 1, (7)

in order to ensure that
∞

∫
0

𝛼̂(𝑀)(𝑡) d𝑡 = 1. (8)

Remark 1. The cumulative density function of an 𝑚 + 1’th
order Erlang distribution is given by

𝛽𝑚(𝑡) =

𝑡

∫
0

𝛼̂𝑚(𝑠) d𝑠 = 1 − 1
𝑎

𝑚
∑

𝑛=0
𝛼̂𝑛(𝑡). (9)

3.1. A note on convergence
The following theorem states that the weights {𝑐𝑚}𝑀𝑚=0

can be chosen such that the integral of the approximate ker-
nel converges to that of the true kernel as the rate parameter
𝑎 and 𝑀 tend to infinity. The theorem follows directly from
Theorem 2.9.1 in the book by Tijms [54] (see also Theorem 2
in [12]).

Theorem 1. Let 𝛼 ∶ [0,∞) → [0,∞) be a kernel that
satisfies Assumption 2 and define 𝛽 ∶ [0,∞) → [0, 1] as

𝛽(𝑡) = ∫

𝑡

0
𝛼(𝑠) d𝑠. (10)

Next, define 𝛽(𝑀) ∶ [0,∞) → [0, 1] as

𝛽(𝑀)(𝑡) =

𝑡

∫
0

𝛼̂(𝑀)(𝑠) d𝑠 =
𝑀
∑

𝑚=0
𝑐𝑚𝛽𝑚(𝑡), (11)

where 𝑐𝑚 = 𝛽(𝑡𝑚+1) − 𝛽(𝑡𝑚), 𝑎 = 1∕Δ𝑡, and 𝑡𝑚 = 𝑚Δ𝑡.
Note that 𝛽𝑚 depends on the rate parameter 𝑎. Then, 𝛽(∞)

converges pointwise to 𝛽, i.e.,

lim
Δ𝑡→0

𝛽(∞)(𝑡) = 𝛽(𝑡) (12)

for any 𝑡 ∈ [0,∞) where 𝛽 is continuous.

Remark 2. Scheffé [47] proved that convergence of prob-
ability density functions (e.g,. 𝛼̂(∞)) implies convergence of
cumulative distribution functions (e.g., 𝛽(∞)). Later, Boos [9]
showed that the converse is also true if the probability
density function is bounded and equicontinuous (see also the
paper by Sweeting [52]). The same holds if the probability
density function converges uniformly [46]. However, it is
outside the scope of this work to prove that 𝛼̂(∞) converges
to 𝛼. Instead, we use the algorithm presented in Section 5
to identify the coefficients {𝑐𝑚}𝑀𝑚=0 in 𝛼̂(𝑀) based on the
measurements {𝑦(𝑡𝑘)}𝑁𝑘=0.

4. The linear chain trick
We use the kernel approximation presented in Section 3

to obtain the following system of DDEs:

̇̂𝑥(𝑡) = 𝑓 (𝑥̂(𝑡), 𝑧̂(𝑡), 𝑝), (13a)

𝑧̂(𝑡) =

𝑡

∫
−∞

𝛼̂(𝑀)(𝑡 − 𝑠)𝑟̂(𝑠) d𝑠, (13b)

𝑟̂(𝑡) = ℎ(𝑥̂(𝑡), 𝑝). (13c)

This system is in the same form as the original system (1b)
and (2), and 𝑥̂ ∶ ℝ → ℝ𝑛𝑥 , 𝑧̂ ∶ ℝ → ℝ𝑛𝑧 , and 𝑟̂ ∶
ℝ → ℝ𝑛𝑧 are approximations of 𝑥, 𝑧, and 𝑟, respectively.
We transform this system to a set of ODEs using the linear
chain trick [35], as described in Appendix A. The resulting
approximate system is

̇̂𝑥(𝑡) = 𝑓 (𝑥̂(𝑡), 𝑧̂(𝑡), 𝑝), (14a)
̇̂𝑍(𝑡) = 𝐴𝑍̂(𝑡) + 𝐵𝑟̂(𝑡), (14b)
𝑧̂(𝑡) = 𝐶𝑍̂(𝑡), (14c)
𝑟̂(𝑡) = ℎ(𝑥̂(𝑡), 𝑝), (14d)

where 𝑍̂ ∶ ℝ → ℝ(𝑀+1)𝑛𝑧 is a set of auxiliary state vari-
ables. Furthermore, the system matrices𝐴 ∈ ℝ(𝑀+1)𝑛𝑧×(𝑀+1)𝑛𝑧 ,
𝐵 ∈ ℝ(𝑀+1)𝑛𝑧×𝑛𝑧 , and 𝐶 ∈ ℝ𝑛𝑧×(𝑀+1)𝑛𝑧 in (14b)–(14c) are
given by

𝐴 = 𝑎

⎡

⎢

⎢

⎢

⎣

−𝐼
𝐼 −𝐼

⋱ ⋱
𝐼 −𝐼

⎤

⎥

⎥

⎥

⎦

, 𝐵 = 𝑎

⎡

⎢

⎢

⎢

⎣

𝐼
⎤

⎥

⎥

⎥

⎦

, (15a)

𝐶 =
[

𝑐0𝐼 𝑐1𝐼 ⋯ 𝑐𝑀𝐼
]

, (15b)

where 𝐼 ∈ ℝ𝑛𝑧×𝑛𝑧 is an identity matrix.

5. Algorithm
We formulate the delay identification problem as a con-

strained dynamical parameter estimation problem with a
least-squares objective function. The dynamical constraints
are the approximate system of ODEs (14) and, for com-
pleteness, we also estimate model parameters and the initial
state. Furthermore, we use a single-shooting approach [7]
to approximate the solution to the estimation problem, we
compute the involved first-order sensitivities using a forward
approach, and we briefly describe a MATLAB [25] imple-
mentation of the algorithm.

Remark 3. For simplicity, we use a least-squares criterion
in the estimation problem. However, other criteria, e.g.,
maximum likelihood criteria, are also applicable.

Remark 4. The solution to the dynamical parameter es-
timation problem can also be approximated using, e.g.,
multiple-shooting or simultaneous collocation methods [7].
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5.1. Dynamical least-squares problem
For a given value of the kernel parameter 𝑀 , the esti-

mates of 1) the model parameters, 𝑝̂ ∈ ℝ𝑛𝑝 , 2) the 𝑛𝑞 =𝑀+
2 ∈ ℕ remaining kernel parameters, 𝑞 ∈ ℝ𝑛𝑞 , i.e., {𝑐𝑚}𝑀𝑚=0
and 𝑎, and 3) the initial states, 𝑥̂0 ∈ ℝ𝑛𝑥 , are the solution to
the dynamical least-squares optimization problem

min
𝑝̂,𝑞,𝑥̂0

𝜙
(

{𝑦(𝑡𝑘)}𝑁𝑘=0, {𝑦̂(𝑡𝑘)}
𝑁
𝑘=0

)

, (16)

subject to

𝑥̂(𝑡0) = 𝑥̂0, (17a)
𝑍̂(𝑡0) = 𝑍̂0(𝑥̂0, 𝑝̂), (17b)
̇̂𝑥(𝑡) = 𝑓 (𝑥̂(𝑡), 𝑧̂(𝑡), 𝑝̂), 𝑡 ∈ [𝑡0, 𝑡𝑓 ], (17c)
̇̂𝑍(𝑡) = 𝐴(𝑞)𝑍̂(𝑡) + 𝐵(𝑞)𝑟̂(𝑡), 𝑡 ∈ [𝑡0, 𝑡𝑓 ], (17d)

𝑧̂(𝑡) = 𝐶(𝑞)𝑍̂(𝑡), 𝑡 ∈ [𝑡0, 𝑡𝑓 ], (17e)
𝑟̂(𝑡) = ℎ(𝑥̂(𝑡), 𝑝̂), 𝑡 ∈ [𝑡0, 𝑡𝑓 ], (17f)
𝑦̂(𝑡𝑘) = 𝑔(𝑥̂(𝑡𝑘), 𝑝̂), 𝑘 = 0,… , 𝑁, (17g)
𝑤𝑇 𝑞 = 1, (17h)
𝑝min ≤ 𝑝̂ ≤ 𝑝max, (17i)
𝑞min ≤ 𝑞 ≤ 𝑞max, (17j)
𝑥min ≤ 𝑥̂0 ≤ 𝑥max. (17k)

The objective function 𝜙 ∶ ℝ𝑛𝑦 ×⋯ × ℝ𝑛𝑦 → ℝ penalizes
the squared deviations from the measurements:

𝜙({𝑦(𝑡𝑘)}𝑁𝑘=0, {𝑦̂(𝑡𝑘)}
𝑁
𝑘=0) =

1
2

𝑁
∑

𝑘=0
(𝑦(𝑡𝑘) − 𝑦̂(𝑡𝑘))𝑇 (𝑦(𝑡𝑘) − 𝑦̂(𝑡𝑘)). (18)

We assume that the system is in steady state up until time 𝑡0,
and (17a)–(17b) are initial conditions. The initial value 𝑍̂0 ∶
ℝ𝑛𝑥 × ℝ𝑛𝑝 → ℝ(𝑀+1)𝑛𝑧 is a function of the estimated initial
state 𝑥̂0 and the parameter estimate 𝑝̂ (see Remark 6 in Ap-
pendix A). Furthermore, the dynamical constraints (17c)–
(17f) are the transformed approximate system of ODEs
presented in Section 4, (17g) is the measurement equation,
(17h) represents the condition (7) on {𝑐𝑚}𝑀𝑚=0, and (17i)–
(17k) are bound constraints with given values of 𝑝min, 𝑝max ∈
ℝ𝑛𝑝 , 𝑞min, 𝑞max ∈ ℝ𝑛𝑞 , and 𝑥min, 𝑥max ∈ ℝ𝑛𝑥 . The actual
measurements, {𝑦(𝑡𝑘)}𝑁𝑘=0, are also given. The element of
𝑤 ∈ ℝ𝑛𝑞 corresponding to 𝑎 is 0 and all other elements
are 1. Furthermore, we ensure that 𝑎 is positive using an
arbitrary positive lower bound. Finally, the functions 𝐴 ∶
ℝ𝑛𝑞 → ℝ(𝑀+1)𝑛𝑧×(𝑀+1)𝑛𝑧 , 𝐵 ∶ ℝ𝑛𝑞 → ℝ(𝑀+1)𝑛𝑧×𝑛𝑧 , and
𝐶 ∶ ℝ𝑛𝑞 → ℝ𝑛𝑧×(𝑀+1)𝑛𝑧 are given by (15).

Remark 5. If the system cannot be assumed to be in steady
state up until time 𝑡0, the initial state function can be ap-
proximated by a parametrized function, the integral in (49)
defining the elements of 𝑍̂0 can be approximated using
quadrature, and the parameters in the parametrized function
can be estimated instead of 𝑥̂0.

5.2. Single-shooting
In the single-shooting approach, we transform the dy-

namical optimization problem (16)–(17) to the nonlinear
program (NLP)

min
𝑝̂,𝑞,𝑥̂0

𝜓(𝑝̂, 𝑞, 𝑥̂0), (19a)

subject to (17h)–(17k), (19b)

where the objective function, 𝜓 ∶ ℝ𝑛𝑝 ×ℝ𝑛𝑞 ×ℝ𝑛𝑥 → ℝ, is
given by

𝜓(𝑝̂, 𝑞, 𝑥̂0) =
{

𝜙
(

{𝑦(𝑡𝑘)}𝑁𝑘=0, {𝑦̂(𝑡𝑘)}
𝑁
𝑘=0

)

∶ (17a)–(17g)
}

. (20)

That is, given 𝑝̂, 𝑞, and 𝑥̂0,𝜓 is the objective function𝜙 eval-
uated using the solution to the initial value problem (17a)–
(17f) and the measurement equation (17g).

5.3. Sensitivities
For single-shooting approaches, the objective function

𝜓 can be a highly nonlinear function of the decision vari-
ables. Consequently, it can be difficult to accurately ap-
proximate the derivatives of 𝜓 using, e.g., finite difference
methods [32]. Therefore, and as many numerical optimiza-
tion methods are gradient-based [38], we use a forward
sensitivity-based approach [21, Chap. I.14] to compute the
first-order derivatives.

First, we introduce 𝜃 ∈ ℝ𝑛𝑝+𝑛𝑞+𝑛𝑥 given by

𝜃 =
⎡

⎢

⎢

⎣

𝑝̂
𝑞
𝑥̂0

⎤

⎥

⎥

⎦

. (21)

Then, the derivatives of the objective function (20) in the
NLP are

𝜕𝜓
𝜕𝜃𝑖

(𝜃) = −
𝑁
∑

𝑘=0
(𝑦(𝑡𝑘) − 𝑦̂(𝑡𝑘))𝑇𝑆𝑦,𝑖(𝑡𝑘). (22)

Furthermore, 𝑆𝑦,𝑖 ∶ ℝ → ℝ𝑛𝑦 are the sensitivities (i.e.,
derivatives) of 𝑦̂ with respect to the 𝑖’th element of 𝜃:

𝑆𝑦,𝑖 =
𝜕𝑦̂
𝜕𝜃𝑖

. (23)

We also introduce the sensitivities 𝑆𝑥,𝑖 ∶ ℝ → ℝ𝑛𝑥 , 𝑆𝑍,𝑖 ∶
ℝ → ℝ(𝑀+1)𝑛𝑧 , and 𝑆𝑧,𝑖, 𝑆𝑟,𝑖 ∶ ℝ → ℝ𝑛𝑧 given by

𝑆𝑥,𝑖 =
𝜕𝑥̂
𝜕𝜃𝑖

, 𝑆𝑍,𝑖 =
𝜕𝑍̂
𝜕𝜃𝑖

, 𝑆𝑧,𝑖 =
𝜕𝑧̂
𝜕𝜃𝑖

, 𝑆𝑟,𝑖 =
𝜕𝑟̂
𝜕𝜃𝑖

.

(24)

These sensitivities are obtained as the solution to the initial
value problem

𝑆𝑥,𝑖(𝑡0) =
𝜕𝑥̂0
𝜕𝜃𝑖

, (25a)
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𝑆𝑍,𝑖(𝑡0) =
𝜕𝑍̂0
𝜕𝜃𝑖

(𝑥̂0, 𝑝̂), (25b)

𝑆̇𝑥,𝑖(𝑡) =
𝜕𝑓
𝜕𝑥
𝑆𝑥,𝑖(𝑡) +

𝜕𝑓
𝜕𝑧
𝑆𝑧,𝑖(𝑡) +

𝜕𝑓
𝜕𝜃𝑖

, (25c)

𝑆̇𝑍,𝑖(𝑡) =
𝜕𝐴
𝜕𝜃𝑖

𝑍̂(𝑡) + 𝐴(𝑞)𝑆𝑍,𝑖(𝑡)

+ 𝜕𝐵
𝜕𝜃𝑖

𝑟̂(𝑡) + 𝐵(𝑞)𝑆𝑟,𝑖(𝑡), (25d)

𝑆𝑧,𝑖(𝑡) =
𝜕𝐶
𝜕𝜃𝑖

𝑍̂(𝑡) + 𝐶(𝑞)𝑆𝑍,𝑖(𝑡), (25e)

𝑆𝑟,𝑖(𝑡) =
𝜕ℎ
𝜕𝑥
𝑆𝑥,𝑖(𝑡) +

𝜕ℎ
𝜕𝜃𝑖

, (25f)

for 𝑡 ∈ [𝑡0, 𝑡𝑓 ]. Using the solution to this initial value
problem, we compute the necessary sensitivities by

𝑆𝑦,𝑖(𝑡𝑘) =
𝜕𝑔
𝜕𝑥
𝑆𝑥,𝑖(𝑡𝑘) +

𝜕𝑔
𝜕𝜃𝑖

, 𝑘 = 0,… , 𝑁. (26)

For brevity of notation, we have omitted the arguments of the
Jacobians. In (25), the Jacobians of 𝑓 are evaluated in 𝑥̂(𝑡),
𝑧̂(𝑡), and 𝑝̂ and the Jacobians of ℎ are evaluated in 𝑥̂(𝑡) and 𝑝̂.
Furthermore, the Jacobians of 𝑔 in (26) are evaluated in 𝑥̂(𝑡𝑘)
and 𝑝̂. As 𝐴, 𝐵, and 𝐶 are linear in the elements of 𝑞, their
derivatives are constant. Finally, in (22) and (25)–(26), 𝑥̂, 𝑍̂,
𝑧̂, and 𝑟̂ are the solutions to the initial value problem (17a)–
(17f) and 𝑦̂ is given by (17g).

5.4. Implementation
We implement the algorithm described in this section

using MATLAB. Specifically, we use ode15s to approximate
the solution to the initial value problem combining (17a)–
(17f) and (25), i.e., the initial value problems involving
the approximate system of ODEs and the corresponding
sensitivity equations. Furthermore, we provide the required
Jacobian of the right-hand side of the differential equations.
We derive the Jacobian analytically, and we implement it as
a sparse matrix. We use fmincon’s interior point algorithm to
approximate the solution to the NLP (19) and, as described in
Section 5.3, we provide the gradient of the objective function
𝜓 . However, we do not provide the Hessian matrix. Instead,
it is approximated by fmincon using a BFGS approxima-
tion [38].

6. Numerical examples
In this section, we present two numerical examples that

demonstrate the efficacy of the algorithm described in Sec-
tion 5. The first example involves the logistic equation with
a time-varying carrying capacity and the second involves a
point reactor kinetics model of a molten salt nuclear fission
reactor.

6.1. The logistic equation
We consider the logistic equation

𝑁̇(𝑡) = 𝜅𝑁(𝑡)
(

1 −
𝑁̃(𝑡)
𝐾(𝑡)

)

, (27)

where 𝜅 ∈ [0,∞) is the logistic growth rate, 𝑁 ∶ ℝ →
[0,∞) is the relative population density, and 𝑁̃ ∶ ℝ →
[0,∞) is the delayed population density given by

𝑁̃(𝑡) =

𝑡

∫
−∞

𝛼(𝑡 − 𝑠)𝑁(𝑠) d𝑠. (28)

Furthermore, 𝐾 ∶ ℝ → (0,∞) is the time-varying carrying
capacity, which is given by

𝐾(𝑡) =
(

1 + 𝐴1 sin(2𝜋𝜔1𝑡) + 𝐴2 sin(2𝜋𝜔2𝑡)
)

𝐾̄,
(29)

where 𝐴1, 𝐴2 ∈ [0,∞) are amplitudes, 𝜔1, 𝜔2 ∈ [0,∞) are
frequencies, and 𝐾̄ ∈ (0,∞) is the nominal carrying capac-
ity. Finally, the kernel is the probability density function of
a mixed folded normal distribution, i.e.,

𝛼(𝑡) = 𝛾1𝐹 (𝑡;𝜇1, 𝜎1) + 𝛾2𝐹 (𝑡;𝜇2, 𝜎2), (30)

where 𝛾1, 𝛾2 ∈ [0, 1] are weights, 𝜇1, 𝜇2 ∈ ℝ are location
parameters, 𝜎1, 𝜎2 ∈ (0,∞) are scale parameters, and 𝐹 ∶
[0,∞) ×ℝ × (0,∞) → [0,∞) is given by

𝐹 (𝑡;𝜇, 𝜎) =
exp

(

− 1
2

(

𝑡−𝜇
𝜎

)2
)

+ exp
(

− 1
2

(

𝑡+𝜇
𝜎

)2
)

√

2𝜋 𝜎
.

(31)

Table 1 shows the parameter values. The frequencies rep-
resent seasonal and monthly variations, and we choose the
kernel such that there are no large undamped oscillations.
A complete stability and bifurcation analysis is outside the
scope of this work. However, in previous work, such an
analysis has been carried out for systems with distributed
delays using the Routh-Hurwitz criterion [39]. We use the
numerical method described in Appendix B, with 150 time
steps per day, to obtain daily measurements of the popu-
lation density over a 2-year period. The initial density is
𝑁(𝑡) = 𝑁0 = 0.9 for 𝑡 ∈ (−∞, 𝑡0]. Furthermore, we use
a memory horizon of Δ𝑡ℎ = 24 mo, and we use a tolerance
of 10−12 when solving the involved residual equations using
MATLAB’s fsolve.

The objective is to estimate the kernel, the initial popu-
lation density,𝑁0, and the growth rate, 𝜅. The lower bounds
on {𝑐𝑚}𝑀𝑚=0, 𝑁0, and 𝜅 are 0 (in the respective units) and
the lower bound on 𝑎 is 0.5 mo−1. The upper bound on 𝑁0
is 10, the upper bound on 𝜅 is 10 mo−1, and there are no
upper bounds on the remaining parameters. The initial guess
of 𝑐𝑚 is 1∕(𝑀 +1) for 𝑚 = 0,… ,𝑀 , and the initial guesses
of 𝑎, 𝑁0, and 𝜅 are 20 mo−1, 0.7, and 3 mo−1, respectively.
Furthermore, although it does not change the solution to the
optimization problem, we scale the objective function by a
factor of 106 in order to improve the convergence of fmincon.
Finally, we use an optimality tolerance of 10−3 in fmincon

and an absolute and relative tolerance of 10−8 in ode15s.
Fig. 1 shows the estimation results for𝑀 = 0, 10,… , 50.

The initial state and the growth rate are well estimated for
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Figure 1: Estimation results for the logistic equation with a distributed delay. Left column: The true (hardly visible) and estimated
kernels (top), the corresponding absolute error (middle), and the estimates of the coefficients {𝑐𝑚}𝑀𝑚=0 (bottom). Right column:
The population density for the true parameters (top), the absolute difference in population density for the true and estimated
parameters (middle), and the true (when applicable) and estimated values of 𝑎, 𝑁0, and 𝜅 (bottom). The colors are consistent
across the figure.

Table 1
Values of the parameters in the logistic equation.

Model parameters
𝜅 [1/mo] 𝐴1 [–] 𝐴2 [–] 𝜔1 [1/mo] 𝜔2 [1/mo] 𝐾̄ [–]

4 0.01 0.005 1/12 1 1
Kernel parameters

𝛾1 [–] 𝛾2 [–] 𝜇1 [mo] 𝜇2 [mo] 𝜎1 [mo] 𝜎2 [mo]
0.5 0.5 0.35 0.45 0.06 0.12

the nonzero values of 𝑀 . As 𝑀 increases, the estimate of 𝑎
increases as well, and the maximum kernel and population
density errors decrease. For 𝑀 equal to 0 and 10, 𝑐𝑀 is
estimated to be 1 and almost 1, respectively, whereas there
are multiple nonzero coefficient estimates for the larger
values of 𝑀 . In summary, the results indicate that the
algorithm can identify the kernel with high precision when
𝑀 is chosen sufficiently large.

6.1.1. Absolute delay
For completeness, we also test the algorithm using a

system with an absolute delay, i.e., we replace (28) by

𝑁̃(𝑡) = 𝑁(𝑡 − 𝜏), (32)

where the absolute delay is 𝜏 = 0.35 mo. We simulate the
system using MATLAB’s dde23 with absolute and relative
tolerances equal to 10−8. In this case, we scale the objective
function by 105 and we use an optimality tolerance of 10−4
in fmincon. All other values remain unchanged.

We repeat the previous numerical experiments, and
Fig. 2 shows the results. As 𝑀 increases, the approximate
kernel becomes more narrow around the true delay, and
in all cases, 𝑐𝑚 is estimated to be almost 1 for 𝑚 = 𝑀 .

Furthermore, the mean of the estimated kernel is an accurate
estimate of the delay for the nonzero values of 𝑀 , i.e.,
𝜏 = 1

𝑎
∑𝑀
𝑚=0 𝑐𝑚(𝑚 + 1) ≈ 𝜏. However, as expected, the

difference in the population density is significantly larger
than when estimating the distributed delay. Nevertheless, the
results demonstrate that the algorithm can also be used to
estimate absolute delays with high precision.

6.2. Nuclear fission
We consider a point reactor kinetics model of a molten

salt nuclear reactor [15, 59], which accounts for 1) neu-
tron emission from fission events and the decay of fis-
sion products, 2) circulation of the reactor fuel outside of
the core, and 3) temperature-dependent reactivity (negative
feedback). The fission reactions are in the form

1
0n +

235
92U

neutron
absorp.
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 236

92U
fission

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

𝑁𝑝
∑

𝑖=1
𝜈𝑖
𝑎𝑖
𝑧𝑖E𝑖 + 𝜈0

1
0n

(33)

where a neutron, 10n, is absorbed by the uranium isotope 235
92U

to form the isotope 236
92U which fissions into 𝑁𝑝 ∈ ℕ prod-

ucts. The 𝑖’th product is 𝑎𝑖𝑧𝑖E𝑖, where 𝑎𝑖, 𝑧𝑖 ∈ ℕ are the atomic
mass and atomic number, respectively. Furthermore, 𝜈𝑖 ∈ ℕ
for 𝑖 = 0,… , 𝑁𝑝 are stochiometric coefficients. A fraction of
certain products undergoes negative beta decay followed by
a neutron emission, i.e., the reaction is (irrelevant byproducts
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Figure 2: Estimation results for the logistic equation with an absolute delay. Left column: The true delay and the estimated kernels
(top) and the estimates of the coefficients {𝑐𝑚}𝑀𝑚=0 (bottom). Right column: The population density for the true parameters (top),
the absolute difference in population density for the true and the estimated parameters (middle), and the true (when applicable)
and estimated values of 𝑎, 𝜏, 𝑁0, and 𝜅 (bottom). The colors are consistent across the figure.

are omitted)

𝑎𝑖
𝑧𝑖E𝑖

neg. beta
decay

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝑎𝑖

𝑧𝑖+1
E∗
𝑖

neutron
emission
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

𝑎𝑖−1
𝑧𝑖+1

E∗
𝑖 +

1
0n, (34)

where 𝑎𝑖
𝑧𝑖+1

E∗
𝑖 is a different element than 𝑎𝑖

𝑧𝑖E𝑖 because the
atomic number is one higher. The neutron-emitting products
are called delayed neutron precursors and in the model, they
are grouped into 𝑁𝑔 = 6 groups based on their half-lives.
The model consists of 𝑛 = 𝑁𝑔+1 mass balance equations as
well as a reactivity equation derived from an energy balance.
The derivation assumes that 1) the power production is pro-
portional to the neutron concentration, 2) the time derivative
of the reactivity is negatively proportional to that of the
temperature, 3) the heat loss due to external circulation of the
fuel is insignificant, and 4) the heat capacity of the reactor
core is constant in time. We formulate the model in a general
form used to describe stirred tank reactors [56]. It describes
the temporal evolution of the reactivity 𝜌 ∶ ℝ → ℝ and
the concentrations 𝐶𝑖 ∶ ℝ → [0,∞) of the neutron-emitting
fraction of the delayed precursor groups (𝑖 = 1,… , 𝑁𝑔) and
the neutrons (𝑖 = 𝑛):

𝐶̇𝑖(𝑡) = (𝐶𝑖,𝑖𝑛(𝑡) − 𝐶𝑖(𝑡))𝐷 + 𝑅𝑖(𝑡), (35a)
𝐶̇𝑛(𝑡) = 𝑅𝑛(𝑡), (35b)
𝜌̇(𝑡) = −𝜅𝐻𝐶𝑛(𝑡), (35c)

for 𝑖 = 1,… , 𝑁𝑔 . The dilution rate 𝐷 ∈ [0,∞) is the ratio
between the volumetric inlet and outlet flow rate and the
reactor core volume, which is equal to the inverse of the fuel
residence time 𝜏𝑐 ∈ (0,∞). Furthermore, 𝜅 ∈ [0,∞) is the

reactivity proportionality constant and 𝐻 ∈ [0,∞) is the
ratio between the power production proportionality constant
and the heat capacity of the reactor core. The production rate
𝑅 ∶ ℝ → ℝ𝑛 is given by

𝑅(𝑡) = 𝑆𝑇 𝑟(𝑡), (36)

where 𝑆 ∈ ℝ𝑁𝑟×𝑛 contains the stochiometric coefficients
of the 𝑁𝑟 = 𝑛 reactions and 𝑟 ∶ ℝ → [0,∞)𝑁𝑟 contains
reaction rates:

𝑆 =

⎡

⎢

⎢

⎢

⎣

−1 1
⋱ ⋮

−1 1
𝛽1 ⋯ 𝛽𝑁𝑔

𝜌(𝑡) − 𝛽

⎤

⎥

⎥

⎥

⎦

, 𝑟(𝑡) =

⎡

⎢

⎢

⎢

⎣

𝜆1𝐶1(𝑡)
⋮

𝜆𝑁𝑔
𝐶𝑁𝑔

(𝑡)
𝐶𝑛(𝑡)∕Λ

⎤

⎥

⎥

⎥

⎦

.

(37)

Here, 𝜆𝑖, 𝛽𝑖,Λ ∈ [0,∞) for 𝑖 = 1,… , 𝑁𝑔 are decay
constants, delayed neutron fractions, and the mean neutron
generation time, respectively, and 𝛽 ∈ [0,∞) is the sum of 𝛽𝑖
for 𝑖 = 1,… , 𝑁𝑔 . Next, the inlet concentration 𝐶𝑖,𝑖𝑛 ∶ ℝ →
[0,∞) is

𝐶𝑖,𝑖𝑛(𝑡) = 𝛿𝑖𝐶̃𝑖(𝑡), 𝑖 = 1,… , 𝑁𝑔 , (38)

where 𝐶̃𝑖 ∶ ℝ → [0,∞) is given by

𝐶̃𝑖(𝑡) =

𝑡

∫
−∞

𝛼(𝑡 − 𝑠)𝐶𝑖(𝑠) d𝑠, 𝑖 = 1,… , 𝑁𝑔 . (39)

For simplicity, we assume that the decay factor 𝛿𝑖 = 𝑒−𝜆𝑖𝜏𝓁 ∈
(0,∞) only depends on the average time spent outside of
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Table 2
Values of the parameters in the point reactor kinetics model.

Decay constants [1/s]
𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6

0.0124 0.0305 0.1110 0.3010 1.1300 3.0000
Delayed neutron fractions [–]

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6
0.00021 0.00141 0.00127 0.00255 0.00074 0.00027

Other model parameters
𝛽 [–] Λ [s] 𝜅 [1/K] 𝐻 [K cm3/s] 𝜏𝑐 [s] 𝜏𝓁 [s]

0.0065 5 ⋅ 10−5 5 ⋅ 10−5 0.05 0.5 3.5
Kernel parameters

𝛾1 [–] 𝛾2 [–] 𝜇1 [s] 𝜇2 [s] 𝜎1 [s] 𝜎2 [s]
0.6 0.4 2.5 5 0.5 1

the reactor core, 𝜏𝓁 ∈ [0,∞). Specifically, 𝜏𝓁 is the mean
associated with the kernel 𝛼, and 𝛼 is given by (30). In
this example, the distributed delay is chosen arbitrarily.
However, it can represent that, e.g., friction between the
molten salt and the pipe wall in the external loop causes the
velocity profile to vary across the cross section of the pipe.
In contrast, an absolute delay would represent plug flow.
Table 2 shows the parameter values, which (except for 𝜏𝑐
and 𝜏𝓁) are taken from [31].

The objective is to estimate the kernel, the initial concen-
trations 𝐶𝑖,0 = 1 cm−3 for 𝑖 = 1,… , 𝑛, the initial reactivity
𝜌0 = 1.5𝛽, and the reactivity proportionality constant, 𝜅. We
use the method described in Appendix B with 1,000 time
steps per second to obtain 100 measurements per second
of the concentrations over a period of 25 s. Furthermore,
we use a memory horizon of Δ𝑡ℎ = 25 s and a tolerance
of 10−12 when solving the involved residual equations. As
the concentrations span several orders of magnitude, we
use logarithmic concentrations in the measurement equation.
We scale the objective function by a factor of 10, we use
an optimality tolerance of 10−5 in fmincon, and we use an
absolute and relative tolerance of 10−8 in ode15s. The lower
bounds on {𝑐𝑚}𝑀𝑚=0, {𝐶𝑖,0}𝑛𝑖=1, and 𝜅 are 0 (in the respective
units) and the lower bound on 𝑎 is 7.5 s−1. The upper bound
on 𝜅 is 10−4 K−1, and there are no upper bounds on the
remaining parameters. The initial guess of 𝑐𝑚 is 1 for𝑚 =𝑀
and 10−8 for 𝑚 = 0,… ,𝑀 − 1. The initial guesses of 𝑎
and 𝜅 are 25 s−1 and 4 ⋅ 10−5 K−1, respectively, and the
initial guesses of the initial concentrations and reactivity are
10 cm−3 and 𝛽, respectively.

Fig. 3 shows the estimation results for 𝑀 = 70. The
algorithm accurately estimates the kernel, the initial reactiv-
ity, and the reactivity proportionality constant, 𝜅. However,
there are some discrepancies in the estimates of the initial
concentrations. Consequently, and due to the stiffness of the
process, the maximum relative error of the concentrations
and the reactivity (i.e., the absolute difference divided by the
true value) is high initially. For most of the time interval, the
largest error occurs for the reactivity. Nonetheless, the results
indicate that the algorithm can also accurately estimate a
bimodal kernel for a stiff multivariate set of DDEs.

7. Conclusions
We present an algorithm for approximately identifying

distributed time delays in DDEs based on discrete-time
measurements. First, we 1) approximate the kernel using the

probability density function of a mixed Erlang distribution
and 2) transform the resulting set of DDEs into ODEs
using the LCT. Then, we formulate the delay identification
problem as a dynamical least-squares optimization problem,
where the dynamical constraints are the approximate system
of ODEs. We also, simultaneously, estimate model param-
eters and the initial state. Finally, we use a single-shooting
approach to transform the dynamical optimization problem
into an NLP, and we approximate its solution using off-the-
shelf software for numerical simulation and optimization.
We demonstrate, using two numerical examples, that the
algorithm can identify distributed time delays with high
precision. Specifically, we consider the logistic equation
with a time-varying carrying capacity and a point reactor
kinetics model of a molten salt nuclear fission reactor.
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A. Derivation of the approximate system
In this appendix, we use the linear chain trick to trans-

form the approximate system of DDEs (13) to the system of
ODEs (14). First, we introduce 𝑧̂𝑚 ∶ ℝ → ℝ𝑛𝑧 given by

𝑧̂𝑚(𝑡) =

𝑡

∫
−∞

𝛼̂𝑚(𝑡 − 𝑠)𝑟̂(𝑠) d𝑠, 𝑚 = 0,… ,𝑀, (40)

such that

𝑧̂(𝑡) =

𝑡

∫
−∞

𝛼̂(𝑀)(𝑡 − 𝑠)𝑟̂(𝑠) d𝑠 =
𝑀
∑

𝑚=0
𝑐𝑚𝑧̂𝑚(𝑡). (41)

Next, we rewrite the expressions for the time derivatives of
the probability density functions of the Erlang distributions
as

̇̂𝛼0(𝑡) = −𝑎𝑏0𝑒−𝑎𝑡 = −𝑎𝛼̂0(𝑡), (42a)
̇̂𝛼𝑚(𝑡) = 𝑚𝑏𝑚𝑡

𝑚−1𝑒−𝑎𝑡 − 𝑎𝑏𝑚𝑡𝑚𝑒−𝑎𝑡

= 𝑎𝑏𝑚−1𝑡
𝑚−1𝑒−𝑎𝑡 − 𝑎𝑏𝑚𝑡𝑚𝑒−𝑎𝑡

= 𝑎(𝛼̂𝑚−1(𝑡) − 𝛼̂𝑚(𝑡)), 𝑚 = 1,… ,𝑀, (42b)

where we have used that

𝑏𝑚 = 𝑎𝑚+1

𝑚!
= 𝑎
𝑚

𝑎𝑚

(𝑚 − 1)!
= 𝑎
𝑚
𝑏𝑚−1, (43)

for 𝑚 = 1,… ,𝑀 . Finally, we use Leibniz’ integral rule [41,
Thm. 3, Chap. 8] to derive the ODEs:

̇̂𝑧𝑚(𝑡) = 𝛼̂𝑚(0)𝑟̂(𝑡) +

𝑡

∫
−∞

̇̂𝛼𝑚(𝑡 − 𝑠)𝑟̂(𝑠) d𝑠, (44)

for 𝑚 = 0,… ,𝑀 . Specifically, we obtain

̇̂𝑧0(𝑡) = 𝑎𝑟̂(𝑡) − 𝑎

𝑡

∫
−∞

𝛼̂0(𝑡 − 𝑠)𝑟̂(𝑠) d𝑠

= 𝑎(𝑟̂(𝑡) − 𝑧̂0(𝑡)), (45a)

̇̂𝑧𝑚(𝑡) = 𝑎
(

𝑡

∫
−∞

𝛼̂𝑚−1(𝑡 − 𝑠)𝑟̂(𝑠) d𝑠

−

𝑡

∫
−∞

𝛼̂𝑚(𝑡 − 𝑠)𝑟̂(𝑠) d𝑠
)

= 𝑎(𝑧̂𝑚−1(𝑡) − 𝑧̂𝑚(𝑡)), 𝑚 = 1,… ,𝑀, (45b)

where we have used (42) and that

𝛼̂𝑚(0) =

{

𝑎, for 𝑚 = 0,
0, for 𝑚 = 1,… ,𝑀,

(46)

since 𝑏0 = 𝑎. The resulting system of ODEs,

̇̂𝑧0(𝑡) = 𝑎(𝑟̂(𝑡) − 𝑧̂0(𝑡)), (47a)
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̇̂𝑧𝑚(𝑡) = 𝑎(𝑧̂𝑚−1(𝑡) − 𝑧̂𝑚(𝑡)), 𝑚 = 1,… ,𝑀, (47b)

𝑧̂(𝑡) =
𝑀
∑

𝑚=0
𝑐𝑚𝑧̂𝑚(𝑡), (47c)

is in the form (14b)–(14c), where

𝑍̂ =

⎡

⎢

⎢

⎢

⎣

𝑧̂0
𝑧̂1
⋮
𝑧̂𝑀

⎤

⎥

⎥

⎥

⎦

. (48)

Remark 6. If 𝑥̂(𝑡) = 𝑥̂0 for 𝑡 ∈ (−∞, 𝑡0], then

𝑧̂𝑚(𝑡0) =

𝑡0

∫
−∞

𝛼̂𝑚(𝑡0 − 𝑠)𝑟̂(𝑠) d𝑠

= ℎ(𝑥̂0, 𝑝), 𝑚 = 0,… ,𝑀. (49)

B. Numerical simulation
In this appendix, we describe a numerical approach for

approximating the solution to initial value problems involv-
ing differential equations in the form (1b) and distributed
delays in the form (2). First, we approximate the integral
in (2a) by

𝑧(𝑡) =

𝑡

∫
−∞

𝛼(𝑡 − 𝑠)𝑟(𝑠) d𝑠 ≈

𝑡

∫
𝑡−Δ𝑡ℎ

𝛼(𝑡 − 𝑠)𝑟(𝑠) d𝑠, (50)

i.e., we only integrate from time 𝑡 − Δ𝑡ℎ to 𝑡. We choose
Δ𝑡ℎ ∈ (0,∞) such that 𝛼(𝑡) < 𝜖 for all 𝑡 > Δ𝑡ℎ and
some small 𝜖 ∈ (0,∞). Furthermore, we use a fixed step
size of Δ𝑡 ∈ (0,∞) in the discretization of the differential
equations and the integral, and we choose it such that 𝑁ℎ =
Δ𝑡ℎ∕Δ𝑡 ∈ ℕ is integer. Finally, we assume that 𝑥(𝑡) (and,
consequently, also 𝑧(𝑡) and 𝑟(𝑡)) are given for 𝑡 ∈ (−∞, 𝑡0].
Next, we discretize the differential equations using Euler’s
implicit method and we discretize the right-most integral
in (50) using a right rectangle rule:

𝑥𝑛+1 = 𝑥𝑛 + 𝑓 (𝑥𝑛+1, 𝑧𝑛+1, 𝑝)Δ𝑡, (51a)

𝑧𝑛+1 =
𝑁ℎ−1
∑

𝑗=0
𝛼(𝑗Δ𝑡)𝑟𝑛−𝑗+1Δ𝑡, (51b)

𝑟𝑛+1 = ℎ(𝑥𝑛+1, 𝑝). (51c)

For 𝑡𝑛 ≤ 𝑡0, 𝑥𝑛 ∈ ℝ𝑛𝑥 and 𝑧𝑛, 𝑟𝑛 ∈ ℝ𝑛𝑧 are equal to
𝑥(𝑡𝑛), 𝑧(𝑡𝑛), and 𝑟(𝑡𝑛), respectively, and for 𝑡𝑛 > 𝑡0, they
are approximations. Furthermore, 𝑡𝑛 = 𝑡0 + 𝑛Δ𝑡. All three
algebraic equations (51) are coupled and must be solved for
𝑥𝑛+1, 𝑧𝑛+1, and 𝑟𝑛+1 for given 𝑥𝑛, 𝑧𝑛, and {𝑟𝑛−𝑗+1}

𝑁ℎ−1
𝑗=1 .

We compute 𝑥𝑛+1 as the root of the residual function 𝑅𝑛 ∶
ℝ𝑛𝑥 ×ℝ𝑛𝑥 ×ℝ𝑛𝑝 → ℝ𝑛𝑥 , which is given by

𝑅𝑛(𝑥𝑛+1; 𝑥𝑛, 𝑝) = 𝑥𝑛+1 − 𝑥𝑛 − 𝑓 (𝑥𝑛+1, 𝑧𝑛+1, 𝑝)Δ𝑡,
(52)

where 𝑧𝑛+1 and 𝑟𝑛+1 are treated as functions of 𝑥𝑛+1. We
solve the equations sequentially in a forward manner, and
we use MATLAB’s fsolve to approximate the roots numeri-
cally. Furthermore, we supply the analytical Jacobian of the
residual function, which is

𝜕𝑅𝑛
𝜕𝑥𝑛+1

(𝑥𝑛+1; 𝑥𝑛, 𝑝) = 𝐼 −

(

𝜕𝑓
𝜕𝑥

(𝑥𝑛+1, 𝑧𝑛+1, 𝑝)

+
𝜕𝑓
𝜕𝑧

(𝑥𝑛+1, 𝑧𝑛+1, 𝑝)
𝜕𝑧𝑛+1
𝜕𝑥𝑛+1

)

Δ𝑡,

(53)

where

𝜕𝑧𝑛+1
𝜕𝑥𝑛+1

= 𝛼(0)
𝜕𝑟𝑛+1
𝜕𝑥𝑛+1

Δ𝑡, (54a)

𝜕𝑟𝑛+1
𝜕𝑥𝑛+1

= 𝜕ℎ
𝜕𝑥

(𝑥𝑛+1, 𝑝), (54b)

and 𝐼 ∈ ℝ𝑛𝑥×𝑛𝑥 is an identity matrix.
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