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NOTES ON HYPERBOLIC BRANCHING BROWNIAN MOTION

WOLFGANG WOESS

Abstract. Euclidean branching Brownian motion (BBM) has been intensively studied
during many decades by renowned researchers. BBM on hyperbolic space has received less
attention. A profound study of Lalley and Sellke (1997) provided insight on the recurrent,
resp. transient regimes of BBM on the Poincare’ disk. In particular, they determined the
Hausdorff dimension of the limit set on the boundary circle in dependance on the fission
rate of the branching particles. In the present notes, some further features are exhibited,
such as the rate of the maximal hyperbolic distance to the starting point and the behaviour
of the empiricial distributions of the branching population, as time goes to infinity.

1. Introduction

This is ongoing work; these notes present its state of mid 2024.

Euclidean branching Brownian motion on R has been an intensively studied topic. A good

reference for the earlier developments is the comprehensive monograph by Athreya and

Ney [1]. In short, a particle performs Brownian motion for an exponentially distributed
time and then fissions in two new particles, each of which continues its own Brownian

motion independently of the other for exponential time, then in turn fissions in two, and so
on. Primary object of studies has been the evolution of the random population at time t, as

t → ∞. One of the many interesting features concerns the position of the rightmost particle
at time t. Famous work of McKean [24] showed that the distribution of the rightmost

particle is directly linked with the travelling wave equation studied in the famous work of
Kolmogorov, Petrovski and Piscounov [21].

Similarly, there is the study of branching random walk (BRW) in discrete time, where
particles evolve according to a Galton-Watson process: at the points of fission, the new

particles perform independent steps according to a given random walk. Branching random
walk on R appeared, for example, in the monograph by Harris [15, §III.16]. Both models

have evolved significantly, and both are examples of tree-indexed Markov processes in the
sense of Benjamini and Peres [3], where the linear time is replaced by a - possibly random

- tree (discrete or continuous).

Here, the focus is on branching Brownian motion (BBM) on the hyperbolic disk. That is,
the motion of the particles follows the continuous time Markov process whose infinitesimal

generator is 1
2
L, where L is the Laplace-Beltrami operator of the unit disk equipped with

the Poincaré metric (or equivalently, the upper half plane model). It has not been as widely

considered as several other branching random processes. A very significant in-depth study
is due to Lalley and Sellke [23]. They considered hyperbolic BBM where the random
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times between successive fissions are exponentially distributed with parameter λ > 0. There

is a phase transition: for λ ≤ 1/8 (transient phase), each compact subset of D is no more
visited by the branching population from some random time onwards, while for λ > 1/8

(recurrent phase) each open subset of D continues to be visited by the population. The
main results of [23] concern the random limit set Λ, that is, the set of accumulation points

of the trace of the population on the boundary ∂D, the unit circle. It is the full circle when
λ > 1/8, while it is a perfect set with Hausdorff dimension (1−

√
1− 8λ )/2 when λ ≤ 1/8.

An analogous phenomenon was exhibited for branching random walk on regular trees,
resp. free groups, by Liggett [22] and Hueter and Lalley [16]. This was extended

to BRW on free products of groups by Candellero, Gilch and Müller [8], and very
recently to BRW on hyperbolic groups by Sidoravicius, Wang and Xiang [26] and sub-

sequently to BRW on relatively hyperbolic groups by Dussaule, Wang and Yang [12].
For BRW on finitely generated groups, resp. transitive graphs, this study has been accom-

panied by the investigation of the trace, that is, the subgraph spanned by all points visited

by the BRW. See Benjamini and Müller [2], Candellero and Roberts, [10], Gilch

and Müller [13], Hutchcroft [17] as well as [26] and [12].

Returning to hyperbolic BBM, in the present notes some results are added to the pro-
found study of [23]. For the maximal hyperbolic distance from the origin of a particle at

time t, we show that its rate is the same as for the comparison process which is Euclidean
BBM where the underlying one-dimensional BM has drift 1/2. Then we consider the em-

pirical distributions of hyperbolic BBM: these are the normalised occupation measures of
the population at the times t > 0.

Following a suggestion by V. A. Kaimanovich, the asymptotic behaviour of these random
distributions was recently studied for BRW on graphs in parallel work of Kaimanovich

and Woess [18] and Candellero and Hutchcroft [9]. In the Euclidean setting of
BRW and BBM, they had been studied since the mid 1960ies, see e.g. Ney [25], Stam [27],

Kaplan and Asmussen [19], Uchiyama [28], Biggins [4], while [18] and [9] are more
relevant in a “non-amenable” setting.

Here, variants of CLT-type asymptotics of the empricial distributions of hyperbolic BBM

are derived once more via the Euclidean comparison process. Then then the average rate
of escape, that is, the rate of the average distance from the origin of the particles at time t,

is shown to coincide with the one of (non-branching) hyperbolic BM. It is proved that the
empirical distributions converge weakly (on the closed disk) to a random limit distribution

on the boundary, that is, the unit circle. Some properties of the limit distribution are
derived, and various open questions are posed.

In these notes, the author has chosen to present the initial parts in a rather broad way.
This concerns, in paricular, the construction of the underlying time tree (Yule tree) and the

chosen notation, which differs a bit from the previous mainstream.

Acknowledgements. The author acknowledges helpful email exchange with John Biggins,

Maury Bramson, Nicola Kistler, Steve Lalley, Sebastian Müller, Enzo Orsingher, Yuichi
Shiozawa, Anton Wakolbinger (personal contact) and Ofer Zeitouni.
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2. The Yule tree

The introduction of the continuous random population tree described in this section goes
back to Yule [29].

Consider the binary tree {l, r}∗ consisting of all binary sequences (words) v = s1 · · · sn
with n ≥ 0 and sk ∈ {l, r}.1 For n = 0, this is the empty sequence ǫ. If v has the form

v = us with s ∈ {l, r}, then the predecessor of v is v′ = u, and v is one of the two successors
of u. The edges of the tree are all [v′, v], where v 6= ǫ. We augment this tree by an additional

vertex α which is only connected to ǫ, so that ǫ′ = α. Now consider a sequence of i.i.d.
random variables ℓv , v ∈ {l, r}∗ having exponential distribution with parameter λ > 0. For

the moment, we can realise it for example on the product space
(
ΩYule ,AYule ,PYule

)
=
⊗

v∈{l,r}∗

(
R+,BR+ ,Expλ

)
v
,

where each factor is a copy of the probability space consisting of the positive real half-line

with the Borel sigma-algebra and the exponential distribution with paramteter λ, so that ℓv
is the projection on the v-coordinate. Later on, it will be embedded into a bigger probability

space.
We then get a random tree T , a 1-complex where each edge [v′, v] is an interval with the

random length ℓv , and we write the edge as

(1) [v′, v] = {τ = vs : 0 ≤ s ≤ ℓv },
where vs is the point in the interval at distance s from v

′. Then the length (= distance
from α) of a vertex v is defined recursively by |α| = 0 and |v| = |v′|+ ℓv, and the length of

τ = vs ∈ [v−, v] is |τ | = |v−|+ s.
This is the Yule tree. It is interpreted as a genealogical tree, where α is the “ancestor” at

time 0, an thinking of it as a particle, after time ℓǫ it fissions in two particles. The timelines
of the new particles are the edges [ǫ, l] and [ǫ, r], respectively, and after times ℓl , resp. ℓr ,

each of them fissions again in 2 particles. Recursively, a particle at the end of its timeline
[v′, v] fissions in two, whose new timelines are the edges [v, vl] and [v, vr], respectively.

The population at time t ≥ 0 is the set T (t) = Tǫ(t) of all particles (≡ vertices or interior
points on the edges) at distance t from α. We write

N(t) = N ǫ(t) = |T (t)|
for their number. Note that by continuity of the exponential distribution, at any time t ≥ 0,

with probability 1 there is at most one vertex v of T with |v| = t. That is, no two fissions
take place simultaneously.

For any u ∈ {l, r}∗ let Tu be the subtree of T in which u has the role of ǫ in the above
description and u′ the role of α. In other words, it is spanned by the vertex set

{u′} ∪
{
uv : v ∈ {l, r}∗

}
.

1To avoid confusion with numbers, we avoid the binary symbols 0, 1. The symbols l, r and s stand for
“left”, “right” and “side”, respectively.
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We write Tu(t) for the associated part of the population, that is, the set of elements of Tu

at distance t from u−, and Nu(t) for their number.
For any subset U ⊂ {l, r}∗ of vertices which is prefix-free (that is, no element of U is an

initial part of another element in U), then the trees Tu , u ∈ U are i.i.d. In particular, all
the generation sizes Nu(t), u ∈ {l, r}∗ have the same distribution on N. The following is

well-known (even for more general models); we provide a short proof.

Lemma 2.1. For any t ≥ 0, the population size at time t has geometric distribution:

P[N(t) = n] = e−λt (1− e−λt)n−1 , n ∈ N.

In particular, the expected population size is E
(
N(t)

)
= eλt.

Proof. We have

N ǫ(t) =

{
1 , if ℓǫ ≥ t

Nl(t− ℓǫ) +Nr(t− ℓǫ) , if ℓǫ < t.

Therefore the characteristic function (in the variable x) is

ϕN(t)(x) = E

(
exp
(
i xNǫ(t)

))
= ei x P[ℓǫ ≥ t] + E

(
exp
(
i xNl(t− ℓǫ) + i xNr(t− ℓǫ)

)
1[ℓǫ<t]

)

= ei x−λt +

∫ t

0

ϕN(t−s)(x)
2 λe−λs ds .

Just for the purpose of this proof, set f(t) = eλt ϕN(t)(x). Then the above equation trans-
forms into the integral equation

f(t) = eix + λ

∫ t

0

f(s)2 e−λs ds.

Thus, f(t) = 1/(e−ix + e−λt − 1), and

ϕN(t)(x) =
ei x e−λt

1− ei x(1− e−λt)
,

which we recognise as the characteristic function of the geometric distribution with param-
eter (success probability) p = e−λt. �

The population T (t) at time t can be viewed as a cross-section of T at level t. For the
tree viewed as a spatial generalisation of time, it can be interpreted to have a role analogous

to the one of a stopping time. If we cut the tree T along that cross-scetion, we obtain the
subtree T (≺ t) of all elements τ with |τ | ≤ t. We let V

(
T (≺ t)

)
= {l, r}∗ ∩ T (≺ t) be the

random set consisting of those vertices of the original binary tree which are part of T (≺ t) .

By Lemma 2.1, V
(
T (≺ t)

)
is finite with probability 1.

The sigma-algebra FYule
t comprising the information inherent to the Yule tree up to and

including time t is generated by all random variables ℓv which intervene in the construction
of T (≺ t). The following is well known.
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Proposition 2.2. The process
(
N(t) e−λt

)
t≥0

is a martingale with respect to the filtration

(FYule

t )t≥0 , and there exists an almost surely positive random variable W such that

lim
t→∞

N(t) e−λt = W almost surely and in L1.

3. Hyperbolic disk and Brownian motion

A standard model of two-dimensional hyperbolic space is the Poincaré disk with the
hyperbolic length element and resulting metric

(2) ds =
2
√
dx2 + dy2

1− |z|2 and d(z, w) = log
|1− zw̄|+ |z − w|
|1− zw̄| − |z − w| .

Its orientation preserving isometry group consists of all Möbius transformations of the form

(3) gz =
az + c

c̄z + ā
, a, c ∈ C, |a|2 − |c|2 = 1 .

Together with the reflection z 7→ −z̄, it generates the full isometry group. Of course, these
transformations also act on the boundary of D, the unit circle ∂D. We shall use the group

A of all transformations as in (3) which fix the boundary point 1, that is, a+ c ∈ R. It acts
simply transitively on D . In particular, For each z0 ∈ D, there is a unique element gz0 ∈ A
which maps 0 to z0. It is given by

(4) gz0z =
(1− z0)z + (z0 − |z0|2)
(z̄0 − |z0|2)z + (1− z̄0)

.

The hyperbolic Laplace (or Laplace-Beltrami) operator in the variable z = x+ i y is

(5) L =
(1− |z|2)2

4

(
∂2
x + ∂2

y

)
.

It is self-adjoint on L2(D,m), where m = mD is the hyperbolic measure,

(6) dm(z) =
4dz

(1− |z|2)2 .

The infinitesimal generator of hyperbolic Brownian motion (Bt)t≥0 is 1
2
L. (We remark

that the factor 1
2
is used because in the analogous Euclidean setting we want that Brownian

motion at time t = 1 has standard normal distribution.)
One can see the latter as a version of the standard two-dimensional Euclidean Brownian

motion slowed down as it gets close to the unit circle. Responsible for slowing down is the

factor (1−|z|2)2
4

which only depends on the Euclidean distance of the current position z from

the circle.
Hyperbolic Brownian motion (BM) has independent increments and continuous trajecto-

ries (almost surely). Since the hyperbolic Laplacian commutes with all hyperbolic isometries,
hyperbolic BM is invariant under the latter: if g is as in (3) and (Bt) is (a version of) hy-

perbolic BM starting at z0 ∈ D then (gBt) is (a version of) hyperbolic BM starting at gz0 .

Equivalently, the heat kernel pt(·, ·) with respect to m associated with 1
2
L is invariant under

the diagonal actions of every hyperbolic isometry. We write Pt for the associated transition
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operator of hyperbolic BM: for any measurable set K ⊂ D and z ∈ D, resp., measurable

function f : D → R,

(7) Pt(z,K) =

∫

K

pt(z, w) dm(w) and Ptf(z) =

∫

D

pt(z, w)f(w) dm(w) ,

whenever that integral is well defined.
Now let (Ωb ,Ab ,Pb) be a suitabe probability space on which hyperbolic BM starting at

the origin is defined. With starting point 0, as t → ∞, the process converges almost surely

to a ∂D-valued random variable B∞ . The distribution of B∞ , being rotation invariant, is
equidistribution on the unit circle: dξ = 1

2π
eiφ dφ, where dφ is the Lebesgue measure on

[−π , π]. (The elements of ∂D are denoted ξ, η, etc.)
When the starting point is z0 then, working on the same probability space, (a model of)

the limit random variable is gz0B∞ . The density of its distribution νz0 with respect to dξ
is the Poisson kernel

(8) Π(z0, ξ) =
1− |z0|2
|ξ − z0|2

(z0 ∈ D , ξ = eiφ ∈ ∂D).

Since d(Bt, o) → ∞ almost surely, we are also interested in the speed. It is linear, and to
understand it, it may be useful to pass to two other models of hyperbolic space.

The second one, besides the disk, is the upper half plane model H = {u + i v : u, v ∈
R, v > 0}. The metric d = dD of (2) is transported to the metric dH via the Möbius map

from D to H

(9) z 7→ i
1 + z

1− z
.

It maps 0 to i , and the boundary points −1 to 0 and 1 to i∞, and

(10) dH(z, w) = log
|z − w̄|+ |z − w|
|z − w̄| − |z − w| .

We shall often switch back and forth between D and H, and will mostly use unified notation
o for our origin, that is, o = 0 in D and o = i in H. We also remark here that in the upper

half plane model, the group A of all transformations that fix the boundary point 1 in D

(that is, a + c ∈ R for a, c as in (3)) becomes, via conjugation with the map (9), the affine

group af all transformations

z 7→ az + b , a > 0 , b ∈ R (z ∈ H).

(The a here is not the same as in (3).)

In the coordinates (u, v) ∈ H, the hyperbolic Laplacian becomes v2(∂2u + ∂2v). Then
we make one more change of variables, setting w = log v to obtain the logarithmic model,

where now (u, w) ∈ R2 and the hyperbolic Laplacian becomes

(11) L = e2w∂2
u + ∂2

w − ∂w .

Its projection on the vertical coordinate w is ∂2
w−∂w, so that 1

2
(∂2
w−∂w) is the infinitesimal

generator of one-dimensional Euclidean Brownian motion with drift −1/2. Tracing this
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back to the upper half plane and disk models, writing BH

t and BD

t for hyperbolic Brownian

motion in the respective coordinates, when BH

0 = i , resp. BD

0 = 0,

(12) log
(
ℑBH

t

)
= log

1− |BD

t |2
|1− BD

t |2
∼ N

(
−1

2
t, t
)
,

where (as usual) ℑ dentotes the imaginary part, ∼ means “has distribution” and N(a, s2)

is the normal distribution with mean a and variance s2. From this we get the following,
where we can omit the superscript referring to the respective model.

Lemma 3.1. The following central limit theorem and rate of escape results hold, as t → ∞ :

d(Bt, B0)− 1
2
t√

t
→ N (0, 1) in law, and

d(Bt, B0)

t
→ 1

2
almost surely.

Proof. As stated above (8), in terms of the disk model, it is well known that BD

t converges
almost surely to a limit random variable BD

∞ with continuous distribution. Taking this to

the upper half plane model, we get BH
∞ ∈ R and ℑBH

t → 0 almost surely (since P[BH
∞ =

i∞] = 0). Now, if z = x+ i y ∈ H then an easy computation with the hyperbolic metric in

H as in (10) shows that

(13) dH(x+ i y, i ) + log y = log
1

2

(
1 + |z|2 +

√
(1 + |z|2)2 − 4y2

)

We get that

dH(Bt, i ) + log(ℑBH

t ) → log
(
1 + (BH

∞)2
)

almost surely, as t → ∞,

and the limit is almost surely finite. Combining this with (12) completes the proof. �

We shall need estimates of the tail behaviour of the random variables d(Bt, o), t > 0. The

heat kernel pt(o, z), z ∈ D (resp., ∈ H) associated with 1
2
L only depends on R = d(z, o), and

it has a uniform estimate in space and time, see Davies and Mandouvalos [11, Thm.

3.1] 2. We state here the upper bound in a way which is suited for our purpose:

(14)

pt(z, w) ≤
Const√
1 +R

Ψ

(
1 +R

t

)
exp

(
−(R + t

2
)2

2t

)
for R, t > 0 , where

R = d(z, w) and Ψ(x) =

{
x3/2 , 0 ≤ x ≤ 1 ,

x1/2 , x ≥ 1 .

For the following proposition, the author acknowledges a suggestion by Yuichi Shiozawa.

2Concerning the heat kernel, different normalisations of the Laplacian are an ongoing source of small
confusion. Analyists typically use the heat kernel for L as given in (5). Some of them also omit the factor
1/4. In probability, we want that Euclidean BM at time t = 1 has variance 1, so that we use the heat kernel
for 1

2
L. Although not explicitly stated, [11] uses the first of these three options, so that here we had to

replace their t by t/2.
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Proposition 3.2. Let M = max{d(Bt , B0) : t ≤ 1}. Then there is K > 0 such that for

any c > 0

P[M ≥ c] ≤ 2P[d(B1 , B0) ≥ c] ≤ K exp

(
−(c− 1

2
)2

2

)
.

Proof. We work in the upper half plane model, and we may suppose without loss of generality
that B0 = BH

0 = o (= i ). Here, we shall omit the sub- and superscripts H. Recall from (14)

that in any model, (Bt)t≥0 is istropic, that is, its transition kernel only depends on time
and hyperbolic distance:

(
d(Bt , o)

)
t≥0

is a Markov process on the state space [0 , ∞) with

continuous trajectories. In H, the point e−c is at hyperbolic distance c from o = i . Thus,

using (13), for s, t > 0,

(15)
P[d(Bs+t, o) ≥ c | d(Bs, o) = c] = P[d(Bt, o) ≥ c | B0 = e−c]

≥ P[− log(ℑBt) ≥ c | − log(ℑB0) = c] ≥ 1/2,

because by (12), if − log(ℑB0) = c then − log(ℑBt) ∼ N
(
c+ 1

2
t, t
)
.

Now consider the a.s. finite stopping time

Tc = inf{t > 0 : d(Bt , o) = c} .

Then, using the strong Markov property, the fact that d(BTc , o) = c, and isotropy of hyper-
bolic BM,

P[M ≥ c] = P0[Tc ≤ 1]

= P[d(B1 , o) ≥ c , Tc ≤ 1] + P[d(B1 , o) < c , Tc ≤ 1]

= P[d(B1 , o) ≥ c] +

∫ 1

0

P[d(B1 , o) < c | d(Bs , o) = c] dP[Tc = s]

now applying (15)

≤ P[d(B1 , o) ≥ c] +

∫ 1

0

P[d(B1 , o) ≥ c | d(Bs , o) = c] dP[Tc = s]

= 2P[d(B1 , o) ≥ c].

This proves the first of the two inequalities. The second is going to be derived from (14).
Note that for t = 1, we have to use Ψ(x) = x1/2 in that heat kernel estimate.

We return to the disk model. We can express the hyperbolic measure of (6) first in terms
of Euclidean polar coordinates (r, ϕ) with r < 1 and then replace r = |z| by R = d(z, o) =

log 1+r
1−r . In the coordinates (R,ϕ), we get

(16) dm(z) = sinhR dRdϕ in D .
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Then

P[d(B1, o) ≥ c] =

∫

{z∈D : d(z,o)≥c}
p1(0, z) dm(z)

≤ Const

∫ π

−π

∫ ∞

c

exp

(
−(R + 1

2
)2

2

)
eR − e−R

2
dR dϕ

≤ Const
′
∫ ∞

c

exp

(
−(R − 1

2
)2

2

)
dR

≤ Const
′′ exp

(
−(c− 1

2
)2

2

)

for a suitable constant Const′′. �

4. Hyperbolic branching Brownian motion

We now construct hyperbolic branching Brownian motion. Whenever it is suitable, we

can switch between the different models of hyperbolic plane, but primarily we have the disk
model in mind.

We need a probability space (Ω,A,P) on which one can realise countably many i.i.d. ran-
dom variables ℓv , v ∈ {l, r}∗ and, independently of the latter, countably many independent

hyperbolic Brownian motions (Bv
t ) , v ∈ {l, r}∗, each one starting at 0. If (Ωb ,Bb ,Pb) is one

probability space on which hyperbolic BM can be defined, then we can take the product

space (
Ω ,A ,P

)
=
(
ΩYule ,AYule ,PYule

)
⊗
(
ΩB ,AB ,PB

)
, where

(
ΩB ,AB ,PB

)
=
⊗

v∈{l,r}∗

(
Ωb, ,Bb ,Pb

)
v
,

along with the corresponding projections. (It may also be realised on the Lebesgue space =

the unit interval with the Lebesgue measure).
With each fission point v ∈ {l, r}∗, we associate a random element gv ∈ A, where A is the

affine group, defined below (3) for the disk model: if zv = Bv

ℓv
o then gv = gzv as defined by

(4). The gv , v ∈ {l, r}∗, are i.i.d.

Furthermore, we take a starting point z0 ∈ D. We shall often write Pz0 for the probability
measure and Ez0 for the corresponding expectation in order to remember the starting point.

Then hyperbolic branching Brownian motion assigns a random variable Bτ to every el-

ement τ of the Yule tree T (vertex or interior element of some edge) as follows, using the
notation of (1):

(A) If the path from α to v ∈ {l, r}∗ in our tree has the vertices α = v0 , v1 , . . . , vk = v

(with v
−
j = vj−1) then for τ = vs ∈ [v′, v],

Bτ = gz0gv1 · · ·gvk−1
Bv
s .

This can also be described by the following recursive construction:

(B1) At the “ancestor” α,

Bα = z0 .
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(B2) If for a vertex v ∈ {l, r}∗, we already have Bv′ = z ∈ D, then on the edge [v′, v], we

continue with

Bvs = gzB
v

s , 0 ≤ s ≤ ℓv ,

where the random element gz ∈ A is given by (4), with z in the place of z0 .

In particular, in our construction, hyperbolic BBM starting at z0 is the image under gz0 of
hyperbolic BBM starting at 0.

Remarks 4.1. (a) In principle, we could choose any initial family of Möbius transformations
such that for each z0 ∈ D there is precisely one gz0 mapping o to z0. For example (suggestion

by Steve Lalley) one could take the map

z 7→ z + z0
z̄0z + 1

,

which is as in (3) with a = 1/(1 − |z0|2)1/2 and c = z0/(1 − |z0|2)1/2. When z0 = 0 it is

the identity map, while otherwise it fixes the diameter segment of the unit disk through the
origin and z0 .

(b) However, the equivalence between the above two constructions (A) and (B1)+(B2)
relies on the fact that the group A acts simply transitively, while this is not the case for the

semigroup generated by the mappings of (a).

A feature of the construction (A) is that in this way, hyperbolic BBM is governed by a

branching random walk on the group A. The underlying Galton-Watson tree is not random,
but the binary tree {l, r}∗. That is, each member of the corresponding population fissions

in precisely 2 children. The branching random walk starting at gz0 is then (gz0Gv)v∈{l,r}∗ ,
where

(17) Gv = gv1 · · ·gvk

when the path from ǫ to v is [ǫ = v1 , v2 , . . . , vk = v].

An infinite ray π in the Yule tree T is a line isometric with [0 , ∞) which is spanned by

a sequence of vertices [α, ǫ, ...] where every vertex v ∈ π has precisely one successor in π.

Along π, the process (Bτ )τ∈π is a hyperbolic BM starting at z0 whose element at time t is
Bτ with τ = vs, where v ∈ π is a vertex and |vs| = t as defined below (1). If we have two

distinct rays π and π′ then their confluent π ∧ π′ is the furthest vertex from α shared by
the two. Then the two hyperbolic Brownian motions along π and π′ coincide up to π ∧ π′

and thereafter continue independently.

5. The maximal distance

We first consider an issue which has been intensively studied for Euclidean BBM since
the pioneering work of Kolmogorov, Petrovski and Piscounov [21], namely, the

behaviour of the maximal hyperbolic distance from the starting point of the population at

time t. We only consider the basic result on the rate of escape. For details in the Euclidean
case, see e.g. Bramson [7] and, in higher dimension, Kim, Lubetzky and Zeitouni [20].
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Theorem 5.1. Set Maxt = max
{
d(Bτ , o) : τ ∈ T (t)

}
. Then

Maxt

t
→ r∗ =

1

2
+
√
2λ

almost surely, as t → ∞ .

Proof. In the upper half plane model, the family (− logℑBH

τ )τ∈T is one-dimensional Eu-

clidean branching BM with drift 1/2. It is well known that

(18)
1

t
max

{
− logℑBτ : τ ∈ T (t)

}
→ r∗ almost surely, as t → ∞

for r∗ as given above, see e.g. [24] and Remark 5.2 below.

Furthermore, again in the upper half plane model, d(z, o) ≥ − logℑz by (13), which we
have used already. This and (18) imply that

lim inf
t→∞

Maxt

t
≥ r∗ almost surely.

For what follows, it is preferable to return to the disk model. Note that the particles’

positions at a given time t, that is, the random variables

Bτ , τ ∈ T (t)

have the same distribution (but are not independent) as the ordinary hyperbolic random

variable Bt. Let us assume, without loss of generality, that the starting point is o.
We now choose a constant C > r∗. If N(t) = n then write T (t) = {τ1 , . . . , τn}. Then

(19)

P[Maxt ≥ Ct , N(t) = n] = P

( n⋃

j=1

[d(Bτj , o) ≥ Ct , N(t) = n]
)

≤
n∑

j=1

P[d(Bτj , o) ≥ Ct , N(t) = n]

= nP[d(Bt , o) ≥ Ct]P[N(t) = n] ,

since the position of Bτj does not depend on the value of N(t).

Therefore

P[Maxt ≥ Ct] =

∞∑

n=1

P[Maxt ≥ Ct , N(t) = n]

=

∞∑

n=1

nP[d(Bt, o) ≥ Ct]P[N(t) = n]

= P[d(Bt, o) ≥ Ct]E
(
N(t)

)
= P[d(Bt, o) ≥ Ct] eλt.

We need to estimate P[d(Bt, o) ≥ Ct]. This works similarly as in the last part of the proof

of Proposition 3.2. We use once more (14). Up to a change of the leading constant, we can
also use Ψ(x) = x1/2 for x ≥ 1/2 (instead of x ≥ 1). This applies to the range which we
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are now considering, namely R ≥ Ct > r∗t ≥ t/2. We perform the following estimate for

(non-branching) hyperbolic BM in D starting at o.

P[d(Bt, o) ≥ C t] =

∫

{z:d(z,o)≥Ct}
pt(o, z) dm(z)

≤ Const

∫ π

−π

∫ ∞

Ct

√
1 +R

t
exp

(
−(R + t

2
)2

2t

)
eR − e−R

2
dRdϕ

≤ Const
′
∫ ∞

Ct

√
1 +R

t
exp

(
−(R− t

2
)2

2t

)
dR

substituting s = (R− t
2
)/
√
t

= Const
′
∫ ∞

(C− 1

2
)
√
t

√
1

t
+

1

2
+

s√
t
exp

(
−s2

2

)
ds

since s√
t
≥ C − 1

2
>

√
2λ

≤ Const
′′
∫ ∞

(C− 1

2
)
√
t

s√
t
exp

(
−s2

2

)
ds = Const

′′ 1√
t
exp

(
−(C − 1

2
)2t

2

)
,

(The constants are not assumed to be the same as in the proof of Proposition 3.2. Also,

here Const
′′ depends on λ.)

Combining our computations, we get

P[Maxt ≥ Ct] ≤ Const
′′ 1√

t
exp

(
−
(
(C − 1

2
)2 − 2λ

)
t

2

)
.

Since C > r∗, we have (C − 1
2
)2 − 2λ > 0. Consequently, at integer times

∞∑

n=1

P[Maxn ≥ Cn] < ∞ ,

and by the Borel-Cantelli Lemma,

lim sup
n→∞

Maxn

n
≤ C almost surely.

This holds for every C > r∗, whence in view of the lower bound

lim
n→∞

Maxn

n
= r∗ almost surely.

We now need to fill in the “gaps” for real t ∈ (n− 1 , n), where n runs through the positive

integers. For this purpose, we first define

M = max{d(Bτ , o) : τ ∈ T (≺1)}
Claim. For any c > 0,

P[M > c] ≤ eλ P[M > c] ,
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where M is as in Proposition 3.2, that is, the maximal distance of ordinary hyperbolic BM

from the starting point within the time interval [0 , 1].

Proof of the Claim. Suppose that N(1) = k, and just within this proof, let T (1) =
{τ1 , . . . , τk}. For each j, consider the geodesic path in T from the root α to τj . Along

this timeline, we see an ordinary hyperbolic BM starting at 0, runnig up to time 1. Let Mj

be the maximal distance from 0 of this BM. The random variables M1 , . . . ,Mk are not

independent, but they all have the same distribution as M. Furthermore,

M = max{M1 , . . . ,Mk}.
The proof of the Claim is now completed in the same way as in (19).

Note that the event [ |v| /∈ N for all v ∈ {l, r}∗] has probability 1. We work on that event.
Now let t > 0 and n = ⌊t⌋. Each τ ∈ T (n) is the root of a single subtree Tτ = Tτ (≺ 1) of

height 1 within T , whose end-vertices belong to T (n+ 1). Let

Mτ = max{d(Bθ ,Bτ ) : θ ∈ Tτ}
The random variables Mτ , τ ∈ T (n), are independent and (since the exponential distri-

bution is memoryless) have the same distribution as the RV M of the Claim. We clearly
have

Maxt ≤ Maxn +max{Mτ : τ ∈ T (n)}.
The proof of the theorem will be complete if we can show that

(20) lim
n→∞

1

n
max{Mτ : τ ∈ T (n)} = 0 almost surely.

Let c > 0. Then, once more in the same way as in (19), ad using the Claim,

P
[
max{Mτ : τ ∈ T (n)} > cn] ≤ P

[
M > cn] eλn

≤ P[M > cn] eλ(n+1)

≤ K exp

(
−(cn− 1

2
)2 − 2λ(n+ 1)

2

)

by Proposition 3.2. Summing over all n, the resulting series converges for every c > 0, and
once more, the Borel-Cantelli Lemma yields (20). �

Remark 5.2. Regarding the value of r∗, the literature deals with Euclidean BBM where

the underlying BM is standard with drift 0. Also, usually only the case λ = 1 is considered
for the fissioning rate (i.e., the parameter of the exponential distribution of the edge lengths

of the Yule tree). The 1
2
in our formula for r∗ comes from the drift 1

2
of our underlying

Brownian motion. Then, in the drift-free case with λ = 1, on finds e.g. in [24] – see also

Bovier [6, Lemma 3.4] – that the maximum at time t of Euclidean BBM has rate
√
2.

Now let T be the Yule tree with parameter λ as in §2, and let (βτ )τ∈T be the associated

standard Euclidean BBM (where the underlying BM is drift-free). Write λT for the random
tree where all the edge lengths are multiplied by λ. This is the Yule tree with fissioning

rate 1. Then by the scale-invariance of BM, ( 1√
λ
βτ )τ∈T is standard Euclidean BBM. From
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here, one obtains the general formula. This is of course well-known and clear to the experts,

but the hints may be useful for the novice.

6. The empirical distributions

We can interpret hyperbolic BBM as a Markov process on the space of populations in D,

where a population is a finitely supported measure of the form

M =

n∑

j=1

δzj , n ∈ N , zj ∈ D not necessarily distinct.

(Another interpretation is to see this as a multiset; see [18].)

Definition 6.1. Starting with one particle at position z0 , the occupation measure of hy-
perbolic BBM at time t ≥ 0 is the population

Mt = Mz0
t =

∑

τ∈T :|τ |=t
δBτ

and the associated empirical distribution is

µt = µz0t =
1

N(t)
Mt .

Thus, µt is a finitely supported probability measure on the disk. Both Mt and µt depend

on the starting point z0 , and in our construction, with gz0 as in (4), Mz0
t = gz0M

o
t is the

image of Mo
t under the mapping z 7→ gz0z. (That is, for a measure µ on D and an isometry

g of D, we have gµ(K) = µ(g−1K).) We shall often omit the starting point in the notation.
Instead of starting BBM at a single point, we may start with an arbitrary initial population

M0. Then the population at time t is

(21) Mt =

n∑

j=1

M
zj
t , if M0 =

n∑

j=1

δzj ,

where the occupation measures Mzi
t are independent even when some of the zi coincide.

We start with an obvious consequence of the continuity of the distributions of the random

variables Bτ .

Fact 6.2. For distinct τ, τ ′ ∈ T , one has P[Bτ = Bτ ′ ] = 0.

In particular, for any fixed t ≥ 0, with probability 1 the measure µt is equidistribution
on N(t) distinct points.

Of course this does not imply that it never happens that µt is other than equidistributed.
However, the following is also quite clear.

Lemma 6.3. Let π and π′ be two distinct rays in the Yule tree. Then, with probability 1,
there is a random t0 ≥ 0 such that Bτ 6= Bτ ′ for all τ ∈ π and τ ′ ∈ π′ with |τ |, |τ ′| > t0 .



Notes on hyperbolic branching Brownian motion 15

Proof. Let v = π ∧ π′. (Compare with the last lines of §4.) Conditionally upon the location

(value) Bv = z0 , beyond v the two Brownian motions along π and π′ are independent
replicas of hyperbolic BM starting at z0 . Each of them has an a.s. random limit ξ, resp.

ξ′ ∈ ∂D. Both are distributed according to νz0 ; see (24) and the preceding lines. Continuity
of νz0 yields that ξ 6= ξ′ almost surely. This implies the statement of the lemma. �

Again, this does not necessarily mean that from some random time onwards, all µt are
equidistributed. But if we restrict to all µn , n ∈ N, then with probability 1 all of them are

equidistributed.
For a stronger result than Lemma 6.3 concerning branching random walks on finitely

generated groups, see Hutchcroft [17].

Question 6.4. Can one prove a result analogous to [17] that in the regime λ ≤ 1/8, two
independent copies of hyperbolic BBM meet at most finitely often? It appears to be true

at integer times for any λ.

In the place of µt , it will also be useful to use the discrete random measure

σt = σz0t =
1

eλt
Mz0

t ,

the image of σ0
t under z 7→ gz0z. It is not a probability measure, but its expectation is a

deterministic probability measure on D, as the following Lemma shows.

Lemma 6.5. Let K ⊂ D be compact. Then the expected number of particles present within

K at time t is
Ez0

(
Mt(K)

)
= eλt Pz0[Bt ∈ K] ,

where Bt is hyperbolic Brownian motion started at z0 . Thus,

Ez0

(∫ ∞

0

σt(K) dt

)
< ∞ ,

and therefore
lim
t→∞

µt(K) = 0 almost surely.

Proof. Once more, if N(t) = n then write T (t) = {τ1 , . . . , τn}. Then, similarly to (19),

Ez0

(
Mt(K)

)
=

∞∑

n=1

Ez0

( n∑

j=1

1K(Bτj | N(t) = n
)
P[N(t) = n]

=
∞∑

n=1

nPz0 [Bt ∈ K]P[N(t) = n] = E
(
N(t)

)
Pz0 [Bt ∈ K].

This shows the first identity, and finiteness of Ez0
(∫∞

0
σt(K) dt

)
follows from trancience of

hyperbolic BM. It implies that the random variable
∫∞
0

σt(K) dt is a.s. finite, whence

lim
t→∞

µt(K) =
1

W
lim
t→∞

σt(K) = 0 almost surely,

where W is the martingale limit of Proposition 2.2. �
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Thus, the mass of the empirical distributions µt “disappears at infinity” in the hyperbolic

metric, resp. topology. (More precisely, the µt tend to 0 vaguely within the hyperbolic
disk.)

We can express the first formula of Lemma 2.1 in terms of the transition operator (7) of
(non-branching) hyperbolic BM: for a measurable set K ⊂ D and starting point z0,

(22) Ez0

(
σt(K)

)
= Pt(z,K) .

Thus, for a measurable function f : D → R

(23) Ez0

(∫

D

f dMt

)
= eλt Ptf(z0) and Ez0

(∫

D

f dσt

)
= Ptf(z0) ,

as long as the involved integral is well defined. A harmonic function is a C2-function h on

D which satisfies Lh ≡ 0. It is well known that every harmonic function satisfies

Pth = h for every t > 0.

Now let Ft = FBBM
t be the sigma-algebra generated by the information of hyperbolic BBM

up to and including time t. (It projects naturally onto FYule
t .)

Proposition 6.6. If h is a bounded or positive harmonic function, then the family of random
variables ∫

h dσt = e−λt
∑

τ∈T :|τ |=t
h(Bτ ) , t ≥ 0

is a martingale with respect to the filtration (Ft)t≥0 .

Proof. For any bounded or positive measurable function f : D → C, consider its lift f̃ to

the space of populations:

f̃(M) =

∫

D

f dM =
∑

z∈D
f(z)M({z}) ,

a finite sum. Let (P̃t)t≥0 be the family of transition operators (i.e. the transition semigroup)

of hyperbolic BBM, that is, of the Markov process (Mt)t≥0. By (21), for any population
M0 =

∑n
j=1 δzj ,

P̃tf̃(M0) = EM0

(
f̃(Mt)

)
= EM0

(
∑

z

f(z)Mt({z})
)

= EM0

(
∑

z

f(z)
n∑

j=1

M
zj
t (z)

)
=

n∑

j=1

M0(zj)Ezj

(
∑

z

f(z)M
zj
t (z)

)

=

n∑

j=1

M0(zj)Ezj

(∫
f dM

zj
t (z)

)
=

n∑

j=1

M0(zj) e
λt Ptf(zj)

= eλt P̃tf(M0)
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by (23). In particular, if h is a bounded or positive harmonic function on D then P̃th̃ = eλt h̃

for every t ≥ 0. This yields that
∫
h dσt = e−λt

∫
h dMt is a martingale. �

Theorem 6.7. With probability 1, as t → ∞, the measures σt converge weakly to a Borel

measure σ∞ on ∂D, and the probability measures µt converge weakly to a probability measure
µ∞ on ∂D. With W as in Proposition 2.2, we have

σ∞ = Wµ∞ , and Ez0(σ∞) = νz0 ,

the measure on ∂D whose density with respect to the normalised Lebesgue measure on the

circle is the Poisson kernel (8).
In particular, for every ξ ∈ ∂D, we have µ∞({ξ}) = 0 almost surely.

Proof. We use a potential theoretic argument. Note that the harmonic functions for L are
the same as the harmonic functions for the Euclidean Laplacian on D. The corresponding

Dirichlet problem is solvable: given a continuous function ϕ on ∂D, there is a unique har-
monic function hϕ on D which provides a continuous extension of ϕ to the interior of the

disk. Indeed, hϕ is the Poisson transform of ϕ,

(24) hϕ(z) =

∫

∂D

Π(z, ξ)ϕ(ξ) dξ .

Now let f be any continuous function on the closed disk D. Considering σt as a measure on
D, we have to show that

∫
D
f dσt converges almost surely. Let ϕ = f |∂D be the restriction

of f to the unit circle, and let hϕ be the associated solution of the Dirichlet problem. This
is a bounded harmonic function, so that

∫

D

hϕ dσt

converges almost surely by Proposition 6.6. On the other hand,

lim
|z|→1

f(z)− hϕ(z) = 0 uniformly in z.

Given ε > 0, take r ∈ (0 , 1) such that |f(z) − hϕ(z)| < ε for |z| ≥ r. Let K = {z ∈ D :

|z| ≤ r}. By Proposition 2.2 and Lemma 6.5,

∫

K

(f − hϕ) dµt =
eλt

N(t)

∫

K

(f − hϕ) dσt → 0 almost surely,

and since µt is a probability measure,

∣∣∣∣
∫

D\K
(f − hϕ) dµt

∣∣∣∣ < ε .
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This shows weak convergence. The identity σ∞ = Wµ∞ is immediate from Proposition 2.2.

Finally, if f ∈ C(D) then by (23) and dominated convergence

Ez0

(∫

D

f dσ∞

)
= lim

t→∞
Ez0

(∫

D

f dσt

)
= lim

t→∞
Ptf(z0) = lim

t→∞
Ez0

(
f(Bt)

)
= Ez0

(
f(B∞)

)

=

∫

∂D

f dνz0 .

In particular, for any ξ ∈ ∂D, Ez0

(
σ∞({ξ})

)
= νz0({ξ}), so that σ∞({ξ}) = 0 almost

surely. �

Note that the latter does not necessarily imply that almost surely, the limit measure

carries no point mass.
The radial projection of D to the boundary circle ∂D is the mapping

rad(reiψ) = eiψ , if 0 < r < 1 , and rad(0) = 1 .

(The value rad(0) is of no specific importance and might be chosen arbitrarily.) We can

consider the radial projection of hyperbolic Brownian motion, and the image of µt under
the mapping rad.

Corollary 6.8. With probability 1, the probability measures

µrad

t =
1

N(t)

∑

τ∈T :|τ |=t
δrad(Bτ )

on ∂D converge weakly to µ∞ , as t → ∞ .

Proof. Let ϕ ∈ C(D), and let hϕ be its Poisson transform (24), providing the continuous

extension of ϕ to D which is harmonic on D. To “hide” the discontinuity of rad(·) at 0, let

f(z) =

{(
hϕ(z)− ϕ

(
rad(z)

))
min{2|z|, 1} if z ∈ D,

0 if z ∈ ∂D

Then f ∈ C(D). We get that with probability 1,

lim
t→∞

∫

D

f dµt = 0

On the other hand,

lim
t→∞

∫

D

hϕ dµt =

∫

∂D

ϕdµ∞ .

This concludes the proof. �

In analogy with Corollary 6.8, we have the following for the real parts of hyperbolic BBM

in the upper half plane model. We omit the very similar proof.

Corollary 6.9. Let

µℜ
t =

1

N(t)

∑

τ∈T :|τ |=t
δℜB

H
τ
.
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Then, with probability one, µℜ
t converges weakly to µH

∞ , as t → ∞ .

Another feature of the “disappearance” of the population at infinity is the average rate
of escape.

Definition 6.10. The (empirical) distance distribution of hyperbolic BBM at time t ≥ 0 is

the finitely supported random measure µdt on R+ which is the image of µt under the mapping
D ∋ z 7→ d(z, o), that is,

µdt =
1

N(t)

∑

τ∈T :|τ |=t
δd(Bτ ,o).

Theorem 6.11. With probability one, µdt is asymptotically normal with mean t/2 and vari-
ance t. That is, its distribution function satisfies

µdt
(
−∞ , 1

2
t+ x

√
t
]
→ 1√

2π

∫ x

−∞
e−s

2/2 ds for every x ∈ R,

as t → ∞ .

Before the proof, we make a detour to the upper half plane model and write (BH

τ )τ∈T for
the resulting model of hyperbolic BBM: it is the image of (Bτ )τ∈T as costructed on D under

the mapping (9). Considering the logarithmic model, we see the following.

Fact 6.12. The vertical projection

B
vert
τ = − logℑBH

τ , τ ∈ T ,

is one-dimensional branching Brownian motion on R; the underlying Euclidean Brownian

motion at time t has drift 1
2
t and variance is t; see (11).

The reason for choosing the minus sign is that this Euclidean BBM has the same asymp-
totic drift and variance as the one proposed in Theorem 6.11, and we will use comparison

of the two processes.
For the following, see Ney [25, Thm. 2], Kaplan and Asmussen [19, Thm. 3] as well

as Biggins [5].

Proposition 6.13. Let

µvert

t =
1

N(t)

∑

τ∈T :|τ |=t
δBvert

τ
.

With probability 1, as t → ∞, the family of discrete probability distributions µvert

t on R is
asymptotically normal with mean t/2 and variance t.

[25] only has convergence in mean square, whence in probability. [19] has almost sure

convergence when the drift of the base Brownian motion is 0 with obvious extension to
non-zero drift; see also the last section of [5].
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Proof of Theorem 6.7. We work with the upper half plane model and indicate this by the

superscript H. Let Ω0 be the event on which µH

t converges weakly and µH

∞(i∞) = 0. On
Ω0 , the latter measure assigns mass 0 to the boundary point i∞, so that it lives on the

lower boundary line R. Let f ∈ C∞(R) be uniformly continuous and set

ft(x) = f

(
x− 1

2
t√

t

)
.

By the Portmanteau Theorem, we need to show that on Ω0 ,

lim
t→∞

∫

R

ft(x) dµ
d
t (x) =

∫

R

1√
2π

e−x
2/2f(x) dx .

Given ε > 0 there is a random bound M < ∞ such that

µH

∞
(
[−M , M ]

)
≥ 1− ε .

Consider the closed set UM = {z ∈ H : |z| ≤ M , ℑz ≤ 1} ⊂ H, where H = H ∪ R ∪ {i∞}
is the geometric compactification of the hyperbolic upper half plane. Then

(25) lim sup
t→∞

µH

t (H \ UM) ≤ ε .

We decompose ∫

R

ft(x) dµ
d
t (x) =

∫

H

ft
(
dH(z, o)

)
dµH

t (z)

into
∫
UM

+
∫
H\UM

. Regarding the second part, we have by (25)

lim sup
t→∞

∣∣∣∣
∫

H\UM

ft
(
dH(z, o)

)
dµH

t (z)

∣∣∣∣ ≤ ε ‖f‖∞ .

We now apply the same decomposition to
∫

R

ft(x) dµ
vert
t (x) =

∫

H

ft
(
− logℑz

)
dµH

t (z)

and get

lim sup
t→∞

∣∣∣∣
∫

H\UM

ft
(
− logℑz

)
dµH

t (z)

∣∣∣∣ ≤ ε ‖f‖∞ .

We now consider the difference of the integrals over UM , recalling that for ℑz ≤ 1 one has
dH(ℑz, o) = − logℑz :

∣∣∣∣
∫

UM

ft
(
dH(z, o)

)
dµH

t (z)−
∫

UM

ft
(
− logℑz

)
dµH

t (z)

∣∣∣∣

≤
∫

UM

∣∣∣ft
(
dH(z, o)

)
− ft

(
dH(ℑz, o)

)∣∣∣ dµH

t (z) .

By (13), we have |dH(z, o)− dH(ℑz, o)| ≤ log(1 +M2) on UM . Therefore
∣∣∣∣
dH(z, o)− 1

2
t√

t
− dH(ℑz, o)− 1

2
t√

t

∣∣∣∣ ≤
log(1 +M2)√

t
,
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and by uniform continuity of f ,

lim
t→∞

∣∣∣ft
(
dH(z, o)

)
− ft

(
dH(ℑz, o)

)∣∣∣ = 0 uniformly on UM .

We infer that on Ω0

lim
t→∞

∫

R

ft(x) dµ
d
t (x) = lim

t→∞

∫

R

ft(x) dµ
vert
t (x) ,

and Proposition 6.13 yields the proposed asymptotic behaviour. �

The average displacement of hyperbolic BBM is

(26)

∫

D

d(z, o) dµt(z) =
1

N(t)

∑

τ∈T :|τ |=t
d(Bτ , o)

Theorem 6.14. With probability 1, the average displacement of hyperbolic BBM has rate

of escape

lim
t→∞

1

t

∫

D

d(z, o) dµt(z) =
1

2
.

Proof. In the sample space Ω of hyperbolic BBM, let Ω1 be the set on which µdt is asymp-

totically normal as in Theorem 6.11, and

1

Maxt
→ r∗

as in Theorem 5.1, where Maxt = max
{
d(Bτ , o) : τ ∈ T , |τ | = t

}
. We can consider this as

providing a random environment for the family of probability distributions µdt , and consider

one quenched case, i.e., a fixed ω ∈ Ω1 . We can think of the associated deterministic family
µdt , t > 0, as the distributions of a family of random variables Xt. By asymptotic normality,

lim
t→∞

Xt

t
=

1

2
in probability.

On the other hand,

|Xt|
t

≤ Maxt

t
,

which is bounded. We can apply the Dominated Convergence Theorem, and denoting by
Eω the quenched expectation, we get

lim
t→∞

Eω(Xt)

t
=

1

2
.

Now

Eω(Xt) =

∫

R

x dµdt (x) =

∫

D

d(z, o) dµt(z) ,

and this proves the claim. �
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7. Some properties of the random limit distributions

Here, we shall collect a few properties of the measures µz0∞ plus related open questions.
Before that, we start with a general fact with a simple proof, comunicated to the author by

V. A. Kaimanovich during the work on the paper [18].

Proposition 7.1. Let X be a separable compact space and P(X ) be the space of Borel

probability measures on X . With the weak*topology, it is again separable and compact. Now
let µ and µ′ be independent random probability measures on X , with distributions ν and ν ′,

respectively. That is, the latter are probability measures on P(X ), and the distribution of
(µ, µ′) on X 2 is ν ⊗ ν ′.

Suppose that the expectation of µ (barycentre of ν), that is, the deterministic probability
measure in X given by

µ(K) =

∫

P(X )

µ(K) dν(µ) (K ⊂ X compact)

on X is purely non-atomic. Then, almost surely, µ′ and µ share no atoms.

(“Almost surely” refers to the probability measure ν ⊗ ν ′.)

Proof. Step 1. Since µ is non-atomic, for any x ∈ X
µ(x) = 0 for ν − almost every µ ∈ P(X ).

Step 2. Let µ′ ∈ P(X ) be fixed (deterministic). Then ν − almost every µ ∈ P(X ) has no
common atoms with µ′, that is,∫

P(X )

µ(x)µ′(x) dν(µ) = 0 for all x ∈ X .

Proof. Let xi , i ∈ I be the finitely or countably many atoms of µ′ (if any). Then the

statement of Step 1 holds for each xi.

Conclusion. Step 2 holds for every probability measure ν ′ on P(X ). Therefore
∫∫

P(X )×P(X )

µ(x)µ′(x) dν(µ) dν′(µ′) = 0 for all x ∈ X ,

which is the proposed result. �

For any vertex u ∈ {l, r}∗, consider the subtree Tu as defined in §2. Its distribution is the

same as the one of T . Recall that u− has the role of the ancestor α in Tu . For the associated
martingale according to Proposition 2.2, we write

(27) Wu = lim
t→∞

Nu(t)e
−λt

for its almost surely existing and nondegenerate limit. If Bu′ = zu′ = z then
(
g−1
z Bτ

)
τ∈Tu is

hyperbolic BBM starting at o, whose pieces along the edges come from the same construction

on our probability space as for the process starting with the ancestor α. We have gz = Gu′

as defined by (17). (Simple transitivity of the group A is useful here, since in this way
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we can avoid the need to handle uncountably many different versions.) In particular, all

the empirical distributions of
(
g−1
z Bτ

)
τ∈Tu converge almost surely, and by continuity of the

action of gz, we have almost surely all the limits

(28) µz
u,∞ = lim

t→∞
µz
u,t , where z = zu′ = Bu′ and µz

u,t =
1

Nu(t)

∑

τ∈Tu : |τ |=t+|u−|
Bτ

for for every z and for each of the countably many vertices of T . Along with µzu,t and µzu,∞ ,
we also have

σz
u,t = Nu(t)e

−λt µz
u,t and σz

u,∞ = Wu µ
z
u,∞

with Wu as in (27).

Lemma 7.2. Let u, v ∈ {l, r}∗ be such that none of the two is an ancestor (predecessor) of

the other. Consider hyperbolic BBM indexed by the time trees Tu and Tv , respectively, and
starting at o. Then with probability 1, the limit distributions µo

u,∞ and µo
v,∞ share no atoms.

Proof. The two random measures are independent. Furthermore,

µou,∞ =
1

Wu

σou,∞.

Now we know from Theorem 6.7 that the expectation of the random measure σou,∞ is νo ,
the limit distribution on D of hyperbolic Brownian motion starting at o . This is normalised

Lebesgue measure, whence it has no atoms. Since Wu is almost surely finite and positive,
also the expectation of µo

u,∞ has no atoms. The lemma now follows from Proposition 7.1. �

Now we can deduce a first interesting property.

Theorem 7.3. With probability 1, the support of the random limit distribution µo∞ = µoǫ,∞
is infinite.

Proof. For any measure µ on ∂D, we shall write atoms(µ) for the set of atoms of µ, and

supp(µ) for its support.

Let u ∈ {l, r}∗ and consider hyperbolic BBM according to our construction of §4 with
time tree Tu and starting point Bu′ = o. The two children of u are ul and ur. For each of

the two independent subtrees Tul and Tur , the vertex u has the role that the ancestor α has
in T . Write z1 = Bu , so that gz1 = gu , the random element of A as described in §4. Denote

by Mz1
ul,t and Mz1

ur,t the occupation measures at time t (that is, distance t from u in Tl and
Tr), respectively. Then

Mo
u,t = Mz1

ul,t−ℓu +Mz1
ur,t−ℓu .

Dividing by Nǫ(t) and letting t → ∞ ,

µou,∞ = cul µ
z1
ul,∞ + cur µ

z1
ur,∞, where cul =

Wul

Wu

e−λℓu and cur =
Wur

Wu

e−λℓu ,

a non-trivial convex combination of two probability measures. We can also rewrite this as

g−1
u µou,∞ = cul µ

o
ul,∞ + cur µ

o
ur,∞ .
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From this identity and Lemma 7.2 we infer that

atoms(µo
u,∞) = guatoms(µo

ul,∞) ∪̇ guatoms(µo
ur,∞)

is almost surely a disjoint union.
Recursively, we get the following convex combination for each n:

(29) µoǫ,∞ =
∑

v∈{l,r}n
c
(n)
v Gv′ µ

o
v,∞

with positive random constants c
(n)
v and Gv′ as defined by (17), and

atoms(µou,∞) =
⋃̇

v∈{l,r}n
Gv′ atoms(µov,∞) almost surely.

If supp(µo
u,∞) is finite then the support of the measure coincides with the set of its atoms,

and there must be v such that µo
v,∞ has no atoms. But along with µoǫ,∞ , by (29) all µo

v,∞
have finite support consisting only of atoms, a contradiction. �

Definition 7.4. The limit set of hyperbolic BBM is the random set Λ of accumulation
points of (Bτ )τ∈T on the unit circle ∂D.

Lalley and Sellke [23] have proved the following significant result.

Theorem 7.5. [23] In the unit circle with the arclength measure, there is the following
dichotomy.

(i) For λ ≤ 1/8, with probability 1, Λ is a Cantor set (totally disconnected and perfect),
and its Hausdorff dimension is (1 −

√
1− 8λ )/2. Furthermore, Λ is contained in a proper

sub-arc of D.

(ii) For λ > 1/8, with probability 1, Λ = ∂D.

It is clear that

supp(µo∞) ⊆ Λ .

At this point several interesting questions arise to which at present the author does not

know the anser.

Questions 7.6. (a) Is supp(µo∞) ⊂ Λ properly ?

(b) What is the Hausdorff dimension of µo∞ (i.e. the smallest Hausdorff dimension of a set
with full µo∞-measure) ? Is it strictly smaller than the Hausdorff dimension of Λ ?

(c) Is µo∞ purely non-atomic ? Is it absolutely continuous with respect to Lebesgue (arc)
measure in the supercritical regime λ > 1/8 ?

All answers may well depend on the regime λ ≤ 1/8, resp. > 1/8.
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