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4 Abstract

A novel approach to accounting for the influence of initial system-bath
correlations on the dynamics of an open quantum system, based on the
conventional projection operator technique, is suggested. To avoid the
difficulties of treating the initial correlations, the conventional Nakajima-
Zwanzig inhomogeneous generalized master equations (GMEs) for a sys-
tem’s reduced statistical operator and correlation function are exactly
converted into the homogeneous GMEs (HGMEs), which take into ac-
count the initial correlations in the kernel governing the evolution of
these HGMEs. In the second order (Born) approximation in the system-
bath interaction, the obtained HGMEs are local in time and valid at all
timescales. They are further specialized for a realistic equilibrium Gibbs
initial (at t = t0) system+bath state (for a system reduced statistical
operator an external force at t > t0 is applied) and then for a bath of
oscillators (Boson field). As an example, the evolution of a selected quan-
tum oscillator (a localized mode) interacting with a Boson field (Fano-like
model) is considered at different timescales. It is shown explicitly how the
initial correlations influence the oscillator evolution process. In particular,
it is shown that the equilibrium system’s correlation function acquires at
the large timescale the additional constant phase factor conditioned by
survived initial system-bath correlations.
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1 Introduction

Rigorous derivation of the reliable, tractable and effective evolution equations
for the measurable values (statistical expectations) characterizing a nonequi-
librium state of a many-particle system remains a principal task of statistical
physics. The derivation is conventionally started from the Liouville-von Neu-
mann equation for a statistical operator (distribution function) of the whole
system, which depends on the enormous number of variables and thus is prac-
tically useless. Fortunately, for practical purposes, one needs the equations
only for reduced statistical operators (distribution functions) for a system of
interest depending on a much smaller number of variables and which can be ob-
tained by integration off the environment (irrelevant) variables. It is expected
that these equations, although obtained from underlying reversible microscopic
many-particle dynamics (Liouville-von Neumann equation), should generally be
the equations converting into irreversible kinetic ones on some timescale.

In order to derive the equation for reduced statistical operator, several as-
sumptions are usually made. One of them is related to the correlations between
a selected system under consideration and its environment in the initial state of
a full system (initial correlations). For example, all derivations of the Boltzmann
equation for a many-particle system or the Lindblad equation for evolution of
a system interacting with a bath are mainly based on either factorizing-type
initial conditions (random phase approximation (RPA) or ”molecular chaos”)
corresponding to uncorrelated initial state or on Bogoliubov’s principle of weak-
ening of initial correlations [1]. The uncorrelated initial state is not very realistic
[2] and the Bogoliubov principle is not always applicable, e.g., when the corre-
lations do not damp with time. Such a situation is realized, e.g., in a quantum
many-body system, where the quantum correlations, caused by the particles’
statistics, do not damp with time [3], or for an equilibrium initial state of the
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whole system [2, 4]. More generally, the disregarding of the initial (at the ini-
tial time moment t0) correlation (irrelevant) term, e.g., in the inhomogeneous
Nakajima-Zwanzig generalized master equation (GME) [5, 6] for the relevant
(reduced) part of a statistical operator of interest, implies, in fact, the ”propa-
gation of chaos”, i.e. the absence of correlations also at t > t0 (see, e.g., [2, 7]).
The latter has not been proved yet [8]. Since there are no convincing arguments
for neglecting the initial correlations [2, 7], it would be desirable to effectively in-
clude initial correlations into consideration and thus to have a completely closed
(homogeneous) and valid on all timescales evolution equation for a reduced sta-
tistical operator. The approaches, like the Bogoliubov principle of weakening
of initial correlations, result in the closed homogeneous equations for a system
of interest describing the evolution on the large enough timescale, when cor-
relations might damp, and, therefore, are not able to describe the influence of
initial correlations on the entire evolution process. The effective accounting in
the evolution equation for initial correlations assumes that such an equation at
the large timescale would not lead to the appearance of the so called ”secular”
terms growing with time as, e.g., it is the case when one is trying to solve the
inhomogeneous equations of the BBGKY (after the names of Bogoliubov, Born,
Green, Kirkwood and Yvon) chain [1]. Generally, the homogeneous equations
have a much wider range of applicability with regard to the timescale than the
inhomogeneous ones.

Of a special interest is the situation when a system interacts with a sta-
tionary environment (a bath), i.e., an open quantum system. Open quantum
systems have become an active area of research, owing to its potential applica-
tions in many different fields such as quantum gases, quantum optics, quantum
information processing, quantum computing (to mention a few), and the general
problems of statistical physics [9]. In this area, the evolution of a system is con-
ventionally described by the Lindblad equation (see, [10], [11] and [9]), which is
considered now a cornerstone of the theory of open quantum systems. Actually,
this equation follows from the Redfield equation [12, 13], which is a local in time
equation for a system S density matrix ρS(t) obtained from the von-Neumann
equation of motion for the combined (system+environment) statistical operator
in the second (Born) approximation in a weak system-environment interaction
with additional assumptions that the total system-bath density matrix ρ(t) can
be factorized for any time t, i.e., ρ(t) = ρS(t)ρB, where ρB is a bath density ma-
trix, and that the system density matrix at any retarded time ρS(t

′) (t′ < t) can
be replaced by that at the present time ρS(t) (Markovian approximation). To
make the Redfield master equation fully Markovian one, the Born-Markov ap-
proximation is further applied, which is justified when the bath correlation time
τB is small compared with the relaxation time of a system τS , i.e.,τB ≪ τS .
The Born-Markov approximation means that we consider the system evolution
at a large timescale t ∼ τS ≫ τB. Generally, the Markovian Redfield equation
does not guarantee the dynamics complete positivity, and in order to achieve
this goal, the additional approximation, which involves an averaging over the
rapidly oscillating terms in the master equation (the rotating wave approxima-
tion), is needed. This procedure, which eliminates the very rapidly oscillating
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during the time τS terms, means that the evolution equation is valid for a large
timescale t ∼ τS . The final quantum master equation, which results from the
mentioned approximations, is the Lindblad equation preserving all properties
of the density matrix (including complete positivity). Therefore, the Lindblad
equation (like the Redfield equation) has its fundamental limitations (see also
[14]).

The essential conventional assumption, made at the derivation of the Red-
field (and the Lindblad) equation, is that the system-environment correlations
(including the correlations at the initial moment of time t0) are ignored. There
are several approaches for including the correlations either for specific Hamilto-
nians (see, e.g., [15]), or in the frameworks of completely positive trace preserv-
ing (CPTP) maps [16] and of the Lindblad-like equations ([17]).

In this paper, we suggest the different approach to the initial correlation
problem based on the modified standard time-independent projection opera-
tor formalism allowing for exact transformation of the conventional Nakajima-
Zwanzig-like inhomogeneous generalized master equations (GMEs) for the rel-
evant parts of a system statistical operator or correlation function, containing
initial correlations in the inhomogeneous (irrelevant) initial condition term (a
source), into the homogeneous generalized master equations (HGMEs) with no
irrelevant source term. These exact HGMEs contain initial correlations in the
modified flow and collision terms. The parameter of initial correlations is defined
by a series in the product of irrelevant parts of statistical operator or correlation
function and the inverse of the corresponding relevant parts. In the second order
approximation in the system-environment interaction, the obtained HGMEs are
local in time and contain general initial system-bath interaction in the kernel
governing the evolution of these equations. They exactly describe in the Born
approximation the system evolution on any timescale (no Bogoliubov’s principle
of weakening of initial correlations or the Markov approximation is applied) and
have an additional terms defined by initial correlations. These terms are consid-
ered for an interesting (and quite realistic) case of the system+bath equilibrium
Gibbs initial state, when initial correlations do not damp with time. The equa-
tions for ρS(t) (at t > t0, when an external force is applied) and system’s correla-
tion function are further specialized for the bath of oscillators (Boson field) and
then for a quantum oscillator as a system of interest (Fano-like system). These
equations are valid on any timescale and describe the evolution of a localized
Bose mode. The solutions of equations show that the equilibrium initial correla-
tions influence the selected system’s evolution process. For short times, ωt ≪ 1
(ω is a bath characteristic frequency), the relaxation process is quadratic in
time, and for long times, ωt ≫ 1, the evolution exhibits the standard behavior,
but with additional phase shift for the equilibrium system’s correlation function
conditioned by survived equilibrium initial correlations. Consequences of such
a behavioral for the observables are discussed.
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2 Time-independent projection operator formal-
ism with no ”molecular chaos”-type approxi-

mation

2.1 Homogeneous equation for the relevant statistical op-
erator

We start with the von-Neumann equation for a statistical operator F (t) of N
(N ≫ 1) quantum particles

∂

∂t
F (t) = L(t)F (t). (1)

Here, F (t) satisfies the normalization condition

TrF (t) = 1, (2)

and L is the Liouville superoperator acting on an arbitrary operator A(t) as

L(t)A(t) =
1

i~
[H(t), A(t)], exp[L(t)]A(t) = exp[H(t)/i~]A(t) exp[−H(t)/i~],

(3)
where [, ] is a commutator and H(t) is the system’s Hamiltonian, generally
dependent on time.

The formal solution to Eq. (1) is

F (t) = U(t, t0)F (t0), U(t, t0) = T exp

[
t∫
t0

dsL(s)

]
, (4)

where T denotes the chronological time-ordering operator, which orders the
product of time-dependent operators such that their time-arguments increase
from right to left, and F (t0) is the statistical operator at some initial moment
of time t0 (initial condition).

We employ first the standard projection operator technique [5], [6], [18]. By
applying the time-independent projection operators P = P 2 and Q = Q2 =
1 − P (QP = PQ = 0) to Eq. (1), it is easy to obtain the equations for the
relevant fr(t) = PF (t) and irrelevant fi (t) = QF (t) parts of F (t)

∂

∂t
fr(t) = PL(t)[fr(t) + fi(t)],

∂

∂t
fi(t) = QL(t)[fr(t) + fi(t)]. (5)

A relevant part of F (t) is defined in a way permitting the calculation of the
average values (observables) of the operators depending on the much smaller
number s ≪ N of relevant variables than that of the total system. This is
typically achieved by selecting a projector P which integrates off the irrelevant
variables excessive for the calculation of observables of interest.
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A formal solution to the second Eq. (5) has the form

fi(t) =
t∫
t0

dt′S(t, t′)QL(t′)fr(t
′) + S(t, t0)fi(t0), (6)

where

S(t, t0) = T exp

[
t∫
t0

dsQL(s)

]
. (7)

Inserting this solution into the first Eq. (5), we obtain the conventional ex-
act time-convolution generalized master equation (TC-GME) known as the
Nakajima-Zwanzig equation for the relevant part of the statistical operator (see
also [9])

∂fr(t)

∂t
= PL(t)[fr(t) +

t∫
t0

dt′S(t, t′)QL(t′)fr(t
′) + S(t, t0)fi(t0)]. (8)

Serving as a basis for many applications, Eq. (8), nevertheless, contains the
undesirable and in general non-negligible inhomogeneous term (the last term in
the right hand side of (8)), which depends (via fi (t0)) on the same large number
of variables as the statistical operator F (t0) at the initial instant t0. Therefore,
Eq. (8) does not provide for a complete reduced description of a multiparticle
system in terms of relevant (reduced) statistical operator. Applying Bogoli-
ubov’s principle of weakening of initial correlations [1] allowing to eliminate the
influence of fi(t0) on the large enough timescale t − t0 ≫ tcor (tcor is the cor-
relation time caused by inter-particle interaction) or using a factorized initial
condition,when fi (t0) = QF (t0) = 0, one can achieve the above-mentioned
goal and obtain the homogeneous GME for fr(t), i.e. Eq. (8) with no initial
condition term. However, obtained in such a way homogeneous GME is either
approximate and valid only on a large enough time scale (when all initial corre-
lations vanish) or applicable only for a rather artificial (actually not realistic), as
pointed in [2], initial conditions (no correlations at an initial instant of time). As
to our understanding, there is no satisfactory way for eliminating the irrelevant
initial condition term (see, e.g., [7]).

In order to obtain an exact homogeneous equation for the relevant part of
a statistical operator, one can try to transfer the inhomogeneous initial corre-
lations term in the right hand side of Eq. (8) to the (super)operator acting on
the relevant part fr(t). To achieve this goal, we suggest to present the initial
(irrelevant) term fi(t0) = QF (t0) as a following exact identity

fi(t0) = fi(t0)F
−1(t0)U

−1(t, t0)(P +Q)U(t, t0)F (t0)

= K0U
−1(t, t0)[fr(t) + fi(t)],

K0 = fi(t0)F
−1(t0), U

−1(t, t0) = T− exp[−
t∫
t0

dsL(s)], (9)

where U−1(t, t0) is the backward-in-time evolution operator, T− is the an-
tichronological time-ordering operator arranging the time-dependent operators
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L(s) in such a way that the time arguments increase from left to right, U−1(t, t0)U(t, t0) =
1, F−1(t0) is inverse of F (t0), F

−1(t0)F (t0) = 1, and P + Q = 1. Hence, ad-
ditional identity (9) is obtained by multiplying the irrelevant part by unity
F−1(t0)F (t0) and inserting U−1(t, t0)U(t, t0) = 1 and P (t) +Q(t) = 1.

In (9), we introduce the parameter of initial correlations

K0 = fi(t0)F
−1(t0) = fi(t0)[fr(t0) + fi(t0)]

−1

= fi(t0)f
−1
r (t0)[1 + fi(t0)f

−1
r (t0)]

−1

= (1−K0)fi(t0)f
−1
r (t0), (10)

which is a series in fi(t0)f
−1
r (t0).

We now have two equations, (6) and (9), relating fi(t) to fi(t0). Finding
fi(t0) from these equations as a function of fr(t) and substituting it in (8), we
obtain the equation

∂fr(t)

∂t
= PL(t)R(t, t0)[fr(t) +

t∫
t0

dt′S(t, t′)QL(t′)fr(t
′)], (11)

where operator R(t, t0) is defined as

R(t, t0) = 1 +K(t, t0),

K(t, t0) = S(t, t0) [1−K0(t, t0)]
−1

K0U
−1(t, t0),

K0(t, t0) = K0U
−1(t, t0)S(t, t0). (12)

Thus, we have obtained the exact integro-differential Eq. (11), which is
the homogeneous one (in contrast to Eq. (8)) and takes into account the ini-
tial correlations and their dynamics on an equal footing with collisions via the
modification of the (super)operator (memory kernel) of GME (8) acting on the
relevant part of the statistical operator fr(t). The obtained exact kernel of Eq.
(11) can serve as a starting point for consecutive perturbation expansions. In
many cases such expansions of the homogeneous equations (like (11)) have much
broader range of validity than that for the inhomogeneous ones (like (8)).

2.2 Homogeneous equation for system’s correlation func-
tion

Another useful approach to studying the reduced dynamics of a many-particle
system is the correlation functions approach. We divide the total system of
N particle into a system of interest S with a number of particles s ≪ N and
its environment (the rest of particles). Let us consider the following two-time
correlation function for the time-dependent operators αS(t) = e−LtαS(0) and
βS(t) = e−LtβS(0) related to the system S

〈αS(0)βS(t)〉 = TrS [βS(0)ρ
α
S(t)], ρ

α
S(t) = TrBFα(t)],

Fα(t) = eLtFα(0), Fα(0) = ρtot(0)αS(0), (13)
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where the superoperator L is given by (3) (with time-independent L), and the
averaging symbol 〈...〉 = TrS+B[...ρtot(0)] is defined as the trace TrS+B over the
total S+B system degrees of freedom with the time-independent statistical op-
erator ρtot(0) = ρtot at the initial time moment t0 = 0 (the Heisenberg picture),
which generally is not a statistical operator for S +B system in an equilibrium
state. We also used the invariance of trace under the cyclic permutation of
operators. The superoperator Fα(t) is subject to the following equation

∂

∂t
Fα(t) = LFα(t), (14)

which defines the evolution of the correlation function (13) in time .
As earlier, with the help of the projection operators P and Q = 1 − P

and taking into account that in Eq. (14) L does not depend on time, we can
write down the Nakajima-Zwanzig equation (8) for the relevant part of the
superoperator Fα(t), f

α
r (t) = PFα(t), as

∂fα
r (t)

∂t
= PL[fα

r (t) +
t∫
0

dt′eQL(t−t′)QLfα
r (t

′) + eQLtfα
i (0)], (15)

where the irrelevant part of Fα(t) is fα
i (t) = QFα(t). As it is seen from Eq.

(15), the projector P selects the relevant part of Fα(t), which is supposed to be
sufficient for obtaining the closed equation for the evolution of correlation func-
tion for system’s S operators, i.e., an operator P projects the large-dimensional
Hilbert space of the total system on the smaller dimensional space of the sys-
tem of interest S. But Eq. (15) is the inhomogeneous one which contains the
irrelevant initial condition term fα

i (0) = (ρtot − Pρtot)αS(0).
To make this equation homogeneous (completely closed), the above described

procedure can be employed. As a result, we arrive at the following homogeneous
equation

∂fα
r (t)

∂t
= PLRα(t)[fα

r (t) +
t∫
0

dt′eQL(t−t′)QLfα
r (t

′)], (16)

where operator Rα(t) is defined as

Rα(t) = 1 +Kα(t),

Kα(t) = eQLt [1−Kα
0 (t)]

−1
Kα

0 e
−Lt,

Kα
0 (t) = Kα

0 e
−LteQLt,

Kα
0 = fα

i (0)F
−1
α (0) = (1 −Kα

0 )f
α
i (0)[f

α
r (0)]

−1. (17)

3 System in a bath

For the case under consideration, when a system of interest S interacts with
another quantum stationary system B, called bath, the Hamiltonian of the
whole S +B system can be presented as

H(t) = HS(t) +HB +HSB, (18)
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whereHS(t) is related to a system S and can depend on time through an applied
external force,HB andHSB are the Hamiltonians of a bath and of a system-bath
interaction, respectively. The corresponding Liouville superoperator is

L(t) = LS(t) + LB + LSB. (19)

We are interested in finding the evolution equation for statistical operator
of the system S

ρS(t) = TrBF (t) (20)

from Eq. (11) (TrB is the partial trace of the bath degrees of freedom). To this
end, it is convenient to introduce the following projection operators

P = ρBTrB, Q = 1− P, T rBρB = 1, (21)

where ρB stands for the normalized statistical operator of a bath. Then the
relevant and irrelevant parts of the statistical operator F (t) are

fr(t) = PF (t) = ρBρS(t), fi(t) = QF (t) = F (t)− ρBρS(t). (22)

Then, Eq. (11) can be rewritten in a more specific and simple form for the
Liouvillian (19) and projection operators (21) if we take into consideration the
following properties

PLS(t)Q = QLS(t)P = 0, PLB = LBP = 0, PLBQ = QLBP = 0. (23)

where we took into account that [HB, ρB] = 0. We also assume that

〈HSB〉B = TrBHSBρB = 0 (24)

and, therefore,
PLSBP = 0, (25)

which is a rather typical situation (see below).
Now, Eq. (11) can be rewritten as

∂fr(t)

∂t
= LS(t)fr(t) + PLSBK(t, t0)fr(t)

+PLSB[1 +K(t, t0)]
t∫
t0

dt′S(t, t′)LSBfr(t
′), (26)

where K(t, t0) is defined by (12) with S(t, t′) replaced by

S(t, t′) = T exp

{
t∫
t′
ds[L0(s) +QLSB]

}
,

L0(s) = LS(s) + LB (27)
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Taking TrB from both sides of Eq. (26) and using definitions (21) and (22),
we obtain the following exact equation for a system’s statistical operator

∂ρS(t)

∂t
= LS(t)ρS(t) + TrBLSBK(t, t0)ρBρS(t)

+TrBLSB[1 +K(t, t0)]
t∫
t0

dt′S(t, t′)LSBρBρS(t
′). (28)

This equation differs from the standard form of such an equation (see, e.g.,
[9]) by the additional terms in the kernel containing K(t, t0), which account for
the influence of initial system-bath correlations on the evolution of the system.
We also note, that conventionally used ”molecular chaos”-type approximation,
fr(t

′) = ρBρS(t
′) (including the initial time moment t′ = t0), is not used when

going from Eq. (26) to Eq. (28).
In the correlation function approach, when we have a time-independent LS

(HS), the relevant and irrelevant parts of Fα(t) selected by the projector (21)
are

fα
r (t) = PFα(t) = ρBρ

α
S(t), f

α
i (t) = QFα(t) = Fα(t)− ρBρ

α
S(t),

ραS(t) = TrBFα(t). (29)

Then, using (23) and (25), Eq. (16) can be simplified as

∂fα
r (t)

∂t
= LSf

α
r (t) + PLSBK

α
(t)fα

r (t)

+PLSB[1 +K
α
(t)]

t∫
0

dt′e(L0+QLSB)(t−t′)LSBf
α
r (t

′), (30)

whereK
α
(t) is defined by (17) with the substitution eQLt → exp(L0+QLSB).We

remind, that for the correlation function case, the Hamiltonian is time-independent
and L0 = LS + LB.

Again, by applying TrB to Eq. (30) from the left, we obtain the following
exact equation for ραS(t)

∂ραS(t)

∂t
= LSρ

α
S(t) + TrBLSBK

α
(t)ρBρ

α
S(t)

+TrBLSB[1 +K
α
(t)]

t∫
0

dt′e(L0+QLSB)(t−t′)LSBρBρ
α
S(t

′), (31)

which defines the evolution of the correlation function (13) according to

∂

∂t
〈αS(0)βS(t)〉 = TrS [βS(0)

∂

∂t
ραS(t)]. (32)

Obtained Eqs. (28) and (31) are the homogeneous exact evolution equations
for a system’s reduced statistical operator and correlation function in the case of
a system interacting with a bath which exactly account for initial correlations.
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4 The Born approximation

Equations (28) and (31) are exact but very complicated. Let us consider the
case of a weak system-bath interaction when HSB is proportional to some small
parameter ε. The collision terms (third in the r.h.s. of Eq.(28) and Eq. (31))
are already proportional to ε2. Then, we will restrict ourselves by the second
order in the system-bath interaction (the Born approximation). So, we need
to estimate (with regard to the power of ε) the initial correlations parameters
K(t, t0) and K

α
(t). In the zero approximation in ε,

S(t, t0) = U0(t, t0) = T exp[
t∫
t0

dsL0(s)],

U−1
0 (t, t0) = T− exp[−

t∫
t0

dsL0(s)],

exp[(L0 +QLSB)t] = exp(L0t), e
−Lt = e−L0t., (33)

and, therefore, K0(t, t0) = K0 and K
α

0 = Kα
0 (see (12) and (17)). There-

fore, K(t, t0) = K1(t, t0) = U0(t, t0)(1 −K0)
−1K0U

−1
0 (t, t0), K

α
(t) = K

α

1 (t) =
eL0t(1 − Kα

0 )
−1Kα

0 e
−L0t, and because (1 − K0)

−1K0 = fi(t0)f
−1
r (t0), (1 −

Kα
0 )

−1Kα
0 = fα

i (0)[f
α
r (0)]

−1, as it follows from (10) and (17), we finally have in
the adopted approximation

K1(t, t0) = GSB(t, t0) = U0(t, t0)fi(t0)f
−1
r (t0)U

−1
0 (t, t0),

K
α

1 (t) = Gt
SB(t) = eL0tfα

i (0)[f
α
r (0)]

−1e−L0t, (34)

where

fi(t0)f
−1
r (t0) = [F (t0)− ρBρS(t0)][ρBρS(t0)]

−1, ρS(t0) = TrBF (t0),

fα
i (0)[f

α
r (0)]

−1 = (ρtot − ρBρ
t
S)αS(0)[ρBρ

t
SαS(0)]

−1

= (ρtot − ρBρ
t
S)[ρBρ

t
S ]

−1, ρtS = TrBρtot (35)

(see (22)) and (29). Note, that Gt
SB(t) (34) does not depend on αS(0) (see

(35)). Estimating [F (t0)− ρBρS(t0)] ∼ ε and (ρtot − ρBρ
t
S) ∼ ε, we obtain that

both functions (34) ∼ ε.
Thus, in the second order in ε, we have from Eqs. (28) and (31) the following

equations for ρS(t) and ραS(t) after the change of integration variable t− t′ = τ

∂ρS(t)

∂t
= LS(t)ρS(t) + TrBLSBGSB(t, t0)ρBρS(t)

+TrBLSB

t−t0∫
0

dτU0(t, t− τ )LSBρBρS(t− τ ),

∂ραS(t)

∂t
= LSρ

α
S(t) + TrBLSBG

t
SB(t)ρBρ

α
S(t)

+TrBLSB

t∫
0

dτeL0τLSBρBρ
α
S(t− τ). (36)
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The obtained Eqs. (36) contain (as compared to the standard case) the
additional terms in the kernels governing the evolution of ρS(t) and ραS(t), which
account for initial correlations (terms with GSB(t, t0) and Gt

SB(t)).
However, Eqs. (36) are still a time-convolution and non-Markovian ones.

To make them time local, we will employ an approach used for obtaining a
time-convolutionless GME ([19, 20]). It follows from Eqs. (4) and (13), that

F (t− τ) = U−1(t, t− τ)F (t) = U−1(t, t− τ )[fr(t) + fi(t)],

Fα(t− τ) = e−LτFα(t) = e−Lτ [fα
r (t) + fα

i (t)]. (37)

By applying the projector P (21) to this relation, using the definitions (22),
(29) and that fi(t) ∼ ε, fα

i (t) ∼ ε, we obtain in the zero approximation in ε,

ρS(t− τ ) = U−1
S (t, t− τ )ρS(t), ρ

α
S(t− τ ) = e−LSτραS(t)

U−1
S (t, t− τ ) = T− exp[−

t∫
t−τ

dλLS(λ)], (38)

where we have also used that TrB exp(−LBτ )ρB = 1.
Now, remaining in the Born (second in ε) approximation, Eqs. (36) can be

rewritten in the time-local form as

∂ρS(t)

∂t
= LS(t)ρS(t) + TrBLSBGSB(t, t0)ρBρS(t)

+TrBLSB

t−t0∫
0

dτU0(t, t− τ)LSBρBU
−1
S (t, t− τ)ρS(t),

∂ραS(t)

∂t
= LSρ

α
S(t) + TrBLSBG

t
SB(t)ρBρ

α
S(t)

+TrBLSB

t∫
0

dτeL0τLSBρBe
−LSτραS(t). (39)

Equations (39) represent the central result of this section. They are exact
in the second approximation in the system-bath interaction and homogeneous
(completely closed) time-local evolution equations for the system’s statistical
operator and correlation function, respectively. No ”molecular chaos”-type or
Bogoliubov’s principle of weakening of initial correlations approximation has
been used. These equations effectively account for the influence in time of initial
correlations on the system’s evolution process via the functions GSB(t, t0) or
Gt

SB(t) (34) defined for an arbitrary initial statistical operator F (t0) or ρtot(0),
respectively.

4.1 An equilibrium Gibbs initial state

Let us suppose, that up to the moment of time t0 the total system is in an
equilibrium state with the Gibbs statistical operator but just after t0 (at t >
t0) an external (generally time-dependent) force (described by the Hamiltonian
Hext(t)) is applied to a system S driving it from an initial state, i.e.,

12



F (t ≤ t0) = ρeq = Z−1 exp(−βH), H = HS +HB +HSB, t ≤ t0,

β = 1/kBT, Z = TrS+B exp(−βH),

H(t) = HS(t) +HB +HSB, HS(t) = HS +Hext(t), t > t0. (40)

In this case, the evolution of the system’s statistical operator can be described
by Eq. (39) for ρS(t) with the equilibrium initial statistical operator for the total
system F (t0) = Z−1 exp(−βH). For this quite realistic initial equilibrium state
we can explicitly find the initial condition function GSB(t, t0) (34) by making
use of the following exact identity

e−βH = e−βH0 −

β∫

0

dλe−λH0HSBe
λHe−βH ,

H0 = HS +HB. (41)

We also select

ρB = ρeqB =
e−βHB

TrBe−βHB

(42)

in the definition (21) for the projection operator.
Then, in the linear approximation in HSB,

ρS(t0) = TrBF (t0) = TrBe
−βH/Z

≈ TrB[e
−βH0 −

β∫

0

dλe−λH0HSBe
λH0e−βH0 ]/T rS+B[e

−βH0 −

β∫

0

dλe−λH0HSBe
λH0e−βH0 ].(43)

It is not difficult to see that

TrB

β∫

0

dλe−λH0HSBe
λH0e−βH0 = 0, (44)

and. therefore, in this approximation,

ρS(t0) = e−βHS/T rSe
−βHS . (45)

where we have used the condition (24).
Thus, in the first approximation in HSB

[F (t0)− ρBρS(t0)][ρBρS(t0)]
−1 = e−βH [ρeqB ρS(t0)]

−1 − 1

= −

β∫

0

dλe−λH0HSBe
λH0 , (46)
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and, finally, the function defining the influence of initial correlations on the
evolution of the system’s statistical operator, given by Eq. (39), is

GSB(t, t0) = −U0(t, t0)

β∫

0

dλe−λH0HSBe
λH0U−1

0 (t, t0). (47)

Likewise, selecting ρtot(0) = Z−1 exp(−βH) and ρB = ρeqB (42), we obtain
for function Gt

SB(t) (34)

Gt
SB(t) = −eL0t

β∫

0

dλe−λH0HSBe
λH0e−L0t. (48)

This function describes the influence of initial correlation on the evolution of the
equilibrium correlation function (13) (defined with the ρtot(0) = Z−1 exp(−βH))
according to the second Eq. (39).

It is interesting to note, that the terms describing the influence of initial
equilibrium correlations, given by Eqs. (47) and (48), coincide with those ob-
tained in works [22, 21] (dealing with the polaron mobility) by different method
of converting the inhomogeneous Nakajima-Zwanzig equation into the homo-
geneous one based on the identity (41), which, however, is applicable only for
initial Gibbs state (40) for the total system. The method suggested in this work
(see Sec 2) is applicable for any initial state.

4.2 A system interacting with the Boson field

Let us consider the case when a system interacts with the Boson field which
acts as the bath, i.e., we assume that

HB =
∑

k

~ωkb
+
k bk,

HSB =
∑

k

[Ck(S)bk + C+
k (S)b+k ], (49)

where ~ωk is the energy of the field quantum characterized by the set of quantum
numbers k, b+k , bk are the Bose-operators of creation and annihilation of the field
quantum, and Ck(S) is an operator acting on a system S.

For simplicity, we assume that an external force (contributing to LS(t)) in
Eq. (39) for system’s statistical operator ρS(t) is weak and thus disregard it
in the initial correlation and collision terms (linear response regime). In this
case (and putting t0 = 0), the mentioned terms in Eqs. (39) for ρS(t) and ραS(t)
become formally identical.

Then, the term of initial correlations in Eq. (39) for ρS(t) with the use of
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(47), (48) (equilibrium initial state), and (49), can be written as

IS(t, t0) = TrBLSBGSB(t, t0)ρBρS(t) = −PLSBe
L0t

β∫

0

dλe−λH0HSBe
λH0e−L0tρeqB ρS(t)

= i

β∫

0

dλ
∑

k

{e−iωk(t−iλ)(1 +Nk)[Ck(S), C
+
k (St,λ)ρS(t)]

+eiωk(t−iλ)Nk[C
+
k (S), Ck(St,λ)ρS(t)]}, (50)

where we put ~ = 1 and

Ck(St,λ) = e−iHSte−λHSCk(S)e
iHSteλHS , C+

k (St,λ) = e−iHSte−λHSC+
k (S)eiHSteλHS .

(51)
Here we also used, that for HB, given by (49),

e−iHBtbke
iHBt = eiωktbk, e

−iHBtb+
k
eiHBt = e−iωktb+

k
,

e−λHB bke
λHB = eλωkbk, e

−λHB b+k e
λHB = e−λωkb+k

< bkbk1
>B= 0, < b+k b

+
k1

>B= 0,

< bkb
+
k1

>B= (1 +Nk)δkk1
, < b+k bk1

>B= Nkδkk1
,

< ... >B= TrΣ(...ρ
eq
B ), Nk = [exp(βωk)− 1]−1 (52)

Likewise, we have for the term of Eq. (39), which can be identified with a
collision integral,

CS(t, t0) = TrBLSB

t∫
0

dτeL0τLSBρ
eq
B e−LSτρS(t)

= −

t∫

0

dτ
∑

k

{e−iωkτ (1 +Nk)[Ck(S), C
+
k (Sτ )ρS(t)]

+eiωkτNk[C
+
k (S), Ck(Sτ )ρS(t)] + h.c}. (53)

where

Ck(Sτ ) = e−iHSτCk(S)e
iHSτ , C+

k (Sτ ) = e−iHSτC+
k (S)eiHSτ . (54)

The same expressions with the substitution ρS(t) → ραS(t) are valid for
the initial correlations and collision terms of Eq. (39) for system’s correlation
function (see (32)). We note, that in the adopted approximation, the collision
integral (53) is valid for any initial condition (not only for the equilibrium Gibbs
state (40)).

5 Quantum oscillator (Fano-like model)

The results, given by Eqs. (50) and (53), define the evolution equations (39)
for the system’s density matrix and correlaton function with account for initial
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correlations. These results hold for any system’s Hamiltonian HS(t), any small
parameter of the system-Boson field interaction Ck(S), and equilibrium initial
state of the total system.

Let us further specify the system and consider the following Hamiltonian
for a single-mode cavity system (could be a nanocavity in nanostructures or
photonic crystals) interacting with a Boson reservoir

H(t = 0) = ωca
+a+

∑

k

ωkb
+
k bk +

∑

k

Vk(ab
+
k + a+bk),

H(t > 0) = HS
ext(t) +H(t = 0), (55)

where the first term in H(t = 0) is the Hamiltonian of the cavity field with
frequency ωc (corresponds to the system Hamiltonian HS), a

+ and a are the
creation and annihilation operators of the cavity field. The second term (corre-
sponds to HB) describes the environment as the reservoir of the infinite Boson
modes, and the third term (HSB) is the the system-bath interaction with the
coupling strength Vk. The Hamiltonian (55) represents a Fano-type model of
a localized state coupled with a continuum [23]. Thus, we can now calculate
explicitly the initial correlation term (50) and the collision term (53) for Eqs.
(39) by putting in these equations

Ck(S) = Vka
+, C+

k (S) = Vka,

Ck(Sτ ) = e−iHSτCk(S)e
iHSτ = Vke

−iωcta+,

C+
k (Sτ ) = e−iHSτC+

k (S)eiHSτ = Vke
iωcta,

Ck(St,λ) = e−iHSte−λHSCk(S)e
iHSteλHS = Vke

−iωc(t−iλ)a+

C+
k (St,λ) = e−iHSte−λHSC+

k (S)eiHSteλHS = Vke
iωc(t−iλ)a. (56)

For initial correlation term the result is

IS(t) = i

β∫

0

dλ
∑

k

V 2
k {e

−i(ωk−ωc)(t−iλ)(1 +Nk)[a
+, aρS(t)]

+ei(ωk−ωc)(t−iλ)Nk[a, a
+ρS(t)]}

= i
∑

k

V 2
k {e

−i(ωk−ωc)t(1 +Nk)
e(ωc−ωk)β − 1

ωc − ωk

[a+, aρS(t)]

+ei(ωk−ωc)tNk

e(ωk−ωc)β − 1

ωk − ωc

[a, a+ρS(t)]}, (57)
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and the collision term is given by

CS(t) = −

t∫

0

dτ
∑

k

V 2
k {e

−i(ωk−ωc)τ (1 +Nk)[a
+, aρS(t)]

+ei(ωk−ωc)τNk[a, a
+ρS(t)]

+ei(ωk−ωc)τ (1 +Nk)[ρS(t)a
+, a]

e−i(ωk−ωc)τNk[ρS(t)a, a
+]}

= −

t∫

0

dτ
∑

k

V 2
k {e

−i(ωk−ωc)τ (1 +Nk)[a
+, aρS(t)]

+ei(ωk−ωc)τNk[a, a
+ρS(t)] + h.c} (58)

Thus, we have the following equations for system’s statistical operator and
equilibrium correlation function in the case of the Hamiltonian (55)

∂ρS(t)

∂t
= LS(t)ρS(t) + IS(t) + CS(t),

∂ραS(t)

∂t
= LSρ

α
S(t) + IαS (t) + Cα

S (t), (59)

where IαS (t) and Cα
S (t) are defined by Eqs. (57), (58) with the substitution

ρS(t) → ραS(t) for the second Eq. (59), and LS(t) differs from LS by the term
conditioned by an external driving force.

It is instructive to consider Eqs. (59) neglecting the initial condition terms.
Then, let us assume that the integration over τ in (58) can be extended to in-
finity, i.e., that we are interested in the evolution on the relaxation timescale
t ∼ τ rel ≫ |ωk − ωc|

−1 (the Markov approximation). We also define the inte-
grals over τ as

∞∫

0

dτe±i(ωk−ωc)τ = lim
η→+0

∞∫

0

dτe±i(ωk−ωc)τ−ητ = πδ(ωk − ωc)± iP
1

ωk − ωc

,

(60)
where P stands for the integral principal value. As a result, we obtain the
following expression for the collision term

CS(t) = −i∆ωc[a
+a, ρS(t)] + J(ωc)(1 +Nc)[aρS(t)a

+ −
1

2
{a+a, ρS(t)}]

+J(ωc)Nc[a
+ρS(t)a−

1

2
{aa+, ρS(t)}], t ∼ τ rel ≫ |ωk − ωc|

−1
,

∆ωc = P

∞∫

0

dω

2π

J(ω)

ωc − ω
, J(ω) = 2π

∑

k

V 2
k δ(ωk − ω),

Nc = N(ωc), {A,B} = AB +BA. (61)
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This is the standard Lindblad form for a collision term of a quantum oscil-
lator (see, e.g. [9]), where ∆ωc is a shift of a frequency ωc due to interaction
with a bath and J(ω) is the bath spectral density.

Let us now consider Eqs. (59) with the contributions of the initial corre-
lation. We will try to obtain the solution of Eqs. (59) for any timescale and,
therefore, will not use the Markov approximation for these equations (Eq. (61)
is only applicable for a large timescale). Considering, e.g., the equations for
〈a〉tS = TrS [aρS(t)] and 〈a+〉tS = TrS [a

+ρS(t)] and using (57) and (58), we
easily obtain

〈aIS(t)〉S = TrS [aIS(t)] = iγi(t)〈a〉
t
S , γi(t) =

∑

k

V 2
k e

−i(ωk−ωc)t(1 +Nk)
e(ωc−ωk)β − 1

ωc − ωk

,

〈a+IS(t)〉S = −iγ+
i (t)〈a

+〉tS , γ
+
i (t) =

∑

k

V 2
k e

i(ωk−ωc)tNk

e(ωk−ωc)β − 1

ωk − ωc

,

〈aCS(t)〉S = −γc(t)〈a〉
t
S , γc(t) =

t∫

0

dτ
∑

k

V 2
k e

−i(ωk−ωc)τ ,

〈a+CS(t)〉S = −γ+
c (t)〈a

+〉tS , γ
+
c (t) = γ∗

c(t) =

t∫

0

dτ
∑

k

V 2
k e

i(ωk−ωc)τ , (62)

Thus, we have from Eqs. (59) with account for initial correlations

∂〈a〉tS
∂t

= −iωc〈a〉
t
S − iT rs{[a,H

S
ext(t)]ρS(t)]} + iγi(t)〈a〉

t
S − γc(t)〈a〉

t
S ,

∂〈a+〉tS
∂t

= iωc〈a
+〉tS − iT rs{[a

+, HS
ext(t)]ρS(t)]} − iγ+

i (t)〈a
+〉tS − γ+

c (t)〈a
+〉tS .(63)

In order to consider Eqs. (63), we should introduce the external force in the
Hamiltonian (55), e.g., as

HS
ext(t) = E0 exp(iωdt)a+ E0 exp(−iωdt)a

+, (64)

where E0 is the strength of the external driving field with frequency ωd. Then,
the inhomogeneous terms in Eqs. (63) are

iT rs{[a,H
S
ext(t)]ρS(t)]} = iE0 exp(−iωdt),

iT rs{[a
+, HS

ext(t)]ρS(t)]} = −iE0 exp(iωdt). (65)

For an equilibrium two-time correlation function 〈αS(0)a(t)〉 and 〈αS(0)a
+(t)〉

(see (13)) with ρtot = ρeq (40) we have

〈αS(0)a(t)〉eq = TrS{a[ρ
α
S(t)]eq}, 〈αS(0)a

+(t)〉eq = TrS{a
+[ραS(t)]eq},

[ραS(t)]eq = TrBe
LtρeqαS(0). (66)
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In this correlation functions case, Eqs. (62) hold with the substitution ,〈a〉tS →
〈αS(0)a(t)〉, 〈a

+〉tS → 〈αS(0)a
+(t)〉. Therefore, the equations for these correla-

tion functions are

∂〈αS(0)a(t)〉eq
∂t

= γ(t)〈αS(0)a(t)〉eq , γ(t) = −iωc + iγi(t)− γc(t),

∂〈αS(0)a
+(t)〉eq

∂t
= γ+(t)〈αS(0)a

+(t)〉eq , γ
+(t) = iωc − iγ+

i (t)− γ+
c (t).(67)

It is worth noting, that Eqs. (63) are inhomogeneous due to the driving Hamilto-
nian HS

ext(t), whereas Eqs. (67) for correlations functions are the homogeneous
ones.

In order to illustrate the influence of initial correlations on the evolution
process, let us consider the more simple homogeneous Eqs. (67), which describe
the dynamics of the cavity field fluctuations. They can be easily solved and the
result is

〈αS(0)a(t)〉eq = exp[Γ(t)]〈αS(0)a(0)〉eq ,Γ(t) =

t∫

0

dt′γ(t′) = −iωct+ iΓi(t)− Γc(t),

〈αS(0)a
+(t)〉eq = exp[Γ+(t)]〈αS(0)a

+(0)〉eq,Γ
+(t) =

t∫

0

dt′γ+(t′) = iωct− iΓ+
i (t)− Γ+

c (t),

Γi(t) =

t∫

0

dt′γi(t
′),Γ+

i (t) =

t∫

0

dt′γ+
i (t

′),Γc(t) =

t∫

0

dt′γc(t
′),Γ+

c (t) =

t∫

0

dt′γ+
c (t

′),(68)

where the relaxation functions in Eqs. (68) after integration over t′ acquire, as
it follows from (62) and (67), the following form

Γi(t) = i
∑

k

V 2
k (1 +Nk)[e

(ωc−ωk)β − 1]

×
1− cos(ωk − ωc)t+ i sin(ωk − ωc)t

(ωk − ωc)2
,

Γ+
i (t) = i

∑

k

V 2
k Nk[e

(ωk−ωc)β − 1]

×
1− cos(ωk − ωc)t− i sin(ωk − ωc)t

(ωk − ωc)2
,

Γc(t) =
∑

k

V 2
k [

1− cos(ωk − ωc)t+ i sin(ωk − ωc)t

(ωk − ωc)2
+

t

i(ωk − ωc)
],

Γ+
c (t) =

∑

k

V 2
k [

1− cos(ωk − ωc)t− i sin(ωk − ωc)t

(ωk − ωc)2
−

t

i(ωk − ωc)
]. (69)

Using the spectral density of the Bosonic reservoir J(ω) (61), the relaxation
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functions (69) can be rewritten as

Γi(t) =
1

~2

i

2π

∞∫

−ωc

dωJ(ωc + ω)[1 +N(~ωc + ~ω)](e−~ωβ − 1)

×
1− cos(ωt) + i sin(ωt)

ω2
,

Γ+
i (t) =

1

~2

i

2π

∞∫

−ωc

dωJ(ωc + ω)N(~ωc + ~ω)(e~ωβ − 1)

×
1− cos(ωt)− i sin(ωt)

ω2
,

Γc(t) =
1

~2

1

2π

∞∫

−ωc

dωJ(ωc + ω)[
1− cos(ωt) + i sin(ω)t

ω2
+

t

iω
],

Γ+
c (t) =

1

~2

1

2π

∞∫

−ωc

dωJ(ωc + ω)[
1− cos(ωt)− i sin(ωt)

ω2
−

t

iω
],

N(~ω) = [exp(β~ω)− 1]−1, (70)

where we recover the Planck constant.
The formulae (68), (70) give the exact in the second order (Born) approx-

imation solution to the system (cavity) equilibrium correlation functions ac-
counting for initial correlations and valid on any timescale (in contrast to Eq.
(61)). The evolution of these correlations functions is time-reversible (invariant
to the t → −t, i → −i replacement).

It is interesting to follow the evolution of the correlation functions with time
in more detail. To this end, we introduce the following timescales

ωt ≪ 1, ωt ≫ 1, (71)

where ω is the characteristic bath frequency, e.g., ~ω ∼ kBT (see also the
definition of the relaxation time after Eq. (59)), or introducing the coherence
time tcoh,

t ≪ tcoh, t ≫ tcoh, tcoh ∼ ~/kBT (72)

Let us first consider the case of the small timescale ωt ≪ 1. In this case, we
can approximate cos(ωt) = 1− 1

2 (ωt)
2 and sin(ωt) = ωt. As a result we obtain
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for the correlation functions (68)

〈αS(0)a(t)〉eq = exp[Γ<(t)]〈αS(0)a(0)〉eq , ωt ≪ 1,

Γ<(t) = −i(ωc +∆iωc)t− γt2,

∆iωc =
1

~2

∞∫

−ωc

dω

2π

J(ωc + ω)

ω
[1 +N(~ωc + ~ω)](e−~ωβ − 1),

γ =
1

2~2

∞∫

−ωc

dω

2π
J(ωc + ω){1 + [1 +N(~ωc + ~ω)](e−~ωβ − 1)},

〈αS(0)a
+(t)〉eq = exp[Γ+

<(t)]〈αS(0)a
+(0)〉eq, ωt ≪ 1,

Γ+
<(t) = i[ωc − (∆iωc)

+]t− γ+t2,

(∆iωc)
+ =

1

~2

∞∫

−ωc

dω

2π

J(ωc + ω)

ω
N(~ωc + ~ω)(e~ωβ − 1),

γ+ =
1

2~2

∞∫

−ωc

dω

2π
J(ωc + ω)[1−N(~ωc + ~ω)(e~ωβ − 1)] (73)

which shows quadratic in time evolution caused not only by collisions (first
terms in γ, γ+) but also by initial correlations (second terms). There are also
the cavity frequency shifts ∆iωc, (∆iωc)

+ conditioned exclusively by initial
correlations. We note, that due to the contribution of initial correlations, these
quantities depend on temperature.

A more interesting is the situation on the kinetic timescale, which we define
as

t & τrel ≫ tcoh ∼
1

ω
∼

~

kBT
, (74)

where the coherence time tcoh is defined by (72). The time hierarchy (74) is
supposed to be realized in the considered case of a weak system-environment
interaction. On the kinetic timescale we can take a limit t → ∞ and use in Eqs.
(70) the following representations of δ- function

lim
t→∞

1− cos(ωt)

ω2
= πδ(ω) |t| , lim

t→∞

sin(ωt)

ω
= πδ(ω) (75)

Then, the relaxation functions (70) become

Γi(t) = Φ(β) = τ−1
rel~[1 +N(~ωc)]β, τ

−1
rel =

J(ωc)

2~2
,

Γ+
i (t) = Φ+(β) = τ−1

rel~N(~ωc)β,

Γc(t) = τ−1
rel |t|+ i∆ωct,Γ

+
c (t) = τ−1

rel |t| − i∆ωct,

∆ωc = −
1

2π~2
P

∞∫

−ωc

dω
J(ωc + ω)

ω
,

t ≫ 1/ω, (76)
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where we observed that
∞∫

−ωc

dωJ(ωc)
δ(ω)
ω

=
∞∫

−∞

dωJ(ωc)
δ(ω)
ω

= 0 and assumed

that the integral over ω is meant as its principal value. Note, that the frequency
shift here ∆ωc coincides with that defined in (61) (where ~ = 1).

Thus, the time evolution of the system correlation functions on the large
timescale is given by the following expressions (see (68))

〈αS(0)a(t)〉eq = exp[iΦ(β)] exp[−iω̃ct− τ−1
rel |t|]〈αS(0)a(0)〉eq

〈αS(0)a
+(t)〉eq = exp[−iΦ+(β)] exp[iω̃ct− τ−1

rel |t|]〈αS(0)a
+(0)〉eq,

ω̃c = ωc +∆ωc, t ≫ 1/ω. (77)

This is the main result of this section: Equations (77) differ from the stan-
dard ones (see, e.g., [24]) by the extra phase factors exp[iΦ(β)] and exp[−iΦ+(β)]
which emerge due to initial correlations (it is easy to verify, that using the Lind-
blad equation (61) in the absence of initial correlations, we can obtain the result
(77) with no extra phase factors). These extra factors can influence the observ-
ables, in the considered example associated with the cavity field fluctuations.
The result (77) also shows, that although the initial correlations influence the
relaxation with time process (see (68) and (70)), on the large timescale they
cease to do that (Φ(β) does not depend on time) but can contribute to the
observables. It is also interesting to note, that Eqs. (77) are not time-reversible
(although Eqs. (68) are) and this is due to initial correlations. If we disregard
initial correlations, Eqs. (77) become time-reversible. Thus, irreversibility on
the large (asymptotic) timescale (t → ∞) emerges here due to initial correla-
tions.

Generally, the system correlation function determines the response of the
system on the applied driving force, and, if the initial correlations survive on
the kinetic timescale as in the considered above case, they can influence the
kinetic coefficients. For example, the additional phase factor (of the type given
by (77)) influences the polaron mobility, as it was demonstrated earlier in work
[21] treating the dynamics of an electron interacting with a bath of phonons in
the polar crystals.

6 Summary

We have presented a novel approach to the dynamics of a system coupled with
a bath. The approach is based on the exact homogeneous (completely closed)
generalized master equations for the relevant parts of a system’s statistical op-
erator and correlation function (Eqs. (11) and (16)). These equations exactly
follow from the inhomogeneous Nakajima-Zwanzig GME without any ”molecu-
lar chaos”-type approximations and account for initial correlations in the ker-
nel governing their evolution in time. For a system in a bath, the obtained
equations are equivalent to the homogeneous equations for a system of interest
statistical operator and correlation function (Eqs. (28) and (31)). In the second
(Born) approximation in the system-bath interaction these equations reduce to
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the time-local ones (39) which describe the evolution of a system interacting
with a bath at any timescale and any initial state of the entire system (system
+bath).

Equations (39) are the instruments for investigation of a dynamics of a spe-
cific system in a bath. They have been further specialized for the important
and quite realistic initial Gibbs equilibrium state for the whole system and the
bath as a Boson field. The corresponding initial correlation and collision terms
are given by (50) and (53).

As an application, the quantum oscillator (cavity mode) interacting with a
Boson field (Fano-like model) has been considered. The equations for an oscilla-
tor statistical operator and correlation function have been obtained (Eqs. (59))
with the initial correlations and collision terms given by Eqs. (57) and (58). The
solution (68) for the cavity field fluctuations (correlation functions), where the
generators are defined by Eqs. (70), has been obtained. This solution describes
the evolution of the fluctuations of localized cavity mode at any timescale and
shows the influence of initial correlations on the evolution process. For small
times, the evolution is quadratic in time, while at the large timescale (see Eq.
(77)), when the Markov approximation is applicable (actually at t → ∞), the
initial correlations cease to influence the dynamics of the cavity mode fluctu-
ations, but the initial correlations terms survive and result in the additional
phase factor in the correlation functions, which distinguishes this result from
the standard one obtained from the corresponding Lindblad equation,
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