
ar
X

iv
:2

40
5.

07
18

8v
1

 [
cs

.G
T

]
 1

2
M

ay
 2

02
4

DECIDING REGULAR GAMES:
A PLAYGROUND FOR EXPONENTIAL TIME ALGORITHMS

ZIHUI LIANG∗, BAKH KHOUSSAINOV† , AND MINGYU XIAO‡

Abstract. Regular games form a well-established class of games for analysis and synthesis of
reactive systems. They include coloured Muller games, McNaughton games, Muller games, Rabin
games, and Streett games. These games are played on directed graphs G where Player 0 and Player 1
play by generating an infinite path ρ through the graph. The winner is determined by specifications
put on the set X of vertices in ρ that occur infinitely often. These games are determined, enabling
the partitioning of G into two sets W0 and W1 of winning positions for Player 0 and Player 1,
respectively. Numerous algorithms exist that decide specific instances of regular games, e.g., Muller
games, by computing W0 and W1. In this paper we aim to find general principles for designing
uniform algorithms that decide all regular games. For this we utilise various recursive and dynamic
programming algorithms that leverage standard notions such as subgames and traps. Importantly,
we show that our techniques improve or match the performances of existing algorithms for many
instances of regular games.

Key words. Regular games, coloured Muller games, Rabin games, deciding games.

1. Introduction. In the area of verification of reactive systems, studying games
played on finite graphs is a key research topic [12]. The recent work [11] serves as
an excellent reference for the state-of-the-art in this area. Interest in these games
arises from their role in modeling and verifying reactive systems as games on graphs.
Coloured Muller games, Rabin games, Streett games, Muller games, and McNaughton
games constitute well-established classes of games for verification. These games are
played on finite bipartite graphs G between Player 0 (the controller) and Player 1 (the
adversary, e.g., the environment). Player 0 and Player 1 play the game by producing
an infinite path ρ in G. Then the winner of this play is determined by conditions put
on Inf(ρ) the set of all vertices in the path that appear infinitely often. Studying the
algorithmic content of determinacy results for these games is at the core of the area.

Next we provide some basic definitions used in the study of regular games. After
that we discuss known algorithms and compare them with our findings.

1.1. Arenas, regular games, subarenas, and traps. All games that we listed
above are played in arenas:

Definition 1.1. An arena A is a bipartite directed graph (V0, V1, E), where
1. V0 ∩ V1 = ∅, and V = V0 ∪ V1 is the set of nodes, also called positions.
2. E ⊆ V0 × V1 ∪ V1 × V0 is the edge set where each node has an outgoing edge.
3. V0 and V1 are sets of positions for Player 0 and Player 1, respectively.

Players play the game in a given arena A by taking turns and moving a token
along the edges of the arena. Initially, the token is placed on a node v0 ∈ V . If
v0 ∈ V0, then Player 0 moves first. If v0 ∈ V1, then Player 1 moves first. In each
round of play, if the token is positioned on a Player σ’s position v, then Player σ
chooses u ∈ E(v), moves the token to u along the edge (v, u), and the play continues
on to the next round. Note that condition 2 on the arena guarantees that the players
can always make a move at any round of the play.

∗University of Electronic Science and Technology of China (zihuiliang.tcs@gmail.com).
†University of Electronic Science and Technology of China (bmk@uestc.edu.cn).
‡University of Electronic Sciences and Technology of China (myxiao@uestc.edu.cn).

0

http://arxiv.org/abs/2405.07188v1
mailto:zihuiliang.tcs@gmail.com
mailto:bmk@uestc.edu.cn
mailto:myxiao@uestc.edu.cn

Definition 1.2. A play, in a given arena A, starting at v0, is an infinite se-
quence ρ = v0, v1, v2, . . . such that vi+1 ∈ E(vi) for all i ∈ N.

Given a play ρ = v0, v1, . . ., the set Inf(ρ) = {v ∈ V | ∃ωi(vi = v)} is called the
infinity set of ρ. The winner of this play is determined by a condition put on Inf(ρ).
We list several of these conditions that are well-established in the area.

Definition 1.3. The following games played on a given arena A = (V0, V1, E)
will be called regular games:

1. A coloured Muller game is G = (A, c, (F0,F1)), where c : V → C is a
mapping from V into the set C of colors, F0 ∪ F1 = 2C and F0 ∩ F1 = ∅.
The sets F0 and F1 are called winning conditions. Player σ wins the play
ρ if c(Inf(ρ)) ∈ Fσ, where σ = 0, 1.

2. A McNaughton game is the tuple G = (A,W, (F0,F1)), where W ⊆ V ,
F0∪F1 = 2W and F0∩F1 = ∅. Player σ wins the play ρ if Inf(ρ)∩W ∈ Fσ.

3. A Muller game is the tuple G = (A, (F0,F1)), where F0 ∪ F1 = 2V and
F0 ∩ F1 = ∅. Player σ wins the play ρ if Inf(ρ) ∈ Fσ.

4. A Rabin game is the tuple G = (A, (U1, V1), . . . , (Uk, Vk)), where Ui, Vi ⊆ V ,
(Ui, Vi) is a winning pair, and k ≥ 0 is the index. Player 0 wins the play
ρ if there is a pair (Ui, Vi) such that Inf(ρ)∩Ui 6= ∅ and Inf(ρ)∩Vi = ∅. Else,
Player 1 wins.

5. A Streett game is the tuple G = (A, (U1, V1), . . . , (Uk, Vk)), where Ui, Vi

are as in Rabin game. Player 0 wins the play ρ if for all i ∈ {1, . . . , k} if
Inf(ρ) ∩ Ui 6= ∅ then Inf(ρ) ∩ Vi 6= ∅. Otherwise, Player 1 wins.

6. A KL game is the tuple G = (A, (u1, S1), . . . , (ut, St)), where ui ∈ V , Si ⊆
V , (ui, Si) is a winning pair, and the index t ≥ 0 is an integer. Player 0
wins the play ρ if there is a pair (ui, Si) such that ui ∈ Inf(ρ) and Inf(ρ) ⊆ Si.
Else, Player 1 wins.

Note that the first three games are symmetric. Rabin games can be considered
as dual to Streett games. The first five winning conditions are well-established condi-
tions. The last condition is new. The motivation behind this new winning condition
lies in the transformation of Rabin and Streett games into Muller games via the KL
winning condition. In a precise sense, as will be seen in Section 4.5 via Lemma 4.12,
the KL condition serves as a compressed Rabin winning condition. The games that
we defined have natural parameters:

Definition 1.4. The sequence |C|, k, |W |, t is the list of parameters for col-
ored Muller games, Rabin and Streett games, McNaughton games, and KL games,
respectively.

Since the parameters |W | and |C| range in the interval [0, |V |], we can call them
small parameters. The parameters k and t range in [0, 4|V |] and [0, 2|V | · |V |],
respectively. Hence, we call them (potentially) large parameters.

Definition 1.5. Let A be an arena. A pseudo-arena of A determined by X is
the tuple A(X) = (X0, X1, EX) where X0 = V0∩X, X1 = V1∩X, EX = E∩(X×X).
If this pseudo-arena is an arena, then we call it the subarena determined by X.

The opponent of Player σ, where σ ∈ {0, 1}, is denoted by Player σ̄. Traps are
subarenas in games where one of the players has no choice but stay:

Definition 1.6 (σ-trap). A subarena A(X) is a σ-trap for Player σ if each of
the following two conditions are satisfied: (1) For all x ∈ Xσ̄ there is a y ∈ Xσ such
that (x, y) ∈ E. (2) For all x ∈ Xσ it is the case that E(x) ⊆ X.

1

If A(X) is a σ-trap, then Player σ̄ can stay in A(X) forever if the player wishes to
do so.

Let T be a subset of the arena A = (V0, V1, E). The attractor of Player σ to the
set T ⊆ V , denoted Attrσ(T,A), is the set of positions from where Player σ can force
the plays into T . The attractor Attrσ(T,A) is computed as follows:

W0 = T , Wi+1 = Wi ∪ {u ∈ Vσ | E(u) ∩Wi 6= ∅} ∪ {u ∈ Vσ̄ | E(u) ⊆ Wi},
and then set Attrσ(T,A) =

⋃

i≥0 Wi.
The set Attrσ(T,A) can be computed in O(|E|). We call Attrσ the attractor

operator. Note that the set V \Attrσ(T,A), the complement of the σ-attractor of T ,
is a σ-trap for all T . This set is the emptyset if and only if V = Attrσ(T,A).

A strategy for Player σ is a function that receives as input initial segments of
plays v0, v1, . . . , vk where vk ∈ Vσ and outputs some vk+1 such that vk+1 ∈ E(vk).
An important class of strategies are finite state strategies. R. McNaughton in [19]
proved that the winner in McNaughton games has a finite state winning strategy. W.
Zielonka proves that the winners of regular games have finite state winning strategies
[23]. S. Dziembowski, M. Jurdzinski, and I. Walukiewicz in [6] investigate the memory
needed for the winners of coloured Muller games. They show that the memory |V |!
is a sharp bound for finite state winning strategies.

In the study of games, the focus is placed on solving them. Solving a given
regular game entails two key objectives. First, one aims to devise an algorithm that,
when provided with a regular game G, partitions the set V into two sets Win0 and
Win1 such that v ∈ Winσ if and only if Player σ wins the game starting at v, where
σ ∈ {0, 1}. This is called the decision problem where one wants to find out the
winner of the game. Second, one would like to design an algorithm that, given a
regular game, extracts a winning strategy for the victorious player. This is known as
the synthesis problem.

Traditionally, research on regular games specifically selects an instance of regular
games, e.g., Muller games, Rabin games or Streett games, and studies the decision
and synthesis problems for these instances. This paper however, instead of focusing on
instances of regular games, aims at finding uniform algorithms and general principles
for deciding all regular games. Importantly, we show that our techniques based on
general principles improve or match the performances of existing decision algorithms
for many instances of regular games.

1.2. Our contributions in light of known algorithms. We provide two
types of algorithms for deciding regular games. The first type are recursion based,
and the second type are dynamic programming based. Recursive algorithms have
been exploited in the area significantly. To the best of our knowledge, dynamic
programming techniques have not been much used in the area. We utilise these
techniques and improve known algorithms for deciding all regular games defined above.

The performances of algorithms for regular games G can be measured in two ways
in terms of input sizes. One is when the input sizes are defined as |V | + |E|. The
other is when the games G are presented explicitely that consists of listing V , E, and
the corresponding winning conditions. In these explicit representations the sizes of
Muller, McNaughton, and coloured Muller games are bounded by |V |+ |E|+2|V | · |V |.
The sizes of Rabin and Streett games are bounded by |V |+ |E|+4|V | · |V |. The sizes
of the KL games are bounded by |V | + |E|+ 2|V | · |V |2. We use the notation |G| for
these representations of games G. These two ways of representing inputs, together
with the small parameters |C| and |W | and potentially large parameters k and t,
should be taken into account in our discussion below.

2

1: Coloured Muller games. The folklore algorithms that decide coloured
Muller games use induction on cardinality of the color set C [11]. These algorithms are
recursive and run in time O(|C||E|(|C||V |)|C|−1) and space O(|G|+ |C||V |). Using the
breakthrough quasi-polynomial time algorithm for parity games, C. Calude, S. Jain,
B. Khoussainov, W. Li, and F. Stephan improve all the known algorithms for coloured
Muller games with the running time O(|C|5|C| · |V |5) and space O((|C|!|V |)O(1)) [2].
Björklund et al. in [1] showed that under the ETH it is impossible to decide coloured
Muller games in time O(2o(|C|) · |V |a) for any a > 0. C. Calude, S. Jain, B. Khous-
sainov, W. Li, and F. Stephan in [2] improved this by showing that under the ETH it
is impossible to decide coloured Muller games in 2o(|C|·log(|C|))Poly(|V |). Their proof,
however, implies that this impossibility result holds when |C| ≤

√

|V |. The table
below now compares these results with our algorithms.

Best known (running time, space) Our algorithm (s)

(O(|C|5|C| · |V |5), O((|C|!|V |)O(1))) (O(2|V ||C||E|), O(|G| + 2|V ||V |))
[2] Theorem 4.1 (DP)

(O(|C||E|(|C||V |)|C|−1), O(|G| + |C||V |)) (O(2|V ||V ||E|), O(|G| + 2|V |))
folklore, e.g., see[11] Theorem 4.5 (DP)

(O(|C|!
(|V |
|C|

)

|V ||E|), O(|G| + |C||V |))
Theorem 3.2 (recursion)

The algorithms from Theorems 4.1 and 4.5 are dynamic programming (DP) al-
gorithms. One can verify that if |V |/ log log(n) ≤ |C|, for instance |V |/a < C where
a > 1, then:

1. Running times of both of these algorithms are better than O(|C|5|C| · |V |5),
2. Moreover, when the value of |C| are in the range of |V |/ log log(n) ≤ |C|,

then these running times are in 2o(|C|·log(|C|))Poly(|V |). This refines and
strengthens the impossibility result that under the ETH no algorithm exists
that decides coloured Muller games in 2o(|C|·log(|C|))Poly(|V |) [2].

3. The spaces of both of these algorithms are also better than O((|C|!|V |)O(1)).
4. All of the previously known algorithms have superexponential running times.

Our algorithms run in exponential time.
For small parameters such as |C| ≤ log(|V |), the algorithms from [2] and [11]

outperform our algorithms. Note, however, that the condition |V |/ log log(n) ≤ |C|,
as stated in our second observation above, is reasonable and practically feasible. For
instance, our algorithms are better for any value of |C| with C ≥ |V |/a, where a > 1.
Also, the running times of our algorithms are exponential thus matching the bound
of the impossibility result of Björklund et al. mentioned above.

Our recursive algorithm from Theorem 3.2 is a recast of standard recursive algo-
rithms. However, as shown in the table, our careful running time analysis implies that
our recursive algorithms has a better running time and it matches the space bounds
of the previously known recursive algorithms.

2: Rabin and Streett games. E. A. Emerson and C. S. Jutla show that the
problem of deciding Rabin games is NP complete [7, 9]. Hence, deciding Streett games
is co-NP complete. Horn’s algorithm for deciding Rabin games has the running time
O(k!|V |2k) [13]. N. Piterman and A. Pnuelli show that Rabin and Streett games can
be decided in time O(|E||V |k+1kk!) and space O(nk) [22]. The work of N. Piterman
and A. Pnuelli remained state-of-the-art for Rabin games until the quasi-polynomial
breakthrough for parity games by C. Calude, S. Jain, B. Khoussainov, W. Li, and F.

3

Stephan [2]. They gave a FPT algorithm for Rabin games on k colors by converting
it to a parity game and using the quasi-polynomial algorithm. A Rabin game with
n vertices, m edges and k colors, can be reduced to a parity game with N = nk2k!
vertices, M = nk2k!m edges and K = 2k + 1 colors [8] (We will use these values of
N , M , and K below). By combining the reduction from Rabin to parity games and
the state-of-the-art algorithms for parity games [4, 5, 10, 16] in a “space-efficient”
manner, see for instance Jurdziński and Lazić [16], one can solve Rabin games in
time O(max{MN2.38, 2O(K logK)}), but in exponential space. On substitution of the
values of M and N , the algorithm of Jurdziński and Lazić would take time at least
proportional to m(nk2k!)3.38. However, observe that the parity game obtained from
a Rabin game is such that the number of vertices N is much larger than the number
of colors K. This results in K ∈ o(log(N)). For cases where the number of vertices
of the resulting parity game is much larger than the number of priorities, say the
number of colors (2k + 1) is o(log(N)), Jurdziński and Lazić also give an analysis
of their algorithm that would solve Rabin games in time O(nmk!2+o(1)) . Closely
matching this are the run times in the work of Fearnley et al. [10] who provides,
among other bounds, a quasi-bi-linear bound of O(MNa(N)log logN), where a is the
inverse-Ackermann function. In either case above, this best-known algorithm has
at least a (k!)2+o(1) dependence in its run time, and takes the space proportional
to (nk2k!) log(nk2k!); this has a k! dependence again. R. Majumdar et al. in [18]
recently provided an algorithm that decides Rabin games in Õ(|E||V |(k!)1+o(1)) time
and O(|V |k log k log |V |) space. This breaks through the 2 + o(1) barrier. A. Casares
et al. have shown in [3] that under the ETH it is impossible to decide Rabin games
in 2o(k log k)Poly(|V |). Just like for coloured Muller games, this impossibility result
holds true when k ≤

√

|V |. The next table compares these results with our findings.

Best known (running time, space) Our algorithm (s)

(O(|E||V |k+1kk!), O(|G| + k|V |)) (O((k|V |+ 2|V ||E|)|V |), O(|G| + 2|V ||V |))
[22] Theorem 4.14 (DP)

(Õ(|E||V |(k!)1+o(1)), O(|G| + k|V | log k log |V |)) (O(|V |!|V |(|E|+ k|V |)), O(|G| + |V |2))
[18] Theorem 3.4 (recursion)

We single out four key parts of both of our algorithms:
1. In terms of time, both our dynamic and recursive algorithms outperform the

known algorithms when the parameter k ranges in [|V |, 4|V |]. In particular,
when k is polynomial on |V | (which is a practical consideration), then our
algorithms have better running times.

2. Just as for coloured Muller games we refine the impossibility result of A.
Casares et al. under the assumption of the ETH [3]. Namely, when the pa-
rameter k ≥ |V | log |V |, both of our algorithms run in 2o(k log k)Poly(|V |). We
consider the condition k ≥ |V | log |V | as reasonable and practically feasible.

3. Our DP algorithm from Theorem 4.14 is the first exponential time algorithm
that decides Rabin games. The previously known algorithms run in superex-
ponential times.

4. When k falls into the range [|V |, 4|V |], then the recursive algorithm from
Theorem 3.4 performs the best in terms of space against other algorithms.

When the values of k fall within the range [2|V |, 4|V |], our dynamic algorithm
from Theorem 4.14 outperforms other algorithms both in terms of space and time.

If Player 0 wins Rabin games, then the player has a memoryless winning strategy
[9]. Hence, one might suggest the following way of finding the winner. Enumerate all

4

memoryless strategies and select the winning one. Even when the arena is a sparse
graph, e.g., positions have a fixed bounded out-degree, this process does not lead to
exponential running time as the opponent might have a winning strategy with a large
memory.

3: Muller games. Nerode, Remmel, and Yakhnis were the first who designed
a competitive algorithm that decides Muller games [21]. The running time of their
algorithm is O(|V |!·|V ||E|). W. Zielonka [23] examines Muller games through Zielonka
trees. The size of Zielonka tree is O(2|V |) in the worst case. S. Dziembowski, M.
Jurdzinski, and I. Walukiewicz in [6] show that deciding Muller games with Zielonka
trees as part of the input is in NP ∩ co-NP. D. Neider, R. Rabinovich, and M.
Zimmermann reduce Muller games to safety games with O((|V |!)3) vertices; safety
games can be solved in linear time [20]. F. Horn in [14] provides the first polynomial
time decision algorithm for explicitly given Muller games with running time O(|V | ·
|F0|·(|V |+|F0|)2). F. Horn’s correctness proof has a non-trivial flaw. B. Khoussainov,
Z. Liang, and M. Xiao in [17] provide a correct proof of Horn’s algorithm through new
methods and improve the running time to O(|F0| · (|V |+ |F0|) · |V0| log |V0|). All the
known algorithms that we listed above are either recursive algorithms or reductions to
other known classes of games. Our algorithm is a dynamic programming algorithm,
and to the best of our knowledge, the first dynamic algorithm that solves Muller
games. The table below compares the best of these results for Muller games, in terms
of time and space, with our algorithm from this paper:

Best known (running time, space) Our algorithm

(O(|F0| · (|V |+ |F0|) · |V0| log |V0|), O(|G| + |F0|(|V |+ |F0|))) (O(2|V ||V ||E|),O(|G| + 2|V |))
[17] Theorem 4.6 (DP)

One can see that the algorithm from [17], in terms of running time and space,

is better than our algorithm when |F0| ≤
√
2|V |. However, our algorithm becomes

competitive (or better) than the algorithm in [17] when |F0| >
√
2|V |. Also, note

that by running our algorithm and the algorithm in [17] in parallel, we get the best
performing polynomial time algorithm that solves explicitly given Muller games.

4: McNaughton games. R. McNaughton [19] provided the first algorithm that
decides McNaughton games in time O(a|W | · |W |! · |V |3), for a constant a > 1. Nerode,
Remmel, and Yakhnis in [21] improved the bound to O(|W |!|W ||E|). A. Dawar and
P. Hunter proved that deciding McNaughton games is a PSPACE-complete problem
[15]. The table below compares our algorithms with currently the best algorithm that
runs in time O(|W |!|W ||E|):

Best known (running time, space) Our algorithm (s)

(O(|W ||E||W |!), O(|G|+ Poly(|V |))) (O(2|V ||W ||E|),O(|G| + 2|V ||V |))
[21] Theorem 4.7 (DP)

(O(2|V ||V ||E|),O(|G| + 2|V |))
Theorem 4.7 (DP)

It is not too hard to see that when the value of the parameter |W | exceeds
|V |/ log log(n), then our algorithm has asymptotically better running time. In par-
ticular, when |W | is greater than any constant fraction of |V |, that is, |W | ≥ |V |/a
where a > 1, then our algorithm outperforms the bound in [21].

In addition to all of the above, we make the following three comments: (1) Run-
ning any of the previously known algorithms for any of the instances of regular games
in parallel with any of our appropriately chosen algorithms yields an improved run-

5

ning upper bound; (2) Exponential (on |V |) bounds are unavoidable due to the ETH
considerations (as we explained above). In fact, the sizes of the games G can be ex-
ponential on |V |; (3) Even though our algorithms provide competitive running times,
their possible limitations are in the use of large spaces and the lack of clear depen-
dence on the parameters. However, when the inputs have exponential size, then our
algorithms require linear space on the sizes of the inputs.

2. The notion of full win and characterization of winning regions. In
this section we develop a few concepts and techniques used throughout the paper. We
first define the notion of full win. This will be used in designing dynamic programming
algorithms for deciding regular games. Then we provide Lemma 2.2 that characterizes
winning regions. This lemma is used for designing recursive algorithms for solving
regular games. The last result of this section is Lemma 2.4. We call the lemma
trichotomy lemma as it characterises three cases: (1) Player 0 fully wins the game,
(2) Player 1 fully wins the game, and (3) none of the players fully wins the game.
This lemma will be the basis of our dynamic algorithms.

Definition 2.1. If Winσ(G) = V , then player σ fully wins G. Else, the player
does not fully win G. If Winσ(G) 6= V and Winσ̄(G) 6= V , then no player fully
wins G.

We now provide two lemmas that characterize winning regions in coloured Muller
games. Later we algorithmically implement the lemmas and analyse them. We start
with the first lemma. The statement of the lemma and its equivalent forms have been
known and used in various forms [19] [11]. Later we will utilise the lemma in our
recursive algorithms through their detailed exposition and analysis.

Lemma 2.2. Let σ ∈ {0, 1} such that c(V) ∈ Fσ. Then we have the following:
1. If for all c′ ∈ c(V), Attrσ(c

−1(c′),A) = V or Player σ fully wins G(V \
Attrσ(c

−1(c′),A)), then Player σ fully wins G.
2. Otherwise, let c′ be a color in C such that Attrσ(c

−1(c′),A) 6= V and Player
σ doesn’t fully win G(V \ Attrσ(c

−1(c′),A)). Then we have Winσ(G) =
Winσ(G(V \X)), where X = Attrσ̄(Winσ̄(G(V \Attrσ(c−1(c′),A))),A).

Proof. For the first part of the lemma, assume that for all c′ ∈ c(V), V =
Attrσ(c

−1(c′),A) or Player σ fully wins the game G(V \Attrσ(c−1(c′),A)). We con-
struct the following winning strategy for Player σ in G. Let c(V) = {c0, . . . , ck−1}
and i initially be 0.

• If the token is in Attrσ(c
−1(ci),A), then Player σ forces the token to a vertex

in c−1(ci) and once the token arrives at the vertex, sets i = i + 1 mod k.
• Otherwise, Player σ uses a winning strategy in G(V \Attrσ(c−1(ci),A)).

Consider any play consistent with the strategy described. If there is an i such that
the token finally stays in G(V \ Attrσ(c

−1(ci),A)), then Player σ wins the game.
Otherwise, we have c(Inf(ρ)) = c(V). Since c(V) ∈ Fσ, Player σ wins. This implies
that Player σ fully wins G.

For the second part, let c′ ∈ C such that Attrσ(c
−1(c′),A) 6= V and Player σ

doesn’t fully win G(V \Attrσ(c−1(c′),A)). Let V ′ = Winσ̄(G(V \Attrσ(c−1(c′),A))).
Consider X = Attrσ̄(V

′,A) as defined in the statement of the lemma. Note that
A(V ′) is a σ-trap in A(V \Attrσ(c−1(c′),A)); furthermore, A(V \Attrσ(c−1(c′),A))
is a σ-trap in A. This implies that A(V ′) is a σ-trap in A. Now we want to construct
a winning strategy for Player σ̄ in the arena A when the token is placed on v ∈
X ∪Winσ̄(G(V \X)). The winning strategy for Player σ̄ in this case is the following:

• If v ∈ X , Player σ̄ wins by forcing the token into V ′ and following the winning

6

strategy in σ-trap A(V ′).
• If v ∈ Winσ̄(G(V \X)), Player σ̄ follows a winning strategy in G(Winσ̄(G(V \

X))) until Player σ moves the token into X .
Note that A(Winσ(G(V \ X))) is a σ̄-trap in A(V \ X) and A(V \ X) is a σ̄-trap
in A. Hence, the set A(Winσ(G(V \ X))) is a σ̄-trap in A. Therefore, Winσ(G) =
Winσ(G(V \X)).

As an immediate corollary we get the following lemma for Player σ.

Lemma 2.3. Let G be a coloured Muller game and let σ ∈ {0, 1} be such that
c(V) ∈ Fσ. Player σ fully wins G If and only if for all c′ ∈ c(V), Attrσ(c

−1(c′),A) =
V or Player σ fully wins G(V \Attrσ(c−1(c′),A)).

Now we provide the next lemma that we call Trichotomy lemma. We will use this
lemma in our dynamic programming based algorithms.

Lemma 2.4 (Trichotomy Lemma). Let G be a coloured Muller game and let
σ ∈ {0, 1} be such that c(V) ∈ Fσ. Then we have the following two cases:

1. If for all c′ ∈ c(V), Attrσ(c
−1(c′),A) = V or Player σ fully wins G(V \

Attrσ(c
−1(c′),A)), then Player σ fully wins G.

2. Otherwise, if for all v ∈ V , Attrσ̄({v},A) = V or Player σ̄ fully wins G(V \
Attrσ̄({v},A)), then Player σ̄ fully wins G.

3. Otherwise, none of the players fully wins.

Proof. By Lemma 2.3, Part 1 is proved. For the remaining parts of the lemma,
we are under the assumption that Player σ doesn’t fully win G. For the second part,
if Player σ̄ fully wins G, then for any v ∈ V , Attrσ̄({v},A) = V or Player σ̄ fully
wins the game in σ̄-trap A(V \ Attrσ̄({v},A)). Otherwise, for all v ∈ Winσ̄(G),
Attrσ̄({v},A) 6= V and Player σ̄ doesn’t fully win G(V \Attrσ̄({v},A)).

Note that Part 2 of the lemma assumes that Player σ for which c(V) ∈ Fσ does
not fully win the game. With this assumption, the second part characterizes the
condition when Player σ̄ fully wins the game; without this assumption, Part 2 does
not hold true.

3. Recursive algorithms for deciding regular games. Our goal is to provide
recursive algorithms that solve regular games. To do so we utilise Lemma 2.2. Nat-
urally, we first start with a generic recursive algorithm that decides coloured Muller
games, see Figure 1. Lemma 2.2 guarantees correctness of the algorithm. Initially,
the algorithm memorizes G globally. Then the function SolveCMG(V ′) is called. The
algorithm returns (Win0(G(V ′)),Win1(G(V ′))).

Global Storage: A coloured Muller game G = (A, c, (F0,F1))
Function: SolveCMG(V ′)
Input: A vertex set V ′ with A(V ′) is an arena
Output: (Win0(G(V

′)), Win1(G(V
′)))

Let σ ∈ {0, 1} such that c(V ′) ∈ Fσ;
for c′ ∈ c(V ′) do

(W ′

0
,W ′

1
)← SolveCMG(V ′ \ Attrσ(c

−1(c′),A(V ′)))

if W ′

σ 6= V ′ \ Attrσ(c
−1(c′),A(V ′)) then

X ← Attrσ̄(W
′

σ̄,A(V ′));
(W ′′

0
,W ′′

1
)← SolveCMG(V ′ \X);

Wσ ← W ′′

σ , Wσ̄ ← V ′ \Wσ;
return (W0, W1)

end

end

Wσ ← V ′, Wσ̄ ← ∅;
return (W0, W1)

Fig. 1. The recursive algorithm for coloured Muller games

7

A standard analysis of this algorithm produces running time O(|C||C| · |V ||V |),
see [11]. Our analysis below improves this by showing that the multiplicative factors

|C||C| and |V ||V | in this estimate can be replaced with |C|! and
(|V |
|C|

)

, respectively.

Lemma 3.1. During the call of SolveCMG(V), the function SolveCMG is recur-

sively called at most |C|!
(|V |
|C|

)

|V | times.

Proof. If |c(V ′)| = 0, then no SolveCMG function is recursively called. Because
A(V ′) is an arena, if SolveCMG(V ′) is called then |V ′| 6= 1. If |V ′| = 2 then for all
non-empty sets V ′′ ⊆ V ′ and σ ∈ {0, 1}, Attrσ(V ′′,A(V ′)) = V ′; hence, SolveCMG
is recursively called |c(V ′)| times. If |c(V ′)| = 1 then SolveCMG is recursively called
for |c(V ′)| times.

Assume that |V ′| > 2, |c(V ′)| > 1, and for all V ′′ with |V ′′| < |V ′|, during
the call of SolveCMG(V ′′), the function SolveCMG is recursively called at most

|c(V ′′)|!
(|V ′′|
|c(V ′′)|

)

|V ′′| times. For each c′ ∈ c(V ′), the set V ′ \ Attrσ(c
−1(c′),A(V ′))

has at most |V ′| − 1 vertices and |c(V ′)| − 1 colours. For c′ ∈ c(V ′) with

Winσ(G(V ′ \Attrσ(c−1(c′),A(V ′)))) 6= V ′ \Attrσ(c−1(c′),A(V ′)),

we have W ′σ̄ = Winσ̄(G(V ′ \ Attrσ(c
−1(c′),A(V ′)))). Let X = Attrσ̄(W

′
σ̄ ,A(V ′)).

Since |W ′σ̄| ≥ 2, the set V ′ \X contains at most |V ′| − 2 vertices and |c(V ′)| colours.
By hypothesis, during the call of SolveCMG(V ′), the function SolveCMG is recursively
called at most

|c(V ′)|+ 1 + |c(V ′)|(|c(V ′)| − 1)!
(|V ′|−1
|c(V ′)|−1

)

(|V ′| − 1) + |c(V ′)|!
(|V ′|−2
|c(V ′)|

)

(|V ′| − 2)

times. This value is bounded from above by

|c(V ′)|+ 1 + |c(V ′)|!
(|V ′|
|c(V ′)|

)

(|V ′| − 1).

Now there are 2 cases:
1. |c(V ′)| = 2: Then

|c(V ′)|!
(|V ′|
|c(V ′)|

)

|V ′| − (|c(V ′)|+ 1 + |c(V ′)|!
(|V ′|
|c(V ′)|

)

(|V ′| − 1))

=|c(V ′)|!
(|V ′|
|c(V ′)|

)

− |c(V ′)| − 1 ≥ 2!

(

3

2

)

− 3 = 3

2. |c(V ′)| > 2: Then

|c(V ′)|!
(|V ′|
|c(V ′)|

)

|V ′| − (|c(V ′)|+ 1 + |c(V ′)|!
(|V ′|
|c(V ′)|

)

(|V ′| − 1))

=|c(V ′)|!
(|V ′|
|c(V ′)|

)

− |c(V ′)| − 1 ≥ |c(V ′)|!− |c(V ′)| − 1 > 0

Therefore, during the call of SolveCMG(V ′), the function SolveCMG is recursively

called at most |c(V ′)|!
(

|V ′|
|c(V ′)|

)

|V ′| times. By hypothesis, the proof is done.

Theorem 3.2. There is an algorithm that, given coloured Muller game G com-
putes Win0(G) and Win1(G) in time O(|C|!

(|V |
|C|

)

|V ||E|) and space O(|G| + |C||V |).
Proof. Consider the algorithm in Figure 1. Apply SolveCMG(V) to compute

Win0(G) and Win1(G). The recursive depth of the algorithm is at most |C| and G is

8

memorized globally. In each iteration, only O(|V |) space is applied to memorize the
vertex set. Therefore, the algorithm takes O(|G|+ |C||V |) space. By Lemma 3.1, the

function SolveCMG is recursively called for at most |C|!
(|V |
|C|

)

|V | times. We need to

estimate the running time in two parts of the algorithm:
• Part 1: The running time within the loop “for c′ ∈ c(V ′) do”. In each enumer-

ation of the color c′, there is a corresponding recursive call on SolveCMG. Ev-
ery time when we have W ′σ 6= V ′ \Attrσ(c−1(c′),A(V ′)), there is also a corre-
sponding recursive call on SolveCMG. Since the function SolveCMG is recur-
sively called for at most |C|!

(|V |
|C|

)

|V | times, this part takes O(|C|!
(|V |
|C|

)

|V ||E|)
time.

• Part 2: The running time outside the loop “for c′ ∈ c(V ′) do”. As SolveCMG

is recursively called for at most |C|!
(|V |
|C|

)

|V | times, the running time bound

for this part of the algorithm is also O((|C|!
(|V |
|C|

)

|V |+ 1)|V |).
Therefore, the algorithm takes O(|C|!

(|V |
|C|

)

|V ||E|) time. Note that the correctness of

the algorithm is provided by Lemma 2.2.

3.1. Application to Rabin and Streett games. Since Muller games are
coloured Muller games in which each vertex has its own color, there is also a recursive
algorithm for computing winning regions of Muller games. In this case, Lemma 3.1
shows that the function SolveCMG is recursively called at most |V |!|V | times. Hence,
Theorem 3.2 implies the next lemma:

Lemma 3.3. There is a recurisve algorithm that, given Muller game G computes
Win0(G) and Win1(G) in time O(|V |!|V ||E|) and space O(|G| + |V |2).

Through this lemma, by transforming Rabin conditions into Muller conditions,
we can also provide a recursive algorithm for deciding Rabin games. The algorithm
is presented in Figure 2.

Global Storage: A Rabin game G = (A, (U1, V1), . . . , (Uk, Vk))
Function: SolveRG(V ′)
Input: A vertex set V ′ with A(V ′) is an arena
Output: (Win0(G(V

′)), Win1(G(V
′)))

If for all i ∈ {1, . . . , k} we have V ∩ Ui 6= ∅ =⇒ V ∩ Vi 6= ∅ then σ = 1, otherwise σ = 0.
for v ∈ V ′ do

(W ′

0
,W ′

1
)← SolveRG(V ′ \ Attrσ({v},A(V ′)))

if W ′

σ 6= V ′ \ Attrσ({v},A(V ′)) then

X ← Attrσ̄(W
′

σ̄ ,A(V ′));
(W ′′

0
,W ′′

1
)← SolveRG(V ′ \X);

Wσ ← W ′′

σ , Wσ̄ ← V ′ \Wσ ;
return (W0, W1)

end

end

Wσ ← V ′, Wσ̄ ← ∅;
return (W0, W1)

Fig. 2. The recursive algorithm for Rabin games

Theorem 3.4. We have the following:
1. There exists an algorithm that, given Rabin or Streett game G, computes

Win0(G) and Win1(G) in time O(|V |!|V |(|E|+k|V |)) and space O(|G|+|V |2).
2. There exists an algorithm that, given KL game G computes Win0(G) and

Win1(G) in time O(|V |!|V |(|E|+ t|V |)) and space O(|G| + |V |2).
Proof. Consider the algorithm above for Rabin games. We apply SolveRG(V) to

compute Win0(G) and Win1(G). Compared with the recursive algorithm of Muller
games, the algorithm only changes the computing of σ. Therefore, the function

9

SolveRG is recursively called at most |V |!|V | times. Also each computation of σ
takes O(|k||V |) time. By Lemma 3.3, the algorithm takes time O(|V |!|V |(|E|+k|V |))
and space O(|G| + |V |2). For Streett games and KL games, similar arguments are
applied.

4. Dynamic programming algorithms for deciding regular games. In
this section, we provide dynamic programming algorithms for all regular games. First,
in Section 4.1 we provide a dynamic version of the recursive algorithm in Figure 3.
Then in Sections 4.2–4.5, the next set of all dynamic algorithms for solving the regular
games will utilize Lemma 2.4.

Let G = (A, c, (F0,F1)) be a coloured Muller game where V = {v1, v2, . . . , vn}.
We need to code subsets of V as binary strings. Therefore, we assign a n-bit bi-
nary number i to each non-empty pseudo-arena A(Si) in G so that Si = {vj |
the jth bit of i is 1}. We will use this notation for all our algorithms in this section.

4.1. Algorithm 1 for Coloured Muller Games. Consider the algorithm in
Figure 3. This is a dynamic programming version of the recursive algorithm in Figure
1. The algorithm, given a coloured Muller game G as input, returns the collections
Win0(G) and Win1(G). The correctness of the algorithm is guaranteed by Lemma
2.2. Thus, we have the following theorem:

Theorem 4.1. There is an algorithm that solves coloured Muller game in time
O(2|V ||C||E|) and space O(|G| + 2|V ||V |).

Proof. We use the Algorithm 1 in Figure 3. Note that we apply the binary trees
to maintain Fσs, W0 and W1. For each Si, the algorithm takes O(|C||E|) time to
compute W0(Si) and W1(Si). Therefore, this algorithm runs in O(2|V ||C||E|) time.
Since Fσs,W0 andW1 are encoded by binary trees, the algorithm takesO(|G|+2|V ||V |)
space.

Input: A coloured Muller game G = (A, c, (F0,F1))
Output: Win0(G), Win1(G)
W0 ← ∅, W1 ← ∅;
for i = 1 to 2n − 1 do

Si ← {vj | the jth bit of i is 1};
if A(Si) is not an arena then

break;
end

Let σ ∈ {0, 1} such that c(Si) ∈ Fσ;
is win =true;
for c′ ∈ c(Si) do

if Attrσ(c
−1(c′),A(Si)) 6= Si and

Wσ(Si \ Attrσ(c
−1(c′),A(Si))) 6= Si \ Attrσ(c

−1(c′),A(Si)) then

is win =false;

X ← Attrσ̄(Wσ̄(G(Si \ Attrσ(c
−1(c′),A(Si)))),A(Si));

Wσ(Si)← Wσ(Si \X), Wσ̄(Si)← Si \Wσ(Si);
break;

end

end

if is win =true then

Wσ(Si)← Si, Wσ̄(Si)← ∅;
end

end

return W0(V) and W1(V)

Fig. 3. Algorithm 1 for coloured Muller games

4.2. Algorithm 2 for Coloured Muller Games. In this section, we utilise the
concept of full win for the players, see Definition 2.1. The new dynamic algorithm,
Algorithm 2, is presented in Figure 4. The algorithm takes coloured Muller game

10

G = (A, c, (F0,F1)) as input. Lemma 2.4 guarantees correctness of the algorithm.
During the running process, this dynamic algorithm partitions all subgames G(Si)
into the following three collections of subsets of V :

• P0 = {Si | i ∈ [1, 2n − 1] and Player 0 fully wins G(Si)},
• P1 = {Si | i ∈ [1, 2n − 1] and Player 1 fully wins G(Si)}, and
• Q = {Si | i ∈ [1, 2n − 1] and no player fully wins G(Si)}.

Now we provide analysis of Algorithm 2 presented in Figure 4.

Input: A coloured Muller game G = (A, c, (F0,F1))
Output: The partitioned sets P0, P1 and Q.
P0 ← ∅, P1 ← ∅, Q← ∅;
for i = 1 to 2n − 1 do

Si ← {vj | the jth bit of i is 1};
if A(Si) is not an arena then

break;
end

Let σ ∈ {0, 1} such that c(Si) ∈ Fσ;
AllAttr0 =true, AllAttr1 =true;
for c′ ∈ c(Si) do

if Attrσ(c
−1(c′),A(Si)) 6= Si and Si \ Attrσ(c

−1(c′),A(Si)) /∈ Pσ then

AllAttrσ =false;
break

end

end

if AllAttrσ =true then

Pσ ← Pσ ∪ {Si};
else

for v ∈ Si do

if Attrσ̄({v},A(Si)) 6= Si and Si \ Attrσ̄({v},A(Si)) /∈ Pσ̄ then

AllAttrσ̄ =false;
break

end

if AllAttrσ̄ = true then

Pσ̄ ← Pσ̄ ∪ {Si};
else

Q← Q ∪ {Si};
end

end

end

return P0, P1 and Q

Fig. 4. Algorithm 2 for partitioning subgames of a coloured Muller game

Lemma 4.2. Algorithm 2 computes P0, P1 and Q for a coloured Muller game in
O(2|V ||V ||E|) time and O(|G| + 2|V |) space.

Proof. We use the Algorithm 2 in Figure 4. Note that we apply the binary trees
to maintain Fσs, P0, P1 and Q. For each Si, the algorithm takes O(|V ||E|) time to
determine the set to add Si. Therefore, this algorithm runs in O(2|V ||V ||E|) time.
Since P0, P1 and Q are encoded by binary trees, the algorithm takes O(|G| + 2|V |)
space.

Lemma 4.3. Let A(X) and A(Y) be 1-traps. If Player 0 fully wins G(X) and
G(Y) then Player 0 fully wins G(X ∪ Y).

Proof. We construct a winning strategy for Player 0 in G(X ∪ Y) as follows. If
the token is in Attr0(X,A(X ∪ Y)), Player 0 forces the token into X and once the
token arrives at X , Player 0 follows the winning strategy in G(X). Otherwise, Player
0 follows the winning strategy in G(Y).

Lemma 4.4. If for all Si ∈ P0, the arena A(Si) isn’t 1-trap in G, then Win0(G) =
∅ and Win1(G) = V . Otherwise, let A(Smax) be the maximal 1-trap in G so that
Smax ∈ P0. Then Win0(G) = Smax and Win1(G) = V \ Smax.

11

Proof. For the first part of the lemma, assume that Win0(G) 6= ∅. Now note that
A(Win0(G)) is 1-trap such that Player 0 fully wins G(Win0(G)). This contradicts
with the assumption of the first part. For the second part, consider all 1-traps A(X)
withX ∈ P0. Player 0 fully wins the games G(X) in each of these 1-traps by definition
of P0. By Lemma 4.3, Player 0 fully wins the union of these 1-traps. Clearly, this
union is Smax ∈ P0. Consider V \ Smax. This set determines a 0-trap. Suppose
Player 1 does not win G(V \ Smax) fully. Then there exists a 1-trap A(Y) in game
G(V \Smax) such that Player 0 fully wins G(Y). For every Player 1 position in y ∈ Y
and outgoing edge (y, x) we have either x ∈ Y or x ∈ Smax. This implies A(Smax∪Y)
is 1-trap such that Player 0 fully wins G(Smax ∪ Y). So, Smax ∪ Y must be in P0.
This contradicts with the choice of Smax.

By Lemmas 4.2 and 4.4, we have proved the following theorem.

Theorem 4.5. There exists an algorithm that decides the coloured Muller games
G in time O(2|V ||V ||E|) and space O(|G| + 2|V |).

4.3. Applications to Muller and McNaughton games. It is not too hard to
see that for Muller games and McNaughton games, we can easily recast the algorithms
presented in Sections 4.1 and 4.2. Indeed, the transformation of Muller games to
coloured Muller games is obvious. Hence, by applying Theorem 4.5 to Muller games
we get the following result:

Theorem 4.6. There exists an algorithm that decides Muller game G in time
O(2|V ||V ||E|) and space O(|G| + 2|V |).

The transformation of McNaughton games into coloured Muller games is also
easy. Each position v in W gets its own color, and all positions outside of W get the
same new colour. Hence, we can apply both Theorems 4.1 and 4.5 to McNaughton
games:

Theorem 4.7. Each of the following is true:
1. There exists an algorithm that decides McNaughton games G in O(2|V ||W ||E|)

time and O(|G| + 2|V ||V |) space.
2. There exists an algorithm that decides McNaughton games G in O(2|V ||V ||E|)

time and O(|G| + 2|V |) space.

4.4. Enumeration Lemma. This is an auxiliary section that will provide us
with an enumeration technique. This technique will then be used in designing an
algorithm to decide Rabin and Streett games by transforming these games into Muller
games in a more efficient manner.

Let n be a natural number and S = {b1, . . . , bt} be a set of n-bit binary integers,
where n is the size of the vertex set V = {v1, . . . , vn} of the arena. Each bi represents
the characteristic function of the set Vi ⊆ V : bi(v) = 1 iff v ∈ Vi. We want to
efficiently enumerate the collection 2V1 ∪ . . . ∪ 2Vt . Note that

2V1 ∪ . . . ∪ 2Vt = {x ∈ [0, 2n) | ∃b ∈ S(x & b = x)},

where x is the binary integer of length at most n, and the operation & is the bitwise
and operation. Later we will use our enumeration of the collection

X = {x ∈ [0, 2n) | ∃b ∈ S(x & b = x)}

to transform the KL condition into Muller condition.

12

Note that the brute-force algorithm that enumerates the collection X = 2S1 ∪
. . .∪2St runs in time O(2n · t). In our enumeration we want to remove the dependence
on t as t can be exponential on n. This is done in the next lemma:

Lemma 4.8 (Enumeration Lemma). Given the set S = {b1, . . . , bt} of n-bit
binary integers, we can enumerate the collection X = {x ∈ [0, 2n) | ∃b ∈ S(x & b =
x)} in time O(2nn) and space O(2n).

Proof. We apply the function Enumerate(S, n) shown in Figure 5. Also we apply
the binary trees to maintain sets of n-bit binary integers such as S, X .

Function: Enumerate(S, n).
Input: S and n where S is a set of n-bit binary integers.
Output: X = {x ∈ [0, 2n) | ∃b ∈ S(x & b = x)}.
if S = ∅ then

return ∅
end

if n = 0 then

return {0}
end

S′

0
← ∅, S′

1
← ∅

for b ∈ S do

if b mod 2 = 0 then

S′

0
← S′

0
∪ { b

2
}

else

S′

0
← S′

0
∪ { b−1

2
}

S′

1
← S′

1
∪ { b−1

2
}

end

end

X ′

0
← Enumerate(S′

0
, n− 1), X ′

1
← Enumerate(S′

1
, n − 1), X ← ∅

for x′ ∈ X ′

0
do

X ← X ∪ {2x′}
end

for x′ ∈ X ′

1
do

X ← X ∪ {2x′ + 1}
end

return X

Fig. 5. Algorithm for Enumerate(S, n)

Let (S1, n1), . . . , (Sk, nk) be the sequence of all inputs recursively computed during
the execution of Enumerate(S, n) where n1, . . . , nk are in non-decreasing order. In the
following, we want to show that for each (Si, ni), Enumerate(Si, ni) = {x ∈ [0, 2ni) |
∃b∈Si(x & b = x)}. Not hard to see that n1 = 0 or S1 = ∅ as otherwise there is a
recursion on computing an input with smaller n. If S1 = ∅ then Enumerate(S1, n1) =
∅ = {x ∈ [0, 2n1) | ∃b∈S1(x & b = x)}, otherwise n1 = 0 and Enumerate(S1, n1) =
{0} = {x ∈ [0, 2n1) | ∃b∈S1(x & b = x)}. Then we consider Enumerate(Si, ni) with
i > 1 and assume for all i′ < i, Enumerate(Si′ , ni′) = {x ∈ [0, 2ni′) | ∃b∈Si′ (x & b =
x)}.

• Si = ∅ or ni = 0: If Si = ∅ then Enumerate(Si, ni) = ∅ = {x ∈ [0, 2ni) |
∃b∈Si(x & b = x)}, otherwise ni = 0 and Enumerate(Si, ni) = {0} = {x ∈
[0, 2ni) | ∃b∈Si(x & b = x)}.

• Otherwise: Let S ′0 = {⌊ b
2⌋ | b ∈ Si} and S ′1 = { b−1

2 | b ∈ Si and b mod 2 =
1}. Then by hypothesis, Enumerate(S ′0, ni−1) = {x ∈ [0, 2ni−1) | ∃b∈S′

0
(x & b

= x)} and Enumerate(S ′1, ni − 1) = {x ∈ [0, 2ni−1) | ∃b∈S′

1
(x & b = x)}.

Therefore Enumerate(Si, ni) = {2x | x ∈ [0, 2ni−1) and ∃b∈S′

0
(x & b = x)} ∪

{2x + 1 | x ∈ [0, 2ni−1) and ∃b∈S′

1
(x & b = x)} = {x ∈ [0, 2ni) | x mod 2 =

0 and ∃b∈Si(x & b = x)} ∪ {x ∈ [0, 2ni) | x mod 2 = 1 and ∃b∈Si(x & b =
x)} = {x ∈ [0, 2ni) | ∃b∈Si(x & b = x)}.

13

Therefore, Enumerate(Si, ni) = {x ∈ [0, 2ni) | ∃b∈Si(x & b = x)}. By hypothesis, we
show that Enumerate(S, n) = {x ∈ [0, 2n) | ∃b∈S(x & b = x)}.

Then we measure the complexity of running Enumerate(S, n). We partition
{S1, n1} . . . {Sk, nk} into P (n′) = {Si | i ∈ [1, k] and ni = n′} for n′ ∈ [0, n]. Then for
each (Si, ni) with ni > 0, it calls Enumerate(S ′, n′) with n′ = ni − 1 at most 2 times.
Therefore, for each n′ ∈ [0, n], |P (n′)| ≤ 2n−n

′

. For each (Si, ni), Si is maintained
by a binary tree rooted by ri where the subtrees of ri are Si,0 = { b

2 | b ∈ Si and b

mod 2 = 0} and Si,1 = { b−1
2 | b ∈ Si and b mod 2 = 1}. Then for each (Si, ni),

S ′0 = Si,0 ∪ Si,1 and S ′1 = Si,1 are computed in O(2ni) time through the union of
binary trees. Similarly, for each (Si, ni), X is computed in O(2ni) time. Hence, the
time complexity of each iteration Enumerate(Si, ni) is bounded by O(2ni). Since
∑

n′∈[0,n]

∑

S′∈P (n′) 2
n′

=
∑

n′∈[0,n] 2
n−n′ · 2n′

= 2n · n, the time complexity of the

algorithm is bounded by O(2n · n). Since the maximum recursion depth of the algo-
rithm is n and for the recursion at level i, O(2i) space is applied, the algorithm takes
O(2n) space.

4.5. Applications to Rabin and Streett games. We can naturally transform
Rabin games, Streett games, and KL games into Muller games, and then apply our
dynamic algorithms from Section 4.3 to thus obtained Muller games. These transfor-
mations are the following:

• For Rabin games and X ⊆ V , if for i ∈ {1, . . . , k} we have X ∩ Ui 6= ∅ =⇒
X ∩ Vi 6= ∅ then X ∈ F1, otherwise X ∈ F0.

• For Streett games andX ⊆ V , if there is an i ∈ {1, . . . , k} such thatX∩Ui 6= ∅
and X ∩ Vi = ∅, then X ∈ F1, otherwise X ∈ F0.

• For KL games and X ⊆ V , if for i ∈ {1, . . . , t} we have ui ∈ X =⇒ X 6⊆ Si

then X ∈ F1, otherwise X ∈ F0.
In these transformations one needs to be careful with the parameters k and t for

Rabin and Streett games and KL games, respectively. They add additional running
time costs, especially k and t can have exponential values in |V |. For instance, the
direct translation of Rabin games to Muller games requires, for each pair (Ui, Vi) in
the Rabin winning condition, to build the collection of sets X such that X ∩ Ui 6= ∅
and X ∩ Vi = ∅. The collection of all these sets X form the Muller condition set
(F0,F1). As the index k is O(22|V |), the direct transformation above is expensive.
Our goal now is to carefully analyse the transformations of Rabin games to Muller
games.

We start with transforming KL games to Muller games. Let G = (A, (u1, S1),
. . . , (ut, St)) be a KL game. Define Muller game G′, where (F0,F1) are given as
follows:

X ∈ F0 if for some pair (ui, Si) we have ui ∈ X and X ⊆ Si, otherwise X ∈ F1

Lemma 4.9. The transformation from KL games G to Muller games G′ takes
O(2|V ||V |2) time and O(|G| + 2|V |) space.

Proof. We apply the binary encoding so that for i ∈ [1, t], ui ∈ [0, n) and Si ∈
[0, 2n). In the following, we apply binary trees to maintain sets of binary integers. We
transform G into Muller game G′ = (A, (F0,F1)) where we also apply the binary en-
coding so that F0 = {X ∈ [0, 2n) | there exists an i ∈ [1, t] so that the ui-th bit of X
is 1 and X & Si = X} and F1 = {0, 1, . . . , 2n − 1} \ F0. Then let Si = {Sj |
j ∈ [1, t] and uj = i} for i ∈ [0, n). By Lemma 4.8, for each i ∈ [0, n), we com-
pute {X ∈ [0, 2n) | ∃S∈SiX & S = X} in time O(2n · n) and space O(2n), and

14

then compute {X ∈ [0, 2n) | the i-th bit of X is 1 and ∃S∈SiX & S = X} in time
O(2n) by traversing the binary trees, checking and deleting subtrees at depth i. Since
⋃

i∈[0,n){X ∈ [0, 2n) | the i-th bit of X is 1 and ∃S∈SiX & S = X} = F0, we reuse

O(2n) space for each i ∈ [0, n) and use another O(2n) space to record the prefix union
results. Since F1 is computed from F0 in time O(2|V |) by computing the comple-
ment of the tree, this is a transformation from KL games to Muller games and the
transformation takes O(2|V ||V |2) time and O(|G| + 2|V |) space.

As an immediate corollary we get the following complexity-theoretic result for KL
games.

Theorem 4.10. There exists an algorithm that, given a KL game G, decides G
in O(2|V ||V ||E|) time and O(|G|+ 2|V |) space.

Now we transform Rabin games G to Muller games. As we mentioned above, the
direct translation to Muller games is costly. Our goal is to avoid this cost through
KL games. The following lemma is easy:

Lemma 4.11. Let X ⊆ V and let (Ui, Vi) be a winning pair in Rabin game G.
Set Yi = Ui \ Vi and Zi = V \ Vi. Then X ∩ Ui 6= ∅ and X ∩ Vi = ∅ if and only if
X ∩ Yi 6= ∅ and X ⊆ Zi.

Thus, we can replace the winning condition (U1, V1), . . . (Uk, Vk) in Rabin games to
the equivalent winning condition (Y1, Z1), . . . , (Yk, Zk). We still have Rabin winning
condition but we use this new winning condition (Y1, Z1), . . . , (Yk, Zk) to build the
desired KL game:

Lemma 4.12. The transformation from Rabin games G to KL games takes time
O(k|V |2) and space O(|G|+ 2|V ||V |).

Proof. Enumerate all pairs (Ui, Vi), compute Yi = Ui \Vi, Zi = V \Vi and add all
pairs (uj , Sj) with uj ∈ Yi and Sj = Zi into KL conditions. By applying binary trees,
the transformation takes O(k|V |2) time and O(|G| + 2|V ||V |) space. This preserves
the winning sets W0 and W1.

Thus, the transformed KL games can be viewed as a compressed version of Rabin
games.

Corollary 4.13. The transformation from Rabin games G to Muller games G′
takes O((k + 2|V |)|V |2) time and O(|G| + 2|V ||V |) space.

Note that deciding Rabin games is equivalent to deciding Streett games. Thus,
combining the arguments above, we get the following complexity-theoretic result:

Theorem 4.14. There exist algorithms that decide Rabin and Streett games G in
O((k|V |+ 2|V ||E|)|V |) time and O(|G|+ 2|V ||V |) space.

5. Conclusion. The algorithms presented in this work give rise to numerous
questions that warrant further exploration. For instance, we know that explicitly given
Muller games can be decided in polynomial time. Yet, we do not know if there are
polynomial time algorithms that decide explicitly given McNaughton games. Another
intriguing line of research is to investigate if there are exponential time algorithms
that decide coloured Muller games when the parameter |C| ranges in the interval
[
√

|V |, |V |/a], where a > 1. It could also be very interesting to replace the factor 2|V |

with 2|W | in the running time that decides McNaughton games. If so, this implies
that the ETH is not applicable to McNaughton games as opposed to coloured Muller
games (and Rabin games). These all may uncover new insights and lead to even more

15

efficient algorithms.

REFERENCES

[1] H. Björklund, S. Sandberg, and S. Vorobyov, On fixed-parameter complexity of infinite

games, in The Nordic Workshop on Programming Theory (NWPT 2003), vol. 34, Citeseer,
2003, pp. 29–31.

[2] C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan, Deciding parity games in

quasipolynomial time, in Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, 2017, pp. 252–263. STOC 2017 Best Paper Award.

[3] A. Casares, M. Pilipczuk, M. Pilipczuk, U. S. Souza, and K. Thejaswini, Simple and

tight complexity lower bounds for solving rabin games, in 2024 Symposium on Simplicity
in Algorithms (SOSA), SIAM, 2024, pp. 160–167.

[4] L. Daviaud, M. Jurdziński, and K. Thejaswini, The strahler number of a parity game,
in 47th International Colloquium on Automata, Languages, and Programming, ICALP
2020, Schloss Dagstuhl-Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2020,
p. 123.

[5] D. Dell’Erba and S. Schewe, Smaller progress measures and separating automata for parity

games, Frontiers in Computer Science, 4 (2022), p. 936903.
[6] S. Dziembowski, M. Jurdzinski, and I. Walukiewicz, How much memory is needed to win

infinite games?, in Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer
Science, IEEE, 1997, pp. 99–110.

[7] E. A. Emerson and C. S. Jutla, The complexity of tree automata and logics of programs, in
FoCS, vol. 88, 1988, pp. 328–337.

[8] E. A. Emerson and C. S. Jutla, Tree automata, mu-calculus and determinacy, in FoCS,
vol. 91, Citeseer, 1991, pp. 368–377.

[9] E. A. Emerson and C. S. Jutla, The complexity of tree automata and logics of programs,
SIAM Journal on Computing, 29 (1999), pp. 132–158.

[10] J. Fearnley, S. Jain, S. Schewe, F. Stephan, and D. Wojtczak, An ordered approach to

solving parity games in quasi polynomial time and quasi linear space, in Proceedings of
the 24th ACM SIGSOFT International SPIN Symposium on Model Checking of Software,
2017, pp. 112–121.

[11] N. Fijalkow, N. Bertrand, P. Bouyer-Decitre, R. Brenguier, A. Carayol, J. Fearn-

ley, H. Gimbert, F. Horn, R. Ibsen-Jensen, N. Markey, B. Monmege, P. Novotný,

M. Randour, O. Sankur, S. Schmitz, O. Serre, and M. Skomra, Games on graphs,
2023, https://arxiv.org/abs/2305.10546. To be published by Cambridge University Press.
Editor: Nathanaël Fijalkow.

[12] E. Grädel, W. Thomas, and T. Wilke, Automata, logics, and infinite games. lncs, vol. 2500,
2002.

[13] F. Horn, Streett games on finite graphs, in Proc. 2nd Workshop Games in Design Verification
(GDV), Citeseer, 2005.

[14] F. Horn, Explicit muller games are ptime, in IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2008.

[15] P. Hunter and A. Dawar, Complexity bounds for muller games, Theoretical Computer Science
(TCS), (2008).

[16] M. Jurdziński and R. Lazić, Succinct progress measures for solving parity games, in 2017
32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), IEEE, 2017,
pp. 1–9.

[17] Z. Liang, B. Khoussainov, T. Takisaka, and M. Xiao, Connectivity in the presence of

an opponent, in 31st Annual European Symposium on Algorithms (ESA 2023), Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2023.

[18] R. Majumdar, I. Sağlam, and K. Thejaswini, Rabin games and colourful universal trees,
in International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, Springer, 2024, pp. 213–231.

[19] R. McNaughton, Infinite games played on finite graphs, Annals of Pure and Applied Logic,
65 (1993), pp. 149–184.

[20] D. Neider, R. Rabinovich, and M. Zimmermann, Down the borel hierarchy: Solving muller

games via safety games, Theoretical Computer Science, 560 (2014), pp. 219–234.
[21] A. Nerode, J. B. Remmel, and A. Yakhnis, Mcnaughton games and extracting strategies for

concurrent programs, Annals of Pure and Applied Logic, 78 (1996), pp. 203–242.

16

https://arxiv.org/abs/2305.10546

[22] N. Piterman and A. Pnueli, Faster solutions of rabin and streett games, in 21st Annual IEEE
Symposium on Logic in Computer Science (LICS’06), IEEE, 2006, pp. 275–284.

[23] W. Zielonka, Infinite games on finitely coloured graphs with applications to automata on

infinite trees, Theoretical Computer Science, 200 (1998), pp. 135–183.

17

	Introduction
	Arenas, regular games, subarenas, and traps
	Our contributions in light of known algorithms

	The notion of full win and characterization of winning regions
	Recursive algorithms for deciding regular games
	Application to Rabin and Streett games

	Dynamic programming algorithms for deciding regular games
	Algorithm 1 for Coloured Muller Games
	Algorithm 2 for Coloured Muller Games
	Applications to Muller and McNaughton games
	Enumeration Lemma
	Applications to Rabin and Streett games

	Conclusion
	References

