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Abstract—Six-dimensional movable antenna (6DMA) is an ef-
fective solution for enhancing wireless network capacity through
the adjustment of both 3D positions and 3D rotations of dis-
tributed antennas/antenna surfaces. Although freely position-
ing/rotating 6DMA surfaces offers the greatest flexibility and
thus highest capacity improvement, its implementation may be
challenging in practice due to the drastic architecture change
required for existing base stations (BSs), which predominantly
adopt fixed-position antenna (FPA) arrays (e.g., sector antenna
arrays). Thus, we introduce in this letter a new BS architec-
ture called hybrid fixed and movable antennas (HFMA), which
consists of both conventional FPA arrays and position/rotation-
adjustable 6DMA surfaces. For ease of implementation, we
consider that all 6DMA surfaces can rotate along a circular
track above the FPA arrays. We aim to maximize the network
capacity via optimizing the rotation angles of all 6DMA surfaces
based on the users’ spatial distribution. Since this problem is
combinatorial and its optimal solution requires prohibitively high
computational complexity via exhaustive search, we propose an
alternative adaptive Markov Chain Monte Carlo based method
to solve it more efficiently. Finally, we present simulation results
that show significant performance gains achieved by our proposed
design over various benchmark schemes.

Index Terms—6DMA, hybrid fixed and movable antennas
(HFMA), channel capacity, adaptive Markov Chain Monte Carlo.

I. INTRODUCTION

The future sixth-generation (6G) wireless networks are
envisioned as an enabler for various emerging applications,
such as extended reality, intelligent transportation, and massive
Internet of Things (IoT). These applications are expected to
lead to 30 billion or more IoT devices by 2030, requiring in-
creasingly higher network capacity and transmission reliability
[1]. To achieve this challenging goal, advanced multiple-input
multiple-output (MIMO) communication techniques, such as
cell-free massive MIMO [2], extremely large-scale MIMO
[3], and intelligent reflecting surface (IRS)-aided MIMO [4],
have been proposed to improve the performance of wireless
communication systems by leveraging their spatial degrees of
freedom (DoFs). However, existing MIMO systems mostly
adopt fixed-position antennas (FPAs) at the base stations
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(BSs) and user terminals (UTs), which cannot fully exploit
the spatial variation of wireless channels at the transceivers.
Thus, movable antenna (MA) system [5]–[7], also known as
fluid antenna system (FAS) [8], [9], was introduced to enable
the antenna movement over a confined region at the BS/UT
for achieving more favorable channel conditions to improve
the communication performance. However, the existing works
on MAs/FAS have mainly considered the antenna position
adjustment on a given 2D surface or a given line, thus not
fully exploiting the spatial DoFs in a given 3D space.

Recently, to enable the full flexibility in antenna deployment
at the BS, six-dimensional movable antenna (6DMA) system
has been proposed as a new and effective solution for im-
proving wireless network capacity [10], [11]. Equipped with
distributed 6DMA surfaces which can be jointly controlled in
3D positions as well as 3D rotations to cater to the users’
spatial distribution, the 6DMA-empowered BS can maximally
utilize the antennas’ directionality, array gain and spatial
multiplexing gain to significantly enhance the wireless network
capacity. In practice, the positions and/or rotations of 6DMA
surfaces can be adjusted continuously [10] or in discrete levels
[11] (depending on the surface movement mechanism), and
optimized with or without the prior knowledge of users’ spatial
distribution in the network [10], [11].

However, despite the high performance gains achievable
with 6DMA-BS, it faces challenges in practical implementa-
tion as the antenna architecture of BSs requires a fundamental
reform from the existing FPA arrays (e.g., sector antenna
arrays) to the fully-adjustable 6DMA surfaces, which may
result in a significant increase of network infrastructure cost.
To alleviate the high implementation cost of 6DMA, we
propose in this letter a more cost-effective BS architecture
called hybrid fixed and movable antennas (HFMA), which
consists of both FPA arrays and 6DMA surfaces. In particular,
for ease of implementation, we consider that all 6DMA
surfaces can rotate along a circular track above the FPA arrays.
With the new HFMA at the BS, the users in hotspot areas
of the cell can be served by the 6DMA surfaces flexibly
by properly adjusting their rotation angles, while the other
(regular) users in the remaining areas of the cell can be
served by conventional FPAs, thus reducing the overall antenna
deployment cost at the BS as compared to the 6DMA-BS. To
maximize the network capacity, we formulate an optimiza-
tion problem by jointly designing the rotation angles of all
6DMA surfaces based on the a priori known users’ spatial
distribution. However, this problem is combinatorial and thus
requires prohibitively high complexity to solve optimally via
exhaustive search. To reduce the computational complexity,
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Fig. 1. Illustration of the HFMA-BS and the geometries of FPA array and 6DMA surface.

we propose an alternative method to solve it more efficiently
based on the adaptive Markov Chain Monte Carlo (AMCMC)
technique [12]. Simulation results show that the proposed
HFMA-BS scheme and AMCMC-based solution outperform
various benchmark schemes in terms of the network capacity
by optimally rotating/allocating 6DMA surfaces at the BS to
match the (non-uniform) users’ spatial distribution.

Notations: Boldface lower-case letter denotes vector, (·)H
and (·)T denote conjugate transpose and transpose, respec-
tively, E[·] denotes the expected value of random variable, 0N

and 1N denote the N × 1 vector with all zero elements and
all one elements, respectively, IN denotes the N ×N identity
matrix, [a]i denotes the i-th element of vector a, supp(v)
denotes the set of indices of the nonzero entries in vector
v, ⌊·⌋ denotes the floor operator, ⊗ denotes the Kronecker
product, and U [a, b] denotes the uniform distribution within
real-number interval [a, b].

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. HFMA-BS

We consider the uplink transmission from K ground users,
denoted by the set K = {1, 2, · · · ,K}, to a cellular BS which
is assumed to be equipped with the HFMA. Each user is
equipped with a single isotropic antenna. As shown in Fig.
1(a), the antennas at the HFMA-BS consist of two parts,
namely, one part with three FPA arrays (assumed to be con-
ventional sector antenna arrays), and the other part with NMA

6DMA surfaces, denoted by the set NMA = {1, 2, · · · , NMA}.
The FPA arrays are assumed to be uniform planar arrays
(UPAs), each comprising MFA = MFA,h ×MFA,v antennas,
where MFA,h and MFA,v denote the number of antennas in
the horizontal direction and the vertical direction, respectively.
Each FPA array has a fixed downtilt of zero degree, with its
center positioned at a height of h1 and a horizontal distance r1
from the ground center of the BS, denoted by o (see Fig. 1(b)).
For ease of description, we define the fixed rotation angle of
each FPA array as the azimuth angle measured from the x-axis
in the Cartesian coordinate system (CCS) o-xyz to the FPA
array’s center, denoted by φFA,f ∈ [0, 2π), f = 1, 2, 3.

The 6DMA surfaces are also modeled as UPAs, each
comprising MMA =MMA,h×MMA,v antennas, where MMA,h

and MMA,v denote the number of antennas in the horizontal
direction and the vertical direction, respectively. We define the

rotation angle of each 6DMA surface as the azimuth angle
measured from the x-axis to the the 6DMA surface’s center,
denoted by φn ∈ [0, 2π), n ∈ NMA (see Fig. 1(c)). The 6DMA
surfaces are connected to a central processing unit (CPU) at
the BS via flexible cables [10], [11] and can move along a
circular track that is above the FPA arrays and parallel to
the ground. The circle’s center is at the Cartesian coordinate
oMA = [0, 0, h2]

T and its radius is r2.
Denote the set of rotation angles for all 6DMA surfaces as

φ = [φ1, φ2, · · · , φNMA
]
T and the total number of antennas

at the BS as M = MMANMA + 3MFA. Then, the channel
vector from user k, k ∈ K, to the BS can be expressed as
hk(φ) ∈ CM×1, which is a function of φ in general. The
received signal vector at the BS is thus given by

y(φ) =

K∑
k=1

hk(φ)sk + n, (1)

where sk is the transmitted signal from user k with E{|sk|2} =
P0 and P0 denoting the transmit power; n ∼ CN (0M , σ

2IM )
denotes the independent and identically distributed (i.i.d.)
complex additive white Gaussian noise (AWGN) vector with
zero mean and average power σ2.

B. Channel Model

We set the BS’s reference position as the center of the
circular track, oMA, and denote ϕk and θk as the azimuth
and elevation angles of the signal from user k arriving at
the reference position, respectively. For user k located at the
Cartesian coordinate [xk, yk, 0]

T , θk and ϕk can be respec-
tively expressed as θk = arctan(h2/

√
x2k + y2k) +

π
2 and

ϕk =


arctan( yk

xk
), xk > 0, yk > 0,

arctan( yk

xk
) + 2π, xk > 0, yk < 0,

arctan( yk

xk
) + π, xk < 0,

(2)

where θk ∈
[
π
2 , π

]
and ϕk ∈ [0, 2π]. Given θk, ϕk and fixed

φFA,f , the overall array response vector f̃k(φ) ∈ CM×1 at the
BS can be defined as

f̃k(φ) =
[
f̃TMA,k(φ), f̃

T
FA,k

]T
, (3)

with
f̃MA,k(φ) =

[
fTMA,k(φ1), · · · , fTMA,k(φNMA)

]T
, (4)

and
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f̃FA,k =
[
fTFA,k(φFA,1), f

T
FA,k(φFA,2), f

T
FA,k(φFA,3)

]T
, (5)

where f̃MA,k(φ) and f̃FA,k denote the array response vector
of all 6DMA surfaces and all FPA arrays, respectively. We
assume that the antennas on each FPA/6DMA surface are
symmetrically arranged around the array center with an inter-
antenna distance of λc/2, where λc denotes the carrier wave-
length. Given φn, the array response vector of the n-th 6DMA
surface is given by

fMA,k(φn) =
√
Gk(φn)e

jρ1,k(φn)aMA,h(φn)⊗ aMA,v, (6)

with

aMA,h(φn) =


e
jπ

(
MMA,h+1

2 −1
)
sin(φn−ϕk) sin(θk)

...

e
jπ

(
MMA,h+1

2 −MMA,h

)
sin(φn−ϕk) sin(θk)

 ,
(7)

and

aMA,v =


e
jπ

(
MMA,v+1

2 −1
)
cos(θk)

...

e
jπ

(
MMA,v+1

2 −MMA,v

)
cos(θk)

 , (8)

where ρ1,k(φn) = 2π
λc
r2 cos(φn − ϕk) sin(θk) denotes the

phase difference between the 6DMA surface’s center and the
BS’s reference position, and Gk(φn) denotes the antenna gain
of each antenna with rotation angle φn in the scale of dBi,
defined as [13]1

Gk(φn)|dBi = Gm −min
{
12
(ϕk − φn

ϕ3dB

)2

, Gs

}
, (9)

where k ∈ K, Gm is the maximum antenna gain, Gs is the side
lobe level in the horizontal plane of the BS antenna pattern,
and ϕ3dB is the half-power beamwidth in the horizontal plane.

Similarly, for each FPA array with a fixed rotation angle
φFA,f , its array response vector is given by

fFA,k(φFA,f )=
√
Gk(φFA,f )e

jρ2,k(φFA,f)aFA,h(φFA,f)⊗aFA,v,

(10)
with aFA,h(φFA,f ) = aMA,h(φFA,f )|MMA,h→MFA,h and
aFA,v = aMA,v|MMA,v→MFA,v , where a → b means replacing
a with b, and ρ2,k(φFA,f ) =

2π
λc

(
r1 cos(ϕk−φFA,f ) sin(θk)−

(h2 − h1) cos(θk)
)

denotes the phase difference between the
FPA array’s center and the BS’s reference position.

In this letter, for simplicity, we assume the line-of-sight
(LoS) channel between each user and the BS. As a result,
the channel vector from user k to the BS is given by

hk(φ) =
√
βke

−j
2πdk
λc f̃k(φ), (11)

where βk = β0/d
2
k denotes the large-scale channel power

gain between the BS and user k, with β0 representing the
power gain at the reference distance of 1 meter (m), and dk
representing the distance from user k to the BS’s reference
position.

1To focus on investigating the effect of the rotations of 6DMA surfaces on
the network capacity, we consider the antenna’s directivity in the horizontal
direction only, while each antenna is assumed to be omnidirectional in the
vertical direction.

C. User Distribution

In this letter, we focus on a single-cell wireless network
where two types of users are present, namely regular users
and hotspot users (see Fig. 1(a)). We use tools from stochastic
geometry to model the spatial distributions of these users.
Specifically, we model the spatial distribution of regular users
over the entire cell area, denoted by A0, using a homoge-
neous Poisson point process (HPPP) with density µ0 [14]. In
addition, we assume that there are W hotspot areas in the
cell, denoted by A1, · · · ,AW , and the spatial distribution of
the users in each hotspot area is modeled as an independent
HPPP with density µw, w = 1, · · · ,W .

D. Problem Formulation

Assuming perfect channel state information (CSI) at the
BS, optimal Gaussian signaling, and multiuser joint decoding,
the average network capacity for the MIMO multiple-access
channel (MAC) is given by [15]

C(φ)=EH

[
log2 det

(
IM +

K∑
k=1

P0

σ2
hk(φ)hk(φ)

H

)]
, (12)

in bits per second per Hertz (bps/Hz), where H(φ) =
[h1(φ), · · · ,hK(φ)]. Note that different from the MIMO
channel with traditional FPAs, the capacity of the HFMA-
based MAC, as shown in (12), depends on the rotation angles
in φ, which influence all the user channels, hk(φ), k ∈ K.

Since deriving the expectation in (12) analytically is chal-
lenging, we resort to employing the Monte Carlo method to
approximate C(φ). Specifically, we generate Υ independent
realizations of the number of users as well as their locations
based on the given users’ spatial distribution. Then, the average
network capacity in (12) can be approximated as

Ĉ(φ)=
1

Υ

Υ∑
υ=1

log2 det

(
IM+

Kυ∑
k=1

P0

σ2
hk,υ(φ)hk,υ(φ)

H

)
,

(13)
where Kυ is the number of users in the υ-th realization and
hk,υ(φ), k = 1, · · · ,Kυ, υ = 1, · · · ,Υ, is the channel vector
of user k in the υ-th realization.

For ease of practical implementation, we consider that there
are L discrete positions equally spaced along the circular track,
denoted by the set L = {1, 2, · · · , L}, which can be selected
for moving the NMA 6DMA surfaces, with L > NMA. We
denote their corresponding rotation angles with respect to the
center oMA in the set Φ = {φ̃1, φ̃2, · · · , φ̃L}, where φ̃l =
(2l−1)π

L , l ∈ L. In other words, the set of feasible rotation
angles for the n-th 6DMA surface, n ∈ NMA, is given by Φ,
i.e., φn ∈ Φ. To avoid overlapping among 6DMA surfaces
at different positions/rotations, we assume that L ≤ ⌊ 2πr2Dmin

⌋,
where Dmin is the minimum distance required between the
centers of any two 6DMA surfaces. For clarity, we define an
indicator vector for the selected rotation angles as ϵ ∈ CL×1,
where [ϵ]l ∈ {0, 1} and

∑L
l=1[ϵ]l = NMA. If [ϵ]l = 1, l ∈ L,

it indicates that φ̃l is selected for deploying a 6DMA surface;
otherwise, [ϵ]l = 0.

We aim to maximize the average network capacity by
determining the optimal set of rotation angles for all 6DMA
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surfaces. Accordingly, the optimization problem is formulated
as

ϵ∗ = argmax
ϵ∈Z

Ĉ(φϵ), (14)

where ϵ∗ denotes the optimal indicator vector for the selected
rotation angles to maximize the capacity, Z denotes the
set of all different indicator vectors with the cardinality of
Q =

(
L

NMA

)
, and φϵ = [φ̃i1 , φ̃i2 , · · · , φ̃iNMA

], with in,
n ∈ NMA, denoting the support of ϵ, i.e., in ∈ supp(ϵ). Note
that problem (14) is a combinatorial optimization problem,
which can be solved through an exhaustive search method
(ESM). However, this method requires to search over all Q
combinations of the rotation angles and its complexity can
be prohibitive for large L and/or NMA values. To reduce the
computational complexity, we propose an alternative method
that solves problem (14) sub-optimally but with much lower
complexity compared to the ESM, given in the next section.

III. PROPOSED ALGORITHM

To solve problem (14), we apply the AMCMC-based
method with Metropolized independence sampler (MIS) [12].
We first adopt (13) to formulate an original probability density
function (PDF), given by ξ(ϵ) = exp( 1τ Ĉ(φϵ))/Λ, where τ
denotes a rate constant and Λ denotes a normalizing factor
to ensure

∑
ϵ∈Z ξ(ϵ) = 1. Thus, the problem in (14) can be

reformulate as
ϵ∗ = argmax

ϵ∈Z
ξ(ϵ). (15)

To solve the problem in (15), we consider the MIS for the
AMCMC method, which is described as follows [12]: given
any current indicator vector ϵs ∈ Z at the s-th (inner) iteration,
we generate a new indicator vector ϵnew ∈ Z according to
a proposal distribution Γ(ϵ;p). Then, based on an accepting
probability pac(ϵnew, ϵs;p) = min

{
1, ξ(ϵnew)

ξ(ϵs)
Γ(ϵs;p)

Γ(ϵnew;p)

}
, the

indicator vector sample for the next iteration will be ϵs+1 =
ϵnew, if accepted, or ϵs+1 = ϵs, otherwise. By repeating the
above after Ns (inner) iterations, i.e., s = 0, 1, · · · , Ns − 1,
we obtain a set of (1 + Ns) indicator vectors including the
initial indicator vector ϵ0 for s = 0, i.e., {ϵ0, ϵ1, · · · , ϵNs

}.
For the proposal distribution, we adopt the product of

Bernoulli distributions, which is given by

Γ(ϵ;p) =
1

Λ′

L∏
l=1

p
[ϵ]l
l (1− pl)1−[ϵ]l , (16)

where p ∈ RL×1 with its entry, pl, l ∈ L, denoting the prob-
ability of the l-th candidate rotation angle, φ̃l, to be selected,
and Λ′ denotes a normalizing factor to ensure

∑
ϵ∈Z Γ(ϵ) = 1.

Since Λ and Λ′ are both canceled out in computing the accept-
ing probability pac, their values do not need to be computed.
To increase the similarity between ξ(ϵ) and Γ(ϵ;p), we update
the probability entry pl to update Γ(ϵ;p) by minimizing the
Kullback-Leibler divergence between ξ(ϵ) and Γ(ϵ;p). The
recursive update equation is given by [12]

p
(t+1)
l = p

(t)
l + α(t+1)

(
1

Ns

Ns∑
s=1

[
ϵs
]
l
− p(t)l

)
, (17)

where superscript (·)(t) denotes the t-th (outer) iteration for
updating the probability, and α(t) = 1

Ns+t is a sequence

Algorithm 1: The AMCMC-based algorithm for solving prob-
lem (15)

1: Initialization: Set ϵ0 = [1T
NMA

,0T
L−NMA

]T , ϵ∗ = ϵ0 and
p
(0)
l = 1

2 ,∀l ∈ L.
2: for t = 1 : 1 : T do
3: for s = 0 : 1 : Ns − 1 do
4: Generate ϵnew based on Γ(ϵ;p(t−1)).
5: Generate u based on U [0, 1].
6: if u < pac(ϵnew, ϵs;p

(t−1)) then
7: ϵs+1 ← ϵnew.
8: else
9: ϵs+1 ← ϵs.

10: end if
11: if ξ(ϵs+1) > ξ(ϵ∗) then
12: ϵ∗ ← ϵs+1.
13: end if
14: end for
15: Update p(t) via (17).
16: ϵ0 ← ϵ∗.
17: end for
18: return ϵ∗.

of decreasing step sizes that satisfies
∑∞

t=0 α
(t) = ∞ and∑∞

t=0(α
(t))2 <∞. The AMCMC-based algorithm for solving

problem (15) is summarized in Algorithm 1, where T denotes
the maximum number of (outer) iterations. The complexity
order of the above algorithm is O(NsTM

2K̃Υ) with K̃ =
max(K1,K2, · · · ,KΥ), which is much lower than that of the
ESM, i.e., O(QM2K̃Υ), as in general Q≫ NsT .

IV. SIMULATION RESULTS

In this section, we present numerical results to validate
the performance of the proposed HFMA-BS scheme with
the AMCMC-based algorithm. Unless otherwise stated, the
simulation settings are as follows. We set ϕ3dB = 65◦,
Gm = 0 dBi, Gs = 25 dBi, β0 = −40 dB, P0 = 1 mW,
σ2=−80 dBm, λc=0.125 m, Dmin=

λc

2 MMA,h, r1 = r2 =
1 m, h1 = 9 m, h2 = 10 m, NMA = 6, L = 40, MMA = 2×8,
MFA = 8×8, Υ = 100, and Ns = 20, T = 10 (for Algorithm
1). The fixed rotation angles of three FPA arrays are set as
π
2 , 7π

6 and 11π
6 , respectively. For the user distribution, we

set the entire cell area A0 as a 2D disk centered at origin
o of the CCS, with a radius of R0 = 100 m. Within A0,
there are W = 3 hotspot areas, i.e., A1, A2 and A3. Each
hotspot area is set as a 2D disk with a radius Rw, centered
at a distance Dw and an azimuth angle ψw with respect to
the origin o, denoted by Aw = b(ψw, Dw, Rw), w = 1, 2, 3.
We set A1 = b(π4 , 50 m, 10 m), A2 = b( 7π6 , 60 m, 15 m)
and A3 = b( 7π4 , 70 m, 20 m). The average number of users,
denoted by K̄, is set as 300, with K̄ =

∑3
w=0 µwπR

2
w. In

addition, the average numbers of hotpots users, denoted by
K̄w, w = 1, 2, 3, follow the ratio of 1 : 2 : 3 with their
sum set equal to

∑3
w=1 K̄w = K̄

2 . We consider the following
benchmark schemes: 2

2The default system parameters have been set to ensure that the variables
in each benchmark scheme are integers.
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Fig. 2. ASE versus transmit power per user with
L = 20, MMA = 2×2, MFA = 4×4 and K̄ = 75.

Fig. 3. Optimized rotations of 6DMA surfaces
by the AMCMC-based algorithm.

Fig. 4. ASE versus transmit power per user for
different schemes with different K̄.

• Scheme 1: This scheme sets the rotation angles of 6DMA
surfaces as the Bw candidate rotation angles closest to
each of the W ψw’s, with Bw = NMA

W , w = 1, 2, 3.
• Scheme 2: Based on Scheme 1, this scheme further sets
Bw’s according to B1 : B2 : B3 = K̄1 : K̄2 : K̄3.

• Scheme 3: This scheme only considers three FPA arrays,
each equipped with M

3 antennas (thus, the total number
of antennas is the same as in the HFMA-based schemes).

Fig. 2 illustrates the area spectrum efficiency (ASE), defined
as Ĉ(φ)/(πR2

0), versus the transmit power, P0. It is observed
that the AMCMC-based algorithm achieves very close per-
formance to the ESM, for different values of NMA under
L = 20. Since the AMCMC-based algorithm has much lower
complexity than the ESM, we adopt the former for subsequent
simulations with larger values of NMA = 6 and L = 40.

Fig. 3 shows a visual representation of the optimal rotations
of 6DMA surfaces obtained by the AMCMC-based algorithm.
It can be observed that their rotations strike a balance between
serving hotspot users and the users positioned in the angles
between the adjacent FPA arrays to maximize the network
capacity. Interestingly, it is also observed that under the non-
uniform user spatial distribution, rotating 6DMA surfaces
towards hotspot areas only (i.e., Schemes 1 and 2) may not
be capacity-optimal for the HFMA-BS.

In Fig. 4, we compare the ASE obtained by the AMCMC-
based algorithm with three benchmark schemes. It is observed
that the proposed scheme achieves significantly improved ASE
over all benchmark schemes. Furthermore, their performance
gap in the case with K̄ = 300 is larger than that in the case
with K̄ = 150. This is because, when the user density in-
creases, rotating 6DMA surfaces to exploit their array gain and
spatial multiplexing gain becomes more crucial to maximizing
the network capacity, under the setting with non-uniform user
spatial distribution.

V. CONCLUSION

This letter proposed a new and cost-efficient HFMA-BS
architecture consisting of both conventional FPA arrays and
position/rotation-adjustable 6DMA surfaces. We aimed to
maximize the average network capacity via optimizing the
rotation angles of all 6DMA surfaces along a circular track. To
solve this combinatorial optimization problem, we proposed

the AMCMC-based algorithm with much lower complexity
compared to the ESM. Numerical results verified that the
HFMA-BS with optimized 6DMA rotations can drastically
improve the network capacity compared to the conventional
BS with FPAs only or the HFMA-BS with heuristic 6DMA
rotations. Moreover, the performance gain was shown to be
more appealing when the average user density increases under
the non-uniform user spatial distribution.
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