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SQUARE-FULL VALUES OF QUADRATIC POLYNOMIALS

WATCHARAKIETE WONGCHAROENBHORN AND YOTSANAN MEEMARK

Abstract. A square-full number is a positive integer for which all its prime divisors
divide itself at least twice. The counting function of square-full integers of the form

f(n) for n 6 N is denoted by S
�

f (N). We have known that for a relatively prime pair

(a, b) ∈ N × N ∪ {0} with a linear polynomial f(x) = ax + b, its counting function is

≍a,b N
1

2 . Fix ε > 0, for an admissible quadratic polynomial f(x), we prove that

S
�

f (N) ≪ε,f N̟+ε

for some absolute constant ̟ < 1/2. Under the assumption on the abc conjecture, we
expect the upper bound to be Oε,f (Nε).

1. Introduction

A positive integer n is called square-full if for every prime p dividing n, then p2|n. We
may put 1 to be a square-full number by this definition. Throughout this work, f(x)

is a polynomial with integer coefficients. Let us denote S
�

f (N) the number of positive
integers n 6 N such that f(n) is square-full. It is known for an identity polynomial
Id(n) = n that

S
�

Id(N) =
ζ(3/2)

ζ(3)
N

1

2 +
ζ(2/3)

ζ(2)
N

1

3 + o(N
1

6 ).

This result is due to P. T. Bateman and E. Grosswald [1] for which they improved the

pioneer result [6] of P. Erdős and G. Szekeres by producing the term of order N
1

3 ex-
plicitly. They also indicate in the paper that the exponent 1/6 in the error term cannot
be improved without proving some kind of the quasi-Riemann hypothesis. Furthermore,
there are studies on f(n) = an + b for (a, b) 6= (1, 0) as well, and the counting function

still is of order N
1

2 up to a constant depending only on a, b. For instance, T. H. Chan [5]
provided the asymptotic formula for such a polynomial with gcd(a, b) = 1, and improved
the error term for large a.

In 1931, T. Estermann [7] studied the counting function for a quadratic polynomial
assuming square-free values. Here, square-free integer is similarly defined, for which we
replace p2 | n by p‖n in our definition of square-full numbers. Analogous to the square-

full notation, we denote S
�

f (N) by the number of positive integers n 6 N such that f(n)

is square-free. Particularly, he proved for f(x) = x2 + h with a nonzero integer h that

S
�

f (N) =
∏

p

(

1 − ρh(p
2)

p2

)

N +O(N
2

3 logN),

where ρh(m) := #{n ∈ Z/mZ : n2 + h ≡ 0 mod m} for all m > 2. After that, around
80 years later, D. R. Heath-Brown [9] improved in 2012 the error term for h = 1 of the

above formula to be Oε(N
7

12
+ε) for arbitrarily small ε.

Our interest is to determine the number of square-full numbers of quadratic form,
since it seems possible to apply the method of Heath-Brown used in [9]. It turns out
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2 WATCHARAKIETE WONGCHAROENBHORN AND YOTSANAN MEEMARK

that there might be bias toward it, as suggested by our first main result on special
quadratic polynomials.

Theorem 1.1. Let α ∈ N. For any ε > 0 and a polynomial f(x) = x2 +α2, the number
of n 6 N for which f(n) is square-full is at most

Oε,α

(

N̟+ε
)

,

where ̟ = 29
100

.

Here, we employ the celebrated determinant method introduced by Heath-Brown. His
main idea was to use the properties of the sum of two squares and the unique factoriza-
tion of Z[i] to extract the equation involving a bi-homogeneous polynomial. Then, he
constructed another independent equation with another bi-homogeneous form to help
curb the count of solutions.

We also are interested in a more general case of a quadratic polynomial f(x) =
ax2 + bx + c ∈ Z[x]. It is seen that we may reduce to study its “simple form”, namely,
(gx2 + h)/k where g, h, k ∈ Z with gcd(g, h, k) = 1 and k 6= 0. This form is obtained by
completing the square and changing variables. Then, we call a polynomial f(x) admis-
sible if, in its simple form (gx2 + h)/k, we have h 6= 0.

To formulate the next result, we define

̟0 =
β(0)

6(log 2 − β(0))
≈ 0.1118,

where β(0) := 2+
√

3
2
√

3
log 2+

√
3

2
√

3
− 2−

√
3

2
√

3
log 2−

√
3

2
√

3
. We now state our second main theorem, for

which we obtain the bound in general to also be strictly less than 1
2
. The main ingredient

is the significantly improved bound on counting integral points on Mordell curve by M.
Bhagava et al. [2].

Theorem 1.2. For ε > 0 and an admissible quadratic polynomial f(x), the number of
n 6 N for which f(n) is square-full is at most,

Oε,f

(

N̟+ε
)

where ̟ = 2(1+8̟0)
5+24̟0

≈ 0.4931. Moreover, if Conjecture 2.3 is true, then we can replace

̟ by 2
5
.

Moreover, we note that the problem of counting square-full values of a quadratic
polynomial f(x) is related to counting pairs of quasi-consecutive square-full numbers,
since n2 itself is square-full and we can reduce to study its simple form. Indeed, if we
fix a polynomial f(x) = x(x+ 1), then counting pairs of consecutive square-full integers

not exceeding N is the same as determining S
�

f (N). T. Reuss [12] studied this problem,
as well as some related problems on k-free numbers. Our result for special f(x) is the
same as his average result, which also shows that the number of such pairs of integers up
to N is Oε(N

29

100
+ε). Furthermore, as we mentioned, the result of Reuss implies similar

bound for a reducible polynomial f(x) = x(x + h) for a nonzero integer h. Recently,
T. Browning and I. Shparlinski [3] have proved that almost all polynomials of arbitrary
degree k > 2, in the sense of naive height, take infinitely many square-free values. We
give the final remark that almost all quadratic polynomials, in this sense, have small
bounds for their square-full counting formulae (see Remark 4.3).



SQUARE-FULL VALUES OF QUADRATIC POLYNOMIALS 3

2. Preliminaries and lemmas

We show that although it seems difficult to find a positive integer n so that n2 + 4 is
square-full, indeed there are infinitely many n that can do so. We may let n = 2d be
an even number so that n2 + 4 = 4(d2 + 1) and we see that there are infinitely many
solutions (d, k) ∈ Z2 such that

4(d2 + 1) = 8k2 ⇐⇒ d2 − 2k2 = −1,

which is a negative Pell’s equation with (1, 1) as a based solution, and 8k2 is always
square-full. We shall note also that for a polynomial f(x) of degree at least three, it
seems impossible that f(n) will assume infinite values of square-full integers. This is
thanks to the work of A. Granville [8] as a consequence of the abc conjecture. Our
example f(x) = x2 + 4 shows that the number of n 6 N for which f(n) is square-full
is ≫ logN . We may ask as mentioned by Granville on counting consecutive square-full
numbers that

S
�

f (N) ∼ cf logN,

for some constant cf . In particular, this might hold for any admissible quadratic poly-
nomial f(x) with no fixed prime p such that p‖f(n) for all sufficiently large n. The
constant cf is allowed to depend on the coefficients of f(x). In Remark 2.7, we shall see
that assuming the abc conjecture, the left-hand side is bounded by Cε,fN

ε for some con-
stant Cε,f > 0. This result is, perhaps, far from being optimal. Whence, it is interesting
if its asymptotic behavior does exist.

For a fixed polynomial f(x), it is more convenient to focus on the expression

(2.1) S
�

f (2N) − S
�

f (N) =
∑

N<n62N
e2d3=f(n)

µ2(d),

and finding the upper bound for it implies that we obtain the bound for S
�

f (N) itself by a
dyadic sum, up to logarithmic factors. We see that by defining M(E,D) := #{(e, d, n) ∈
N3 : N < n 6 2N,E < e 6 2E,D < d 6 2D, e2d3 = f(n)}, the right-handed side of
Equation 2.1 is at most

≪
∑

E≫L

max
D≍(NE )

2
3

M(E,D) +
∑

E≪L

max
D≍(NE )

2
3

M(E,D),

where the sums are dyadic sums over E and L is some parameter. Whence, the problem
is reduced to obtain the bound for M(E,D) in the whole range. In his paper, Estermann
showed that the contribution to M(E,D) for fixed D < d 6 2D is O(logN) so we have
M(E,D) ≪ D logN .

It seems difficult to extend Heath-Brown’s determinant method to a polynomial f(x) =
x2 + h for a non-perfect square h 6= 0. Hence, for general quadratic polynomials, we
employ the bound on counting integral points on an elliptic curve, which involved the
size of its discriminant. The following lemma tells us that we may focus on Mordell
equations.

Lemma 2.1. Let E be an elliptic curve over Q with E : gy2 = ke2x3 −h for fixed nonzero
integers g, h, k. Suppose further that e is square-free relatively prime to 6gkh. Then, the
discriminant ∆ of the Weierstrass equation E ′ : y2 = x3 − e4g3k2h corresponding to it,
and its minimal discriminant ∆E satisfy

|∆E | ≍g,h,k |∆| ,
where the implied constant is dependent only on g, h, k.
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Proof. We may transform our elliptic curve via (x, y) 7→ (x/(gke2), y/(g2ke2)) to the
Weierstrass equation E ′ : y2 = x3 − e4g3k2h. Using Proposition VII.2.1.3(d) in [13] we
obtain that the minimal Weierstrass equation comes from the change of coordinates

x = u2x′ + r and y = u3y′ + u2sx′ + t,

for some u, r, s, t ∈ Z. Then, using similar argument and notation, we obtain u6 |
864g3k2he4. For u to be large it must be that u6 | e4 as e is relatively prime to 6gkh.
Since, e is square-free, we have u = 1. Thus, the minimal discriminant

|∆E | = |u−12∆| ≍ |∆|
as desired because u ≪k,g,h 1. �

Then, we state the current best known upper bound for the number of integral points
on Elliptic curves [2].

Theorem 2.2. Let E be an elliptic curve over Q defined by a Weierstrass equation with
integer coefficients and discriminant ∆. Then the number of integer points on E(Q) is
at most,

Oε

(

|∆|̟0+ε
)

.

For a special non-singular elliptic curve E : y2 = x3 + a, the discriminant ∆ is of
order a2. Whence, the number of integral points on E(Q) is at most Oε(a

2̟0+2ε), by this
theorem. We shall focus on this particular curve as mentioned. It has been conjectured
that this could be improved to be almost uniform bound, that is, ̟0 should be replaced
by zero. The conjecture is stated explicitly as follows.

Conjecture 2.3. For a fixed integer a 6= 0 and ε > 0,

#{(x, y) ∈ Z2 : y2 = x3 + a} ≪ε |a|ε.

Remark 2.4. It is possible to prove the weak version of the conjecture for special a
elementarily. The weak version means that for each ε > 0 and a fixed integer a 6= 0, 1,
we have that

#{(x, y) ∈ Z2 : |x|, |y| 6 B, y2 = x3 + a} ≪ε (B|a|)ε.
For any a, this weak version can be proved by using Heath-Brown’s result as was
mentioned in [10] for which he proved for bivariate forms. We shall homogenize this
Mordell curve and employ his result to obtain what we desire. Note that he assumed
the Birch-Swinnerton-Dyer conjecture and the Riemann hypothesis for L-functions of
elliptic curves. Also this version, and hence invoking two such conjectures, suffices to
prove our second assertion in Theorem 1.2. This is because we may take B = N in the
above weak version, and use the bound as in the proof below.

Proof of Theorem 1.2. As in (2.1), we consider the simple form of f(x), say (gx2 + h)/k
with h 6= 0. Then, we find an upper bound for M(E,D) for which E ≪ L to be

M(E,D) ≪ E#
{

(d, n) : E < e 6 2E, gn2 = ke2d3 − h
}

≪ E1+8̟0+ε,

by Lemma 2.1 and Theorem 2.2 for the last inequality. Since there exists a prime e in
(E, 2E] which is square-free, the minimal discriminant is of order e8 for any large enough
prime e. Thus, we obtain the total bound to be ≪η N

η(
∑

E≫LD +
∑

E≪L L
1+8̟0) ≪

N̟+η, where ̟ = 2(1+8̟0)
5+24̟0

for the optimal choice L = N
2

5+24̟0 . The second assertion
can be done similarly by replacing ̟0 by 0. The theorem follows as desired. �
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Remark 2.5. In the above proof, we split up naively for the dyadic sum over E and
Lemma 2.1 tells us that for large prime e we cannot save any power to cover all the
bound depending on the discriminant in that range. Indeed, since positive proportion
of integers are square-free, it seems difficult to reduce the bound by simply rearranging
terms. Another approach appealing to Heath-Brown’s [10] or Salberger’s mechanism (as
was mentioned in [4]) seems unfortunate to tackle this problem with our naive method.
We estimate the number of points (d, n) that satisfies

q(d) − p(n) − h := ke2d3 − gn2 − h = 0,

where h, k 6= 0, p(x) is a polynomial of degree 2 and q(x) is a polynomial of de-
gree 3. Then, we proceed as in Reuss’s work [12] and obtain via using theorem 15

of [10] that the points (d, n) satisfying the above lie on at most Nη
√
D auxiliary curves.

Thus, using Bézout’s theorem, the number of points under consideration is ≪η N
η
√
D.

Upon invoking Estermann’s bound in the first sum we obtain the upper bound to be

≪η N
η
(

∑

E≫Nψ D +
∑

E≪Nψ maxψ6 1

4

E
√
D
)

≪ N
1

2
+η, where we use the optimal ψ = 1

4
.

This is however weaker than what we expected in Theorem 1.2.

For our first main theorem, we proceed in parallel to Heath-Brown’s work [9] on
square-free values of n2 + 1, by reducing the bound of M(E,D) of the second sum that

we showed in general case to be Nη
√
M min(

√
E,

√
D), with new parameter M . Before

we prove Theorem 1.1, we may state the infamous abc conjecture which provides us an
almost bound result. As a convention, for a positive integer n, we denote rad(n) =

∏

p|n p.

Conjecture 2.6 (abc conjecture). For any fixed ε > 0 if a+ b = c for pairwise coprime
positive integers a, b, c, then for some constant Kε

c < Kε · rad(abc)1+ε.

Remark 2.7. Under the abc conjecture, any admissible quadratic polynomial f(x),

satisfies S
�

f (N) ≪ε,f N ε for any ε > 0. Assume that the abc conjecture holds. We

may focus on f(x) = ax2 + b with gcd(a, b) = 1, by its simple form and splitting into
finite cases of counting the tuple (n, e, d) from ce2d3 = an2 + b with fixed integers a, b, c
such that b 6= 0. Then, we determine the condition on d that satisfies the equation
ce2d3 = an2 + b since we want to bound, as in (2.1),

S
�

f (2N) − S
�

f (N) ≪η

∑

d

#{(e, n) ∈ N : N < n 6 2N, ce2d3 = an2 + b}.

We can further assume that gcd(b, n) = 1. For b > 0, there exists an absolute constant Cε
such that ce2d3 6 Cεrad((an2)(ce2d3)b)1+ε. Hence, we have e1−εd2−ε ≪ε n

1+ε, and since
e2d3 ≍a,b,c n

2, we obtain that d ≪ Nη for arbitrarily small η > 0. Then, the Estermann’s
bound and the number of possibilities of d imply the claim. For b < 0, the argument
is similar. Since some f(x) produces infinitely many square-full numbers, this claim is
best possible. The abc conjecture also implies that the number of pairs of consecutive
square-full numbers up to N is at most Oε(N

ε). Here, we are to count solutions for
N < a2b3 = a2

1b
3
1 + 1 6 2N . By the abc conjecture, we have that a1−εb2−ε 6 Cεa

1+ε
1 b1+ε

1 .
Thus, we have

a−2εb1−2ε 6 21+2εC2
ε · N

2ε

b1−2ε
1

,

and the right-hand side is less than 1 if N is large in term of ε for b1 > N6ε, which is
impossible. Therefore, we have similar situation with fixed c = 1, a < N6ε in the above
calculation, and hence the claim. Furthermore, Conjecture 2.3 (or the Birch-Swinnerton-
Dyer conjecture with the Riemann hypothesis for elliptic curves) can be used to imply

S
�

f (N) ≪ε N
2

5
+ε‖f‖ε,
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where ‖f‖ denotes the maximum modulus of coefficients of f . This is an almost uniform
result; however, we are unable to prove analogous to this assuming abc conjecture to be
almost uniform bound.

Back to the proof of Theorem 1.1, we proceed as in Heath-Brown [9] and Reuss [12].
Fix α ∈ N and η > 0, we determine the solutions (e, d, n) to the equation e2d3 = n2 +α2.
We have that e = x2

1 + x2
2 and d = y2

1 + y2
2 by the sum of two squares argument since we

may assume that gcd(n, α) = 1. This can be done by splitting the equation into about
Oα(1) cases each of which corresponds to counting solutions with gcd(n, α) = 1. With
the unique factorization property of Z[i] we have that (x1 + ix2)2(y1 + iy2)

3 = n + αi
and that after taking the imaginary part, we obtain that

(2.2) (x2
1 − x2

2)(3y2
1y2 − y3

2) + 2x1x2(y3
1 − 3y1y

2
2) = α.

We shall assume that |x1| 6 |x2| and x1, x2 have the same signs. For if |x1| > |x2| we
may change the role of them and change the sign of y2. If x1, x2 have different signs, we
can change the signs of y1 and x2. Now, we claim that

max
(

|3y2
1y2 − y3

2|, |y3
1 − 3y1y

2
2|
)

≫ D
3

2 .

The proof will assume |y1| 6 |y2|; however, since they are symmetry the other case
can be done in a similar way. For the case |y2| · |3y2

1 − y2
2| > |y1| · |y2

1 − 3y2
2|, we first

suppose that y2
2 < 3y2

1. Then we have |y2|(3y2
1 − y2

2) > |y1||y2
1 − 3y2

2| > |y1|(3y2
2 − y2

1).
Since d is square-free we see that |y1| 6= |y2|, for otherwise d = 2y2

1 is not square-
free and d ≫ D is large for N ≫η 1, then 3t2 − 1 > t(3 − t2) for 1 > t := |y1/y2|.
Thus, we have 0 6 t3 + 3t2 − 3t − 1 6 3t2 − 3t = 3t(t − 1) and t = 1 so |y1| = |y2|,
which is not possible. Therefore, y2

2 > 3y2
1 and with the same set-up we obtain that

0 6 t3 − 3t2 − 3t+ 1 = (t− 1)3 − 6t+ 2 6 2 − 6t and |y1| 6 1
3
|y2|. The maximum in this

case is ≫ |y2|(y2
2 − 3y2

1) ≫ D3/2. Similarly, for the case |y2||3y2
1 − y2

2| < |y1||y2
1 − 3y2

2|,
with the same notation we have either

t(3 − t2) > 3t2 − 1 or t(3 − t2) > 1 − 3t2,

and the second inequality is impossible since it is equivalent to (t+ 1)(t2 − 4t+ 1) < 0.
The first corresponds to (t − 1)(t2 + 4t + 1) < 0 which is always true and which corre-
sponds to t2 < 3 =⇒ y2

2 < 3y2
1. Again, we obtain the maximum of the two terms ≫ D3/2.

Upon taking q1(y1, y2) to be the largest of the two, which has the property that its
absolute value is ≫ D3/2, and taking z1, z2 appropriately to be polynomials in x1, x2, we
obtain

q1(y1, y2)z1 + q2(y1, y2)z2 = α.

Then, by the triangle inequality, we have that

D
3

2 |z1| ≪ |q1(y1, y2)||z1| 6 α + |q2(y1, y2)||z2| ≪ D
3

2 |z2|.

Thus, |z1| ≪ |z2| and |z2| ≫ max(|z1|, |z2|) ≫ E. Hence,

(2.3) t = −q2(s, 1)

q1(s, 1)
+O(E−1D− 3

2 ) = −q2(s, 1)

q1(s, 1)
+O(N−1) =: φ(s) +O(N−1),

where s = y1/y2 and t = z1/z2 if |y1| 6 |y2| and s = y2/y1 in the separate case, which
can be handled in a similar way, so s, t ≪ 1. Therefore, the problem reduces to count
points (s, t) that lie close to the curve t = φ(s). We will impose w = x1/x2 which is
positive since the x1, x2 have the same signs and w ≪ 1.
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3. The determinant method

In this section, we want to construct another equation on bi-homogeneous form of
the same variables as in (2.3). The satisfactory bound is plausible since we have the
existing bound for counting points on G(x1, x2; y1, y2) = 0, for an absolutely irreducible
bi-homogeneous polynomial G(x1, x2; y1, y2) ∈ Z[x1, x2, y1, y2].

Our plan is as follows. We proceed to choose a parameter M ∈ [D,N ] with D = N
8

9 ,
and split the intervals of possible values of s into O(M) intervals of the form I =]s0, s0 +
M−1]. By Taylor’s theorem, if we write s ∈ I by s = s0 + u with u = O(M−1), then
φ(s) = φ(s0)+P (u)+O(N−1) where P (u) is a polynomial in u with no constant coefficient
and all coefficients of size O(1). Thus, |P (u)| ≪ M−1. Write τ(w) := t = φ(s)+O(N−1)
where 0 < w = x1/x2 ≪ 1. If τ(w) = (w2 − 1)/2w then we obtain

w2 − 1

2w
= φ(s0) + P (u) +O(N−1).

Since w > 0 and P (u) is small, we have that

w = φ(s0) + P (u) +
√

(φ(s0) + P (u))2 + 1 +O(N−1).

By Taylor’s theorem,
√
s+ c =

√
c+ (2

√
c)−1s+O(s2) for s around zero and c > 1 is a

constant. Hence,

w = φ(s0) + P (u) +
√

1 + (φ(s0) + P (u))2 +
O(N−1)

2
√

1 + (φ(s0) + P (u))2

= cs0
+Q(u) +O(N−1),

where we have used the Taylor’s theorem for the non-error terms. Similarly, if τ(w) =
2w/(w2 − 1), we obtain

w =
1 +

√

1 + (φ(s0) + P (u) +O(N−1))2

φ(s0) + P (u)
≪ 1,

and as P (u) is small, |φ(s0)| ≫ 1. By Taylor’s theorem on
√

1 + (c+ s)2 for s around
zero and c > 1 is a constant, we have

w =
1 +

√

1 + (φ(s0) + P (u))2

φ(s0) + P (u)
+

O(N−1)
√

1 + (φ(s0) + P (u))2

= cs0
+Q(u) +O(N−1),

by the fact that |φ(s0)| ≫ 1, and we have used the Taylor’s theorem for the first term on

1 +
√

1 + (φ(s0) + s)2 for s around zero. Therefore, in either case, w can be represented

by a polynomial Q(u) of order ≪ M−1 with error O(N−1).

Suppose there are J solutions to 2.3 in the interval I. Then, upon introducing new
parameters K,L that will be dependent merely on η, we construct a J ×H matrix

M =













1 s1 w1 · · · sk1w
ℓ
1 · · · sK1 w

L
1

1 s2 w2 · · · sk2w
ℓ
2 · · · sK2 w

L
2

...
...

...
1 sJ wJ · · · skJw

ℓ
J · · · sKJ w

L
J













,

where H = (K + 1)(L+ 1). We obtain a nonzero vector c such that

Mc = 0,
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if we have rank(M) < H . With this nonzero vector c, we can consider the polynomial
CI(s, w) =

∑H
h=1 chmh(s, w), where we label mh(s, w) to be each monomial skwℓ appear-

ing in each row of M for k 6 K and ℓ 6 L so that CI(sj, wj) = 0 for all j 6 J . Also,
by reducing matrix M into row-reduced echelon form, we have that c ∈ QH has rational
entries and we may clear the denominator of CI , which is ≪ some fixed power of N , so
that its coefficients are integral of size ≪ Nκ(K,L). The fact that rank(M) is strictly less
than H follows from





∏

j6H

yK2,jx
L
2,j



∆ ∈ Z,

where ∆ is the subdeterminant of the first H × H matrix, and we assume that J > H .
Thus, we will choose M appropriately so that ∆ = 0 for which it suffices to prove that

∆ ≪K,L D
−KH

2 E−LH
2 , and we obtain the desired inequality.

Following the proof of Heath-Brown, for V ≍ N in the Taylor’s expansion w = cs0
+

P (u) + v with v ≪ V −1 and note that u ≪ M−1. We now order the values of M−kV −ℓ,
k 6 K, ℓ 6 L, decreasingly as 1 = M0,M1, . . . . Lemma 3 of Heath-Brown [11] gives

∆ ≪H

∏

h6H

Mh.

Let us denote MH = W−1. Then M−kV −ℓ >MH if and only if

k logM + ℓ log V 6 logW.

The number of pairs k, ℓ satisfying the above is

log2 W

2 logM log V
+O

(

logW

logN

)

+O(1),

which equals to H . Thus, we have that

logW =
√

2H logM log V +O(logN).

Moreover, we see that

log
∏

h6H

Mh =
∑

k.ℓ
k logM+ℓ log V 6logW

−(k logM + ℓ log V )

= − log3 W

3 logM log V
+O

(

log2 W

logN

)

= −H 3

2 · 2
√

2

3

√

logM log V +O(H logN),

by replacing the term of logW above. Whence, we acquire

log |∆| 6 OH(1) −H
3

2 · 2
√

2

3

√

logM log V +O(H logN).

Thus, ∆ = 0 if we have that

K

2
logD +

L

2
logE 6 (KL)

1

2

2
√

2

3

√

logM log V +OK,L(1) +O(logN),

or, for taking K = [L logE/ logD] that

L logE 6 L · 2
√

2

3

√

logM log V

√

logE

logD
+OL(1) +O(logN).

For small fixed δ > 0 if

2
√

2

3

√

logM log V

√

logE

logD
> (1 + δ) logE,
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and L,N ≫δ 1, we will obtain the desired inequality. Since V ≫ N , we summarize and
acquire the following lemma.

Lemma 3.1. Let η > 0 be given and M ∈ [D,N ] satisfies

logM >
9

8
(1 + η)

logE logD

logN
.

Then, for any interval I = [s0, s0 +M−1], there exists 0 6= CI(s, t) of integral coefficients
such that all solutions satisfy

CI (y1/y2, x1/x2) = 0,

with y1/y2 ∈ I. Moreover, deg(CI) = Oη(1) and its coefficients size Oη(N
κ) for some

κ = κ(η).

With this polynomial CI in the previous lemma, as in [9] we may assume without loss
of generality that CI is absolutely irreducible. Hence, we can apply the existing bound
on counting solutions noted at the beginning of this section.

4. Counting solutions and finishing the proof

In the previous section, we construct an auxiliary equation involving bi-homogeneous
polynomial CI in each fixed interval I. It can be proven that we may restrict to CI that
is absolutely irreducible, say F (y1, y2; z1, z2) = 0 to be again bi-homogeneous. In this
section, we will count the solutions to 2.3 based on changing of bases. We now have in
the interval I = (s0, s0 +M−1] that

s0 < s =
y1

y2
6 s0 +M−1.

It follows that |y1 − s0y2| 6 D1/2M−1 because |y2| 6 D1/2. We proceed by letting

Λ =
{

(D−1/2M(y1 − s0y2), D
−1/2y2) : (y1, y2) ∈ Z2

}

.

Then Λ is a lattice of determinant D−1M . We are interested in points (α1, α2) ∈ Λ
falling in the square

S = {(α1, α2) : max(|α1|, |α2|) 6 1}.
Let g(1) be the shortest non-zero vector in the lattice and g(2) be the shortest vector

not parallel to g(1). The two vectors form a basis for Λ and moreover λ1g
(1) +λ2g(2) ∈ S

only when |λ1| ≪ |g(1)|−1 =: L1 and |λ2| ≪ |g(2)|−1 =: L2. Thus, we have L1 ≫ L2 and
(L1L2)−1 = |g(1)||g(2)| ≪ det(Λ) = F−1M =⇒ L1L2 ≫ DM−1. Hence, we may replace
(y1, y2) by (λ1, λ2). We may argue in exactly the same way to change x1, x2 by τ1, τ2.
Now, we have the equations

(4.1) G0(λ1, λ2; τ1, τ2) = α

(4.2) G1(λ1, λ2; τ1, τ2) = 0

which are bi-homogeneous of degree (3; 2) and (a; b) respectively. When a, b ≥ 2 we can
get a satisfactory bound from the following lemma due to Heath-Brown [9].

Lemma 4.1. Let G(x1, x2; y1, y2) be an absolutely irreducible bi-homogeneous polynomial
with integer coefficients of degree (a; b) with a, b > 1. Let ε > 0 be given. Then for X > 1

there exist Oa,b,ε(X
2

b
+ε‖G‖ε) points (a1, a2, b1, b2) ∈ Z4 satisfying the conditions

gcd(a1, a2) = gcd(b1, b2) = 1,

G(a1, a2; b1, b2) = 0 and max{a1, a2} 6 X.
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We see that it suffices to assume gcd(λ1, λ2) = gcd(τ1, τ2) = 1 since we fixed α and
there are Oα(1) possibilities to determine, by the divisor argument. When b > 2, we
set X = L1 and the Equation 4.2 implies ‖G‖ ≪ Nη and Lemma 4.1 tells us that
the number of solutions is Oη(L

1+η
1 Nη). Each of these solutions produce at most one

solution in Equation 4.1. Then, upon considering the case b = 0, 1 with T1 as in the
work of Heath-Brown, we obtain the following lemma.

Lemma 4.2. For η > 0, in an interval I, M(E,D) contributes Oη(N
η min(L1+η

1 , T 1+η
1 )).

Now, we finish the proof of Theorem 1.1. After fixing a parameter M as in Lemma
3.1 we now count possible intervals by fixing L ≪ N and consider each L < L1 6 2L.
Then we sum the total contribution dyadically on L by applying Lemma 4.2. If (y1, y2)

corresponds to g(1), then L1(y1 − s0y2) ≪ M−1
√
D and L1y2 ≪

√
D. Suppose that

for some fixed ε > 0, L1 ≫ D
1

2
+ε we have that y2 = 0 and y1 = 0 as well, which is

not possible. Whence, L1 ≪ε D
1

2
+ε for any ε > 0. Then, we take s0 = y3M

−1 in
I =]s0, s0 + M−1] and we see that y3 ≪ M since s0 ≪ 1. Therefore, the number of
intervals for which L < L1 6 2L is at most the number of triples (y1, y2, y3) ∈ Z3 with
gcd(y1, y2) = 1 for which

y2y3 = My1 +O(L−1
√
D), y2 ≪ L−1

√
D, and y3 ≪ M.

Recall that L1 ≫ L2 and L1L2 ≫ DM−1, so L ≫ D
1

2M− 1

2 . For each value of y1,
there are Oη(N

ηL−1
√
D) pairs of (y2, y3). Hence, for which L1 is of order L there are

Oη(N
ηL−2D) intervals since y1 ≪ L−1

√
D. We find that M(E,D) ≪η N2ηL−2D ·

L1+η ≪ N3η
√
DM . Analogously, we obtain M(E,D) ≪ N3η

√
EM . Therefore, we

conclude that

M(E,D) ≪ N3η
√
M min(

√
E,

√
D).

Next, we let E = Nψ. Then D = N
2

3
(1−ψ) and M as in Lemma 3.1 must be N

3

4
ψ(1−ψ).

Observe that, for the dyadic sums, we have that

1

Nη





∑

E≪Nψ

√
M min(

√
E,

√
D) +

∑

E≫Nψ

D



 ≪η N
̟ +N

2

27 ,

where ̟ = 29
100

for the optimal choice ψ = 8
9
. The upper bound for the second sum is

obtained via the Estermann’s bound. This completes the proof.

Remark 4.3. The abc conjecture implies S
�

f (N) ≪ε N
ε; however, we hope for the

asymptotic relation, which is much smaller than that. It is possible to see the be-
havior on average quadratic polynomials, so we determine square-full values of random
polynomials. Here, we consider ordering polynomials via naive height similar to the
work of Browning and Shparlinski [3]. For positive integers H and k > 2, we write
a = (a0, a1, . . . , ak) ∈ Zk+1 and denote

Fk(H) := {a0 + a1X + · · · + akX
k ∈ Z[X] : a ∈ Bk(H)},

where Bk(H) := {a ∈ Zk+1 : |ai| 6 H, for all i = 0, 1, . . . , k}. Here, we focus only on
k = 2. Then, we have by a naive bound

∑

f∈F2(H)

S
�

f (N) ≪
∑

d≪N
2
3

#

{

(e, d, n, a) : n 6 N,
a0 + a1n+ a2n

2

d3
= e2

}

≪
∑

d≪N
2
3





√

H

d3
+ 1



H2N ≪ H
5

2N +H2N
5

3 .
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Hence, we obtain for small ε > 0 that whenever N2+ε 6 H 6 NA for some constant A,

1

#F2(H)

∑

f∈F2(H)

S
�

f (N) ≪ε
1

N
ε
2

.

This means that almost all quadratic polynomials have pretty small bound for their
counting formulae. Also, it is possible to obtain a similar result for square-free values
of quadratic forms. If we change the notation for Bk(H) above by imposing in addition
the condition gcd(a0, a1, . . . , ak) = 1, then by letting f0(n) = n2 + 1, we may replace the
result from [3] by

1

#F2(H)

∑

f∈F2(H)

∣

∣

∣S
�

f (N) − cfS
�

f0
(N)

∣

∣

∣ ≪ N1−δ,

where cf is the ratio between the coefficients in the asymptotic relations corresponding

to f and to f0. Now we let 1 − δ = 26+
√

433
81

− ε with appropriate smaller range of H to
obtain the best known bound for almost all quadratic polynomials in F2(H).
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