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AN IMPROVED VERSION OF KAC’S CENTRAL LIMIT THEOREM

SUPRIO BHAR, RITWIK MUKHERJEE, AND PRATHMESH PATIL

Abstract. The classical Central Limit Theorem (CLT) states that for a sequence of independent and identi-
cally distributed (i.i.d) random variables with finite mean and variance, the normalized sample mean converges
to the standard normal distribution.

In 1946, Victor Kac proved a Central Limit type theorem for a sequence of random variables that were
not independent. The random variables under consideration were obtained from the angle-doubling map.
The idea behind Kac’s proof was to show that although the random variables under consideration were not
independent, they were what he calls statistically independent (in modern terminology, this concept is called
long range independence). The final conclusion of his paper was that the sample averages of the random
variables, suitably normalized converges to the standard normal distribution.

In the 1970’s, Charles Stein revolutionized the field of probability by discovering a new method to
obtain the limiting distribution for a sequence of random variables. Among other things, his method gave an
alternative proof of the classical Central Limit Theorem.

We obtain an improvement of Victor Kac’s result by applying Stein’s method. We show that the
normalized sample averages converge to the standard normal distribution in the Wasserstein metric, which is
stronger than the convergence in distribution.
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1. Introduction

Two fundamental results in Probability Theory are the Strong Law of Large Numbers and the Central Limit
Theorem (see [1, 3]). The former states that the sample averages of a sequence of i.i.d random variables having
finite mean, converge almost surely to the mean. The latter states that if in addition, the variance is finite
and non zero, then the error is of the order of of 1√

n
, where n is the sample size.

It is a natural question to ask what is the situation for random variables that are not independent. A
simple example of that is as follows: choose α in the closed interval [0, 1] with the uniform distribution. Now
consider the sequence of numbers {2nα} modulo 1. Given a reasonable function f on [0, 1], we can consider
the sequence of random variables {f(2n·)}. The Ergodic Theorem states that for an L1 function f , almost
surely, the sample averages converge to the integral of f .

In his paper [5], Victor Kac shows that the rate of this convergence is of the order of 1√
n
. More precisely,

he shows that a suitable normalized sample average converges (in the sense of convergence in distribution) to
the standard normal distribution.

We give an alternative proof of Kac’s Theorem by using Stein’s method. We show that the normalized
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sample averages converge to the standard normal distribution in the Wasserstein metric, which is stronger
than the convergence in distribution.

Let us now delve into the details of what we have just described.

2. Overview

2.1. Overview of Classical Central Limit Theorem. We will start by reviewing classical CLT. Let
{Xk}∞k=0 be a sequence of i.i.d random variables with finite mean and a finite non-zero variance (which will
be denoted as µ and σ2 respectively). Let us denote An to be the sample averages of these random variables,
when the sample size is n, namely

An :=
X0 +X1 + . . .+Xn−1

n
, n = 0, 1, 2, · · · .

The strong law of large numbers states that almost surely, An converges to µ (in this case, it is not necessary
to assume that the variance is finite). Next, let us define Wn to be a suitably normalized sample average given
by

Wn :=
(An − µ

σn/
√
n

)

, (1)

where σ2
n is the variance of the random variable X0+X1+ . . .+Xn−1. We note that since the random variables

are i.i.d,

σ2
n = nσ2. (2)

The classical Central Limit Theorem states that Wn converges in distribution to the standard normal variable.
A proof of this Theorem can be found in any standard Probability text book, such as [6, pp 100].

2.2. Overview of Kac’s Central Limit Theorem. Let us now consider the question considered by Victor
Kac in his paper [5]. He investigated the following question: suppose we randomly choose a real number in the
closed interval [0, 1] (with respect to the uniform distribution). Call this number α and consider the iterates
α, Tα, T 2α, where T : [0, 1] −→ [0, 1] is the ergodic transformation, given by

T (α) := 2α mod 1. (3)

We shall refer to this map as the ‘angle-doubling’ map ([4, Example 2.4]). In the Ergodic Theory literature,
the map T is also linked to the Bernoulli Shifts (see [4], [7] and [11]).
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Let f : [0, 1] −→ R be any L1 function. Consider the random variables Xf
k : [0, 1] −→ R, given by

Xf
k (α) := f(T k(α)), k = 0, 1, 2, · · · . (4)
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In contrast to the setting of the classical Central Limit Theorem, these random variables are not independent.
A natural question to ask is, what can we say about the averages of these random variables? The Ergodic
Theorem says that for almost all α, the sample averages converge to the integral of f . In his paper [5],
Kac shows that even though these random variables are not independent, a conclusion similar to that of the
Central Limit Theorem holds (provided we make certain assumptions on the function f , in terms of decay of
the Fourier coefficients). The idea behind his proof is to first show that the conclusion of the theorem holds for
a suitable class of step functions ϕ. He achieves this by showing that the random variables Xϕ

n are ‘statistically
independent’ (see [5, Section 3]). He then uses an approximation argument to show that the conclusion holds
for a more general f (whose Fourier coefficients satisfy the appropriate decay conditions). In particular, Kac
establishes convergence in distribution to the standard normal distribution for a suitably normalized sample

average of the collection {Xf
k }∞k=0.

In this paper, we apply Stein’s method to the question considered by Kac, namely to the collection of

random variables {Xf
k }∞k=0. We show that the same normalized average of this collection converges to the

standard normal distribution in the Wasserstein Metric. The central ingredient of our proof is to invoke a
Theorem from Ross’s paper, namely [9, Theorem 3.2, pp. 219]. Since the convergence in Wasserstein metric
is strictly stronger than the convergence in distribution (see [2, p. 10]), we have an improved version of Kac’s
result.

3. Main result of this paper

Let us now recall the setup and result of Kac’s paper [5]. Let f : [0, 1] −→ R be a function that is in L1.
Choose a real number α ∈ [0, 1] randomly (with respect to the uniform distribution on [0, 1]). Let us now
consider the map T : [0, 1] −→ [0, 1], given by (3). Now look at the sample average of f composed with iterates
of T , namely

An(α) :=
Xf

0 (α) +Xf
1 (α) + . . .+Xf

n−1(α)

n
, (5)

where Xf
k (α) are as defined in (4). It is a standard fact that the map T is an Ergodic Transformation; proof

of this assertion can be found in [4, Proposition 2.15, pp. 25]. Since T is Ergodic, it is a consequence of
Birkhoff’s Ergodic Theorem that for almost all α in [0, 1], the sample average An(α) converges to µ, where

µ :=

1
∫

0

f(t)dt.

Proof of Birkhoff’s Ergodic Theorem can be found in [4, Theorem 2.30, pp. 44].

Next, let σ2
n denote the variance of the random variable Xf

0 +Xf
1 + . . .+Xf

n−1. Note that since the X
f
k

are not independent, there is no simple formula analogous to (2). In fact, σn is the L2 norm of the function t
going to An(t), i.e.

σ2
n :=

1
∫

0

|An(t)|2dt. (6)

Let us now assume that

lim
n−→∞

σ2
n

n
= σ2 > 0. (7)

Note that the existence of σ2 and positivity are part of the assumption. In particular, f is not identically zero.
Next, let us make further assumptions on f . Let us assume that f has the following Fourier series

expansion, namely

f(t) ∼
∞
∑

n=1

an cos(2πnt).
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Note that we extend f periodically on the whole of R; hence f is an even function. As a result the sine terms
are absent. Moreover, assume that

|an| <
M

nβ
(8)

for some constant M and for some β > 1
2
.

Let us now define the random variable W f
n given by

W f
n (α) :=

An(α)− µ

σn/
√
n

. (9)

The main result of Kac’s paper is as follows (which is [5, Theorem 1, pp. 41]):

Theorem 3.1. Let f : [0, 1] −→ R be an L1 function, with Fourier coefficients satisfying (8). Let {Xf
k }∞k=0

be the collection of random variables as defined by (4) and let W f
n be as defined by (9). Suppose equation (7)

is satisfied. Under these assumptions, ∀a ∈ R

lim
n→∞

P(W f
n ≤ a) =

1√
2π

∫ a

−∞
e

−t2

2 dt

Before stating the result of this paper, let us first make a few definitions.

Definition 3.2 ([9, p. 214],[10]). Let X,Y : Ω −→ R be two random variables. We define the Wasserstein

distance between these two variables as

dW (X,Y ) := sup{E(h(X)− h(Y ))| : h ∈ Lip1(R,R)},
where Lip1(R,R) denotes the space of 1-Lipschitz functions from R to R.

It is well-known that dW is indeed a metric and defines a notion of convergence, which further implies the
convergence in distribution. We are now ready to state the main result of this paper.

Theorem 3.3 (Main result: CLT for Angle Doubling Map). Let f : [0, 1] −→ R be a non-zero L1 function,

with Fourier coefficients satisfying (8). Let {Xf
k }∞k=0 be the collection of random variables as defined by (4)

and let W f
n be as defined by (9). Suppose equation (7) is satisfied. Under these assumptions, the random

variables W f
n converge to the standard normal random variable in the Wasserstein metric.

Since the convergence in Wasserstein metric is strictly stronger than the convergence in distribution (see [2,
p. 10]), we have an improved version of Kac’s result. In order to prove the above Theorem, let us first review
a few important concepts from Ross’s paper and Kac’s paper that are relevant for our paper. Let us start by
recalling the concept of dependency neighbourhood.

Definition 3.4. Let X0, X1, X2, . . . , Xn be a finite collection of random variables. We say this collection has
dependency neighbourhoods Ni ⊂ {0, 1, 2, . . . , n} for i = 0, 1, 2, . . . n if i ∈ Ni and Xi is independent of Xj ,
whenever j /∈ Ni.

Let us now recall the following Theorem from Ross’s paper [9, Theorem 3.2, pp. 219].

Theorem 3.5. Let X0, X1, X2, . . . , Xn be random variables such that E[X4
i ] < ∞, E[Xi] = 0. Let the collection

{X0, X1, . . . , Xn} have dependency neighborhood Ni, i = 0, . . . to n and define Dn := max0≤i≤n|Ni|. Then

dW (WX
n , Z) ≤ D2

n

σ3
n

n
∑

i=1

E|Xi|3 +
√
28D

3

2

n√
πσ2

n

√

√

√

√

n
∑

i=1

E|Xi|4,

where Z denotes a standard normal random variable.

This Theorem will play a crucial role in our proof of showing that W f
n converges to Z in the Wasserstein

metric.
Let us now review the basic idea of Kac’s proof. A crucial Lemma that Kac proves in his paper is to

show that the main conclusion holds for a suitable class of step functions. Let us state that Lemma explicitly
(which is [5, Lemma 5, pp. 40])
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Lemma 3.6. Let [0, 1] be divided into 2r intervals of equal length. Let ϕ : [0, 1] −→ R be a step function such

that on the interval [ i
2r
, i+1

2r
] it is a constant, for all i = 0 to 2r − 1. Assume ϕ satisfies equation (7). Then

the conclusion of Theorem 3.1 holds.

Remark 3.7. Note that we are not making any assumptions on the Fourier coefficients of ϕ.

Since this Theorem and its proof will play a very important role in our paper, we briefly recall the proof from
Kac’s paper [5]. Given a t ∈ [0, 1], let us consider the binary expansion of t. Let us consider the digits of t to
be ε1(t), ε2(t), . . .. Note that each εi(t) is either 0 or 1. A crucial observation in Kac’s proof is that the step
functions considered here can be represented as

ϕ(t) = P (ε1(t), ε2(t), . . . , εr(t)), (10)

where P is a polynomial in r-variables. In other words, ϕ(t) depends only on the first r digits of t and
furthermore, this dependence is through some explicit polynomial P as in (10). Using this crucial observation,
Kac then shows that the random variables Xϕ

n are statistically independent. Finally, he invokes a Lemma
by Markoff [8, pp. 302-309], that says that if the random variables are statistically independent, then the
conclusion of the Central Limit Theorem still holds. This fact is also stated in [5, Lemma 4, pp. 38-39], by
referring to Markoff’s paper [8].

After that, the author uses an approximation argument (namely he approximates f by a step function)
to show that Theorem 3.1 is true for a general class of functions f (provided of course, f satisfies the hypothesis
of the Theorem).

In the next section we show how to modify this idea to get convergence in the Wasserstein metric. For
this, we crucially use the result on dependency neighborhood, namely Theorem 3.5.

We now start the proof of Theorem 3.3. As one might expect, we first show establish the result for a
suitable step function.

Lemma 3.8. Let [0, 1] be divided into 2r intervals of equal length. Let ϕ : [0, 1] −→ R be a step function such

that on the interval [ i
2r
, i+1

2r
] it is a constant, for all i = 0 to 2r − 1. Assume ϕ satisfies equation (7). Then

the conclusion of Theorem 3.3 holds.

Remark 3.9. Again, no assumptions are being made on the Fourier coefficients of ϕ.

Proof of Lemma 3.8: We will be using Theorem 3.5 to prove this Lemma. First of all, we note that without
loss in generality, we can assume that

1
∫

0

ϕ(t)dt = 0. (11)

This is because, if the integral is equal to µ, which is non-zero, then we can define the step function

ϕ̃(t) := ϕ(t)− µ.

Assuming we have proved the Lemma for ϕ̃, the result follows for ϕ as well. Henceforth, we will assume that
the integral of ϕ is zero. Next, given a t ∈ [0, 1], let ε1(t), ε2(t), . . . denote the digits of t in the binary expansion
of t. By equation (10), ϕ(t) depends only on the first r digits of t, namely it depends only on ε1(t), . . . , εr(t).

We now note that for all t, n and k,

εk(T
nt) = εk+n(t). (12)

Furthermore, the random variables εi : [0, 1] −→ R are i.i.d. and

Xϕ
n (t) = ϕ(T nt)

= P (ε1+n(t), ε2+n(t), . . . , εr+n(t)).

Since, εi’s are i.i.d., the joint distribution of (ε1+n, · · · , εr+n) depends on r and hence on ϕ, but not on n.
Hence Xϕ

n ’s are identically distributed. In particular, the variance of Xϕ
n is same as variance of Xϕ

0 , which is
equal to the integral of ϕ2 from 0 to 1, i.e.

Var(Xϕ
n ) =

1
∫

0

ϕ(t)2dt.
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For the same reason, the third and fourth absolute moments, namely E|Xϕ
n |3 and E|Xϕ

n |4 are constants,
independent of n. We also note that since ϕ is a step function; we have

1
∫

0

ϕ(t)4 dt < ∞, (13)

which ensures the finiteness of E|Xϕ
n |4. We have already assumed that the integral of ϕ is zero (equation

(11)). This implies that all the expectations E[Xϕ
n ] are equal to zero (since they are all equal to E[Xϕ

0 ], which
in turn is equal to the integral of ϕ). Hence, the first two hypotheses of Theorem 3.5 are satisfied.

Let us now study the dependency neighborhood of the random variables Xϕ
n . Let us consider the

collection
{Xϕ

0 , X
ϕ
1 , . . . , X

ϕ
n }.

Define Nk to be the following set:

Nk := {k − r + 1, . . . , k + r − 1}.
We now note that Xϕ

k is independent of the Xϕ
j if j /∈ Nk. This is because the εi’s in Xϕ

k do not appear in

the other random variable Xϕ
j if j /∈ Nk. Moreover, Nk is the largest such set of indices with this property.

Therefore the dependency neighborhood of Xϕ
k is given by Nk. Since |Nk| is atmost 2r − 1 for all k, we have

Dn ≤ 2r − 1, (14)

a constant independent of n and which depends only on ϕ through r.
Let us now compute the covariance of Xϕ

i and Xϕ
j . We claim that

Cov(Xϕ
i , X

ϕ
j ) = ρ(|i− j|)

1
∫

0

ϕ(t)2dt, (15)

where ρ(i) denotes the correlation between Xϕ
0 and Xϕ

i . Let us denote by
d
= the equality of two random

variables in distribution. Without loss of generality, take i < j. We have,

(Xϕ
i , X

ϕ
j ) = (P (ε1+i, · · · , εr+i), P (ε1+j , · · · , εr+j)) (16)

d
= (P (ε1, · · · , εr), P (ε1+j−i, · · · , εr+j−i)) (17)

which implies

(Xϕ
i , X

ϕ
j )

d
= (Xϕ

0 , X
ϕ
j−i). (18)

To avoid confusion, let us clarify the meaning of the right hand sides of equations (16) and (17). The expression
P (ε1, · · · , εr) denotes the random variable t going to P (ε1(t), · · · , εr(t)).

Using equation (18), we conclude that

Cov(Xϕ
i , X

ϕ
j ) = Cov(Xϕ

0 , X
ϕ
j−i) = ρ(j − i)

√

Var(Xϕ
0 )Var(X

ϕ
j−i),

which proves (15). �

Finally, we estimate the growth of the sample standard deviation, namely σn. Note that

1

n
σ2
n =

1

n

(

Var
(

n−1
∑

i=0

Xϕ
i

)

)

=
1

n









n−1
∑

i=0

Var(Xϕ
i ) +

∑

i,j∈{0,1,...,n}

i6=j

Cov(Xϕ
i , X

ϕ
j )









=

(

1 +
Jn
n

)

1
∫

0

ϕ(x)2 dx, where Jn :=
∑

i,j∈{0,1,...,n−1}

i6=j

ρ(|i− j|). (19)
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Let us now analyse Jn. Whenever, |i−j| > r−1,Xϕ
0 andXϕ

|i−j| are independent and consequently, ρ(|i−j|) = 0.

Then,

Jn :=

n−1
∑

i=0

Jn,i where Jn,i :=
∑

j:0<|i−j|≤r−1

j∈{0,1,...,n−1}

ρ(|i− j|).

Without loss of generality, we work with n ≥ 2r − 1. For i ≥ r − 1, Jn,i = 2
r−1
∑

k=1

ρ(k) =: C3, a constant

independent of n. Again, by construction, |ρ(j)| ≤ 1 for any j and consequently,
∑r−2

i=0 Jn,i is bounded by
(r − 1)2, independent of n. Hence,

lim
n→∞

Jn
n

= lim
n→∞

1

n

r−2
∑

i=0

Jn,i + lim
n→∞

1

n

n−1
∑

i=r−1

Jn,i = 0 + C3 = C3.

Using equation (19), we have

lim
n→∞

σ2
n

n
= (1 + C3)

∫ 1

0

ϕ(x)2 dx.

We now conclude, using Theorem 3.5 that dW (W
Xϕ

n , Z) = o( 1√
n
) as n goes to infinity. This completes the

proof of Lemma 3.8. �

We are now ready to prove our main Theorem for a general function. First, let us prove one auxiliary
result. We make a very simple observation that bounds the size of Wasserstein distance by the size of the L2

distance.

Lemma 3.10. Let X and Y be random variables. Then

dW (X,Y ) ≤ ||X − Y ||L2 .

Proof: The proof follows by unwinding definitions. We note that

dW (X,Y ) = sup{|E(h(X)− h(Y ))| : h is 1-Lipschitz}
≤ sup{E|(h(X)− h(Y )|) : h is 1-Lipschitz}
≤ E|X − Y | using the fact that the h is 1-Lipschitz

≤
(

E|X − Y |2
)

1

2

= ||X − Y ||L2 . �

We are now ready to prove the main theorem.

Proof of Theorem 3.3: For the function f under consideration, we recall from [5, Lemma 3] that given an
ε > 0, there exists a step function ϕ with its such that the endpoints of its intervals of constancy of the form
i
2r
,
∫ 1

0
ϕ(x) dx = 0 and

lim
m→∞

1

m

∥

∥

∥

∥

∥

m−1
∑

k=0

ϕ(T k·)
∥

∥

∥

∥

∥

2

L2

> 0

such that for large n,

||W f
n −Wϕ

n ||L2 <
ε

2
. (20)

By the triangle inequality for the Wasserstein metric dW and using Lemmas 3.8 and 3.10, we have

dW (W f
n , Z) ≤ dW (W f

n ,W
ϕ
n ) + dW (Wϕ

n , Z) ≤ ||W f
n −Wϕ

n ||L2 + dW (Wϕ
n , Z) < ε

for large n. This concludes the proof. �
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