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The discovery of the quantum spin Hall effect led to the exploration of the electronic transport
for spintronic devices. Here, we theoretically investigated the electronic conductance in large-gap
realistic quantum spin Hall system, Pt2HgSe3 nanoribbons. By an ab initio approach, we found
that the edge states present a penetration depth of about 0.9 nm, which is much smaller than those
predicted in other 2D topological systems. Thus, suggesting that Pt2HgSe3 allows the exploitation
of topological transport properties in narrow ribbons. Using non-equilibrium Green’s functions
calculations, we have examined the electron conductivity upon the presence of Se↔Hg antistructure
defects randomly distributed in the Pt2HgSe3 scattering region. By considering scattering lengths up
to 109 nm, we found localization lengths that can surpass µm sizes for narrow nanoribbons (< 9 nm).
These findings can contribute to further understanding the behavior of topological insulators under
realistic conditions and their integration within electronic, spintronic devices.

I. INTRODUCTION

Topological insulators (TIs) are an emerging class of in-
triguing materials with unique electronic properties. Par-
ticularly, the wave function that describes their electronic
states spans a Hilbert space with a new topology. The
consequence is that at any interface, with an ordinary
insulator, they will present a gapless state protected by
time-reversal symmetry [1].

The first indirect observation of the topological edge
states was the measurement of the quantized conduc-
tance in HgTe/CdTe quantum wells [2, 3]. On the other
hand, the direct observation of the electronic state on
the surface was possible through an angle-resolved pho-
toemission spectroscopy (ARPES) experiment, first in
Bi1–xSbx [4]. Despite this, characterizing the surface
structure of such materials is not an easy task, and later
combined measurements of ARPES, scanning tunneling
microscopy (STM), and scanning tunneling spectroscopy
(STS) helped to identify TI materials [5, 6].

Measurements of quantized conductance in the quan-
tum spin Hall geometry have been done in quantum
well systems HgTe/CdTe and InAs/GaSb [2, 3, 7], on
decorated/interfaced graphene [8], and on WTe2 [9].
STM/STS of edge states were also observed on WTe2
[10, 11], SiC/Bismuthene interface [12] and in jacutin-
gaite mineral (Pt2HgSe3) [13]. However, those systems
are either quantum wells, low gap decorated graphene,
and/or 2D materials unstable under oxidation [14–16]. In
other words, only a few 2D materials with the topological
helical edge mode showing quantized transport have been
measured. This drives a quest to deeply understand their
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structural and energetic stability, how intrinsic defects,
confinement length (ribbon width), and temperature, to
cite a few, can affect the quantized transport.
Jacutingaite (Pt2HgSe3) is a naturally occurring min-

eral [17], stable against oxidation [13]. It gained atten-
tion due to the large spin-orbit coupling effect leading to
a non-trivial 0.15 eV energy gap opening [18, 19], being
the first realization of the Kane-Mele topological model
[20]. While it is a chemically stable topological insula-
tor, the experimental synthesis of Jacutingaite is prone
to present defects and disorders. Such effects in the elec-
tronic transport of the topological states, combined with
confinement potential, bulk density of state, and topo-
logical state penetration depth, can change the quantized
topological conductance.
In this work, we systematically study the ballistic

transport in jacutingaite nanoribbons including stoichio-
metric defects, by combining density functional the-
ory (DFT) and electronic transport calculations through
non-equilibrium Green’s functions (NEGFs). We ex-
plored different concentrations of non-magnetic defects
in a disordered geometry and the competition between
topological edge-state manifestation and confinement in
narrow ribbons. Here we showed that the localization
length in the transport can surpass µm length, that is,
allowing realistic device engineering in the jacutingaite
platform despite the presence of intrinsic defects.

II. METHODOLOGY

A. Equilibrium geometry and electronic structure

To obtain the geometric, energetic, and electronic
properties of pristine and defective systems, we per-
formed density functional theory (DFT) calculations as
implemented in the plane wave basis Vienna Ab-Initio
Simulation Package (VASP) [21, 22]. We employed
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FIG. 1. (up) Nanoribbon dimensions and illustrative de-
vice for electronic transport measurement. (bottom) Defec-
tive building blocks indicating center and edge antistructure
defects. Gray, (purple/black), and (green/red) atoms repre-
sent Pt, Hg, and Se atoms, respectively.

the semilocal exchange-correlation formalism proposed
by Perdew, Burke, and Ernzerhof (PBE) [23, 24]. To
improve the description of van der Waals interactions,
we used the DFT-D3 pairwise corrections proposed by
Grimme [25]. The plane-wave basis energy cutoff was
set to 400 eV for all calculations with an energy con-
vergence parameter of 10−6 eV, and atoms were allowed
to relax until all forces were smaller than 10−3 eV/Å.
The electron-ion core interactions were described through
the projected augmented wave (PAW) potentials [26, 27].
We integrated the Brillouin zone through a 4 × 4 × 1 k-
point mesh for relaxation. We further included relativis-
tic effects by considering spin-orbit coupling corrections
(SOC).

B. Electronic transport

In Fig. 1, we present the setup used for the elec-
tronic transport calculation. We have considered the
Se-terminated zigzag nanoribbons (NRs) [13] where the
electronic transport takes place along the z-direction,
and three NR widths (W ) of 34, 60, and 99 Å, paral-
lel to the x-direction. We have combined DFT and a

recursive Green’s function (RGF) method [28]. The sys-
tem can be decomposed into three main parts, two semi-
infinite charge reservoirs, that are the (i) left and (ii)
right electrodes, and (iii) the central scattering region.
Besides, within the RGF the scattering region can be fur-
ther split into several building blocks (Disorder Blocks
in Fig. 1). Two distinct building block kinds have been
examined, as shown in Fig. 1(bottom), one with the anti-
structure defect located in the NR’s central region and
the other with the defect close to the NR’s edge sites.
The concatenation of these blocks along the transport-
direction is random, resulting in scattering lengths (L)
up to 0.1µm. It is also important to note that the blocks
were constructed to ensure coupling only between adja-
cent neighbors. For the transport calculations, we first
obtain the electrodes and scattering region Hamiltonians
through SIESTA-based DFT calculations. Thus, we em-
ployed norm-conserving Troullier-Martins pseudopoten-
tials [29], and single ζ-polarized (SZP) basis set of numer-
ical atomic orbitals to expand the Kohn-Sham orbitals of
the valence electrons. Our real-space mesh cutoff was set
to 300Ry and the Brillouin zone was integrated through
a Monkhorst-Pack k-points mesh 1×1×10 (1×1×3) for
the electrodes (scattering) region. Our SZP basis set cal-
culations agree with our plane-wave-based calculations,
thus being sufficient to describe the electronic structure
of the system.

III. RESULTS

Although the present study focuses on the topologi-
cally protected electronic transport in Pt2HgSe3 nanorib-
bons, we will start our investigation by examining key
structural and electronic properties of pristine and de-
fective Pt2HgSe3 monolayer.

A. Pt2HgSe3 monolayer

1. Pristine system

The Hg atoms in Pt2HgSe3 pinpoint a honeycomb
structure, purple atoms in Fig. 2(a), embedded in a PtSe
matrix. At the equilibrium geometry, the electronic band
structure obtained without the inclusion of the spin-orbit
coupling (SOC) is characterized by a Dirac cone structure
crossing the Fermi level at the K-point, Fig. 2(b). Mean-
while, upon the inclusion of the SOC, we found an energy
gap at the Dirac point with the band edges composed
mainly by Hg-6s orbitals hybridized with Pt-4d orbitals.
Such behavior is typical of the Kane-Mele model [20],
and characterizes the topological phase of jacutingaite
[18, 19]. The energy gap opened by the spin-orbit cou-
pling in the pristine system is calculated here as 0.13 eV.
It is worth pointing out that previous studies consider-
ing hybrid functionals (HSE) and GW calculations pre-
dicted a higher energy gap of 0.2 eV [19, 30] and 0.5 eV
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FIG. 2. (a) Jacutingaite monolayer top and side views
and (b) electronic band structure with and without SOC ef-
fects. Gray, purple, and green atoms represent Pt, Hg, and
Se atoms, respectively.

TABLE I. Intrinsic point defects’ formation energies.

Defect Ef (eV)
VSe 5.42
VPt 6.87
VHg 0.23

(Se ↔ Hg) 0.79

[18]. However, experimental STM measurements at 9K
estimate the energy gap to be 0.08± 0.03 eV [13], closer
to the one obtained by using the DFT-GGA approach.

2. Intrinsic defects

The emergence or suppression of a given topological
phase as well as its influence on electronic transport can
be dictated by the presence of defects [31–34]. For in-
stance, the trivial→non-trivial QSH transition is medi-
ated by the concentration of selenium vacancies (VSe) in
PtSe2 ML [33].

Here, we have considered vacancies (VX, with X = Se,
Pt, and Hg), and antistructure (Se↔Hg) defects [35] in
Pt2HgSe3 ML. The occurrence rate of these defects can
be inferred by the calculation of the formation energy
(Ef )[36, 37],

Ef = Epristine − Edefect − n× EX, (1)

where Epristine and Edefect are the total energies of the
pristine and the defective Pt2HgSe3 ML; EX is the to-
tal energy of an isolated atom X, and n is the number
of missing atoms. For a single X vacancy, VX, n=1,
while for the antistructure defect, which is stoichiomet-
ric, n=0. In the antistructure defects, we have consid-
ered antisites, SeHg and HgSe, created adjacent to each
other. Generally, transition metals vacancy have larger
defect formation energy than the chalcogen vacancy [38],
which is also verified here, as VPt formation energy is
higher than VSe. However, the formation energy of both

defects is larger compared with VHg, 0.23 eV, followed by
the (Se↔Hg) antistructure, 0.79 eV.
The stoichiometry of Pt2HgSe3 has been conserved in

experimentally synthesized jacutingaite samples [13, 39].
Meanwhile, naturally occurring samples exhibit Pd dop-
ing in the Pt site while maintaining the Hg/Se ratio [17].
These results, combined with the lower formation of the
(stoichimetric) antistructure defects, allow us to infer
that (Se↔Hg) interchanged defect is quite likely to be
present in Pt2HgSe3 [40]. In the sequence, we will exam-
ine the effect of the local disorder induced by the anti-
structure defect on the electronic transport properties,
mediated by the topologically protected edge states in
Jacutingaite NRs.

B. Pt2HgSe3 nanoribbons: electronic transport

The transport geometry for the monolayer Pt2HgSe3 is
presented in Fig. 1. The leads are pristine systems, and
the scattering region contains the antistructure defects.
We explored (i) different nanoribbons width (W = 34,
60, and 99 Å), (ii) different antistructure concentrations
(λ = 1.9 × 106, and 4.5 × 106 defects/cm), and (iii)
different scattering region length (L = 15.6, 31.2 and
109.2 nm).

1. Pristine nanoribbons

First, we analyze the conductance through a defect-
free jacutingaite NR. In such a case, the incident wave
function is also an eigenstate of the scattering region,
thus leading to a suppression of scattering processes.
In Figs. 3(a)-(c), we present the electronic band struc-
ture and the conductance results (in units of G0 = e2/h)
for different NR widths, W = 34, 60, and 99 Å. The
band structure presents the projected contribution of the
atomic orbitals from the middle of the ribbon, namely

bulk-like region |⟨bulk|n, k⃗⟩|2, and the orbitals at the

edge |⟨edge|n, k⃗⟩|2. We can identify two topological edge
bands close to the Fermi energy. For W = 34, and 60 Å,
we can see a gap opening at the Dirac crossing due to
the inter-edge interaction. In contrast, for W = 90 Å, we
find the emergence of a Dirac cone at the Γ-point.

As shown in Fig. 3(right), the energy window (∆ε)
close to the Fermi level with G=2G0, due to the edge
metallic band, decreases as the NR width increases. That
is, for W = 90 Å [Fig. 3(c)] we found ∆ε of around
0.13 eV, which is compatible with the topological band
gap of the single layer jacutingaite. Whereas, for W = 34
and 60 Å [Figs. 3(a) and (b)], in addition to the energy
gap at the Dirac point due to the inter-edge interactions,
∆ε increases to about 0.19 and 0.15 eV, which can be at-
tributed to the confinement potential sparsing the bulk-
like bands [41].

Since the inter-edge interactions are mediated by the
bulk (inner) states, the penetration length (ℓ) of the edge
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FIG. 3. Electronic band structure projected on the bulk and
edge regions (left) and conductance (right) across a Pt2HgSe3
nanoribbon with different size width, (a) W = 34, (b) W = 60
and (c) W = 99 Å. The green and gray colors in the band

structure is proportional to the edge (|⟨edge|n, k⃗⟩|2) and bulk

(|⟨bulk|n, k⃗⟩|2) contribution to the system eigenstate, respec-
tively. For all band structures, each NR edge region for pro-
jection is about 7.69 Å wide (perpendicular to transport di-
rection), while the remaining atoms are considered as bulk
projection region.

states is a key quantity in understanding the topologi-
cally protected electronic transport along the NR’s edge
channels. Within the Kane-Mele model, the penetra-
tion depth is ℓ ∼ at

√
3/(2λ), with a the lattice parame-

ter, t the nearest-neighbor hopping, and λ the spin-orbit
strength term. Taking these values from the jacutin-
gaite band structure with t/6 the Dirac band width at

Γ-point, the SOC gap at K-point, EK
gap = 6

√
3λ, and

a = 7.5 Å, we can estimate ℓ = 11.2 nm. In contrast,
in Ref. [18] the authors predicted a penetration depth
(ℓ = ℏvF /Egap) of about 4.7 Å, by using an energy gap
Egap of 0.53 eV, larger than that observed experimentally,

and vF of 3.6×105 m/s. Further STM measurements, in-
deed, observed a penetration length of ∼ 5 Å in the Se
terminated zigzag jacutingaite NRs [13].
By projecting the edge states contribution in real

space, Fig. 4, we can explicitly calculate the penetration
depth (ℓ) by fitting the wave function decay as Ψtop(x) =

ϕ(x)e−x/ℓ, where ϕ(x) is the planar (yz) averaged single-
particle wave-function (near the Γ-point) of the metallic
band crossing the Fermi level. We found a mean value
ℓ = 0.91 nm for W = 34 and 60 Å [Figs. 4(a) and (b)],
and ℓ = 0.76 nm for the widest NR, W = 99 Å. It is
worth noting that these values of ℓ are lower than pre-
dicted considering the empty honeycomb lattice (Kane-
Mele model), 11.2 nm, suggesting that the PtSe2 back-
ground’s dielectric media improves the wave function’s
screening, and thus reducing penetration depth.
The reduced penetration depth implies that the topo-

logical electronic transport is maintained against inter-
edge scattering processes even in narrow jacutingaite
NRs. However, in the case of scattering potentials along
the NRs [42, 43], we might observe an entirely different
picture. In this scenario, the inter-edge interactions may
lead to the suppression of the electronic transport along
the edge channels.

2. Antistructure defects in NRs

Here, we will study the effect of the scattering poten-
tials induced by the (Se↔Hg) antistructure on the elec-
tronic transport properties along the jacutingaite NRs.
In Figs. 5(a) and (b), we present the total charge re-
arrangement (∆ρ), defined as the total charge differ-
ence between the defective and pristine (defect-free) sys-
tems, ∆ρ = ρdefect − ρprist, induced by the antistruc-
ture defect at the center, and at the edge sites of the
NR with W = 34 Å. In the former, we see a charge re-
arrangement in diameter of ∼ 0.7 nm, giving a scale of
the antistructure defect localization. In contrast, as de-
picted in Fig. 5(b), an antistructure defect at the edge
site of the NR leads to a charge rearrangement in both
edges, ruled by the edge-edge coupling present for such
width. Meanwhile, by increasing the ribbon width to
W = 60 Å [Fig. 5(c)], although both NRs present practi-
cally the same penetration length, ℓ = 0.9 nm [Figs. 4(a)
and (b)], such a charge density rearrangement at the op-
posite side to the defect becomes nearly absent. That is,
as expected, the inter-edge interactions are weakened for
larger values of NR width with respect to the penetration
length.
Focusing on the electronic transport properties, us-

ing the simulation setup presented in Fig. 1, we calcu-
late the conductance, G, as a function of the width, W ,
and length (L) of the NR. We have considered scattering
lengths ranging from 16 up to 109 nm with the antistruc-
ture defects randomly distributed along the scattering
region, as described in Section II-B, and schematically
depicted in Fig. 6(e).
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FIG. 4. Penetration depth estimation for different NR-width. Blue curves indicate the yz-planar averaged local density of
states (LDOS) according to their real-space projection as depicted for each NR-width, obeying |Ψtop(x)|2 = |ϕ(x)|2e−2x/ℓ .
Orange dashed lines are the exponential fitting to obtain the respective penetration depth ℓ.

FIG. 5. Charge density difference with/without the de-
fect presence ∆ρ(r⃗) = ρdef(r⃗) − ρpris(r⃗), for the W = 34 Å
nanoribbon (a) and (b) and for W = 60 Å nanorribon in (c).
In (a) the defect is located in the center of the ribbon, while
in (b) and (c) the defect is at the ribbon edge. Blue/yellow
regions indicate a decrease/increase in the electron concen-
tration. The isosurface value is 0.01 e Å−1

In Figs. 6(a)-(c), we present our results of conductance
at the presence of antistructure defects (Gdefect, in units
of G0 = e2/h) near the Fermi level, for W = 34, 60,
and 99 Å and linear concentration of defects (λ) of 4.5×
106 cm−1. It is noticeable that Gdefect is smaller than
the conductance of the pristine NR (Gprist) indicated by
dashed lines in Fig. 6. Since the antistructure defects are
non-magnetic, the backscattering process in a single edge
is forbidden by the time-reversal symmetry, thus we can
infer that the results of Gdefect < Gprist are due to the
partial or total inter-edge backscattering processes within
the energy window (∆ε in Fig. 3) of the topological edge
states. It is observed that the reduction of Gdefect with
respect to Gprist becomes more pronounced, independent
of the NR width, for energies below −0.1 eV, i.e. ε−εF <
−0.1 eV, suggesting the predominance of the bulk states
in the electronic transport along the NR. Furthermore,
the following results are noteworthy:

(i) For a given NR width and defect concentration,
λ, Gdefect decreases for higher values of L = 15.6 →
109.2 nm, since the scattering rate increases with the
length of the scattering region. Indeed, as shown in
Figs. 6(a) and (d), by reducing the concentration of the
defects, λ = 4.5 → 1.9 × 106 cm−1, we find that the
reduction of Gdefect is mitigated.
(ii) For a given value of λ, the reduction of Gdefect

is also mitigated by increasing the NR’s width, W =
34 → 99 Å [Figs. 6(a)→ (c)]. This can be attributed to
the reduction of the inter-edge backscattering since the
ratio between the penetration length of the edge states
and the width of the NR, ℓ/W , reduces for wider systems.
For instance, ℓ/W = 0.27 and 0.08 for W = 34 and 99 Å,
respectively.
The energy dependence of Gdefect and the width of

the NRs [(ii)] reveals that the deviation of Gdefect with
respect to Gprist is proportional to the inter-edge or-
bital couplings mediated by the antistructure states. In
the present study of antistructure defects, we find that
Gdefect ≈ 2G0 for ε − εF about −0.05 eV, as depicted in
Figs. 6(b) and (c), thus indicating that the edge-edge in-
teraction is nearly suppressed around 0.05 eV below the
Fermi level. Other (non-magnetic) defects may result in
different energy intervals where the inter-edge coupling is
minimized. On the other hand, in the limit of W → ∞,
perfect conducting channels with Gdefect = Gprist should
be observed, independent of the scattering region length
and the concentration of the defects.

3. Localization length

Given the random distribution of the scattering po-
tential, here induced by the antistructure defects, at first
glance our results of conductance can be interpreted in
terms of Anderson localization. In this case, we can gain
further insights by looking into the localization length
ξ as a function of the energy, where ξ is defined as the
length in which the conductance decays by an exponen-
tial factor [44, 45]

G = G0e
−L/ξ, (2)
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FIG. 6. Conductance as a function of nanoribbon length for defect scattering region. (a)-(c) for linear defect concentration
of λ = 4.5× 106 cm−1 and (d) for λ = 1.9× 106 cm−1. (a) and (d) the ribbons have width W = 34 Å , (b) W = 60 Å and (c)
W = 99 Å. In panel (e) we schematically present the distribution of the defects as a function of the ribbon length. (f) The
average localization lenght ξ for different energy ranges and nanorribon with W for λ = 4.5× 106 cm−1.

here, G0 is an exponential prefactor, and L is the length
of scattering region. From the last equation, we can have

ln(G/G0) = −L

ξ
. (3)

Within this model, ξ is inversely proportional to the
density of the scattering centers, ρ, namely ξ ∝ ρ−1 [45].
Thus, it is expected that a given materials’ NRs with
the same defect concentration would present similar lo-
calization lengths. However, this is not what we found
in our systems. Instead, ξ presents a NR’s width de-
pendence due to (i) the inter-edge scattering process of
the topological states and (ii) the distinct behavior of
the electronic transport through the bulk and edge chan-
nels, where the latter (former) is (is not) topologically
protected.

The behavior of G vs L is presented in Fig. 6 where
we estimated the localization lengths. Given the ran-
dom distribution of defects for each L an oscillation of
G/G0 for each energy is expected, that is, driven by the
defect-defect. However across energies ranges wider than
the defect-defect interaction a mean localization length
is robust. In Fig. 6(f) we present average values of ξ for
energy ranges with 0.05 eV window. For energies outside

the topological edge state range ε − εF < −0.1 we see a
localization length of 10−1 µm, that is the localization of
the system trivial bulk-like states. Within the topologi-
cal gap 0.05 > ε− εF > −0.1, the localization length in-
creases in relation to those on the bulk-like energy range,
that is, the backscattering forbidden topological trans-
port is dominant. Additionally, within the topological
edge states energy range there is an increase in the lo-
calization length with respect to the ribbon width W
reaching up to 101 µm for W = 99 Å at the Fermi en-
ergy, ε− εF = 0. Despite for narrow ribbons (W = 34 Å)
the non-magnetic impurity leads to edge-to-edge scatter-
ing; there exists energy ranges that can preserve long-
range transport with conductance 2G0, for instance for
ε − εF = 0 eV below the Fermi energy, reaching local-
ization length up to ∼ 6µm. Thus, regardless of intrin-
sic defects, the Pt2HgSe3 platform allows exploiting the
topological states in narrow ribbons.

IV. CONCLUSIONS

We investigated the electronic transport properties of
2D-Jacutingaite nanoribbons including defects and dis-
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orders within the systems. We analyzed the electronic
conductance for different-width nanoribbons and differ-
ent device lengths along the transport direction. Our
ab initio results indicate a synergy between the con-
finement potential and manifestation of topological edge
states that increase the energy range associated with the
topological edge states in narrow ribbons. Stoichiometric
defects in this system have a spatial length of ∼ 0.7 nm,
while the edge state penetration depth, ∼ 0.9 nm, is much
lower than in other 2D topological systems. By consider-
ing scattering lengths up to 109 nm, we found localization
length that can surpass µm sizes for narrow nanoribbons
(< 9 nm). This allows the exploitation of topological
transport properties in narrow ribbons. In fact, by com-
puting the transport localization length we show that a
topological-driven transport can survive high defect den-
sities ∼ 106 cm−1 for ribbons with width W = 34 Å. Our
analysis can contribute to the fundamental understand-

ing and design integration of TIs within spintronic de-
vices.
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