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Abstract. We introduce SAM3D, a new approach to semi-automatic
zero-shot segmentation of 3D images building on the existing Segment
Anything Model. We achieve fast and accurate segmentations in 3D
images with a four-step strategy comprising: volume slicing along non-
orthogonal axes, efficient prompting in 3D, slice-wise inference using the
pretrained SAM, and recoposition and refinement in 3D. We evaluated
SAM3D performance qualitatively on an array of imaging modalities
and anatomical structures and quantify performance for specific organs
in body CT and tumors in brain MRI. By enabling users to create 3D
segmentations of unseen data quickly and with dramatically reduced
manual input, these methods have the potential to aid surgical planning
and education, diagnostic imaging, and scientific research.
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1 Introduction

Image segmentation is a foundational problem in both medical practice and re-
search. Segmentation plays a critical role in surgical planning and interventional
radiology [26l5], it is used to calculate common clinical metrics [10], and it is a
component of many currently used and proposed diagnostic tools [312].
Current automated approaches to image segmentation predominantly use
deep learning models trained on vast quantities of labeled data. In medicine,
these models commonly achieve high performance through hyperfixation: they
train on a single anatomical region imaged using a single modality. There are nu-
merous downsides to such an approach. Training a model first requires gathering
a large amount of annotated data, which can be time consuming and expensive.
And, because training datasets are imperfect, these models are also susceptible
to brittleness and bias. When presented with images that deviate only slightly
from those in the training set, often in ways unnoticeable by humans, the models
can fail unexpectedly [23I17]. Lastly, many medical imaging modalities acquire
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3D images, which drastically increases the difficulty of storing, annotating, and
processing sufficiently large and diverse datasets.

Because of this, there is a growing interest in semi-automatic approaches for
general image segmentation. These methods offer a compelling compromise: by
accepting a small decrease in speed and convenience compared to their fully-
automated counterparts, we can have both increased reliability and greater gen-
eralizability. Previous proposed approaches to semi-automatic segmentation in-
clude early thresholding and region-growing methods for 2D and 3D, which rely
on intensity values to delineate structures of interest [I1]. Watershed and active
contour methods segment on the basis of intensity gradients [II830], and atlas
and multi-atlas-based segmentation combines registration with prior knowledge
in the form of an idealized reference image or set of images and labels [2/T6127].
With the advent of deep learning-based segmentation and the release of off-the-
shelf models and pipelines [7I28], high-quality automatic segmentation is easier
than ever, but these models still require large amounts of domain-specific train-
ing data, so researchers have sought to combine the speed and performance of
deep learning methods with the generalizability of previous semi-automatic al-
gorithms [4124].

In 2023, Kirillov et al. introduced Segment Anything [9], a promptable semi-
automatic segmentation model trained on a dataset of over 1 billion masks in
a wide array of 2D images. The architecture of the segment anything model
(SAM) is simple: it consists of an image encoder, a prompt encoder, and a
decoder, which takes the image and prompt embedding and predicts a 2D mask.
Prompting, an additional user input to inform the model of which structure to
segment, could be supplied one of in four formats. Three of these: points, boxes,
masks, describe the location and shape of the object of interest in the image.
The fourth, text, describes the semantics of the object. Due in large part to the
quantity and diversity of its training data, the segment anything model (SAM)
displays remarkable zero-shot segmentation performance: it is able to segment
types of images unseen during training.

In this work, we extend the SAM to 3D medical images with a novel prompt-
ing, slicing, and recompositing scheme. We test our method on a wide array
of 3D medical images and show that it is capable of generating high-quality
masks of diverse anatomies across a range of imaging modalities. By dramati-
cally reducing the time and effort required to obtain 3D segmentations on unseen
data, these methods have the potential to accelerate both clinical and scientific
workflows and improve future fully automatic segmentation tools.

2 Methods

The method we propose for 3D segmentation is conceptually simple. Noting
that SAM attains high zero-shot performance, we only need to slice a 3D image
volume into a set of 2D images, add appropriate prompting to these images,
segment using the pretrained model, and recompose the results into a 3D mask.
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Fig. 1. An overview of the segmentation method comprising: (a) an initial choice of
the number of axes to slice across (only one transform of four for cubic is shown here
for clarity), (b) user prompting input as polylines to medial slices and the calculation
of prompt intersection points, (c) inference on 2D slices with the pretrained SAM,
(d) point extraction and user-mediated refinement of the dense point cloud, and (e)
voxelization of the point cloud and user-mediated final mask refinement.
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In practice, multiple decisions regarding the strategy of volume decomposi-
tion, prompting, and recomposition affect both the quality of the final 3D mask
as well as the amount of human effort and time required. We select planar slices
along a predefined set of n rotationally equispaced axes oriented with the ver-
tices of a platonic solid (Figure ) Doing so ensures a near uniform sampling
of the entire imaging region while also allowing the 2D SAM model to see each
location in the imaging region n times, in essence giving it that many oppor-
tunities to segment the region correctly. Depending on the complexity of the
anatomy being segmented, more or fewer axes may be called for, so the first
user input is a choice of the number and distribution of axes: octahedral=3,
cubic=4, icosahedral=6, and dodecahedral=10. (Once symmetries are removed,
tetrahedral slicing is equivalent to cubic slicing, and is therefore omitted.)

Adding point prompts to every one of these slices, usually numbering in the
hundreds, is infeasible, but it is also unnecessary. We choose only the median
plane along each slicing axis to add prompting to. In contrast to SAM, which
takes positive and negative prompts as 0D points, we prompt with 1D polylines
that are fully contained within the structure of interest (positive) or fully outside
of it (negative) (Figure ) We find that adding prompting to a 2D image
with polylines is nearly as fast as prompting with points. But, by transforming
these lines to 3D and calculating their intersections with all slicing planes along
the other axes, we can generate point prompts over the entire 3D volume in
an equivalent time as it would take to prompt 3-10 2D images, the number
depending on the choice of transformation axes.

The resulting slices and prompt points are fed into the basic SAM model to
predict a set of 2D masks suspended in 3D space (Figure ) As the segmentation
predictions from SAM are not 100% accurate, a method for post-processing the
aggregated results is needed. We convert a uniformly-sampled subset of voxels in
each 2D mask to points in 3D, forming a dense 3D point cloud. While erroneous
segmentation predictions in 2D result in errant points, these are extremely sparse
when transformed to 3D, and can be easily and efficiently pruned with outlier
detection filters (Figure ) The resulting dense point cloud can be voxelized
and further refined using a combination of binary dilation, erosion, and hole-
filling to obtain the final mask prediction (Figure [Tk).

While refining the point clouds and voxel masks is both quick and intuitive,
we found that the choice of parameters to use depends in part on the anatomical
structure-of-interest, so each of these steps involves a small amount of user inter-
action to specify the aggressiveness of point cloud outlier removal and the degree
of dilation and/or erosion, which affects smoothness. For a typical structure in
a 256 x 256 x 256 voxel image, this entire process takes on the order of minutes,
roughly half of which is devoted to active user prompting and post-processing,
the other half to image transformations and model inference.

To assess the accuracy and generality of our segmentation model, we tested it
on a range of image modalities and anatomical structures. We selected datasets
and images that capture a wide array of shapes, length scales, and image quali-
ties (Figure . For image preprocessing, we resampled the image volumes into
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isotropic voxel dimensions prior to input into our model. Prompting and postpro-
cessing steps were performed by the authors, and reported times throughout the
manuscript represent the duration of the full pipeline, including slicing, prompt-
ing, inference, and postprocessing. All data used is either publicly available or
was approved for use in this study by an institutional review board.

We further quantified the accuracy of these segmentations using two popu-
lar 3D medical imaging datasets: one is the Beyond the Cranial Vault (BTCV)
dataset for organ segmentation in abdominal CT [I3], the other is the Brain
Tumor Segmentation (BraTS) dataset for glioblastoma in 4 MRI contrasts [22].
Both datasets have manually labeled masks, which serve as ground truth com-
parisons.

3 Results

We found that the our model generated high quality masks for a range of imaging
modalities and anatomical structures (Figure . The time required for each
segmentation depended largely on the size and complexity of the anatomy being
segmented; intricate structures and images with multiple components took more
time to segment, but across the board our method was far faster and easier than
slice-wise manual segmentation.

In the BTCV dataset, we compared segmentation performance for the liver
and lungs and showed high accuracy for each (Figure[3p). In the BraTS dataset,
we performed two segmentations: one for the tumor regions, comprising the en-
hancing tumor (ET) and necrotic/non-enhancing tumor (NCT/NET), and a sec-
ond for the tumor region and the surrounding edema (ET+NCT/NET+ED). We
found similarly high performance across 4 contrasts (T1, T1-contrast enhanced,
T2, FLAIR) (Figure Bp). We also showed consistent mask predictions from the
model for scans of the same patient with different MRI contrasts, demonstrating
a robustness to pixel-level changes (Figure [3).

To determine the effect of varying the number of transforms used for prompt-
ing and slicing, we segmented an additional 3 livers and tumors with 3, 4, 6, and
10 transforms each. We observed that for large, simple structures, such as the
liver, 3 or 4 transforms, representing the octahedral and cubic axes, is sufficient.
On the other hand, more complex structures, including some brain tumors, re-
quired 6+ transforms to reach peak accuracy (Figure ) As the amount of time
and user input required for a segmentation scales with the number of transforms
used, we suggest setting the number of transforms based on the complexity of
the anatomy being segmented. We report the time required to segment each
anatomical structure in the BTCV and BraTS dataset in table[Il

4 Discussion

We introduce a new and efficient method for prompting and inference of a pre-
trained semi-automatic segmentation model and demonstrate strong results on a
variety of 3D images. It is worthwhile to ask why SAM performs as well as it does
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Fig. 2. Visualizing diverse segmentation performance. (a) The pelvis and sacral spine
in an abdominal pelvic CT. (b) Skeleton in an ez vivo CT scan of the hand. (c) Cervical
vertebra 3 in a CT scan of the head and neck [I5]. (d) Lungs in a chest CT scan [20].
(e) Lungs, liver, and kidneys in an abdominal CT scan [13]. (f) Oxygenated blood
pool in a cardiac CT scan. (g) Glioblastoma tumor and edema regions in a FLAIR
MRI scan of the brain [22]. (h) Lateral ventricles, cerebellum, and brain stem in a
T1 MRI scan of the brain. (i) Left ventricular outflow tract, aortic valve, and aortic
root in a 3D mid-esophageal transesophageal echocardiography scan of the heart. (j) A
tumor lesion in 3D breast ultrasound [25]. (k) Axonol neurons in volumetric scanning
electron microscopy (SEM) of a region of the hippocampus [18]. (1) Central vacuoule
in volumetric SEM of a tobacco leaf cell [29].
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Fig. 3. Quantification of segmentation accuracy on benchmark datasets and additional
experiments. (a) Dice score and intersection over union calculated for the lung and
liver masks (n = 16) on the BTCV dataset. (b) Dice score and intersection over union
calculated for the tumor region (enhanced + nonenhanced tumor/necrotic) and the
tumor+edema regions (n = 8) for 4 MRI contrasts on the BraTS dataset. (¢) Segmen-
tation predictions for tumor and tumor+edema regions across four scans are highly
consistent with each other, showing that predictions capture anatomical features and
are robust to contrast, brightness, and textural changes. (d) An analysis of segmen-
tation accuracy and time as a function of the number of transforms chosen for liver
segmentation in the BTCV dataset (n = 3) and tumor segmentation in the BraTS
dataset (n = 3) suggests that the optimal number of transforms to use depends heavily
on the anatomical structure to segment. (e) Representative segmentation predictions
(opaque) for a liver and brain tumor overlaid with the manually labeled ground-truth
masks (translucent).
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Table 1. A comparison of segmentation times for 5 structures across 2 common
datasets.

Dataset Segmentation Target Time Taken (Mean +/- Std.)
Liver 4 min +/- 60 sec

BTCV[13] Lungs 3 min 38 sec +/- 51 sec
Kidneys 3 min 50 sec +/- 1 min 47 sec

BraTS[22] ET + NCT/NET 4 m%n 14 sec +/- 1 min 5 sec
ET + NCT /NET+ ED 7 min 50 sec +/- 28 sec

in this task. Given that none of the images we evaluate on particularly resemble
any images in the segment anything dataset, it is unreasonable to believe that
the model is performing segmentations based on a semantic understanding of the
data. Rather, we hypothesize that the SAM essentially mimics its much simpler
precursor algorithms by relying on regional intensities, gradients, and textures to
construct a hierarchical representation of the image which, when combined with
prompting, can yield an accurate segmentation. While using a 2D model for 3D
segmentation may seem unintuitive, this approach carries numerous benefits. It
allows us to escape the memory and computational cost associated with process-
ing 3D images. Most importantly, it allows us to leverage existing 2D datasets
which, due to being easier to acquire and annotate, are far more comprehensive
than their 3D counterparts.

We envision numerous uses of the proposed method. In scientific research, a
method for fast semi-automatic 3D segmentation could be used in data-limited
regimes or as a means to initially label training datasets. In medicine, 3D segmen-
tation has applications in surgical planning, diagnostic imaging, and radiomics.
The use of this tool could save physicians time while mitigating the risks of bias
and unpredictability that plague fully automated models.

There are some notable limitations of SAM3D. As is the case for many seg-
mentation models, including the base SAM, SAM3D has poor performance when
labeling thin and branching structures. This is doubly the case in 3D, as prompt
planes are sparse, so there are few opportunities to add prompting to these struc-
tures. A second limitation is that, because the base 2D segmentation model has
not been trained on medical images, it lacks any relevant domain knowledge.
This is potentially also an opportunity: multiple groups have taken the base
SAM model and fine tuned it on a medical domain [I9I6J2T], and demonstrate
improved results compared to the base model. Inserting these models as drop-in
replacements for the SAM in our method could further improve segmentation
performance and efficiency. Lastly, while we designed a rudimentary user inter-
face for prompting and post-processing, broader use of these and similar tools
would likely require a more polished interface. Other groups have shown success
integrating SAM into existing medical visualization tools [14], and this is an
approach we are considering.
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Conclusion

SAMS3D is a semi-automated, zero-shot 3D segmentation model capable of high
performance across a range of structures and images. By enabling users to
quickly, easily, and accurately segment 3D images, we hope that these meth-
ods will aid clinicians and researchers, accelerate the creation of large-scale 3D
datasets, and spur development in general 3D segmentation models.

References

10.

11.

12.

13.

Beucher, S.: The watershed transformation applied to image segmentation. Scan-
ning microscopy 1992(6), 28 (1992)

Cabezas, M., Oliver, A., Lladd, X., Freixenet, J., Cuadra, M.B.: A review of atlas-
based segmentation for magnetic resonance brain images. Computer methods and
programs in biomedicine 104(3), e158—e177 (2011)

Chaddad, A., Desrosiers, C., Niazi, T.: Deep radiomic analysis of mri related to
alzheimer’s disease. Ieee Access 6, 58213-58221 (2018)

Diaz-Pinto, A., Mehta, P., Alle, S., Asad, M., Brown, R., Nath, V., Ihsani, A.,
Antonelli, M., Palkovics, D., Pinter, C., et al.: Deepedit: deep editable learning for
interactive segmentation of 3d medical images. In: MICCAI Workshop on Data
Augmentation, Labelling, and Imperfections. pp. 11-21. Springer (2022)

Fang, X., Xu, S., Wood, B.J., Yan, P.: Deep learning-based liver segmentation for
fusion-guided intervention. International journal of computer assisted radiology
and surgery 15, 963-972 (2020)

Huang, Y., Yang, X., Liu, L., Zhou, H., Chang, A., Zhou, X., Chen, R., Yu, J.,
Chen, J., Chen, C., et al.: Segment anything model for medical images? Medical
Image Analysis 92, 103061 (2024)

Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a
self-configuring method for deep learning-based biomedical image segmentation.
Nature methods 18(2), 203211 (2021)

Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Interna-
tional journal of computer vision 1(4), 321-331 (1988)

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment anything. arXiv preprint
arXiv:2304.02643 (2023)

Kitano, T., Nabeshima, Y., Otsuji, Y., Negishi, K., Takeuchi, M.: Accuracy of left
ventricular volumes and ejection fraction measurements by contemporary three-
dimensional echocardiography with semi-and fully automated software: systematic
review and meta-analysis of 1,881 subjects. Journal of the American Society of
Echocardiography 32(9), 1105-1115 (2019)

Kohler, R.: A segmentation system based on thresholding. Computer Graphics and
Image Processing 15(4), 319-338 (1981)

Lambin, P., Leijenaar, R.T., Deist, T.M., Peerlings, J., De Jong, E.E., Van Tim-
meren, J., Sanduleanu, S., Larue, R.T., Even, A.J., Jochems, A., et al.: Radiomics:
the bridge between medical imaging and personalized medicine. Nature reviews
Clinical oncology 14(12), 749-762 (2017)

Landman, B., Xu, Z., Iglesias, E., Styner, M., Langerak, R., Klein, A.:
Multi-atlas labeling beyond the cranial vault—workshop and challenge (2015).
https://doi.org/https://doi.org/10.7303 /syn3193805


https://doi.org/https://doi.org/10.7303/syn3193805

10

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

T. Chan et al.

Liu, Y., Zhang, J., She, Z., Kheradmand, A., Armand, M.: Samm (segment any
medical model): A 3d slicer integration to sam. arXiv preprint arXiv:2304.05622
(2023)

Loffler, M.T., Sekuboyina, A., Jacob, A., Grau, A.L., Scharr, A., El Husseini,
M., Kallweit, M., Zimmer, C., Baum, T., Kirschke, J.S.: A vertebral segmenta-
tion dataset with fracture grading. Radiology: Artificial Intelligence 2(4), €190138
(2020)

Létjonen, J.M., Wolz, R., Koikkalainen, J.R., Thurfjell, L., Waldemar, G., Soini-
nen, H., Rueckert, D., Initiative, A.D.N., et al.: Fast and robust multi-atlas segmen-
tation of brain magnetic resonance images. Neuroimage 49(3), 2352-2365 (2010)
Lu, L., Ehmke, R.C., Schwartz, L.H., Zhao, B.: Assessing agreement between
radiomic features computed for multiple ct imaging settings. PloS one 11(12),
€0166550 (2016)

Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P.: Supervoxel-based seg-
mentation of mitochondria in em image stacks with learned shape features. IEEE
transactions on medical imaging 31(2), 474-486 (2011)

Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B.: Segment anything in medical
images. Nature Communications 15(1), 654 (2024)

Ma, J., Wang, Y., An, X., Ge, C., Yu, Z., Chen, J., Zhu, Q., Dong, G., He, J., He,
Z., et al.: Toward data-efficient learning: A benchmark for covid-19 ct lung and
infection segmentation. Medical physics 48(3), 1197-1210 (2021)

Mazurowski, M.A., Dong, H., Gu, H., Yang, J., Konz, N., Zhang, Y.: Segment
anything model for medical image analysis: an experimental study. Medical Image
Analysis 89, 102918 (2023)

Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J.,
Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al.: The multimodal brain tumor
image segmentation benchmark (brats). IEEE transactions on medical imaging
34(10), 1993-2024 (2014)

O’connor, J.P.; Aboagye, E.O., Adams, J.E., Aerts, H.J., Barrington, S.F., Beer,
A.J., Boellaard, R., Bohndiek, S.E., Brady, M., Brown, G., et al.: Imaging
biomarker roadmap for cancer studies. Nature reviews Clinical oncology 14(3),
169-186 (2017)

Roy, A.G., Siddiqui, S., Pélsterl, S., Navab, N., Wachinger, C.: ‘squeeze & ex-
cite’guided few-shot segmentation of volumetric images. Medical image analysis
59, 101587 (2020)

Tumor detection, segmentation and classification challenge on automated 3d breast
ultrasound (abus) 2023 (2023)

Virzi, A., Muller, C.O., Marret, J.B., Mille, E., Berteloot, L., Grévent, D., Bod-
daert, N., Gori, P.; Sarnacki, S., Bloch, I.: Comprehensive review of 3d segmen-
tation software tools for mri usable for pelvic surgery planning. Journal of digital
imaging 33(1), 99-110 (2020)

Wang, H., Pouch, A., Takabe, M., Jackson, B., Gorman, J., Gorman, R., Yushke-
vich, P.A.: Multi-atlas segmentation with robust label transfer and label fusion. In:
Information Processing in Medical Imaging: 23rd International Conference, IPMI
2013, Asilomar, CA, USA, June 28-July 3, 2013. Proceedings 23. pp. 548-559.
Springer (2013)

Wasserthal, J., Breit, H.C., Meyer, M.T., Pradella, M., Hinck, D., Sauter, A.W.,
Heye, T., Boll, D.T., Cyriac, J., Yang, S., et al.: Totalsegmentator: Robust segmen-
tation of 104 anatomic structures in ct images. Radiology: Artificial Intelligence
5(5) (2023)



29.

30.

SAMS3D: Zero-shot Semi-Automatic 3D Segmentation 11

Wickramanayake, J.S., Czymmek, K.J.: A conventional fixation volume electron
microscopy protocol for plants. Methods in Cell Biology 177, 83-99 (2023)
Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig,
G.: User-guided 3d active contour segmentation of anatomical structures: signifi-
cantly improved efficiency and reliability. Neuroimage 31(3), 1116-1128 (2006)



	SAM3D: Zero-Shot Semi-Automatic Segmentation in 3D Medical Images withthe Segment Anything Model

