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1 Introduction
In recent years there has been a lot of interest in the study of Integrable Quantum Field The-
ories (IQFTs) perturbed by a very particular irrelevant operator, namely TT̄, which in 1 + 1
dimensions is constructed starting from the holomorphic and anti-holomorphic components of
the stress-energy tensor. This type of perturbation gives rise to theories that have many interest-
ing properties. They are fundamentally non-local in nature, a feature that is often referred to as
“lack of UV completion” or “UV fragility” [1–3], in other words, the UV limit is not a confor-
mal field theory. The introduction of the operator TT̄ and the study of some of its fundamental
properties, notably the formula for its vacuum expectation value ⟨TT̄⟩ = −⟨Θ⟩2, where Θ is the
trace of the stress-energy tensor, go back to the work [4]. The works [5, 6] had the greatest
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influence in highlighting the special role of generalised TT̄-perturbed theories in the context of
integrability. It was shown in [5] that, under a generalised TT̄ perturbation, an IQFT remains
integrable, in the sense that any scattering event factorises into two-body scattering processes
and there is no particle production. This also means that the structure of the conserved charges
of the original IQFT is preserved. The most recent understanding of this statement is that in
fact, generalised TT̄ perturbations are even more general than suggested in [5]. In particular,
they can include all local and quasi-local charges of the original unperturbed theory [7]. This
makes it possible for instance to generate IQFTs that have a restricted set of local charges (ie.
charges of just some odd spins) by a generalised TT̄-perturbation of a theory that has a different
set of local charges (see ie. the recent work [8] where it is argued that the Lee-Yang model may
be seen as a generalised TT̄-perturbation of the Ising field theory).

Considering a massive theory, at the S -matrix level the action of this deformation is simply
given by a multiplicative CDD factor [9]. That is, if S cd

ab(ϑ) is the two-body scattering amplitude
of the process a + b 7→ c + d where the indices are particle quantum numbers, then the new
scattering matrix is

S cd
ab(ϑ) −→ e−iδab(ϑ)S cd

ab(ϑ) with δi j(ϑ) =
∑
s∈S

αsms
ams

b sinh(sϑ), (1)

where αs is a parameter of dimension [M]−2s which characterises the strength of the coupling
and ma,mb are the particle masses. The set S is typically that of the spins of local conserved
charges. The term with s = 1 corresponds to the standard TT̄ deformation, while higher spin
terms correspond to generalised TT̄ deformations, or TT̄s deformations, which were also shown
to exhibit an analogous form of solvability in [5, 10]. If the underlying theory is conformal,
the factor δab(ϑ) is instead introduced as an interaction term between the massless right and left
movers of the theory, δab(ϑ) =

∑
s αsMs

aMs
besϑ, where the factors Ms

a,M
s
b set the energy scale of

the massless TBA equations [11–13]. See Section 2 for further discussion.
Generalised TT̄-perturbed theories are not only solvable, but many physical quantities can

be explicitly related to their counterparts in the unperturbed theory. As we have seen, this is
the case for the S -matrix, but also for thermodynamic quantities such as the free energy and
the ground state energy [6], and, as shown very recently, for the matrix elements of local and
twist fields (form factors) [14–17]. However, until recently it was not known how the solvabil-
ity of these models reflects on their out-of-equilibrium dynamics. Building on the pioneering
work [6], and subsequent results where this analysis has been extended and refined [10, 18–
23], the works [24–26] studied the energy and momentum currents in TT̄-perturbed CFTs in
a typical out-of-equilibrium protocol. This partitioning protocol is characterised by a scale-
invariant initial state where two halves of a quantum system described by CFT are thermalised
at different temperatures TR,TL and then let to evolve for a long time until the system reaches
a non-equilibrium steady state (NESS). The main finding of [25, 26] consisted of showing that
the known results for the currents in unperturbed CFT [27–29] are modified in the presence of
a TT̄ perturbation in such a way that the currents are no longer of the form f (TL) − f (TR) for
some known function f (x). This was also observed in [24] albeit only at first order in pertur-
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bation theory in the TT̄ coupling. The upshot is that, for TT̄-perturbed CFTs, there is instead a
“coupling” between the right and left temperatures, which reflects the new non-trivial interac-
tion between the right- and left-moving massless excitations of the theory. The separation into
functions of TR and TL does not generally extend to gapped theories (even in the absence of
the TT̄ perturbation), however it is recovered in their massless limit, a property that extends to
higher spin currents too, as recently shown [30, 31].

In this paper, we approach the problem of out-of-equilibrium deformed theories from the
viewpoint of Generalised Hydrodynamics (GHD) [32, 33], a leading approach to computing
large-scale dynamics of integrable models (see [34, 35] for reviews). As the terminology in-
dicates, it is an approach based on hydrodynamic principles, therefore describes the physics
of emergent behaviours in many-body quantum systems. As in classical hydrodynamics, GHD
emerges naturally from local entropy maximisation over mesoscopic scale fluid cells containing
a large number of quasiparticles. For IQFTs, it is well known that the TBA [36] is the optimal
framework which allows to obtain the thermodynamics, i.e. the maximal entropy states, of the
(euclidean) field theory defined on a torus and treated in the S -matrix formulation. This is
however not the full story, since it is well known that integrable systems do not thermalise in a
standard sense: that is, the long time dynamics of some subsystem of length L does not relax to
a Gibbs state [37], in the sense of

lim
t→∞

lim
L→∞
⟨Ô⟩ = Tr

[
ρGEÔ

]
. (2)

This is due to the presence of an infinite tower of conserved charges, which have to be con-
sidered in the assumption that the time evolution will lead to a state which retains the minimal
amount of information on the initial state [35]. The system then equilibrates to a Generalised
Gibbs Ensemble (GGE) [38]:

ρGGE ∝ e−
∑

s βsQs , (3)

where the operators Qs form the full set of conserved changes (as mentioned earlier, this can
include non-local charges [39]). This change of ensemble leads to a natural modification of
the standard (thermal) TBA equations [40, 41], as we shall see below. We can therefore say
that GHD is a “local version”, in the (hydrodynamic) sense of fluid cells, of the TBA approach,
in which the TBA equations are suitably modified to take into account the GGE. GHD can
therefore be used to study inhomogeneous and non-equilibrium phenomena involving IQFTs.
In particular, in its simplest form, it can be used to evaluate (usually numerically) the averages
of conserved currents and densities of any spin. Given a local charge Qs we can express it
in terms of a local density, Qs =

´
dxqs(x, t), from which we can find the associated current

by a continuity equation ∂tqs(x, t) = −∂x js(x, t). The works [32, 33] provided a prescription
for computing averages of these local densities for quantum integrable models. This is the
prescription that we use in this work.

Instead of considering a CFT like in [25, 26], we start from the TT̄ deformation of a massive
IQFT. We recover CFT results in the massless limit, including those of [25, 26]. We then go on
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to generalise these results to higher spin currents and densities, obtaining the new formulae

qα±s = G(s)cLR

((
T̂ s+1

L ± T̂ s+1
R

)
−
απc

6
(T̂ s+1

L T̂ 2
R ± T̂ s+1

R T̂ 2
L)

)
,

jα±s = G(s)cLR

((
T̂ s+1

L ∓ T̂ s+1
R

)
+
απc

6
(T̂ s+1

L T̂ 2
R ∓ T̂ s+1

R T̂ 2
L)

)
.

(4)

Here, qα±s represent spin s density averages of even/odd charges, that is charges whose one-
particle eigenvalues are even/odd functions of the rapidity, in the NESS reached after a parti-
tioning protocol, and similarly for the currents jα±s. The upper index α refers to the coupling
α := α1 in (1), that is, these are the averages corresponding to a generic CFT perturbed by TT̄
only. The generalised temperatures T̂R, T̂L are related to the right/left temperatures in the origi-
nal baths. They are in fact effective versions of those, as they reduce to the “bare” temperatures
TR,L when α = 0. For generic α we have the non-trivial identity T̂R,L = TR,L(1 − αTR,LEα0 )−1,
where Eα0 is the ground state energy of the deformed theory. G(s) is a theory-dependent func-
tion of the spin, which can be computed exactly for free theories and is otherwise only known
for s = 1 (G(1) = πc

12 ), and cLR is a function of the effective temperatures such that cLR = 1
for α = 0. Besides the formulae (4), which are valid at critical points, we have found more
general relations between the perturbed and unperturbed currents and densities which are also
valid away from criticality, both for partitioning protocol and at equilibrium.

The paper is structured as follows: in Section 2 we review the TBA equations for TT̄-
deformed IQFTs and show how the TT̄ deformation of the S -matrix affects the equations that
describe the dressing of the single particle eigenvalues of conserved quantities. In Section 3 we
study the free fermion theory, introducing techniques which will be fully developed in the next
section. In Section 4 we present our main results, including universal formulae for the average
densities and currents of higher spin quantitities in generic CFT. In Section 5 we discuss some
general properties of the TBA scaling function, such as its monotonicity as a function of m, α
and β. In Section 6 we present numerical results and discuss their physical implications. We
conclude in Section 7. Various extensions of the work are presented in the Appendices. In
Appendix A we consider theories with many particles. In Appendix B we analyse the case of
more general TT̄ perturbations, namely those associated with a spin s conserved change. In
Appendix C we present a CFT derivation of some of our results. In Appendix D we derive
an equilibrium small mass expansion of the effective inverse temperature for the TT̄-perturbed
massive free fermion.

2 TT̄-Deformed TBA Equations and Dressing
It is well known that the Thermodynamic Bethe Ansatz [36] provides the theoretical framework
to study the thermodynamics of an IQFT. It essentially reduces the problem of evaluating the
partition function of the system to the problem of solving a set of coupled integral equations for
the energy of the elementary excitations of the system, the TBA equations. For systems with a
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single massive particle of mass m there is only one equation, which takes the form:

ε(ϑ) = ν(ϑ) − (φ ∗ L)(ϑ), with L(ϑ) := ln(1 + e−ε(ϑ)), (5)

where ∗ represents the convolution,

(a ∗ b)(ϑ) :=
1

2π

ˆ ∞
−∞

dβ a(ϑ − β)b(β) . (6)

The scattering kernel φ(ϑ) is given by the logarithmic derivative of the S -matrix φ(ϑ) := −iS ′(ϑ)
S (ϑ) ,

ε(ϑ) is the pseudoenergy and ν(ϑ) is the driving term. In a GGE the driving term can have a
very general form, resulting from the inclusion of the one-particle eigenvalues of local and
quasi-local charges of any conserved spin:

ν(ϑ) =
∑

s

βsms cosh(sϑ) +
∑

s′
γs′ms′ sinh(s′ϑ). (7)

We will refer to the terms in the first sum as even charges, and those in the second sum as odd
charges. Note that this terminology does not refer to the spin itself but to the parity of the charge
eigenvalues as functions of ϑ. Also, we will assign an index −s to the spin-s odd charges, so
that q−s and j−s are the odd charge and current densities of spin s. The one-particle eigenvalues
hs(ϑ), with s = {±1,±2, ...}, can be obtained by differentiating the driving term with respect to
the generalised thermodynamic potentials, so for instance the even charge eigenvalues are

hs(ϑ) =
∂ν(ϑ)
∂βs

= ms cosh(sϑ). (8)

In particular, the energy and momentum eigenvalues enter many important formulae, and for
those it is common to use the notations h1(ϑ) = E(ϑ) = m coshϑ and h−1(ϑ) = P(ϑ) = m sinhϑ.

We can now introduce the averages of currents and densities as

qs :=
ˆ

dϑ
2π

E(ϑ)n(ϑ)hdr
s (ϑ), and js :=

ˆ
dϑ
2π

P(ϑ)n(ϑ)hdr
s (ϑ) , (9)

where n(ϑ) = (1 + eε(ϑ))−1 is the occupation function. The dressed eigenvalue hdr
s (ϑ) is

hdr
s (ϑ) =

∂ε(ϑ)
∂βs

= hs(ϑ) + (φ ∗ gs)(ϑ), with gs(ϑ) = n(ϑ)hdr
s (ϑ) . (10)

The dressing equation describes how the eigenvalue of a given charge and quasiparticle is mod-
ified by interaction with other quasiparticles, the interaction being encoded in the scattering ker-
nel1. Clearly, for free theories where φ(ϑ) = 0, the dressing operation is trivial and ε(ϑ) = ν(ϑ).

1The fact that the dressing operation is defined by differentiating the TBA equations w.r.t. the Lagrange mul-
tipliers βi is a formal construction, meaning that the dressing equations are meaningful even in cases when those
parameters are zero. For instance, in this paper we will mostly consider the TBA with a thermal driving term.
Nonetheless, one can dress higher charges and compute their averages also in this case.
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The particularly simple way in which the S -matrix is modified by the addition of the TT̄
deformation leads to a simple modification of the TBA equations through the introduction of an
additional term in the scattering kernel, that is, from (1) we have

φab(ϑ) 7→ φab(ϑ) − αmamb coshϑ . (11)

For a theory with a single particle, we will call φα(ϑ) the deformed kernel and φ0(ϑ) the original
kernel. Since all TBA quantities will now depend on α we will also adopt notations εα(ϑ), nα(ϑ)
and Lα(ϑ) for the standard TBA functions. Then the convolution acts as

(φα ∗ Lα)(ϑ) = (φ0 ∗ Lα)(ϑ) − αm2(cosh ∗Lα)(ϑ), (12)

with

m(cosh ∗Lα)(ϑ) =
m
2π

ˆ ∞
−∞

cosh(ϑ − ϑ′)Lα(ϑ′)dϑ′ = −Eα0 coshϑ + Pα0 sinhϑ , (13)

where
Eα0 = −

m
2π

ˆ ∞
−∞

coshϑLα(ϑ)dϑ , Pα0 = −
m
2π

ˆ ∞
−∞

sinhϑLα(ϑ)dϑ , (14)

are the ground state energy and total momentum. We can then write the equilibrium TBA
equation at inverse temperature β as

εα(ϑ) = (β − αEα0 )m coshϑ + αmPα0 sinhϑ − (φ0 ∗ Lα)(ϑ) . (15)

Here we have considered a thermal driving term ν(ϑ) = mβ coshϑ. At equilibrium Pα0 = 0,
since Lα(ϑ) is an even function, therefore in this situation the effect of the perturbation is akin to
a redefinition of the inverse temperature, β→ β − αEα0

2. We keep the dependence on Pα0 below,
since this will be useful when we consider out-of-equilibrium situations later on. For Pα0 , 0
the TT̄ perturbation introduces a state-dependent redefinition of the temperature and a Lorenz
boost. It is interesting to note that the expression above can be rewritten as:

εα(ϑ) =
(
β − α(Eα0 − Pα0 )

) m
2

eϑ +
(
β − α(Eα0 + Pα0 )

) m
2

e−ϑ − φ0 ∗ Lα(ϑ), (16)

from which it is immediate to take the massless limit [42]: letting m → 0 and ϑ 7→ ϑ0 + ϑ,
with ϑ0 → ∞, we can define a new finite non-zero energy scale M := meϑ0 and obtain the TBA
equations for the CFT right/left (±) movers:

εα±(ϑ) =
M
2

(
β − α(Eα0 ∓ Pα0 )

)
e±ϑ − (φ0 ∗ Lα±)(ϑ) , (17)

2If both the driving term and the perturbation are chosen more generally, the overall effect is that of replacing
the TBA equation for a particular GGE with the TBA equation for a different GGE, in the sense that some of the
generalised inverse temperatures are modified [18]. We will consider some of these situations in Appendix B.
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which is related to the massless Bazhanov-Lukyanov-Zamolodchikov TBA equation [13]. This
derivation is slightly different from [6, 26], where an explicit interaction between right and
left movers is introduced, but the two derivations are equivalent. This formulation highlights
the fact that the two TBA equations remain separated, and the interaction is purely given by a
“mean field” effect through a the total energy and momentum.

From the definitions above it is easy to show that (formally) ∂E
α
0

∂βs
= qαs and ∂Pα0

∂βs
= jαs as

defined by (9). It is then immediate to obtain the dressing equation for a TT̄ perturbed theory,

hdr,α
s (ϑ) = hs(ϑ) − αE(ϑ)qαs + αP(ϑ)jαs + (φ0 ∗ gαs )(ϑ) , (18)

to be compared with (10). The fact that the dressing equation is modified by terms which
are proportional to the average densities and currents, that is, the same quantities we want
to compute, is crucial in order to find formulae for qαs and jαs in terms of their underformed
counterparts q0

s and j0
s . This will be the object of much of this paper. Note that, just as for

the total momentum above, which is zero at equilibrium, also the (even) currents vanish at
equilibrium (that is, jαs = 0). Nonetheless we write these explicitly here, since it will make it
easier to generalise the equations to out-of-equilibrium/GGE situations. It is easy to extend this
analysis for theories with a multi-particle spectrum, see Appendix A.

Finally, a few words on the partitioning protocol, the only truly out-of-equilibrium protocol
we will consider in this paper. This protocol was also the focus of [28, 29, 32, 33]. As outlined
in the introduction, we consider two subsystems thermalised at temperatures TL and TR. Taking
this as our initial condition and joining the two subsystems at x = t = 0, the large-time evolution
leads to a NESS developing around x = 0, with non-trivial currents present in the system. The
initial state can be represented in terms of the occupation function as

nα(ϑ, x, 0) =


nαL(ϑ) = nα(ϑ)

∣∣∣∣
{βs

L}
for x < 0

nαR(ϑ) = nα(ϑ)
∣∣∣∣
{βs

R}
for x > 0

. (19)

The general solution for the current at the contact point between the two halves was found in
[32, 33]:

nα(ϑ) = nαL(ϑ)Θ(ϑ − ϑα⋆) + nαR(ϑ)Θ(ϑα⋆ − ϑ) , (20)

where the value ϑα⋆ is the solution3 to veff,α(ϑα⋆) = 0, and the effective velocity is defined as

veff,α(ϑ) =
Pdr,α(ϑ)
Edr,α(ϑ)

. (21)

Therefore we see that the solution is determined entirely by the right/left equilibrium solutions
and by the value of ϑα⋆.

3This is unique if the effective velocity is a monotonic function of the rapidity, which is the case in all the
theories we will consider in this work.
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3 The Free Fermion
Free theories provide an ideal example where the formulae presented above can be analysed
in more detail and it is possible to obtain exact analytic solutions. In this case φ0(ϑ) = 0 and
the TBA equations can be solved exactly, even for the TT̄-perturbed theory. At equilibrium, we
have

εα(ϑ) = (β − αEα0 )m coshϑ , (22)

with
Eα0 = −

m
2π

ˆ ∞
−∞

coshϑ log(1 + e−(β−αEα0 )m coshϑ)dϑ . (23)

As discussed in [5, 6], the ground state energy of the TT̄-perturbed theory admits an expression
which depends non-linearly on the undeformed ground state energy. This relation is encoded in
the fact that the deformed ground state energy satisfies the inviscid Burgers’ equation. For the
free fermion, equation (23) can be solved exactly by expanding the logarithm and then using
Bessel functions, generalising the free fermion treatment presented in [43]. We observe that for
β − αEα0 > 0 we can expand the logarithm, and introduce the modified Bessel function of the
second kind:

Ka(z) =
ˆ ∞

0
e−z cosh t cosh (at)dt, (24)

so as to obtain:

Eα0 =
m
2π

∞∑
n=1

(−1)n

n

ˆ ∞
−∞

coshϑe−n(β−αEα0 )m coshϑdϑ

=
m
π

∞∑
n=1

(−1)n

n
K1(n(β − αEα0 )m) ≈

m
π

∞∑
n=1

(−1)n

n2(β − αEα0 )m

=
1

π(β − αEα0 )

∞∑
n=1

(−1)n

n2 = −
π

12(β − αEα0 )

= −
πc

6(β − αEα0 )
for m ≪ 1 , (25)

where we have used the expansion of the Bessel function for small argument, K1(z) ∼ 1
z , and

introduced the central charge of the free fermion c = 1/2 so as to recover an expression which in
fact holds for generic CFT. We observe that for α = 0 we recover the known formula E0

0 := − πc6β .
From (25) we obtain a quadratic equation in Eα0

α(Eα0 )2 − βEα0 −
πc
6
= 0 , (26)

which can be solved to:

Eα0 =
β

2α

1 ±
√

1 +
2απc
3β2

 . (27)
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Although we used the free fermion as our example, this expression is valid for any CFT, as
shown for instance in [6]. We see that for α < 0 the energy can become complex and has a
square root branch point. This is related to the famous Hagedorn transition [44]. In order to
avoid this complication, we will limit ourselves to the α > 0 case. Moreover, of the two possible
signs in (27) we will take only the negative sign, as it is the one for which the energy remains
finite as β→ ∞, and for which the condition β−αEα0 > 0 holds. Introducing the scaling function
cα as Eα0 := −πc

α

6β we obtain precisely the same formula as in [25, 26], (with the identification
α = −σ/2):

cα = −
3β2

πα

1 −
√

1 +
2απc
3β2

 . (28)

Interestingly, for TT̄-perturbed theories, the scaling function is β-dependent in the conformal
limit. In fact, it depends on the only mass-independent dimensionless scale of the problem,
namely the ratio β2/α. It is useful to introduce the effective inverse temperature

β̂ := β − αEα0 , (29)

which in CFT is given by:

β̂ =
β

2

1 +
√

1 +
2πcα
3β2

 . (30)

Beyond the critical point, there is generally no analytic formula for the relationship between β̂
and β. However, for the massive free fermion a formula can still be obtained (see Appendix D).

Let us now consider the averages of currents and densities. Using the dressing equation (18)
we can immediately compute the effective velocity of the theory

veff,α(ϑ) =
Pdr,α(ϑ)
Edr,α(ϑ)

=
P(ϑ) − αqα

−1E(ϑ) + αjα−1P(ϑ)
E(ϑ) − αqα1 E(ϑ) + αjα1 P(ϑ)

. (31)

The crucial quantity in the partitioning protocol is the value ϑα⋆. This can be easily found from
the equation above:

veff,α(ϑα⋆) = 0⇔ tanh(ϑα⋆) =
αqα
−1

1 + αjα−1
. (32)

Numerically, this can be used to find the currents and densities in a self-consistent fashion.
However, if we are interested in an analytical result, this is only possible in either the massless
m→ 0 or the unperturbed α→ 0 limits. In both cases 4

lim
m→0
ϑα⋆ = lim

α→0
ϑα⋆ = 0 . (33)

4Regarding the m→ 0 limit, the statement is true only in a sense which will be clarified for the general case in
section 4.2
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Therefore, in the massless limit the value of the ϑα⋆ is precisely the same as for the free fermion
without the perturbation. This makes the study of the partitioning protocol much easier. Indeed,
consider the expressions for the currents and densities, which we expand by making use of (18):

jαs =

ˆ
dϑ
2π

P(ϑ)nα(ϑ)
(
hs(ϑ) − αE(ϑ)qαs + αP(ϑ)jαs

)
, (34)

qαs =

ˆ
dϑ
2π

E(ϑ)nα(ϑ)
(
hs(ϑ) − αE(ϑ)qαs + αP(ϑ)jαs

)
. (35)

It is possible to argue, more generally, (see Subsection 4.2) that for high enough temperatures
one can take ϑα⋆ ≈ ϑ

0
⋆. Under this approximation, the function nα(ϑ) is exactly the same as the

one for the unperturbed theory up to the redefinition of temperature (29):

nα(ϑ)
∣∣∣
(βR, βL)

= n0(ϑ)
∣∣∣
(β̂R, β̂L)

. (36)

Therefore, the quantities (34), (35) can be expressed in terms of average densities and currents
in the partitioning protocol of a free fermion at inverse temperatures β̂R and β̂L. Let us denote
those average densities and currents by ȷ̂0

s , q̂
0
s , where the hat denotes dependence on the effective

temperatures. We then obtain the equations

jαs = ȷ̂
0
s − αq

α
s q̂

0
−1 + αj

α
s ȷ̂

0
−1 and qαs = q̂

0
s − αq

α
s q̂

0
1 + αj

α
s ȷ̂

0
1 . (37)

Assuming that the charges and currents of the unperturbed theory are known (they are known
exactly for free theories, see [30, 31]) this is a system of equations for jαs and qαs with solutions:

qαs =
q̂0

s + αȷ̂
0
1ȷ̂

0
s − αȷ̂

0
−1q̂

0
s

1 + α(q̂0
1 − ȷ̂

0
−1) + α2(ȷ̂0

1q̂
0
−1 − ȷ̂

0
−1q̂

0
1)
, (38)

jαs =
ȷ̂0

s + αȷ̂
0
s q̂

0
1 − αq̂

0
−1q̂

0
s

1 + α(q̂0
1 − ȷ̂

0
−1) + α2(ȷ̂0

1q̂
0
−1 − ȷ̂

0
−1q̂

0
1)
. (39)

These formulae relate the average currents and densities in a TT̄-deformed fermion at given tem-
perature(s) to those of an unperturbed free fermion at the effective temperature(s). The formulae
are exact at equilibrium and hold also in the partitioning protocol with the aforementioned ap-
proximation ϑα⋆ ≈ ϑ

0
⋆. In particular, at equilibrium the formulae above can be further simplified

since the currents associated to even charges vanish (whereas odd ones, like the momentum
current, in general do not). Therefore, the equilibrium average densities simplify to:

qαs =
q̂0

s − αȷ̂
0
−1q̂

0
s

1 − αȷ̂0
−1 + αq̂

0
1 − α

2ȷ̂0
−1q̂

0
1

=
q̂0

s

1 + αq̂0
1

. (40)

Note however that even at equilibrium all solutions depend on β̂, which is known analytically
as a function of β only at the critical point. Away from that, β̂ has to be obtained through the
solution of the inviscid Burgers’ equation [5, 6].
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4 Interacting Theories
Consider now an interacting theory with a single particle spectrum. In this situation, the TBA
equation is of the form (16). To be as general as possible, we will not specify for now whether
we are in the equilibrium case or the partitioning protocol. We will start by revisiting the
dressing operation. Following [34], we can write the convolution term (φ0∗(n hdr))(ϑ) by means
of an integral operator T such that (φ0∗(n hdr))(ϑ) =: (Tn)hdr(ϑ). Thus, in the undeformed theory
equation (10) reads:

hdr,0
s (ϑ) = (1 − Tn0)−1hs(ϑ) . (41)

The above equation should be understood as a formal power series in T:

f (T) =
∞∑

n=0

f ′(0)
n!

Tn , (42)

where the powers of the integral operator are interpreted as multiple convolutions. Therefore we
are identifying the dressing operation in the unperturbed theory with the action of the integral
operator (1 − Tn0)−1 on the bare charge eigenvalues. The TT̄ deformation leads to the addition
of two extra terms in the dressing equations, so that the same manipulation, applied to equation
(18), yields:

hdr,α
s (ϑ) = (1 − Tnα)−1(hs(ϑ) − αqαs E(ϑ) + αjαs P(ϑ)) , (43)

which we rewrite conveniently as:

hdr,α
s (ϑ) = h̃αs (ϑ) − αqαs Ẽα(ϑ) + αjαs P̃α(ϑ) , (44)

where we use linearity of T and defined tilded quantities as:

Ãα(ϑ) := (1 − Tnα)−1A(ϑ) . (45)

We then obtain similar formulae as for the free case, now in terms of tilded quantities:

qαs =

ˆ
dϑ
2π

E(ϑ)nα(ϑ)
(
h̃αs (ϑ) − αẼα(ϑ)qαs + αP̃α(ϑ)jαs

)
, (46)

jαs =

ˆ
dϑ
2π

P(ϑ)nα(ϑ)
(
h̃αs (ϑ) − αẼα(ϑ)qαs + αP̃α(ϑ)jαs

)
. (47)

Introducing the tilded charges and currents q̃αs , ȷ̃
α
s defined in an obvious way from the integration

of the corresponding tilded eigenvalues, we obtain again a system of two equations:

jαs = ȷ̃
α
s − αq

α
s ȷ̃
α
1 + αj

α
s ȷ̃
α
−1 and qαs = q̃

α
s − αq

α
s q̃
α
1 + αj

α
s q̃
α
−1 . (48)
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This system is very similar to (37), to which indeed it specialises when the tilde operation is
trivial, namely when the unperturbed theory is free. These equations can be solved easily to
give the final expressions:

qαs =
q̃αs + αq̃

α
−1ȷ̃
α
s − αȷ̃

α
−1q̃
α
s

1 + α(q̃α1 − ȷ̃
α
−1) + α2(ȷ̃α1 q̃

α
−1 − ȷ̃

α
−1q̃
α
1 )
,

jαs =
ȷ̃αs + αq̃

α
1 ȷ̃
α
s − αȷ̃

α
1 q̃
α
s

1 + α(q̃α1 − ȷ̃
α
−1) + α2(ȷ̃α1 q̃

α
−1 − ȷ̃

α
−1q̃
α
1 )
.

(49)

Any situation in which the tilded quantities can be explicitly expressed in terms of the unper-
turbed ones leads to an exact solution, as for the free fermions seen earlier. However, in most
cases, the unperturbed quantities are only accessible numerically. There are however two cases
where simplifications occur, namely the equilibrium situation (either the free massive case or
the massless general case) and the partitioning protocol.

4.1 Equilibrium
As we have seen for the free fermion earlier, at equilibrium the TBA and dressing equations
are identical to those in an unperturbed theory at inverse temperature β̂. Therefore the currents
and densities calculated using nα(ϑ) can be exactly calculated from n̂0(ϑ). It is then clear that
the operation (45) is exactly equal to the dressing operation in the unperturbed theory at the
modified temperature. This means that we can identify q̃αs = q̂

0
s and ȷ̃αs = ȷ̂

0
s .

If we just consider the even charges, associated with one-particle eigenvalues that are even
functions of ϑ, then all currents jαs = 0, and from (49) we obtain again (40). We find that this
formula holds for interacting models at any temperature, and it is exact.

A situation where we can make more progress analytically is at critical points. Below, we
consider again the massless limit of the free fermion theory. Even though this section is about
interacting theories, the free fermion provides a useful benchmark for equation (40), since in
the free fermion case the averages of currents and densities in the massless limit are analytically
accessible and can then be compared to (40). Furthermore, free fermion averages in the massless
limit display the same universal dependence on β̂ that is found for more general CFTs, albeit
with a different numerical prefactor [30].

We observe that the dressing operation is simply hdr,α
s (ϑ) = hs(ϑ) − αE(ϑ)qαs . The charges

can be easily computed:

qαs =
m
2π

ˆ ∞
−∞

coshϑ′nα(ϑ′)hdr,α
s (ϑ′)dϑ′ (50)

=
m
2π

ˆ ∞
−∞

coshϑ′nα(ϑ′)hs(ϑ′)dϑ′ − αqαs
m2

2π

ˆ ∞
−∞

cosh2 ϑ′nα(ϑ′)dϑ′

=
ms+1

2π

ˆ ∞
−∞

coshϑ′ cosh(sϑ′)
1 + emβ̂ coshϑ′

dϑ′ − αqαs
m2

2π

ˆ ∞
−∞

cosh2 ϑ′

1 + emβ̂ coshϑ′
dϑ′ . (51)
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Here we have taken the even charge eigenvalue hs(ϑ) = ms cosh(sϑ), but we could have taken a
combination of cosh(sϑ) and sinh(sϑ) functions without changing the essence of the calculation.
For mβ̂ > 0, the denominator in the integrals admit the geometric series expansion

1
1 + emβ̂ coshϑ′

=

∞∑
n=1

(−1)n+1e−nmβ̂ coshϑ′ , (52)

and thus we can again make use modified Bessel functions, this time of higher order, to rewrite
the integrals:ˆ ∞

0
coshϑ cosh(sϑ)e−A coshϑdϑ =

ˆ ∞
0

cosh(s + 1)ϑ e−A coshϑdϑ

−

ˆ ∞
0

sinhϑ sinh(sϑ)e−A coshϑdϑ

= Ks+1(A) −
s
A

Ks(A) , for A , 0 . (53)

Using now the asymptotic expansion Ks(x) ∼ Γ(s)2s−1

xs for x ∼ 0, the exact expression for qαs as
sum of modified Bessel function can be rewritten in terms of the Riemann zeta function in the
m ≪ 1 limit:

qαs =
ms+1

π

∞∑
n=1

(−1)n+1

Ks+1(nmβ̂) −
s

nmβ̂
Ks(nmβ̂)


−

m2αqαs
π

∞∑
n=1

(−1)n+1

K2(nmβ̂) −
1

nmβ̂
K1(nmβ̂)


≈

ms+1

π

∞∑
n=1

(−1)n+1

 s!2s

(nmβ̂)s+1
−

s!2s−1

(nmβ̂)s+1

 − αm2qαs
π

∞∑
n=1

(−1)n+1

 2
(nmβ̂)2

−
1

(nmβ̂)2


=

1
π

∞∑
n=1

(−1)n+1

 s!2s−1

(nβ̂)s+1
−
αqαs

(nβ̂)2

 for m ≪ 1 . (54)

As expected, the mass dependence cancels out in the massless limit. Using the known sum:
∞∑

n=1

(−1)n+1

ns+1 = ζ(s + 1)(1 − 2−s), (55)

we obtain the final expression:

qαs =
s!2s−1ζ(s + 1)(1 − 2−s)

πβ̂s+1
−
αqαsπ

12β̂2
, (56)

from which finally we can read

qαs =
s!2s−1ζ(s + 1)(1 − 2−s)

πβ̂s+1
(
1 + απ

12β̂2

) . (57)
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This expression can be compared to (40) using the results found in [30, 31] for the free fermion
density averages:

q0
s =

s!2s−1

πβs+1 (1 − 2−s)ζ(s + 1) , (58)

and in particular q0
1 =

π
12β2 = j

0
−1. Substituting these free results (evaluated at β̂ ) into (40), we

obtain (57) as expected. Although these results are only valid in the conformal limit, expression
(40) is valid for all values of m. Therefore, it provides a starting point for obtaining perturbative
results beyond the CFT point.

4.2 Partitioning Protocol
Out-of equilibrium configurations are harder to treat because the effect of the perturbation can
no longer be absorbed into redefinition of temperature. The occupation function depends on β,
ϑα⋆ and α as shown in equations (20) and (21). The main difference with the equilibrium case
is that ϑα⋆ , ϑ

0
⋆, and therefore in general nα(ϑ) , n̂0(ϑ) and the relationship between perturbed

and unperturbed quantities is not obvious a priori. There are, however, some approximations
that can be made close to a critical point, a fact that will allow us to once again rely on formulae
we have obtained previously.

From the definition of the effective velocity (21), we see that the value(s) of ϑα⋆ correspond
to the solutions of

Pdr,α(ϑα⋆) = P̃α(ϑα⋆) − αqα−1Ẽα(ϑα⋆) + αjα−1P̃α(ϑα⋆),= 0, (59)

where we used (44). This gives:
P̃α(ϑα⋆)
Ẽα(ϑα⋆)

=
αqα
−1

1 + αjα−1
. (60)

In general, the solution of this equation will lead to a value of ϑα⋆ different from that of the
unperturbed case. However, we can argue that things simplify at and near a critical point. This
is due to the form of the occupation functions, which in the massless limit (that is the limit
in which the theory becomes a TT̄ deformed CFT) develop a large plateau centered around
ϑ = 0. In the partitioning protocol, n0(ϑ) is generally not symmetric with respect to ϑ, but it
becomes very nearly so when both βR, βL are large. Once the temperatures are high enough for
n0

L(ϑ), n0
R(ϑ) to develop the asymptotic high temperature plateau, the value of the connection

point ϑ0
⋆ ceases to matter (as long as it falls within the plateau region). This intuitive idea

extends to the perturbed case too and can be tested numerically as we see in Fig. 1. Here, we
reach the UV limit by tuning the mass scale instead (which is more natural in the presence of
the two scales β, α). In the perturbed case, we observe that the larger α is, the smaller we need
to make m in order to see a well-developed plateau.

In summary, at the critical point the same formulae (38)-(39) hold for any interacting theory
with a single particle spectrum. This is one of the main results of this work and generalises
the findings of [25, 26] to higher spin charges and currents. The extension to many-particle
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Figure 1: Plateau structure arising in the perturbed Lee-Yang scaling model for βR/βL = 3 and
m = 0.0001, for different values of α. For m ≪ 1 the theory is near-critical and we recover
nα(θ) = n̂0(θ). There is the same type of plateau structure as for α = 0 up to a redefinition of
right/left temperatures. Note that nα(ϑ) , nα(−ϑ), although this effect is less evident for smaller
m. The height of the plateau is logΦ, where Φ = 1+

√
5

2 is the golden ratio, as predicted by the
constant TBA equations [36].

theories is straightforward as long as the scattering is diagonal, as discussed in Appendix A,
while non-diagonal TBA systems require in general a case by case analysis.

The rationale behind our approach is to be as general as possible and to look at the conformal
limit only when it is impossible to obtain analytical results otherwise. In this way we can make
additional observations, namely that the results (38)-(39) are valid also when m ≫ α or when
β ≫ α in out of equilibrium configurations, and for any value of the mass at equilibrium. A
derivation of equations (38)-(39) starting directly from the CFT, i.e. the approach adopted in
[25, 26], is presented in Appendix C.

4.3 General CFT
A benchmark for some of our results is the work [25], where the energy density and current of
a generic TT̄-perturbed CFT were computed in the NESS arising after a partitioning protocol.
In our case, we just need to take the formulae (38)-(39) for s = 1 and substitute in the values
for unperturbed CFT [27–29], which are given by

j0
1 = q

0
−1 =

cπ
12

(
T 2

L − T 2
R

)
and q0

1 = j
0
−1 =

cπ
12

(
T 2

L + T 2
R

)
. (61)
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The contributions depending on βR and βL separately, a property that is also found for higher
currents and densities [30, 31] when α = 0. In the presence of a TT̄ perturbation, this strict
separation no longer holds. Substituting into (38)-(39) for s = 1 we obtain:

jα1 =
j0

1

1 − α2(q0
1)2 + α2(j0

1)2
=

cπ
12

cLR

(
T̂ 2

L − T̂ 2
R

)
, (62)

and similarly,

qα1 =
q0

1 + α
(
(j0

1)2 − (q0
1)2

)
1 − α2(q0

1)2 + α2(j0
1)2
=

cπ
12

cLR

(
T̂ 2

L + T̂ 2
R −
πcα

3
T̂ 2

RT̂ 2
L

)
, (63)

with
cLR :=

1
1 − (απc6 )2T̂ 2

RT̂ 2
L

. (64)

These results agree with [25] where a different approach was employed (that of massless TBA),
and therefore this provides a substantial confirmation of the validity of our formulae in the CFT
limit. Compared to the unperturbed case and even after accounting for the redefinition of the
temperatures, the factor cLR introduces a mixing of right and left variables.

Let us now consider higher spin quantities. In [30, 31] it was shown that the NESS averages
in the CFT limit are:

j0
s = G(s)

(
T s+1

L − T s+1
R

)
and q0

s = G(s)
(
T s+1

L + T s+1
R

)
. (65)

The proportionality constant5 G(s) is a theory-specific quantity that can be computed from the
TBA equations and for which no general closed expression is known, except for the free fermion
case and for s = 1 where G(1) = cπ

12 . Substituting these formulae into (38)-(39) we obtain:

jαs = G(s)cLR

((
T̂ s+1

L − T̂ s+1
R

)
+
απc

6
(T̂ s+1

L T̂ 2
R − T̂ s+1

R T̂ 2
L)

)
, (66)

qαs = G(s)cLR

((
T̂ s+1

L + T̂ s+1
R

)
−
απc

6
(T̂ s+1

L T̂ 2
R + T̂ s+1

R T̂ 2
L)

)
. (67)

As anticipated in the Introduction, these two formulae are the main finding of our work. The
results show that the presence of the TT̄ deformation breaks the left-right separation also for
the higher currents and densities. Note that these are the currents associated to even charges
with one-particle eigenvalue ms cosh(sϑ). Similar formulae can be written for the odd charges,
namely

qα−s = G(s)cLR

((
T̂ s+1

L − T̂ s+1
R

)
−
απc

6
(T̂ s+1

L T̂ 2
R − T̂ s+1

R T̂ 2
L)

)
, (68)

jα−s = G(s)cLR

((
T̂ s+1

L + T̂ s+1
R

)
+
απc

6
(T̂ s+1

L T̂ 2
R + T̂ s+1

R T̂ 2
L)

)
. (69)

5In [30] we adopted a different normalisation of the constant, so that the coefficient C(s) defined therein is
related to G(s) by G(s) = s 2s π

24 C(s).
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From this we obtain the value of the momentum current which was also found in [25]. As a
concluding remark, we observe that the symmetry relations qs = j−s and js = q−s, which hold
in unperturbed CFT, are violated here, again because of the interaction between right and left
movers introduced by the perturbation. The only exception is jα1 = q

α
−1: however, while in the

unperturbed theory this equation holds for massive theories as well, when α , 0 it is true only
in the conformal limit.

5 Scaling Function
We have already defined the function cα in (28), that is the counterpart of the UV central charge
in the TT̄ perturbed theory. In the presence of a deformation, cα is no longer a constant, but it
is a function of β2/α. In the unperturbed theory one defines the TBA scaling function, which
away from the critical point is a function of r := mβ, through E0 := −πc

0(r)
6β . At equilibrium, we

know that all TBA quantities in the TT̄-perturbed theory are identical to those in the unperturbed
theory evaluated at a modified inverse temperature β̂. Thus, we can introduce a new scale r̂ = mβ̂
and express the free energy using our standard notation as Eα0 = Ê0, or equivalently:

β̂ cα(r, r′) = β c0(r̂) . (70)

This gives a relationship between the two scaling functions. We have written cα(r, r′) to empha-
sise that the scaling function of the perturbed theory depends on two independent dimensionless
scales, with r′ = m2α. If we then employ the relationship β̂ = β − αEα0 = β +

παc0(r̂)
3β̂

, we can
further eliminate any explicit dependence on β and write

cα(r, r′) = c0(r̂)

1 − απ6 c0(r̂)
β̂2

 . (71)

We can now try to say something about the asymptotic and monotonicity properties of cα(r, r′)
from those of c0(r̂). The main properties of the latter are the same as for Zamolodchikov’s c-
function, as demonstrated by the c-theorem [45]: it is a monotonic function of r̂ with ∂c

0(r̂)
∂r̂ ≤ 0

and asymptotic values c0(0) = c (UV limit) and c0(∞) = 0 (IR limit for a massive IQFT).
An interesting property is that cα(r, r′) ≤ c0(r) for every choice of the parameters. This

follows immediately when noting that β̂ > β (for our choice α > 0) and that c0(r) is a decreasing
function of r. The properties of the c-function, and more generally RG flows in TT̄-perturbed
theories, have been investigated in detail in [21–23, 46]. It has also been recently shown that
functions of r′ that flow monotonically from the value c to zero can be defined employing form
factors of the stress-energy tensor and the branch point twist field in TT̄-deformed theories [14–
16].
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5.1 Limiting Values: Large and Small Mass Limits
The first property we can infer and which we already discussed earlier, is that for r̂ = 0 we
obtain a value of cα(r, r′) which is no longer a constant, but a function of α/β̂2 (see Eq. (28)
which is a rewriting of (71) in terms of β for this particular limit). One way to make sense of
this with the present formula is to take the limit r̂ → 0 by taking m → 0 while keeping both
β and α finite and fixed. Concerning the limit r̂ → ∞, we can again carry out this by sending
m → ∞ while keeping α, β fixed and finite. In this case the formula (71) immediately gives
cα(∞,∞) = 0.

Thus, while the small mass limit yields a universal result which depends on the scale α/β̂2

[6], the large mass limit is the same as for the unperturbed theory. These two behaviours are
consistent with other findings about TT̄ perturbations. A simple argument is that the effect of
the TT̄ perturbation is to cause the UV theory to be ill-defined, or at least to be no longer a local
QFT, so it is a short-distance effect. In the language of generalised hydrodynamics, we can also
think of the perturbation as assigning finite length to elementary degrees of freedom [7, 47, 48].
What emerges from these interpretations is that TT̄ perturbation should play an important role at
short distances (or, alternatively, small mass) whereas in the infrared (for large distances/mass)
the effect of the TT̄ perturbation is not seen. This is consistent with the asymptotic properties
of the c-function and of correlations functions [14].

It is also clear from (71) that the properties of cα(r, r′) when either r = 0 or r′ = 0 (but not
both), are non-trivial. For instance, if r = 0 but r′ , 0 then β = 0 and β̂ = −αÊ0 =

πc0(−mαÊ0)
−6Ê0

which gives a recursive relation involving the ground state energy

6αÊ2
0 = c0(−mαÊ0) . (72)

This relation can be exploited for instance in the few special cases where the function Ê0 is
known explicitly and in perturbative calculations in m or α (see also Appendix D).

5.2 Monotonicity Properties
Given the discussion above, we expect that the function cα(r, r′) should also be a monotonic
function, albeit not with respect to the variable r but with respect to the mass scale, which is the
scale that allows the theory to flow from the CFT fixed point of the original unperturbed model
to the infrared. This can be shown starting from equation (70), namely

∂cα(r, r′)
∂m

=
β

β̂2

∂c0(r̂)
∂m
β̂ − c0(r̂)

∂β̂

∂m

 = β∂c0(r̂)
∂r̂
+
β

β̂2

∂β̂

∂m

 ∂
∂r̂

(
c0(r̂)

r̂

)
r̂2

 . (73)

The mass derivative of the modified temperature can be simply obtained from the definition
(29):

∂β̂

∂m
= −α

∂Eα0
∂m
=
απ

6β
∂cα(r, r′)
∂m

, (74)
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which when substituted back in (73) yields:

m
∂cα(r, r′)
∂m

=

 r

1 − πr′6
∂
∂r̂

(
c0(r̂)

r̂

)
 ∂c

0(r̂)
∂r̂
. (75)

Since ∂
∂r̂

(
c0(r̂)

r̂

)
< 0 the term in brackets is positive, and this proves that cα(r, r′) and c0(r̂) have

the same monotonicity. Note however the explicit dependence of (75) on r′. The flow along
the direction identified by the mass is the natural generalisation of the standard RG flow in the
unperturbed case, with the difference that in the present situation we have both relevant and
irrelevant deformations, and a variation of m produces a flow along the relevant direction with
the irrelevant deformation being “carried along” in the process.

We may study the monotonicity properties with respect to different flows. For instance, one
can show that cα(r, r′) is also monotonically decreasing as a function of α. The calculation is
analogous to (73) and yields a very similar result, namely

∂cα(r, r′)
∂α

=
β

β̂2

∂c0(r̂)
∂α
β̂ − c0(r̂)

∂β̂

∂α

 = mr
∂β̂

∂α

∂

∂r̂

c0(r̂)
r̂

 . (76)

Since
∂β̂

∂α
= −Eα0 − α

∂Eα0
∂α
=
πcα(r, r′)

6β
+
απ

6β
∂cα(r, r′)
∂α

, (77)

we have

1
m2

∂cα(r, r′)
∂α

=
π

6

 cα(r, r′)

1 − πr′6
∂
∂r̂

(
c0(r̂)

r̂

)
 ∂∂r̂

c0(r̂)
r̂

 < 0 , (78)

where the inequality follows from the fact that the function in brackets is positive. In contrast,
there is no monotonicity with respect to β:

1
m
∂cα(r, r′)
∂β

=
c0(r̂)

r̂
+ r

∂
∂r̂

(
c0(r̂)

r̂

)
1 − πr′6

∂
∂r̂

(
c0(r̂)

r̂

) , (79)

since the first term on the r.h.s. is always positive and the second term is always negative. A
simple study of the asymptotics indeed shows that the derivative does change sign: for β ≈ 0
the first term dominates, since β̂ is finite as β → 0 and the second term is very small (r ≈ 0).
On the other hand, if β→ ∞ then β̂ ≈ β, in which case the first term in (79) tends to zero while
the second term grows linearly with β. Alternatively, by approximating the denominator of the
second term we can write:

1
m
∂cα(r, r′)
∂β

≈
c0(r)

r
+

1
r

∂c0(r)
∂r

r − c0(r)
 = ∂c0(r)

∂r
≤ 0 for β ≫ 1 . (80)
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The non-monotonicity of cα(r, r′) with respect to β further emphasises the fact that the parameter
r is no longer the only dimensionless scale in the problem. Note that the result (80) is exact for
any β if r′ = 0, as monotonicity is restored when there is no perturbation.

6 Numerical Results
In this section we perform numerical tests to check the overall validity of our theoretical predic-
tions, in particular of the two expressions (66) and (67). These expressions predict the behaviour
of densities and currents in the m→ 0 limit, which can be tested in a rather straightforward way.
First of all, one can simulate a partitioning protocol by solving iteratively the TBA equations
(see for instance [30]) to obtain the numerical values of the currents jsimul for different values of
m. Since we are interested in the NESS currents, we evaluate them for ξ = 0. The currents can
then be normalised in order to obtain a quantity which in the m→ 0 limit do not depend on the
choice of α nor on the right and left effective temperatures:

jnorm =
jsimul

cLR

((
T̂ s+1

L − T̂ s+1
R

)
+ απc6 (T̂ s+1

L T̂ 2
R − T̂ s+1

R T̂ 2
L)

) . (81)

We focus on even currents without any loss of generality. In the conformal limit, we expect jnorm

to approach the value of G(s). In order to verify that 66 and 67 have the correct temperature
dependence, it is enough to check that jnorm is independent on TL and TR in the massless limit,
since this means that through (81) we are indeed removing all the temperature dependence.
Numerical simulations are performed using the same three models which were considered in
[30], namely the free fermion, the scaling Lee-Yang model and the sinh-Gordon model at the
self-dual point. These are all single-particle IQFTs which in the massless limit are described by
CFTs of (effective) central charges ceff =

1
2 , 2

5 and 1 respectively. The results of the numerical
evaluations are shown in figures 2a and 2b for different values of the parameters. The plots
show indeed that the asymptotic value which is reached is independent on the choice of the
parameters and it is given by the value of G(s), which is also evaluated numerically.

7 Conclusions and Outlook
In this paper, we have studied the thermodynamic properties of massive IQFTs perturbed by TT̄
operator both at and away from equilibrium. Our main result are formulae for the averages of
all local higher spin currents and densities. The averages in the perturbed theory are expressed
as ratios of simple functions of the averages in the unperturbed theory.

In the conformal limit, equilibrium averages have been previously found [30, 31] and, as
known since [5, 6], the same formulae hold when the theory is TT̄-perturbed as long as the
inverse temperature is replaced by a specific function of the latter and of the perturbation pa-
rameter. These formulae are here generalised to the out-of-equilibrium partitioning protocol. In
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Figure 2: Normalised currents 81 for different values of α and of the temperatures. The curves
are obtained by varying the mass: the massless limit is attained at large ln (2/r). The horizontal
dashed lines are the values G(s), which are evaluated numerically as done in [30].
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this situation, the energy current and density were already known from [25, 26] and our results
generalised the latter by extending them to generic integer values of spin. While in [25, 26] the
authors considered the massless TBA equations as starting point, we start from the equations
for a massive model and then take the massless limit of the currents and densities themselves.
We obtain the universal dependence on the inverse temperatures for any CFT and find that, just
as for the energy, for higher spins the TT̄ perturbation couples the right and left temperatures
in a non-trivial fashion. There is, however, a spin-dependent proportionality coefficient that is
theory-dependent and for the moment not accessible analytically, except for free fermions.

For the massive free fermion several additional analytic computations are possible, as both
the equilibrium and out-of-equilibrium averages can be obtained exactly. In addition, at equi-
librium, it is possible to obtain a perturbative expansion of the effective inverse temperature
β̂ in terms of the original inverse temperature β. For small mass, this expansion can be re-
summed into a function which can be interpreted as a generalisation of Lambert’s W-function.
Although the core of the paper focuses on theories with a single massive excitation, in the
appendices we show the generalisation to many-particle spectra, as well as the study of other
thermodynamic/hydrodynamic quantities such as the effective velocities, which are known to
have special properties in TT̄-perturbed models [25, 26] (e.g. superluminal propagation). The
extension to more general TT̄-perturbations is also studied.

The determination of the non-universal functions G(s) in (4) remains one of the most inter-
esting open problems. While G(1) can be obtained exactly, for higher spins we have not yet
found a closed formula which is valid for all CFT. It has been shown [30, 31] that G(s) can
be written in terms of integrals of TBA functions, of the same type as are encountered when
relating the central charge to Roger’s dilogarithm function. It appears natural that also these
integrals might be solved by higher order polylogarithms. We hope to return to this problem in
the future.
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A Multi-Particle Spectra
For systems with several particle types labeled by a = 1, . . . ,N and diagonal scattering, the
TBA equations take the form:

εαa = νa −
∑

b

φ0
ab ∗ Lαb (θ) +

∑
b

αmamb(cosh ∗Lαb )(θ). (82)

The dressing equation (43) can be easily generalised to this situation. We rewrite it in matrix
form by introducing the matrix of integral operators Tnα, with components Tabnαb (the index b
is not summed over). In this way [(Tnα)hdr]a(ϑ) =

∑
b(φ0

ab ∗ (nαb hdr
b ))(ϑ), and equations (43) and

(44) still hold:
hdr,α

s (ϑ) = (1 − Tnα)−1(hs(ϑ) − αqαs E(ϑ) + αjαs P(ϑ)) , (83)

that is, indicating with a tilde the action of the integral operator (1 − Tnα)−1, we have

hdr,α
s (ϑ) = h̃αs (ϑ) − αqαs Ẽα(ϑ) + αjαs P̃α(ϑ) . (84)

Notice that now hdr,α
s (ϑ),hs(ϑ),nα(ϑ),E(ϑ),P(ϑ), together with their tilded versions, are n-

component vectors (hence the bold font). On the other hand, qαs and jαs are the total averages,
that is scalars which already include the sum of contributions from all particle species. The in-
version of a matrix of integral operators is delicate and has to be dealt with carefully. The series
expansion of the inverse operator, which we introduced in Section 4, must converge for physical
reasons, otherwise the dressing operation would be ill-defined. This is however ensured here
by the fact that the kernel operator involved is that of a known IQFT, and these always display
good convergence properties (they are typically exponentially decaying functions for large |ϑ|).

The discussion of Section 4 also follows through regarding the massless and the equilibrium
limit. In both cases, the dressing operator has the effect of redefining the inverse temperature(s)
in the underformed theory. Recall that we denoted quantities at inverse temperature β̂ (or β̂R,L

in the partitioning protocol) with a hat, so tildes are replaced by hats everywhere and:

hdr,α
s (ϑ) = ĥdr,0

s (ϑ) − αqsÊdr + αjsP̂dr as m→ 0 . (85)

The total average currents and densities are given again by (48) in the massive case and by
(37) in the massless and equilibrium limits. The solution will be exactly the same as that given
previously. This shows in particular the universality of our results, with (4) valid for any TT̄-
perturbed CFT, (49) valid in massive, interacting, out-of-equilibrium theories and (40) valid at
equilibrium for massive and massless theories.

B Generalised Deformations
It is possible, with some caveats, to extend the discussions to the case of generalised TT̄ de-
formations. The TBA for this situation was studied in detail in [18]. Here, we will restrict
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ourselves to the special case of a driving term ν(ϑ) = ms cosh sϑ and S -matrix deformation
given by e−iδ(ϑ) with6 δ(ϑ) = m2sα sinh(sθ)

s . For simplicity, we will focus on the free fermion theory,
even if results in the massless limit hold more generally. Following the same kind of derivation
as presented in Section 2 we find that, at equilibrium

εα(ϑ) = msβs cosh(sϑ) + m2sα cosh(sϑ)
ˆ

dϑ′

2π
cosh(sϑ′)L(ϑ′) . (86)

We can then define a generalisation of the free TBA energy that we considered before:

Eαs := −
ms

2π

ˆ
dϑ cosh(sϑ)L(ϑ) . (87)

This object is interpreted as the analogue of Eα0 for higher spin charges, and we will refer to it
as a generalised energy. Introducing this quantity, the TBA equation becomes:

εα(ϑ) = msβs cosh(sϑ) − αmsEαs cosh(sϑ). (88)

From this we find a self consistent equation for the generalised energy:

Eαs = −
ms

2π

ˆ
cosh(sϑ) log(1 + e−ms(βs−αEαs )ms cosh(sϑ)) . (89)

This is exactly the same formula as (25) except for a redefinition of the coefficient of cosh(sϑ),
so we can carry out the same type of computation based on the small m expansion of the Bessel
functions, obtaining:

Eαs = −
πc

6s(βs − αEαs )
for m→ 0 .

This gives

Eαs =
βs

2

1 −
√

1 +
2πcα
3sβ2s

 , (90)

where again we chose the solution with negative sign in front of the square root. Therefore,
defining the (generalised) modified inverse temperature as β̂s = βs − αEαs , we obtain

β̂s =
βs

2

1 +
√

1 +
2πcα
3sβ2s

 . (91)

In terms of β̂s the equilibrium TBA equation (86) reads:

εα(ϑ) = β̂sms cosh(sϑ) , (92)
6The factor 1

s is included for convenience, but it can always be absorbed by a redefinition of α. As discussed in
[18], there may be convergence issues if the parameter s in the driving term is different from that of the deformation.
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while the TBA for interacting theories with a generalised TT̄ perturbation is obtained by intro-
ducing a non vanishing kernel φ0 in (86). It is also possible to carry out a similar analysis in a
multi-particle theory with the replacement αm2s 7→ αms

i m
s
j.

Since the modified inverse temperature has no mass dependence, the CFT limits of (92) for
right and left movers follow straightforwardly:

εαR(ϑ) =
Msβ̂s

2
esϑ , εαL(ϑ) =

Msβ̂s

2
e−sϑ , (93)

where as usual M := meϑ0 , with ϑ0 the divergent part of the rapidity. Hence the massless TBA
equations become in this case:

εα±(ϑ) =
Msβs

2
e±sϑ −

αsMs

2
Eαs e±sϑ ±

αsMs

2
Pαs e±sϑ , (94)

where we included the term proportional to Pαs , which is the generalisation of Pα0 as defined in
(14) and vanishes if the system is at equilibrium.

B.1 Averages
Here, we present a computation of the average charge densities in the presence of a generalised
TT̄ deformation of the free fermion at equilibrium. Consider a deformation that contains a spin-
s term, so that the TBA equation is (92). If we are interested in average densities and currents
of a spin-s′ charge, then the dressing relation is

hdr,α
s′ (ϑ) = hs′(ϑ) − αm2s cosh(sϑ)

ˆ ∞
−∞

dϑ′

2π
cosh(sϑ′)nα(ϑ′)hdr,α

s′ (ϑ′) , (95)

as it simply follows from the definition (10). The energy dressing is particularly simple and
takes the form

Edr,α(ϑ) = E(ϑ) − αqαs hs(ϑ) . (96)

For s = s′ we can compute

qαs =
1

2π

ˆ
dϑEdr,α(ϑ)nα(ϑ)hs(ϑ) =

ms

2π

ˆ
dϑ(m coshϑ−αmsqαs cosh sϑ)nα(ϑ) cosh(sϑ) , (97)

and since nα(ϑ) = (1+ eε
α(ϑ))−1 we can again expand in terms of Bessel functions using (52) and

(53) to arrive at

qαs =

∞∑
n=1

(−1)n+1 ms+1

πs

K1+1/s(nmsβ̂s) −
1

snmsβ̂s
K1/s(nmsβ̂s)


−

∞∑
n=1

(−1)n+1αm2sqs

πs

K2(nmsβ̂s) −
1

nmsβ̂s
K1(nmsβ̂s)

 , (98)
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which, up to a factor 1
s coming from a rescaling of the rapidity, is identical to (54) up with the

substitutions s→ 1
s , mβ̂ 7→ msβ̂s and m2α 7→ m2sα. Hence, for small m:

qαs =
Γ( 1

s + 1)ζ( 1
s + 1)(2

1
s − 1)

2πβ̂s+1
(
s + απ

12β̂2s

) , (99)

an expression which non depends on the dimensionless scale α/β̂2s. By following the same
procedure we can compute the averages of charge densities of arbitrary spin k, obtaining in the
small m limit:

qαk = q
0
k,s − αq

α
s

Γ(1 + k
s )ζ(1 + k

s )

2πsβ̂s+k
(2k/s − 1) . (100)

In the equation above, q0
k,s is an α-independent term which takes the form

q0
k,s =

Γ( k+1
s )ζ( k+1

s )

2πsβ̂1+k
(2

k+1
s −1 − 1) , (101)

while qαs is given by (99). Therefore, average charge densities at equilibrium can be obtained in
a rather straightforward way even for generalised deformations.

C CFT Derivation
In the main text we obtained results for massless theories starting from massive perturbed TBA
and then taking the m → 0 limit. The advantage of this approach is that it allows us to un-
derstand which quantities can be found only in the perturbed CFT case and which ones can be
determined also in the massive case, hence with greater generality. Moreover, the approach is
useful because the TBA formulation of CFTs is in general less transparent than the massive
one. Nonetheless, it is possible to find massless results starting from the TBA equations of the
perturbed CFT as given by (17). From this equation we can find the dressed eigenvalues, which
are different for right and left movers:

(h±s )dr,α(ϑ) = h±s (ϑ) − αh±1 (ϑ)(qαs ∓ j
α
s ) + (φ0 ∗ n±,α(h±s )dr)(ϑ) , (102)

where the one-particle eigenvalues of the massless excitations are simply

h±s (ϑ) =
Ms

2
e±sϑ. (103)

As before we can invert the dressing operation:

(h±s )dr,α(ϑ) = (1 + Tn±)−1
(
h±s − αh±1 (qαs ∓ j

α
s )
)
. (104)
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Figure 3: Behaviour of the effective velocity for a free fermionic theory for different values of
α at fixed finite m and fixed temperatures. The velocities (106) of the right and left movers are
simply the limits for θ → ±∞ of the plotted veff,α. The superluminal behaviour is evident from
the fact that for α , 0 the asymptotic values are above 1 (below -1).

In the massless case it is clear that the occupation functions n±,α are the same as those of the
unperturbed theory up to a redefinition of temperature. This leads to much simpler expressions
for the effective velocities of the right and left movers. Indeed, from

(h±1 )dr,α(ϑ) = (1 − α(qαs ∓ j
α
s ))(1 + Tn±)−1h±1 (ϑ), (105)

it follows that the effective velocities of the two species do not depend on the rapidity:

(veff,α)± = ±
1 + α(qα1 ∓ j

α
1 )

1 − α(qα1 ∓ j
α
1 )
= ±

1 + 2α(qα1 ∓ j
α
1 )

1 − α(qα1 ∓ j
α
1 )

 . (106)

The fact that the effective velocities are simply shifted by fixed constant terms was already
found in [25]. The quantity in brackets in the above expression is usually larger than one in
absolute value, hence giving rise to superluminal effects, as manifest from figure 3. In any
case, the solution of the partitioning protocol is not modified, and the equality which relates the
dressed quantities of the perturbed theory to the dressed quantities of the unperturbed theory is

(h±s )dr,α(ϑ) = (ĥ±s )dr,α(ϑ) − α(qαs ∓ j
α
s )(ĥ±1 )dr,α(ϑ) . (107)

The evaluation of the currents and densities has therefore to take into account the sum over the
right and the left movers. Observing that q̂+1 + q̂

−
1 = q̂

0
1, and q̂+1 − q̂

−
1 = ĵ

0
1, we recover the result

for massive theories:
qαs = q̂

0
s − αq̂

0
1q
α
s + αȷ̂

0
1j
α
s . (108)
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An identical discussion can be also performed for the current, leading to a system of equations
which is identical to (48) but is directly evaluated in the massless limit. Therefore, the discus-
sion can be simply repeated using the results of [30] to obtain the same expressions (66) and
(67) directly in the conformal limit.

D β̂ as an Explicit Function of β: the free Fermion Case
Except for the general properties discussed above, for most theories it is not possible to find a
closed-form expression for the function cα(r, r′) beyond the critical point. Once more, the mas-
sive free fermion provides an exception to this rule, in that the c-function admits a perturbative
expansion in terms of r̂ = mβ̂. This allows us to find a perturbative expansion of β̂ in terms of β
which holds in the massive regime and exhibits some interesting mathematical features.

Consider again equation (23). This can be rewritten in terms of Bessel functions, as shown
in the main text:

Eα0 =
m
2π

∞∑
n=1

(−1)n

n

ˆ ∞
−∞

coshϑe−nr̂ coshϑdϑ =
m
π

∞∑
n=1

(−1)n

n
K1(nr̂) . (109)

In [43] a solution to this equation for α = 0 was presented, in the sense that the free energy,
or rather the scaling function, was obtained as a perturbative expansion in the parameter r. By
using the same formula, we can expand in r̂ the right-hand side of the previous equation:

c0(r̂) =
1
2
−

3r̂2

2π2

[
ln

r̂
π
−

1
2
+ γE

]
−

6
π

∞∑
n=1

√(2n − 1)2π2 + r̂2 − (2n − 1)π −
r̂2

2(2n − 1)π

 ,(110)

where γE = 0.577216... is the Euler-Mascheroni constant. The formula can be slightly simpli-
fied by expanding the square root as:√

(2n − 1)2π2 + r̂2 = (2n − 1)π
∞∑

k=0

(
1/2
k

)  r̂2

(2n − 1)2π2

k

= (2n − 1)π +
r̂2

2(2n − 1)π
+

∞∑
k=2

(
1/2
k

)  r̂2

(2n − 1)2π2

k

, (111)

where the first two terms cancel off the last two terms in the sum (110)). Therefore, the scaling
function reads:

c0(r̂) =
1
2
−

3r̂2

2π2

[
ln

r̂
π
−

1
2
+ γE

]
+ 6

∞∑
k=2

(
1/2
k

)
r̂2k

π2k

∞∑
n=1

1
(2n − 1)2k−1 . (112)

The sum in n is given in terms of Riemann’s zeta function
∞∑

n=1

1
(2n − 1)p = (1 − 2−p)ζ(p) , (113)
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yielding the more compact expression:

c0(r̂) =
1
2
−

3r̂2

2π2

[
ln

r̂
π
−

1
2
+ γE

]
+ 6

∞∑
k=2

(
1/2
k

)
r̂2k

π2k (1 − 21−2k)ζ(2k − 1) . (114)

This formula allows us to expand m−1Eα0 = −
πc0(r̂)

6r̂ as a perturbative series in r̂. Furthermore, by
using m−1Eα0 =

r−r̂
r′ we can find an explicit expansion of r in terms of r̂. We obtain

r
r′
=

r̂
r′
−
π

12r̂
+

r̂
4π

[
ln r̂ + χ

]
−

∞∑
k=2

(
1/2
k

)
r̂2k−1

π2k−1 (1 − 21−2k)ζ(2k − 1) , (115)

where χ = −1
2 − ln π + γE. The equation above can be solved (at least numerically and within

the radius of convergence of the series) to find the value of β̂ at all orders for a massive free
fermion

D.1 Corrections Near Criticality
Let us consider the leading corrections for small m. Then, we can approximate equation (115)
to:

r
r′
=

r̂
r′
−
π

12r̂
+

r̂
4π

ln r̂ + · · · (116)

where we neglected the χ term, since it results in a next-to-leading correction. We can start by
finding the effective temperature at r = β = 0. Exponentiating the truncated equation (116) at
r = 0 we obtain:

r̂ exp
− π2

3r̂2

 = exp
(
−

4π
r′

)
. (117)

This equation can be solved exactly using Lambert’s W function [49], which is defined by the
equation

W(x)eW(x) = x . (118)

Indeed, by defining t = r̂−2 and then squaring and inverting both sides of (117) we have:

2π2

3
t exp

2π2

3
t
 = 2π2

3
e

8π
r′ ,

which can be solved immediately using the definition (118):

r̂0 :=

√
2π2

3√
W

(
2π2

3 e
8π
r′
) for m ≪ 1 and β = 0 . (119)

29



Note that, by using the relation eW(x) = x
W(x) , the previous expression can be rewritten as:

r̂0 =
exp 1

2W(η)

exp(4π
r′ )

=

√
2π2

3η
exp

1
2

W(η), (120)

where we introduced the parameter η = 2π2

3 exp( 8π
r′ ). This expression will be useful in the

following. For m → 0, r̂0 is finite, since the Lambert function behaves asymptotically as the
logarithm of its argument. In particular, the limit evaluates to:

lim
m→0

r̂0 =

√
πr
6
, (121)

which corresponds precisely to the result obtained in the β → 0 limit of equation (29), with
c = 1/2. If β , 0, the solution in terms of Lambert’s function is not exact, but if we assume
β ≪

√
α, so that β̂0 ≈

√
πα
6 ≫ β, then we can proceed further in our derivation. The procedure

is analogous to the β = 0 case, but with the introduction of an extra term:

r̂ exp
− π2

3r̂2

(
1 +

12rr̂
πr′

) = e−
4π
r′ . (122)

Unfortunately, this equation is still not solvable in terms of Lambert’s function, because of
the extra term in the exponential in the left hand side. Although generalisations of Lam-
bert’s function exist, we have found no generalisation that solves an equation of the type
Wa(x)eWa(x)(Wa(x)+a) = x. Here, we assume the existence of such a function Wa(x), in terms
of which equation (122) takes the form

π
√

3r̂
= W 4

√
3r

r′

 π√
3

e
4π
r′

 = W 4
√

3r
r′

√η2
 , (123)

in the limit of small mass and at any inverse temperature β.
In the absence of more information about the function Wa(x) we can proceed by assuming

that r is small and further approximating r̂ ≈ r̂0 in the exponential (122). We can then write:

r̂1 exp

− π2

3r̂2
1

(
1 +

12
πr′

rr̂0

) = e−
4π
r′ , (124)

where we now use the notation r̂1 to indicate that this expression provides a next-to-leading
order approximation (in β) of r̂. This procedure can then be generalised to higher orders, as we
see below. As before, equation (124) can be solved exactly, this time yielding:

r̂1 =

√
2π2

3

√
1 + 12

πr′βr̂0

m
√

W
(

2π2

3

(
1 + 12

πr′ rr̂0

)
e

8π
r′

) . (125)
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For consistency, we can check that expression (125) leads to the correct conformal limit, which
we read from (30). Indeed, we have

lim
m→0

r̂1 =

√√
πr′

12

1 + r

√
12
πr′

 ≈
√
πr′

12
+

r
2
, (126)

which is the correct result. Proceeding as before, from eW(x) = x
W(x) we can cast expression (125)

in a form similar to (120):

r̂1 =

√
2π2

3η
exp

(
1
2

W(η(1 +K exp (
1
2

W(η))))
)
, (127)

where the new parameter is K = 12r
πr′

√
2π2

3η . This suggests that the complete solution will be
given by infinitely many “nested” Lambert functions, as can be seen by iterating procedure
above. In general, we have

r̂i+1 =

√
2π2

3

√
1 + 12

πr′ rr̂i√
W

(
3π2

2

(
1 + 12

πr′ rr̂i

)
e

8π
r′

) , (128)

and the solution has structure

r̂ =

√
2π2

3η
exp

(
1
2

(W(η(1 +K exp(
1
2

W(η(1 +K exp(
1
2

W(...))))
)
. (129)

This is the exact expression of r̂ for any value of r, with small mass. Truncating at the n-th
nested Lambert function and taking the massless limit gives the expansion of r̂ in (29) at order
O(rn−1) . An extension of (129) to include higher order terms in the mass remains elusive at
this point. From our definition of the function Wa(x), the previous expression also implies the
functional relation

W 4
√

3r
r′

√η2
 = √

η

2π
exp

(
−

1
2

(W(η(1 +K exp(
1
2

W(η(1 +K exp(
1
2

W(...))))
)
. (130)
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