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Abstract—This paper investigates the planning and control for
accurate positioning of car-like robots. We propose a solution
that integrates two modules: a motion planner, facilitated by
the rapidly-exploring random tree algorithm and continuous-
curvature (CC) steering technique, generates a CC trajectory as
a reference; and a nonlinear model predictive controller (NMPC)
regulates the robot to accurately track the reference trajectory.
Based on the µ-tangency conditions in prior art, we derive
explicit existence conditions and develop associated computation
methods for a special class of CC paths which not only admit the
same driving patterns as Reeds-Shepp paths but also consist of
cusp-free clothoid turns. Afterwards, we create an autonomous
vehicle parking scenario where the NMPC endeavors to follow the
reference trajectory. Feasibility and computational efficiency of
the CC steering are validated by numerical simulation. CarSim-
Simulink joint simulations statistically verify that with exactly
same NMPC, the closed-loop system with CC trajectories as
references substantially outperforms the case where Reeds-Shepp
trajectories are used as references.

Index Terms—Path planning, continuous-curvature steering,
mobile robots, nonholonomic dynamics, model predictive control,
sampling-based algorithms.

I. INTRODUCTION

Planning and control to navigate a mobile robot toward
a goal configuration while avoiding collision into obstacles
has been extensively studied, see, e.g., [1]–[9] and references
therein. In particular, a considerable amount of research efforts
have been devoted to path planning of mobile robots with car-
like kinematics [2], [10]–[14], enabling applications such as
autonomous driving [15], [16], simultaneous localization and
mapping (SLAM) [17], and automatic parking [18]. Mean-
while, a variety of control strategies, e.g., model predictive
control [19]–[21], sliding mode control [22], reinforcement
learning [23], fuzzy logic control [24], and model-free control
[25] have been proposed for allowing a robot to accurately fol-
low the reference trajectory generated by a high-level planner.
A comprehensive review on both path planning and control
for autonomous ground vehicles can be found in [26].
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It is well-received that the complexity and uncertainties
in robot models and the environment make planning com-
putationally prohibitive [27]; and such excessive computa-
tional burden additionally limits achievable performance in the
course of plan execution, i.e., safety, productivity, positioning
error, energy consumption, etc.

It has been recognized that planning and control should be
coordinated to meet ultimate system specifications. The idea of
kinodynamic planning, taking into account robot dynamics to
generate feasible paths, has inspired tremendous contributions
to improving path planning performance, among which the
most prominent are, to name a few, optimal control, A*,
and sampling-based methods [27]–[30]. Among the afore-
mentioned prior art, optimal control is considered a good
fit for environments with simple layouts. The A* algorithm
relies on a state space partition of the environment and thus
might run into the curse of dimensionality. Sampling-based
methods, specifically, the probabilistic roadmap (PRM) [28]
and the rapidly-exploring random tree (RRT) algorithms [29],
along with their variants [27], are effective in dealing with
high-dimensional systems, by circumventing the explicit con-
struction of collision-free configuration space. We concentrate
on delivering RRT-based planning and control solutions for
accurate positioning of car-like robots in this work.

Steering, one of the cornerstones of RRT and/or PRM plan-
ners, computes a kinematically or dynamically feasible path
to connect two configurations, while ignoring obstacles [2],
[5], [28]. Owing to the intensive invoking of steering operation
during planning, its computational efficiency is of paramount
importance for all applications. High precision applications ad-
ditionally entail exact steering - the path exactly connects two
configurations. Pioneer works [10], [11] investigate shortest-
distance exact steering for the unicycle kinematics and show
that the solution admits a family of Reeds-Shepp (RS) paths
which can be computed analytically. The RS paths however
present discontinuous curvature profiles, incurring adversary
effects such as driving discomfort, excessive tire weariness,
and unsatisfactory positioning accuracy [1], [18]. A natural
remedy to the RS paths is trying continuous-curvature (CC)
steering for CC paths. For instance, based on Pontryagin’s
Maximum Principle, prior works [31]–[34] derive existence
conditions of shortest CC paths constructed by clothoid arcs,
and develop a procedure to compute them. A shortest CC
path may possess an infinite amount of chattering between the
clothoid curves and thus is undesirable [35]. Work [36] resorts
to numerical planning, which, although efficient, is applicable
only to forward-moving robots. Bézier curves are utilized
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in [37], [38] to obtain CC paths; despite the computational
convenience, such Bézier curve paths lack malleability when
the degree of the curve increases. Various spline curves are
used [39], [40] to generate CC paths; nevertheless, optimality
of the resultant paths is not studied thoroughly. Work [1],
[35] investigates the construction of a special class of sub-
optimal CC paths admitting the same structures as RS paths.
Existence conditions of such CC paths were established on the
basis of µ-tangency and clothoid turns (CT), albeit the results
are not instrumental for implementation. Their focus has been
to develop a complete planner, necessitating the CC steering
method satisfying small-time controllability, which however
leads to paths containing excessive cusps.

Contributions: This paper proposes a CC steering-based
bi-directional RRT (CC-BiRRT) for fast trajectory planning,
exploits nonlinear model predictive controller (NMPC) for
accurate positioning, and conducts extensive simulation using
a CarSim-Simulink platform to validate effectiveness. Specif-
ically, explicit and analytic existence conditions of a more
restrictive class of sub-optimal CC paths where the CT does
not contain cusps are established to complement works [1],
[41]. These conditions can be used to verify whether a CC path
in a specific structure exists. A feasible CC path can be readily
calculated once its existence conditions are verified. Based on
the reference trajectory from CC-BiRRT, NMPC is exploited
to achieve accurate trajectory tracking. Extensive simulation
over CarSim-Simulink platform verifies that CC-BiRRT and
NMPC yield accurate positioning.

The remainder of this paper is organized as follows. Sec-
tion II presents the kinematics model of a class of car-like
robot and formulates the planning and control problems. In
Section III, planning results, including the existence conditions
for CC steering, are provided. Section IV details the NMPC-
based trajectory tracking control. The effectiveness of the CC-
BiRRT planning and NMPC-based tracking control framework
is demonstrated through extensive comparative study in Sec-
tion V. Concluding remarks are made in Section VI.

II. ROBOT MODEL AND PROBLEM FORMULATION

In this section, we first introduce the path planning and
motion control architecture for car-like robots. Next, we
present the models of a car-like robot, based on which the path
planning and control problems are formulated, respectively.

A. System Architecture

This work adopts the system architecture as shown in Fig. 1.
On the one hand, the path planner generates a reference
trajectory P∗

t , based on the initial configuration q0, the goal
configuration qf and a map; on the other hand, the motion
controller determines the control signal u(t) based on the
reference P∗

t and measured robot state x(t) to steer the robot
to accurately track the trajectory. Here the configuration of
the robot is a minimum-dimension parameterization which
uniquely defines the positions of all points on the robot.

Fig. 1: System architecture

B. The Path Planning Problem

Fig. 2 illustrates the motion of a class of car-like robots
equipped with a front-fixed steering wheel and fixed par-
allel rear wheels in a 2-dimensional Euclidean space. The
configuration of the robot is uniquely described by a triple
q = (x, y, θ)T where (x, y)T represent the coordinates of the
reference point R located in the middle of the rear axle in the
global 2-D coordinate frame, and θ is the heading angle with
respect to the positive x-axis. The steering angle of the front
wheels is denoted by ϕ. Apparently, (x, y, θ)T represents the
robot configuration and forms a space R2 × S1, where S1 is
the 1-D sphere.

Fig. 2: Kinematics of a car-like robot [1].

When low velocity (which implies the slipping rate goes to
zero) is assumed, a kinematic model sufficiently characterizes
the robot motion. By introducing an augmented configuration
q, We conduct path planning based on the following kinematic
model [31]:

q̇ =


ẋ
ẏ

θ̇
κ̇

 =


cos θ
sin θ
κ
0

 v +


0
0
0
1

σ, (1)

where κ is the curvature of the trajectory traversed by the
robot, v the velocity of the midpoint of the rear-wheel axle
along the heading, and σ the steering rate. Let b denote the
wheelbase of the robot, then ϕ, κ and σ are related as follows:

κ =
tanϕ

b
, σ = κ̇ =

ϕ̇

b cos2 ϕ
.

The kinematic model (1) is subject to physical constraints
on steering angle

|ϕ| ≤ ϕmax, (2)

and on control input uq = (v, σ)T

|v| ≤ vmax, |σ| ≤ σmax. (3)
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This implies that the curvature κ satisfies

|κ| ≤ κmax :=
tanϕmax

b
. (4)

Given constraints (2) - (4), the set of admissible control
inputs to model (1) is given by

Uq = {uq ∈ Uq : uq(t) ∈ Uq, t ∈ [0, Tf ]}, (5)

where Tf > 0 is the terminal planning time, Uq is the set of all
measurable functions defined over [0, Tf ], and the admissible
control domain Uq := [−vmax, vmax]× [−σmax, σmax].

While planning with respect to q = (x, y, θ, κ)T , we
ignore the minimum-dimension requirement and call q the
configuration for brevity of notation. Thus, the configuration
space is C : R2 × S1 × R. A configuration q is collision-
free if the robot at q does not overlap with obstacles in the
environment. The set of all collision-free configurations is
denoted Cfree ⊂ C. The path planning problem is formulated
below.

Problem 1 (Path Planning): Given the initial configuration
q0 = (x0, y0, θ0, κ0)

T ∈ Cfree, the goal configuration qf =
(xf , yf , θf , κf ) ∈ Cfree, and the kinematics model (1), find a
feasible trajectory P∗

t which satisfies
(I) P∗

t starts at q0 and ends at qf , while obeying (1)-(4),
and the associated control input uq ∈ Uq; and

(II) P∗
t (t) ∈ Cfree for all t ∈ [0, Tf ].

C. The Motion Control Problem

The robot needs to follow P∗
t as accurately as possi-

ble through an underlying control system. Because of the
mismatches between the model (1) and the true dynamics
and errors in sensing modules, the robot’s true trajectory
Pt will deviate from P∗

t , i.e., the trajectory tracking error
e = Pt − P∗

t ̸= 0. When ∥e∥ exceeds some obstacle
clearance threshold ϵ > 0, Pt could fail to be collision-free.
Hence, the top priority of the control system is to ensure that
∥e(t)∥ ≤ ϵ, ∀t ∈ [0, Tf ].

In view of the trade-off between the fidelity of the dynamics
model (dynamic feasibility) and complexity of control design,
we consider a dynamics model by augmenting the kinematics
model (1) with two additional states (v, ϕ). The state of the
dynamic model reads:

x = (x, y, θ, ϕf , v, ϕ)
T
, (6)

where ϕf represents the actual front steering angle. Approx-
imating the dynamics from the steering command ϕ to the
actual front steering angle ϕf as a first-order system with time
constant τ , we can express the dynamics model as follows:

ẋ =



ẋ
ẏ

θ̇

ϕ̇f
v̇

ϕ̇

 =


v cos θ
v sin θ

v tanϕf/b
(−ϕf + ϕ) /τ

a
ϕrate

 (7)

The model 7 contains two control inputs,

u = (a, ϕrate)
T
. (8)

Now We can define the motion control design problem.
Problem 2 (Motion Control): Consider the dynamics

model (7). Given a reference trajectory P∗
t , an initial state

xs with its image on C being qs ∈ Cfree as the initial
configuration, design a controller u to command the robot
such that whenever the robot’s actual initial configuration
satisfies ∥qs − q∗

s∥ ≤ δ, its trajectory Pt will satisfy
∥Pt − P∗

t ∥ ≤ ϵ,∀t ∈ [0, Tf ], where δ, ϵ > 0 are the
thresholds for configuration and trajectory tracking errors,
respectively.

III. PATH PLANNING VIA CONTINUOUS-CURVATURE
STEERING

This section solves the path planning problem by first pre-
senting the CC-BiRRT planner, then establishing the existence
conditions of representative sub-optimal CC paths, which
describe the pattern of reference trajectories to be generated,
and finally conducting preliminary analysis.

Notation: A node is referred to as a collision-free config-
uration qi ∈ Cfree. An edge E(qi,qj) represents a feasible
(collision-free and kinematically admissible) path between the
two nodes. A tree is denoted by T = (V,E), where V and E
are the node set and the edge set, respectively. For a set V ,
|V | denotes the number of elements. Start tree Ts and goal
tree Tg are rooted at qs and qg , respectively. Given ϵ > 0, an
ϵ−neighboring ball of qi is defined as Bϵ(qi) ≜ {q|d(q,qi) ≤
ϵ,∀q ∈ C}, where d(·, ·) is a distance function, e.g. , a
weighted 2-norm: ∥qi − qj∥W = ((qi−qj)

⊤W(qi−qj))
1/2

where W is a 4× 4 positive semi-definite weighting matrix.

A. CC-BiRRT: RRT-based Path Planning

Problem 1 is solved by adopting BiRRT, detailed as Al-
gorithms 1-3. It constructs tree T = Ts

⋃
Tg , where two

kinematic RRT trees Ts and Tg grow toward each other until
connected. Two trees are connected if there exists an edge
E(qi,qj) with qi ∈ Ts,qj ∈ Tg , and vice versa.

Algorithm 1: BiRRT
1 Vs ← q0, Es ← ∅; Vg ← qf , Eg ← ∅;
2 k ← 1, flag ← false;
3 Ts ← (Vs, Es); Tg ← (Vg, Eg);
4 while k < K and not flag do
5 qrand ← Sample(C);
6 flagS ← false;
7 (Ts, f lagS)← Extend(Ts,qrand, f lagS);
8 (Tg, f lagG)← Extend(Tg,qrand, f lagS);
9 flag ← flagS and flagG;

10 return (Ts, Tg, f lag);

Sample: returns qrand ∈ Cfree according to a uniform sam-
pling scheme. Extend: grows tree T toward qrand. Nearest:
returns qnearest ∈ V that is closest to qrand, and stays inside
the r-neighborhood: Vr(qrand) : {q|q ∈ V, d(qrand,q) ≤ r}.
That is:

Nearest(V,qrand) ≜ argminq∈Vr(qrand)
d(qrand,q).

The configuration qrand is appended to T only if there exists
a collision-free path (edge) between qnearest ∈ V and qrand.
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Connect: determines if an edge exists between qi and qj .
Steer: returns a set P containing possibly various admissible
paths each of which connects qi and qj . CollisionFree(Pi):
checks whether Pi ∈ P is collision-free.

Algorithm 2: Extend(T ,qrand, added) in Alg. 1
1 (V,E)← T ;
2 qnearest ← Nearest(V,qrand);
3 flag ← Connect(qnearest,qrand);
4 if flag then
5 if not added then
6 V ← V ∪ {qrand};
7 E ← E ∪ {(qnearest,qrand)};
8 T ← (V,E);
9 return (T , f lag)

Algorithm 3: Connect(qnearest,qrand) in Alg. 2
1 flag ← 0;
2 P ← Steer(qnearest,qrand);
3 for Pi ∈ P do
4 flag ← CollisionFree(Pi);
5 if flag then
6 break;

7 return flag

In Algorithm 1, both trees are connected if flag is
true, equivalent, the configuration qrand can be connected
to qs

nearest ∈ Ts and qg
nearest ∈ Tg . Here qrand is named

after common node. The algorithm could return once such a
common node is found. Alternatively, Algorithm 1 can run in
anytime fashion: it keeps running and adding common nodes
until k reaches K.

Key components of the aforementioned planner are the
sampling, steering, and collision check, all of which are
influential to the computation efficiency. Steering, taking care
of the system kinematics or dynamics and thus being crucial
to the positioning accuracy, is of our primary interest.

B. CC Steering

The steering aims at finding a feasible and shortest path
that can connect two configurations while avoiding collision
with obstacles. Now we assume that a CC steering trajectory
can be represented by a series of consecutive configurations,
Problem 1 can be rephrased as the following CC steering
problem.

Problem 3 (CC Steering): Given q0,qf ∈ C as the initial
and final configurations, respectively, determine a trajectory
q : [0, tf ] 7→ C with q(t) ∈ C,∀t ∈ [0, tf ] such that it
satisfies (1) with q(0) = q0 and q(tf ) = qf .

Remark 1: If in addition the trajectory q(t) is required to
give the shortest path length, Problem 3 is the shortest CC
steering problem, which can be solved by assuming a normal-
ized velocity, i.e., |v| = 1. When σmax → ∞, the shortest CC
steering problem reduces to RS steering [11]; and its solution
always exists and comprises straight line segments and circular
arcs of the minimum turning radius κ−1

max. Notably, previous

work [11] has established that the RS steering solution admits
one of 12 classes of structures: S ≜ {CSC − 1, CSC −
2, C|C|C,C|CC,CC|C,CCu|CuC,C|CuCu|C,CSCπ

2
|C −

1, CSCπ
2
|C−2, C|Cπ

2
SC−1, C|Cπ

2
SC−2, C|Cπ

2
SCπ

2
|C},

where C, S, and | represent the circular arc, the line segment,
and the cusp, respectively. Since each C represents four
patterns: left forward L+, left backward L−, right forward R+,
and right backward R−, RS paths admit 48 driving patterns.

As in [1], we assume that q0,qf have null-curvature con-
figurations, i.e., κ0 = κf = 0; and solve for a special class
of CC paths which combine a finite number of arcs: clothoid
arcs, circular arcs, and straight line segments according to a
certain structure in S. Following the idea in [1], we derive
explicit conditions for such a special class of CC paths to exist.
The derivation is based on concepts: clothoid turns (CTs),
clothoid circles (CCs), and µ-tangency conditions, which are
introduced in Appendix for brevity of presentation. Existence
conditions of two examples of CC path structures, namely
C|CuCu|C and C|Cπ

2
SCπ

2
|C, are presented below through

geometric analysis, respectively, whereas the derivation for the
rest classes can be found in [41].

We introduce the following concept to simplify computation
and reduce the number of cusps in CC paths.

Definition 1 (Valid Paths): A CC path is valid if
(i) any CT admits either a positive deflection δ ∈ [0, 2δc+π]

or a negative deflection δ ∈ [−2δc − π, 0]; and
(ii) there is no cusp in any CT.
Remark 2: CC steering with valid paths does not satisfy

small-time controllability property [1]. As a result, integrat-
ing the CC steering with RRT does not offer completeness
guarantee. This however does not pose a critical concern in
practice. Actually, small-time controllability is a sufficient (but
not necessary) condition to ensure that the true trajectory
stays inside a small neighborhood of the trajectory reference.
The same outcome can be guaranteed by either a complete
steering and a mediocre tracking controller, or an incomplete
(but kinematically feasible) steering and a high-performing
tracking controller. We adopt the latter scheme, which nicely
balances the demand on planner and controller.

1) C|CuCu|C: Taking L+R−
u L

−
uR

+ as an example, we
determine three intermediate configurations q1, q2, q3, as
shown in Fig.3.

Fig. 3: L+R−
u L

−
uR

+ pattern
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Let Ω1 and Ω2 be the centers of CC Circles C+
l (q0) and

C−
r (qf ) associated with q0 and qf , respectively; and θ be

the angle between the line Ω1Ω2 and the positive x-axis. As
shown in Fig. 3, Ω3 and Ω4 is the center of C−

r (q1) and
C−

l (q2), respectively. The µ-tangency condition of C+
l (q0)

and C−
r (q1), and of C−

l (q2) and C−
r (qf ) implies that

L(Ω1Ω3) = L(Ω2Ω4) = 2RΩ cosµ, (9)

where L(·) is abused as an operator to calculate the length of
a line. The µ-tangency between C−

r (q1) and C−
l (q2) implies

L(Ω3Ω4) = 2RΩ. We further have the following result.
Proposition 1: The lines Ω1Ω3 and Ω2Ω4 are in parallel.

Proof: Let θ1 be the angle between Ω1Ω3 and the positive
x-axis, and θ2 be the angle between Ω4Ω2 and the positive
x-axis. The µ-tangency of C+

l (q0) and C−
r (q1) implies the

orientation of q1 is θ1 + π
2 . Thus, after a backward right CT

with deflection u, the orientation of q2 is θ1 + π
2 + u and

similarly, the orientation of q3 is θ1 + π
2 + u− u = θ1 +

π
2 .

Meanwhile, serving as the initial configuration of the final
backward right CT connecting q3 and qf , the µ-tangency of
C−

l (q2) and C−
r (qf ) assures the orientation of q3 to be θ2+π

2 .
Thus θ1 = θ2, i.e., lines Ω1Ω3 and Ω2Ω4 are in parallel.

It follows immediately from (9) and Proposition 1 that
Ω1Ω4Ω2Ω3 forms a parallelogram. Let α denote the angle
between Ω1Ω2 and Ω1Ω3. Applying the law of cosines within
the triangle Ω1q2Ω3 yields

cosα =
1
4L

2(Ω1Ω2) + (2RΩ cosµ)2 −R2
Ω

2L(Ω1Ω2)RΩ cosµ
. (10)

The coordinates of Ω3 and Ω4 can be expressed as functions
of θ and α:

Ω3 =

(
xΩ3

yΩ3

)
=

(
xΩ1 + 2RΩ cosµ cos(θ + α)
yΩ1

+ 2RΩ cosµ sin(θ + α)

)
Ω4 =

(
xΩ4

yΩ4

)
=

(
xΩ1

+ xΩ2
− xΩ3

yΩ1
+ yΩ2

− yΩ3

)
.

(11)

The L+
δ1
R−

u L
−
uR

+
δ2

CC path is the concatenation of
(i) a left forward CT1 with deflection δ1 = θ + α+ π

2 ;
(ii) a right backward CT2 with deflection u = θ1−θ−α−µ;

(iii) a left backward CT3 with deflection −u.
(iv) a right forward CT4 with deflection δ2 = θf −θ−α− π

2 .
Existence Conditions (i) δ1, δ2 and u satisfy Definition 1; (ii)
Ω1q2Ω3 is a valid triangle, i.e.,

|2RΩ − 4RΩ cosµ| ≤ L(Ω1Ω2) ≤ 2RΩ + 4RΩ cosµ. (12)

2) C|Cπ
2
SCπ

2
|C: Similar to C|CuCu|C class, we de-

rive the conditions that ensures the existence of a valid
L+R−

π
2
S−L−

π
2
R+ path. The setup for geometric analysis is de-

picted in Fig. 4 where θ denotes the angle between Ω1Ω2 and
the positive x-axis. To appropriately determine intermediate
configurations q1, q2, q3 and q4, we introduce the following
result.

Proposition 2: The lines Ω1Ω3 and Ω4Ω2 are in parallel.
Proof: Let θ1 and θ2 be the angles between Ω1Ω3, Ω4Ω2

and the positive x-axis, respectively. The µ-tangency between
C+

l (q0) and C−
r (q1) enforces the heading of q1 to be θ1+ π

2 ,
and the π

2 deflection of the right backward CT suggests that

Fig. 4: L+R−
π
2
S−L−

π
2
R+ pattern

the orientation of q2 and q3 be θ1+π. Therefore, after the left
backward CT with deflection −π

2 , the orientation of q4 shall
be θ1+ π

2 . Also, the µ-tangency between C−
l (q3) and C−

r (qf )
implies that the orientation of q4 is θ2 + π

2 . Thus θ1 = θ2,
i.e., Ω1Ω3 is parallel to Ω4Ω2. The proof is completed.

Let Ω4Ω0 be perpendicular to Ω1Ω3. Since q0q1q2q3q4

forms an L+R−S−L− path from q0 to q4, one can tell that
L(Ω4Ω0) = 2RΩ cosµ. Furthermore, let Ω5 be the point on
line Ω1Ω3 such that Ω2Ω5 is perpendicular to Ω1Ω5. From
Proposition 2, L(Ω4Ω2) = 2RΩ cosµ and Ω4Ω2 is parallel to
Ω1Ω5, making Ω0Ω4Ω2Ω5 a square. Finally, the angle α can
be determined from the right triangle Ω1Ω2Ω5 as follows:

sinα =
L(Ω2Ω5)

L(Ω1Ω2)
=

2RΩ cosµ

L(Ω1Ω2)
. (13)

One concludes from (13) that the L+
δ1
R−

π
2
S−L−

π
2
R+

δ2
path

can be formed by composing
(i) a left forward CT1 with deflection δ1 = θ + α+ π

2 ;
(ii) a right backward CT2 with deflection π

2 ;
(iii) a backward line segment q2q3 of length

L(q2q3) = L(Ω3Ω0)− 2RΩ sinµ

=
√
L2(Ω1Ω2)− (2RΩ cosµ)2 − 2RΩ(2 cosµ+ sinµ);

(iv) a left backward CT3 with deflection −π
2 ;

(v) a right forward CT4 with deflection δ2 = θf −θ−α− π
2 .

Existence Conditions (i) δ1 and δ4 satisfy Definition 1; (ii)
L(q2q3) ≥ 0, which is equivalent to

L(Ω1Ω2) ≥ 2RΩ cosµ,√
L2(Ω1Ω2)− (2RΩ cosµ)2 ≥ 4RΩ cosµ+ 2RΩ sinµ.

(14)

C. Motion Planning

Solving Problem 1 ends up with a CC path consisting of
a sequence of CC steering solutions, i.e., the path comprises
CTs and lines where each CT contains up to two clothoids
and one circle. A clothoid arc is characterized by a non-zero
steering rate σ, moving direction v, and arc length l, whereas
both the circular arc and the line arc are characterized by a
zero steering rate σ = 0, moving direction v, and arc length
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l. Hence, any arc of a CC path is uniquely determined by
its initial configuration and action (σ, v, l). Since RS arcs are
either circular or straight, both RS and CC arcs can be fully
characterized by the following information - motion primitive
(MP):

(σ, v, l) ∈ [−σmax, σmax]× {−1,+1} × [0,∞).

Thus an RS or a CC path, consisting of Nmp arcs, are formed
by a sequence of MPs: (σk, vk, lk), 1 ≤ k ≤ Nmp.

The generation of reference trajectory, P∗
t :

(xr(t), yr(t), θr(t), κr(t), vr(t), σr(t))
T , based on MPs

(σk, vk, lk), 1 ≤ k ≤ Nmp essentially determines the profiles
of the longitudinal velocity and steering rate. The longitudinal
velocity profile is determined by first counting the number
of cusps Nc in vk; and for 0 ≤ j ≤ Nc repeating the
following two steps: 1) get the jth group of consecutive MPs
which have the same direction of movement and record the
indices Ij = {kj , kj + 1, . . . , kj+1 − 1} (here k0 = 1 and
kNc+1−1 = Nmp); 2) plan a trapezoidal velocity profile vjr(t)
over t ∈ [0, tj ] for the jth group with vjr(0) = vjr(tj) = 0,
and the path length being sj =

∑
i∈Ij

li. Then one can
obtain the velocity profile by concatenating all vjr(t), and the
steering rate profile according to the formulae

σ(s) = σk, s ∈

[
k−1∑
i=1

li,

k∑
i=1

li

]
,

which is equivalent to

σ(t) = σkv(t), s(t) ∈

[
k−1∑
i=1

li,

k∑
i=1

li

]
.

One can obtain the reference trajectory by integrating the
model (1), where control input is specified by vr(t), σr(t).

D. Analysis

The existence conditions and the resultant CC steering
algorithm are validated through simulation. We examine the
feasibility and computation time of constructing RS and CC
paths connecting q0 = (0, 0, 0, 0) to 1000 different qf ’s,
where qf is randomly drawn from the domain [−4, 4] ×
[−4, 4] × (−π, π) × {0}. The CC steering algorithm finds
feasible CC paths for all cases. However, as shown in Table I,
for a steering problem, the average number of feasible CC
paths is 8.6280, much less than that of feasible RS paths,
which is 24.32. Feasibility time in Table I is the time taken
to check feasibility by verifying existence conditions of all 48
driving patterns, whereas path time quantifies the time taken
to compute the shortest path according to the outcome of the
feasibility check. The feasibility check of CC steering is 19
times slower than RS case, and it takes 22 times longer to
construct a CC path than for the RS path case.

TABLE I: RS vs. CC steering: feasibility & efficiency

RS CC Ratio
Feasible Paths (Avg.) 24.3200 8.6280 2.8187

Feasibility Time (Avg.) 0.5579 ms 10.4220 ms 18.6722
Path Time (Avg.) 0.1260 ms 2.8193 ms 22.3278

Table I shows that CC path generation requires much lighter
computation (2.82 ms) than verifying the feasibility (10.42
ms); thus, one wonders whether the feasibility results of
RS steering can be exploited to improve the computation
efficiency of CC steering. We have the following result.

Proposition 3: Given two configurations, the existence of
a valid CC path in the class of Scc ≜ {CSC − 1, CSC −
2, C|C|C,C|CC,CC|C,CCu|CuC,C|CuCu|C,CSCπ

2
|C −

1, CSCπ
2
|C − 2, C|Cπ

2
SC − 1, C|Cπ

2
SC − 2, C|Cπ

2
SCπ

2
|C}

implies the existences of an RS path in the same class.
Proof: A sketch of the proof is provided below. We use

C|Cπ
2
SCπ

2
|C as an example to show that if there exists a

CC path of a given pattern, then an RS path with the same
pattern also exists. The existence of the C|Cπ

2
SCπ

2
|C-type

CC path between q0 and qf implies conditions (14). From
Fig. 13, we know RΩ cosµ > R. From Fig. 4, we have
L(O1O2) > L(Ω1Ω2) ≥ 2RΩ cosµ ≥ 2R, where O1, O2

represent the centers of minimum turning circles passing
q1, qf , respectively. Similarly, based on the CC condition√
L2(Ω1Ω2)− (2RΩ cosµ)2 ≥ 4RΩ cosµ + 2RΩ sinµ, one

can establish

√
L2(O1O2)− (2R)2 ≥

√
L2(Ω1Ω2)− (2RΩ cosµ)2

≥ 4RΩ cosµ+ 2RΩ sinµ ≥ 4R

We verify all existence conditions of C|Cπ
2
SCπ

2
|C-type RS

path, which imply the existence of such RS path.
Proposition 3 states that for a CC path exists, the existence

of an RS path with the same pattern is necessary. This allows
us to reduce computation time of CC steering by only testing
feasible classes of RS steering problem. Simulation shows
this treatment saves 49.33% computation time than running
feasibility check for all 12 classes.

Next, we elaborate that as σmax increases, the sequence of
CC paths converges to the RS path. This is illustrated by solv-
ing for an L+R−L− path from (0, 0, 0, 0)T to (−2,−2,−0,
0)T with σmax varying from 0.5 to 50. As shown in Fig. 5,
the sequence of CC paths converges to the RS path.

Fig. 5: RS path vs CC paths.
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IV. NMPC TRAJECTORY TRACKING CONTROL

To illustrate the benefits of employing a CC path rather than
an RS path in trajectory tracking, we deploy the two kinds of
paths in an autonomous parking scenario. A planner, based
on either the CC steering or the RS steering, first generates
the desired CC or RS trajectories. Then, an NMPC endeavors
to accurately follow the references. Note that for both the RS
and the CC cases, the configuration and the parameter tuning
of the NMPC remain exactly the same.

A. Nonlinear Model Predictive Control Formulation

The NMPC generates the optimal speed and steering com-
mands to track the reference trajectories xr, yr, θr, vr while
respecting the actuator and safety constraints. Based on (6)
and (8), we formulate the cost function to minimize as:

J =
1

2

Hp∑
i=1

(
∥x (k + i|k)− xr (k + i|k)∥2Q

+ ∥u (k + i− 1|k)− ur (k + i− 1|k)∥2R
+ ∥s (k + i− 1|k)∥2L2

+ L1s (k + i− 1|k)
)
.

(15)

In (15), Hp represents the prediction horizon. Q ⪰ 0,
R ≻ 0, L2 > 0, and L1 > 0 are the weighting factors.
The reference virtual inputs ur = [0, 0], and the reference
states, generated from either a CC planner or an RS planner,
are xr = [xr, yr, θr, 0, vr, 0]. s (k + i− 1|k) corresponds to
the non-negative slack variables. The first term leads the pre-
dicted vehicle states within the prediction horizon to converge
towards their reference values. The second term penalizes
the commands interventions. The last two terms are the soft
constraints violations penalties.

Grounded on the cost function (15), we express the con-
strained optimization problem as:

u∗ (k + i|k) ,x∗ (k + i|k) , s∗ (k + i|k) = argmin J

s. t. for i = 0, . . . ,Hp − 1

x (k|k) = x0, (16.a)

x (k + i+ 1|k) = f (x (k + i|k) ,u (k + i|k)) , (16.b)

− ϕmax
f − s (k + i|k) ≤ ϕf (k + i|k)&

ϕf (k + i|k) ≤ ϕmax
f + s (k + i|k) , (16.c)

− ϕmax − s (k + i|k) ≤ ϕ (k + i|k)&
ϕ (k + i|k) ≤ ϕmax + s (k + i|k) , (16.d)

− vmax − s (k + i|k) ≤ v (k + i|k)&
v (k + i|k) ≤ vmax + s (k + i|k) , (16.e)

− ϕmax
rate ≤ ϕrate (k + i|k) ≤ ϕmax

rate, (16.f)

− amax ≤ a (k + i|k) ≤ amax, (16.g)

s (k + i|k) ≥ 0. (16.h)
(16)

Eq. (16.a) represents the periodical state feedback. Eq. (16.b)
indicates the discretized vehicle model in (7). Eqs. (16.c),
(16.d), and (16.e) summarize the soft constraints on the actual
front steering angle ϕf , the steering angle command ϕ, and the
speed command v. The equations (16.f), (16.g) condense the
hard constraints on the virtual system inputs, defined in (8).

With the help of the non-negative slack variables, we soften
the constraints in (16.c), (16.d), and (16.e) to ensure recursive
feasibility. Sufficiently large weights L2 and L1 in the cost
function (15) guarantee that s (k + i|k) = 0, i = 0, . . . ,Hp−1
whenever the constraints can be satisfied.

Solving the constrained optimization problem (16) yields
the optimal input sequence within the prediction horizon:
u∗ (k + i|k) , i = 0, . . . ,Hp. The optimal high-level com-
mands from NMPC at the current step k, read:{

v∗ (k|k) = v (k − 1|k) + u∗
1 (k|k)Ts,

ϕ∗ (k|k) = ϕ (k − 1|k) + u∗
2 (k|k)Ts,

(17)

where u∗
1 (k|k), u∗

2 (k|k) correspond to the optimal acceler-
ation and steering rate (see eq. (8)), and Ts = 50ms is the
sampling period of the NMPC. The NMPC implementation
details can be found in [42].

During simulation, the steering command ϕ∗ (k|k) was
directly sent to the CarSim vehicle model for front steering
control. In contrast, a low-level speed controller [43] was
included to regulate the four wheels’ torques of the CarSim
model, such that the speed command v∗ (k|k) from the NMPC
could be achieved.

V. CASE STUDY: SAMPLING-BASED PLANNING &
CONTROL FOR AUTONOMOUS PARKING

The showcased autonomous parking maneuver requires a
passenger car fixed at q0 = (0, 0, 0, 0)

T to stabilize around
the terminal condition qf = (6.2,−5.8, π/2, 0)T , which
corresponds to a typical perpendicular parking maneuver.
BiRRT along with either the RS steering or the CC steering
is employed to generate a reference trajectory. An NMPC is
then leveraged for accurately following the references. We
first compare the execution time to generate the two types
of paths, and then employ CarSim-Simulink joint simulations
to demonstrate the benefits of adopting CC paths in improving
the trajectory following performance of the NMPC formulated
in Section IV-A.

A. Execution Time for Reference Generation

We run Monte Carlo simulation to mitigate the effect of
randomness in RRT sampling. The evaluation is based on the
platform: 4GHz quad-core i7 and Matlab 2020b. We run 1000
simulations of each algorithm and RS steering results in a
mean time 0.23 sec and average number of cusps 4.50; the CC
steering results in a mean time 2.29 sec with average number
of cusps being 4.46 (the steering rate is π/2 rad/sec). The
computation of CC steering is significantly heavier at 9 times
slower than RS steering, whereas the numbers of cusps of the
resultant paths are similar for both cases. When the steering
rate is slower, saying π/6 rad/sec, the mean computation time
for CC steering-based planning further reaches 4.36 sec, and
the mean number of cusps goes up to 6.26.

B. CarSim-Simulink Joint Simulation

Although the CC-RRT requires a relatively longer exe-
cution time to find a feasible path, as we will see, the
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smoother trajectories issued from the CC-RRT can facilitate
the trajectory tracking of the NMPC. CarSim-Simulink joint
simulation is executed for validation. In CarSim, the simulated
plant falls into the category of a C-Class Hatchback, with a
wheelbase b = 2.67m. Pacejka 5.2 tire model is employed to
simulate the tire forces. The mismatch between the simplified
vehicle dynamic model (7) and the high-fidelity CarSim model
contributes to trajectory tracking errors.

The major parameters inside the NMPC controller are
tuned as: Hp = 80, Q = diag [1, 1, 4, 1e− 6, 1e− 4, 1e− 6],
R = diag [1e− 2, 1e− 3], L1 = 1, L2 = 10. The control
constraints include: ϕmax

f = ϕmax = 36deg, ϕmax
rate = 36deg/s,

amax = 2m/s2, and vmax = 2m/s.
We first show the representative control and trajectory fol-

lowing results when there exist, respectively, one, three, or five
cusps in the generated reference paths. Figs.6-7 demonstrate
the trajectory following results and the commands of the
NMPC following an RS path and a CC path with one cusp.
Similarly, the results when there exist three and five cusps in
the generated paths are depicted in Figs.8-11.

Fig. 6: Trajectory following results: One cusp case

Fig. 7: NMPC commands: One cusp case

As manifested in Fig.6, Fig.8, and Fig.10, the trajectory
tracking performance of the exactly same NMPC substantially
improves if the generated reference path (RS Path∗, CC Path∗)
comes from CC-RRT. For instance, the maximum absolute
value of the lateral offset:

ey = cos (ψr) (y − yr)− sin (ψr) (x− xr) , (18)

in Fig.6 reduce from over 0.4m to less than 0.1m if the
generated path is issued from CC-RRT instead of the RS-
RRT. In addition, the speed tracking error also decreases if
the CC-RRT path is used. Since the inter-vehicle distance is
quite limited in the studied parking scenario, employing a CC
trajectory could substantially reduce the collision possibility.

The underlying reason that the CC-RRT path enhances the
trajectory tracking performance of the NMPC is revealed in

Fig. 8: Trajectory following results: Three cusps case

Fig. 9: NMPC commands: Three cusps case

Fig. 10: Trajectory following results: Five cusps case

Fig. 11: NMPC commands: Five cusps case
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Fig.7, Fig.9, and Fig.11: The RS-RRT path, which contains
path curvature derivatives with infinite magnitudes, enforces
the front steering rate of NMPC approaching its hard constraint
ϕmax
rate. Since the actual steering rate can never reach the desired

value ∞, the steering angle ϕf further moves towards its limit
ϕmax
f for compensation. With both ϕf and ϕrate constrained

at their limit, the path tracking performance, as reflected in the
lateral offset ey and the yaw error eθ = θ − θr, continues to
deteriorate, which finally requires the NMPC to sacrifice the
less-weighted speed tracking error ev = v − vr to minimize
the cost function J in (15).

On the contrary, the CC-RRT path, which explicitly con-
siders the change rate of the curvature, is able to yield a path
with the required steering rate well below the vehicle actuator
limit. As demonstrated in Fig.7, Fig.9, and Fig.11, when
following the path generated from CC-RRT, both the steering
angle ϕf and the steering rate ϕrate of the NMPC fall below
their corresponding thresholds and the actuator constraints are
rarely touched. Such an effortless steering control improves
the path tracking performance. Consequently, the NMPC can
pay more attention to the speed tracking error to render the
cost function J minimum.

To statistically verify if employing the CC-RRT paths can
improve the control performance of the NMPC, we execute
multi-simulations. We first generate three groups of paths, with
each group containing two hundred paths with respectively,
one, three, and five cusps. Within each group, half of the paths
are generated from RS-RRT, and the rest are generated from
CC-RRT. We calculate the root-mean-square (RMS) of the
trajectory tracking errors, including the lateral offset ey , the
speed tracking error ev , and the yaw error eϕ. The box plots
of the tracking errors are summarized in Fig. 12.

Fig. 12: Large scale simulation results with RS and CC paths.

As shown in Fig.12, no two box notches in any of the nine
box plots overlaps. Therefore, we can conclude, with 95%
confidence, that the NMPC can more accurately follow the
path generated from the CC-RRT than the RS-RRT.

VI. CONCLUSION

Path planning and motion control design have been studied
in this paper for mobile robots with car-like dynamics. On
the one hand, path planning problem is solved by incorporat-
ing RRT-based planning algorithms with continuous-curvature

steering techniques, and geometric analysis is carried out
to guarantee existence of certain continuous-curvature sub-
optimal paths that are composed of straight line segments and
clothoid turns that satisfy constraints on velocity, curvature
and derivative of the curvature. On the other hand, nonlinear
MPC approaches are utilized to generate speed and steering
commands to guide the robot to track the generated reference
trajectories in an optimized manner. CarSim-Simulink joint
simulation reveals that the continuous-curvature path is easier
to follow for a standard nonlinear model predictive controller.
Future research directions may include study of path planning
for multi-robot case and motion control in the presence of
more types of model and/or environment uncertainties.

APPENDIX
PROOF OF THE ZONKLAR EQUATIONS

The concepts of clothoid turns (CT) and µ-tangency are
introduced for completeness. Readers are referred to [1], [11],
[41] for details.

A. Clothoid Turn

A clothoid is a curve whose curvature κ is an affine function
of its arc length s, i.e., κ(s) = σs+ κ(0), with σ denotes the
sharpness of the clothoid. A clothoid starting at a configuration
qs = (0, 0, 0, 0)T is given by

q(s) =
(
ρCf (s/ρ) , ρSf (s/ρ) , σs2/2, σs

)T
, (19)

where s is the arc length from qs, ρ =
√
π/σ, and

Cf (s) =

∫ s

0

cos(
π

2
τ2)dτ, Sf (s) =

∫ s

0

sin(
π

2
τ2)dτ (20)

are the Fresnel cosine and sine integrals, respectively.
Given qs = (xs, ys, θs, 0)

T and qg = (xg, yg, θg, 0)
T , the

difference in headings is defined as deflection: δ = (θg − θs)
mod 2π. For a clothoid with κ(0) = 0, σ = σmax and ending
at κmax, it induces a deflection δc = κ2max/(2σmax).

A CT from qs to qg consists of three components: two
clothoids and a circular arc. The radius of the circular arc is
not necessarily the minimum turning radius κ−1

max. There are
four types of CTs: left forward, left backward, right forward,
and right backward. Below illustrates how to use a left forward
CT to achieve a deflection δ ∈ [0, 2π).

Case 1: 2δc ≤ δ ≤ 2δc + π. Robot follows a
first clothoid with sharpness σmax until the curvature κ
reaches κmax. According to (19), the first clothoid ends
at the intermediate configuration q1 = q(s1) with s1 =
κmax/σmax. From q1, the robot enters a circular arc of
radius κ−1

max and of an angular value θ = δ − 2δc.
The center Ω of the circle has the coordinates given by(
xΩ, yΩ

)T
=

(
x1 − κ−1

max sin θ1, y1 + κ−1
max cos θ1

)T
. The

circular arc ends at a second intermediate configuration q2 =
(x2, y2, δ − δc, κmax)

T . Finally the robot follows a second
clothoid with sharpness −σmax until it reaches qg .

Remark 3: The locus of the starting and the goal configu-
rations forms a circle centered at Ω. The circle is named as
left forward CC Circle and is denoted as C+

l (qs). All four
CC circles corresponding to four types of CTs are depicted in
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Fig. 13. The radius RΩ of the CC Circle C+
l (qs) and the angle

µ between the orientation of qs and the tangent of C+
l (qs) at

qs are obtained as follows, respectively:(
RΩ

µ

)
=

( √
x2Ω + y2Ω

arctan(xΩ/yΩ)

)
. (21)

Fig. 13: CC circles C+
l (qs), C+

r (qs), C−
l (qs) and C−

r (qs).

Case 3: 0 < δ < 2δc. The circular arc is absent from the
CT, and hence the CT is composed of

(i) a clothoid of sharpness σ ≤ σmax starting from qs;
(ii) a symmetric clothoid of sharpness −σ ending at qg .

For computational efficiency, we require that (xg, yg)
T ∈

C+
l (qs). Toward this end, the sharpness σ is computed as

σ =
π
[
cos(δ/2)Cf (

√
δ/π) + sin(δ/2)Sf (

√
δ/π)

]2
R2

Ω sin2(δ/2 + µ)
, (22)

and the arc length of each clothoid is
√
δ/σ.

Case 3: δ = 0. The CT reduces to a straight line from qs to
qg . The arc length is 2RΩ sinµ to ensure that qg ∈ C+

l (qs).
Remark 4: Left forward CT can achieve a positive deflec-

tion of δ ∈ (2δc + π, 2π). However, it gives an invalid path
according to Def. 1 because the deflection exceeds π + 2δc
or it contains cusps. In order to achieve the same change of
heading, the valid path should have a negative deflection by
considering the fact that a positive deflection δ ∈ (π+2δc, 2π)
is equivalent to a negative deflection (2δc−π, π). In particular,
to achieve δ ∈ (−2δc − π,−2δc), the robot moves backward
by following a left backward CT:

(i) a clothoid from qs to q1 with sharpness σmax and length
κmax/σmax;

(ii) a circular arc of radius κ−1
max and of angle δ − 2δc − 2π,

from q1 to q2;
(iii) a clothoid from q2 to qg with sharpness −σmax and

length κmax/σmax.

It can be verified that both qs and qg are located on C−
l (qs).

B. µ-Tangency

The µ-tangency condition is analogous to its counterpart in
forming RS paths [11]. There are two cases: the first stipulates
how a line segment should be concatenated to a CT; the second
specifies how two CTs should be connected. For the first case,
the line segment must cross the corresponding CC circle at an
angle of µ. Fig. 14 illustrates the µ-tangency condition for an
L+S+ motion starting from a configuration q.

Fig. 14: µ-tangency between line segments and CC circles.

The µ-tangency condition between two consecutive CTs
depends on whether the robot’s motion contains cusps or not.
For no cusp case, take an L+R+ motion from q1 to q2 as
an example. As shown in Fig. 15, the µ-tangency condition
suggests that the CC circle C+

l (q1) be tangent to C−
r (q2) at

q3; and the angle between the orientation of q3 and tangent
vectors of both C+

l (q1) is µ. For cusp case, the µ-tangency
condition for an L+R− motion from q1 to q2 is illustrated
in Fig. 16. Let q3 be the cusp configuration, and q3 must
be located at one of the two intersecting points of the CC
Circles C+

l (q1) and C+
r (q2). The µ-tangency condition is

that the orientation of q3 forms an angle of µ with respect
to the tangent vectors of both CC Circles, or equivalently the
orientation of the robot at q3 is vertical to the line Ω1Ω2.

Fig. 15: µ-tangency between CC circles (no cusp).

Fig. 16: µ-tangency between CC circles (with a cusp).
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