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Dept. of Electrical and Computer Engineering

Arizona State University
Tempe, Arizona, USA

Angelia.Nedich@asu.edu

Gautam Dasarathy
Dept. of Electrical and Computer Engineering

Arizona State University
Tempe, Arizona, USA
gautamd@asu.edu

May 13, 2024

ABSTRACT

This paper investigates some necessary and sufficient conditions for a game to be a potential game.
At first, we extend the classical results of [27] and [23] from games with one-dimensional action
spaces to games with multi-dimensional action spaces, which require differentiable cost functions.
Then, we provide a necessary and sufficient conditions for a game to have a potential function by
investigating the structure of a potential function in terms of the players’ cost differences, as opposed
to differentials. This condition provides a systematic way for construction of a potential function,
which is applied to network congestion games, as an example. Finally, we provide some sufficient
conditions for a game to be ordinal potential and generalized ordinal potential.

1 Introduction

In game theory, the concept of Nash equilibrium has a significant importance [21]. But, not all games have a Nash
equilibrium. For example, the class of harmonic games does not admit any Nash equilibrium in general and some
potential components must exist to admit a Nash equilibrium [9]. Confirming the existence of a Nash equilibrium
marks the initial stage in a series of studies. Therefore, significant efforts have been made to understand when a Nash
equilibrium is guaranteed and achievable [3, 18, 31]. Potential games are a major class of games in which a Nash
equilibrium is guaranteed and achievable under some mild assumptions. In fact, by examining the potential function
with compact lower-level sets, it is straightforward to demonstrate the existence of a Nash equilibrium in games with
a set of continuous cost functions. In many applications within the realm of non-cooperative games, it is a non trivial
task to verify if the game is potential. Typically, in this class of games, each player’s cost function can be influenced
by the decisions made by other players. However, in a wide range of applications, these cost functions depend on a
certain function of the aggregate decision variables of all players. For example, in the Cournot game, unlike other
players’ individual supply, each player’s cost function depends on the total supply of their opponents. In recent years,
this category of games, which is called aggregative games has garnered interest from various fields, including electrical
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engineering, economics, and transportation science. References [1, 2, 5, 14, 15, 17, 19, 20] exemplify such studies. Not
all aggregative games are necessarily potential games.

The study of characterizing potential games has long been of interest due to the favorable equilibrium property exhib-
ited in this class of games. However, prior to this study, there was no focused effort on understanding the behavior of
potential games or generally characterizing them for multidimensional action spaces, regardless of cost continuity and
differentiability. This motivates us to investigate various classes of potential games, such as (exact) potential, ordinal
potential, and generalized ordinal potential games, and derive some novel characterizations for them. This enables us
to describe other classes of games, such as aggregative games, and determine when they are potential games.

In this paper, we characterize different classes of potential games and significantly improve upon the current character-
izations existing in the literature. We also propose a systematic framework for constructing the potential function for
a game with not necessarily continuous cost functions in multidimensional action space. While there exists a robust
mathematical foundation for analyzing exact one-differential forms in potential games, which describe these games
by characterizing them in terms of cost functions, there is still an open question regarding obtaining a generic form
for the potential function that holds true regardless of the continuity of the cost functions. Previous work, such as that
by Hwang et al. [16], has introduced integral tests to determine whether a game is potential, but these tests require
calculating integrals over the action space, which can be computationally expensive compared to alternative tests that
do not involve integration or differentiation. Furthermore, the study by Ui et al. [28] has investigated the relation-
ship between the Shapley value and the potential function, providing a characterization and systematic methods to
construct the potential function in potential games using interaction potential functions. However, there are two main
challenges with this approach. Firstly, finding transferable utilities that satisfy the conditions of Theorem 3 in Ui et
al. [28] to derive the interaction potential functions can be challenging. Secondly, even if these transferable utilities are
identified, computing the interaction potential functions becomes increasingly computationally expensive with a larger
number of players. Moreover, the study of ordinal potential games may pose a greater level of difficulty, primarily
due to the absence of well-established mathematical structures for analyzing these classes of games. To the best of
our knowledge, only a few studies have attempted to address the challenge of characterizing smooth ordinal potential
games [12]. The aforementioned paper and its references have derived some necessary conditions by examining the
existence of Nash equilibrium within this class of games. Consequently, the characterization of aggregative potential
games has not received as much attention. While the concept of Best Reply Potential Games introduced in [29] is
acknowledged in the publication [17] to characterize aggregative best reply potential games, this definition is subject
to a debate. Indeed, since the best response is dynamic and dynamics often exist independently of games, creating a
new class of games based on the best response correspondence may be misleading. Such a game may not necessarily
be expressible in terms of cost functions. Furthermore, while the existence of a Best Reply Potential may be interesting
for ensuring the convergence of specific dynamics, such as the best response or better response to a Nash equilibrium,
it may not be practical in real-world scenarios where understanding the form of this function is crucial for determining
the game’s Nash equilibrium. Similarly, it may not be useful for providing convergence analysis for dynamics other
than the better or best response.

This paper has the following main contributions:

• Firstly, we provide a comprehensive characterization of potential games without the need for integration or
differentiation, unlike the existing approaches. We also simplify these characterizations for potential aggrega-
tive games. To achieve this, we initially address the challenge of describing potential games in multidimen-
sional cases, aiming to understand the behavior of the potential function in such scenarios. It is important to
note that the conditions derived for potential games in terms of pairs of cost functions, as presented in [27]
and [23], are applicable only to one-dimensional cases, where one differential form corresponds to scalar
variables.

• Secondly, based on the characterization criteria for a potential game, we develop a systematic method to
construct a potential function. Furthermore, we apply this systematic construction of potential functions to
network congestion game, extending the related results for this game class.

• Thirdly, we study ordinal potential games and derive sufficient conditions for a game to be considered ordinal
potential.

• Finally, we establish some sufficient conditions, in terms of cost functions, for the class of strong and strictly
convex games to be generalized ordinal potential.

Preliminary versions of Theorem 6, Theorem 7, and Theorem 8 (specifically, item (a) of each) have been published
in [4]. In this current paper, these theorems are extended (adding item (b) for each in this study) and improved. In
addition, we have new results on the use of these theorems for a systematic construction of potential functions, which
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is demonstrated in a network congestion game. We also have new results (Theorem 9, Theorem 10, Theorem 11, and
Theorem 12) for ordinal potential and generalized ordinal potential games, which have not been published elsewhere.

This paper is organized as follows. Section 2 introduces the notation and terminologies. Section 3 provides preliminary
concepts regarding potential games in multi-dimensional action spaces, which are used in Section 4 to provide a
characterization of potential games and, also, apply the results developed to aggregative games and network congestion
games. In Section 5, sufficient conditions for the characterization of ordinal and generalized ordinal potential games
are developed relying on strongly and strictly convex cost functions. Finally, Section 6 concludes the paper.

2 Notation and Terminology

In this section, we provide some definitions and terminologies for the games that will be used in the rest of the
manuscript. A game consists of N players represented by the set N := {1, . . . , N}. Each player i ∈ N selects an
action xi from a strategy set Ki ∈ R

ni to minimize its cost function fi : Ki × K−i → R where K−i :=
∏

j 6=i Kj .

Specifically, each player i ∈ N wants to solve the following problem

min fi(xi, x−i),

s.t. xi ∈ Ki. (1)

We will use x to denote the vector of joint actions xi, i ∈ N , i.e., x = (x1, . . . , xN ). Given a player set S ⊂ N , we
write x−S to denote the set of decisions of players that are not in the set S, i.e., x−S = (xi, i /∈ S). In particular,
for each player i, we write x−i to denote the vector consisting of all players’ actions except for player i, i.e., x−i =
(x1, . . . , xi−1, xi+1, . . . , xN ). Similarly, we define the set K−S for S ⊂ N , i.e., K−S =

∏

j /∈S Kj . A game Γ is a

tuple of the player set N , the joint action set K :=
∏

i∈N Ki, and the collection of cost functions fi(·), i ∈ N . We
will consider games with special structures such as potential, ordinal potential, etc., which are defined as follows.

Definition 1 (Potential Game). A game Γ is a potential game if there exists a function φ : K → R such that the
following relation holds for all players i ∈ N , and for all x′

i ∈ Ki, xi ∈ Ki, and x−i ∈ K−i,

fi(x
′
i, x−i)− fi(xi, x−i) = φ(x′

i, x−i)− φ(xi, x−i). (2)

An ordinal potential game is defined as follows.

Definition 2 (Ordinal Potential Game). A game Γ is an ordinal potential game if there exists a function φ : K → R

such that the following relation holds for all players i ∈ N , and for all x′
i ∈ Ki, xi ∈ Ki, and x−i ∈ K−i,

fi(x
′
i, x−i)− fi(xi, x−i) < 0 ⇔ φ(x′

i, x−i)− φ(xi, x−i) < 0. (3)

A more relaxed version of an ordinal potential game is a generalized ordinal potential game, defined as follows.

Definition 3 (Generalized Ordinal Potential Game). A game Γ is a generalized ordinal potential game if there exists
a function φ : K → R such that the following relation holds for all players i ∈ N , and for all x′

i ∈ Ki, xi ∈ Ki, and
x−i ∈ K−i,

fi(x
′
i, x−i)− fi(xi, x−i) < 0 ⇒ φ(x′

i, x−i)− φ(xi, x−i) < 0. (4)

The functionφ(·) in Definitions 1–3 is referred to, respectively, as a potential, ordinal potential, and generalized ordinal
potential function of the game Γ.

Finally, we introduce an aggregative game. In this type of a game, all players’ action sets are of the same dimension,
i.e., Ki ⊂ R

n for all i ∈ N . We define K̄ as the Minkowski sum of the sets Ki, i.e.,

K̄ ,

N
∑

i=1

Ki =

{

N
∑

i=1

xi | xi ∈ Ki for all i ∈ N
}

. (5)

We let x̄ be the aggregate of players decisions xi, i.e.,

x̄ ,

N
∑

j=1

xj = xi + x̄−i, x̄ ∈ K̄, (6)

where x̄−i denotes the aggregate of all players’ decisions except for player i, i.e., for all i ∈ N ,

x̄−i =

N
∑

j=1,j 6=i

xj .

3
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Each player i is confronted with the following optimization problem:

min fi(xi, x−i) , f̃i
(

xi, gi(x̄)
)

,

s.t. xi ∈ Ki, (7)

where gi : K̄ → R
mi , with mi ≥ 1, is some mapping. Now, we are in position to specify an aggregative game.

Definition 4 (Aggregative Game [17]). A game Γ = (N , {f̃i,Ki}i∈N ), with the strategy sets Ki ⊂ R
n and the cost

functions f̃i as in (7), is an aggregative game.

Basically, in an aggregative game, a cost function of each player depends on its own strategy xi and the aggregate x̄
of the strategies of all players.

3 Preliminaries

The characterization of potential games in [27] and [23] is based on one-differential forms [26], so it is limited to
one-dimensional action spaces (i.e., Ki ⊂ R for all i). In this section, we focus on the class of potential games for the
multidimensional case, Ki ⊂ R

ni . The paper [11] extends [23] results for games with smooth cost functions from
one dimensional to multiple dimensional action space. However, in the reminder of this section we will cover similar
results to [11] through a different approach.

One-form wa(v), at an arbitrary point a ∈ R
n, is a linear functional on the space of tangent vectors v at the point

a = (a1, a2, . . . , an). Considering the tangent vector da at point a, there is a unique function F : Rn → R
n such that

wa(da) = 〈F (a), da〉, (8)

where 〈·, ·〉 denotes the inner product in R
n.

The following theorem gives a condition for a one-differential form to be exact over a convex set in R
n.

Theorem 1. Let ui(·) be a continuously differentiable function on a convex set E ⊂ R
n, for all i = 1, 2, . . . , n, for

some n ≥ 1. Then, the one-form ωa(da) =
∑n

i=1 ui(a)dai, with a ∈ E, is exact on the set E if and only if we have
for all i, j ∈ {1, 2, . . . , n},

∂ui(a)

∂aj
=

∂uj(a)

∂ai
for all a ∈ E. (9)

Proof. The proof follows immediately from Remark 10.35(a) and Theorem 10.39 of [26].

Using Theorem 1, a vector field F : RI → R
I we can uniquely define one-form as given in (8). For an arbitrary game,

one can introduce a one-form for each by viewing the concatenation of derivatives of the cost function of each player
with respect to its own decision variable. For example, for a game Γ = (N , {Ki, fi}i∈N ), with one dimensional
action space, one can consider the vector field

G(x) =

(

∂f1
∂x1

,
∂f2
∂x2

, . . . ,
∂fN
∂xN

)

,

and assign one-form 〈G(x), dx〉 to this game Γ. Based on the definition of the exact one-form, if the one-form
corresponding to this game is exact, the game is potential since we can write

〈G(x), dx〉 =
N
∑

i=1

∂φ(x)

∂xi
dxi

for some function φ : K → R, with K ⊂ R
N .

Let n̄ =
∑N

i=1 ni, where ni is the dimension of the action variable for player i, i.e., Ki ⊂ R
ni . We define one-

differential forms on K . To do so, for each player i ∈ N , we consider a curve xi(·) : R → K , which is continuously
differentiable and given by

xi(t) =
(

x11(t0), . . . , x1n1
(t0), . . . , xi1(t), . . . ,

xini
(t), . . . , xN1(t0), . . . , xNnN

(t0)
)

∈ R
n̄,

4
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for some t0 ∈ R. Note that, for all i, j ∈ N we have xi(t0) = xj(t0). We next describe potential games in a
parametric sense, as follows: A game Γ is potential if there is a scalar function φ such that

dfi
(

xi(t)
)

dt
=

dφ
(

xi(t)
)

dt
(10)

for arbitrary curves xi(·) in the set K and for all i ∈ N . The preceding relation describes a parametric version of a
potential game, and we refer to φ as a potential function of the game.

Lemma 1. Consider the game Γ = (N , {fi,Ki}i∈N ) where each function fi is continuously differentiable over an
open set containing the joint action set K . Then, the game is a potential game if and only if there exists a function

φ : K → R such that
∂fi(x)
∂xim

= ∂φ(x)
∂xim

for all x ∈ K , and for all i ∈ N and m ∈ {1, 2, . . . , ni}.

Proof. If Γ is a potential game, defining xil(t) = xil(t0) for all l ∈ {1, 2, . . . , ni} \ {m}, according to (10), we have
∂fi
∂xim

dxim = ∂φ
∂xim

dxim. Since xim is selected arbitrarily, we can conclude that ∂fi
∂xim

= ∂φ
∂xim

. For the converse

statement, since
∂fi(x)
∂xim

= ∂φ(x)
∂xim

for all x ∈ K and for all i ∈ N and m ∈ {1, 2, . . . , ni}, by the differentiation rule it

follows that

dfi
(

xi(t)
)

dt
=

ni
∑

m=1

∂fi
∂xim

· dxim

dt

=

ni
∑

m=1

∂φ

∂xim
· dxim

dt

=
dφ

(

xi(t)
)

dt
.

By Theorem 1 and Lemma 1, we have the following result.

Theorem 2. Consider the game Γ = (N , {fi,Ki}i∈N ).

(a) Suppose that each cost function fi : K → R is continuously differentiable over an open set containing the
set K ⊂ R

n̄. Then, the game Γ is a potential game if and only if there exists function φ : Rn̄ → R such that
or all i, j ∈ N ,

∇xi
fi(x) = ∇xi

φ(x) for all x ∈ K,

where ∇xi
is the partial gradient with respect to xi.

(b) Suppose that each cost function fi is twice continuously differentiable over an open set containing the set K
and the set K is convex. Then, the game Γ is a potential game if and only if for all i, j ∈ N ,

∇2
xi,xj

fi(x) = ∇2
xj,xi

fj(x) for all x ∈ K,

where ∇2
xi,xj

is the partial Hessian with respect to xi, xj .

Proof. Part (a) follows from Lemma 1. For part (b), consider a joint strategy x = (x1, . . . , xN ), which we relabel for
convenience, as follows:

x = (y1, y2, . . . , yn̄) = y.

Now, we consider the differential one-form

wy(dy) =

n̄
∑

s=1

∂us(y)

∂ys
dys for y ∈ K,

where us = fi for s = ni−1 + 1, . . . , ni and for all i ∈ N . According to (9), where E = K , the differential one-form
wy is exact if and only if for all l, d ∈ {1, 2, . . . , n̄},

∂

∂yl

(

∂ud(y)

∂yd

)

=
∂

∂yd

(

∂ul(y)

∂yl

)

for all y ∈ K.

us = fi for s = ni−1 + 1, . . . , ni and for all i ∈ N . Since x = y, it follows that the game Γ is potential if and only if

∂2fi(x)

∂xip∂xjq
=

∂2fj(x)

∂xjq∂xip
for x ∈ K,

for all i, j ∈ N , p ∈ {1, 2, . . . , ni}, and q ∈ {1, 2, . . . , nj}.

5
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4 Characterization of Potential Games

In this section, we provide some necessary and sufficient conditions for a game to have a potential function. We do so
by investigating the structure of a potential function in terms of differences, as opposed to differentials.

4.1 Necessary Condition

We start by considering the potential functions from the parametric sense. According to (10), for every i ∈ N , by
integrating both sides of the equation and using the Stokes theorem, we can write

φ
(

xi(t0 + ǫ)
)

− φ
(

xi(t0)
)

= fi
(

xi(t0 + ǫ)
)

− fi
(

xi(t0)
)

, (11)

where ǫ is any value for which the curve xi(t) stays within the set K . In the non-parametric form, relation (11) can
alternatively be stated as follows: for every z ∈ K , every yi ∈ K , with zi + yi ∈ K , and for every i ∈ N ,

φ(zi + yi, z−i)− φ(zi, z−i) = fi(zi + yi, z−i)− fi(zi, z−i). (12)

The preceding relation for a potential function does not require differentiability or continuity of the players’ cost
functions.

The following theorem provides a necessary condition for the form of a potential function when a game is potential.

Theorem 3. Let a game Γ = (N , {fi,Ki}i∈N ) be a potential game. Then, any potential function φ of the game
satisfies the following relation: for every z ∈ K and z + y ∈ K ,

φ(z + y)− φ(z) =

N
∑

i=1

(

fi(z1 + y1, . . . , zi + yi, zi+1, . . . , zN )

− fi(z1 + y1, . . . , zi−1 + yi−1, zi, . . . , zN)
)

. (13)

Proof. Consider a path P : z → (z1 + y1, z−1) → (z1 + y1, z2 + y2, z−{1,2}) → . . . → z + y, where z ∈ K and
z + y ∈ K are arbitrary. By using (12) for every two sequential components of this path and summing them over
i = 1, . . . , N , we obtain (13).

In the sequel, the following definition of an abnormal game will be used.

Definition 5 (Abnormal Game). A game (N , {fi,Ki}i∈N ) is an abnormal game if there is an i ∈ N such that for
every x−i ∈ K−i and for every xi ∈ Ki we have fi(xi, x−i) = Ci(x−i) for some function Ci : K−i → R.

Thus, in an abnormal game, there is a player whose actions are not affecting its own cost function but it may affect
other players’ cost functions. In this case, there is no incentive for such a player to make any decision with respect to
other players’ decisions. In potential games that are abnormal, the potential function is not sensitive to the decision
variables of such players.

It turns out that an aggregative game that is not abnormal has some interesting properties. To formally state this, we
start by exploring the expression on the right hand-side of relation (13). Given arbitrary z ∈ K and z + y ∈ K , define
the path P , as follows:

z → (z1 + y1, z−1) → (z1 + y1, z2 + y2, z−{1,2}) → . . . → z + y. (14)

Next, we denote the right-hand side of (13) by hP (z, y), i.e.,

hP (z, y) =

N
∑

i=1

(

fi(z1 + y1, . . . , zi + yi, zi+1, . . . , zN)

− fi(z1 + y1, . . . , zi−1 + yi−1, zi, . . . , zN)
)

, (15)

which corresponds to incremental differences in players’ costs along the path P . Note that

hP (z, 0) = 0 for all z ∈ K.

The following theorem shows that, in aggregative game that is not abnormal, the function hP (z, y) is not equal to zero,
when viewed as a function of y, given z.

Theorem 4. Consider an aggregative game Γ = (N , {f̃i,Ki}i∈N ) that is not abnormal. Then, the following state-
ments are true:

6
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(a) If 0 ∈ K , then
hP (0, y) 6= 0 for all y ∈ K.

(b) If each cost function fi is defined on R
n̄, then

hP (0, y) 6= 0 for all y ∈ R
n̄.

Proof. (a) We prove the statement via contradiction. Assume on contrary that hP (0, y) = 0 for all y ∈ K . Consider
y = (0, . . . , 0, u, v) with u ∈ KN−1 and v ∈ KN . Thus, we have

hP (0, z) = f̃N−1

(

u, gN−1(u)
)

− f̃N−1

(

0, gN−1(0)
)

+ f̃N
(

v, gN(u+ v)
)

− f̃N
(

0, gN(u)
)

= 0. (16)

Using v = 0 in (16), we find that

f̃N−1

(

u, gN−1(u)
)

− f̃N−1

(

0, gN−1(0)
)

= 0. (17)

Therefore, for all v ∈ KN ,
f̃N

(

v, gN(u + v)
)

= f̃N
(

0, gN(u)
)

. (18)

This implies that the cost value f̃N
(

v, gN (u + v)
)

is constant on the set KN . Therefore, for every x−N we have

fN (xN , x−N ) = fN(0, x−N ). Hence, the game is abnormal (for player N ), which is a contradiction.

(b) The proof follows along the same lines as in part (a) by noting that the restrictions to the sets K , KN−1, and KN

are replaced respectively by R
n̄, RnN−1 , and R

nN . This will lead to a conclusion that (18) holds for all v ∈ R
nN ,

which in turn implies that the relation is also valid for v ∈ KN . The rest follows as in part (a).

Remark 1. Excluding aggregative games, in the general case, there might be non-abnormal games that satisfy (16),

(17), and (18). For instance, consider a game with fi(x) =
∏N

j=1 xj for all i ∈ N , and with a joint action set K that

contains the origin.

4.2 Necessary and Sufficient Conditions

In the following theorem, we provide a necessary and sufficient condition for a game to have a potential.

Theorem 5. The game Γ = (N , {fi,Ki}i∈N ) is a potential game if and only if there exists a function φ such that

φ(z + y)− φ(z) =

N
∑

i=1

(fi(z1 + y1, . . . , zi + yi, zi+1, . . . , zN )

− fi(z1 + y1, . . . , zi−1 + yi−1, zi, . . . , zN)), (19)

for all z ∈ K and y with z + y ∈ K . Moreover, the function φ is a potential function of the game.

Proof. If the game Γ is a potential game, then by Theorem 3 relation (19) holds. For the converse statement, the
existence of a function φ such that (19) holds implies that for any z ∈ K any y = (0, . . . , yi, . . . , 0), with zi+yi ∈ Ki,

and for every i ∈ N , we have that φ(zi + yi, z−i)− φ(zi, z−i) = fi
(

zi + yi, z−i

)

− fi
(

zi, z−i

)

. Thus, the game is a
potential game and φ a potential function.

In the sequel, the following notion will be used.

Definition 6. Given a collection of functions {fi, i ∈ N}, where each fi : Rn̄ → R, we say that φ : Rn̄ → R is
a global potential for the collection {fi, i ∈ N}, when the following holds: for all i ∈ N , all xi, x

′
i ∈ R

ni , and all
x−i ∈ R

n̄−ni ,
fi(xi, x−i)− fi(x

′
i, x−i) = φ(xi, x−i)− φ(x′

i, x−i).

This definition coincides with Definition 1, when K = R
ni . However, we want to consider the notion of global

potential as the property of a given collection {fi, i ∈ N} of functions irrespective of a particular game that may
be associated with it. That is, if a given collection {fi, i ∈ N} has a global potential φ, then for any collection
{Ki, i ∈ N}, with Ki ⊂ R

ni , the game Γ = (N , {fi,Ki}i∈N ) is a potential game, with a potential function φ.

In the next theorem, we establish a necessary and sufficient conditions for a game to be potential assuming that the
strategy sets Ki are symmetric, where a set X is said to be symmetric if for every x ∈ X we have that −x ∈ X .

7
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Theorem 6. Assume that either one of the following cases holds true:

(a) 0 ∈ K and the set Ki is symmetric for all i ∈ N .

(b) Each cost function fi(·), for i ∈ N , is defined on the entire set Rn̄.

Then, the game Γ = (N , {fi,Ki}i∈N ) is a potential game if and only if hP (z, y) = hP (0, z + y)− hP (0, z), and the
potential function is φ(z) = C − hP (z,−z), where C is some constant.

Proof. (a) By Theorem 5(a), the definition of hP (z, y) in (15), we have that the game is potential if and only if

hP (z, y) = φ(z + y)− φ(z) (20)

for all z ∈ K and y with z + y ∈ K . Then, using the symmetry of the set K and relation (19) with y = −z, we have
that the game is potential if and only if

hP (z,−z) = φ(0)− φ(z) for all z ∈ K, (21)

and a potential function is given by φ(z) = φ(0)− hP (z,−z).

It remains to show that relation (21) implies that hP (z, y) = hP (0, z + y) − hP (0, z). To show this, we note that
from (21) it follows that

hP (z + y,−(z + y)) = φ(0)− φ(z + y). (22)

Thus, using (20) we obtain

hP (z, y) = φ(x+ z)− φ(z)

= φ(x+ z) + hP (z,−z)− φ(0)

= φ(0)− hP (z + y,−(z + y)) + hP (z,−z)− φ(0)

= hP (z,−z)− hP (z + y,−(z + y)) , (23)

where the first equality is obtained using (21), while the second one is obtained using (22). By letting z = 0 in the
preceding relation, we obtain

hP (0, y) = hP (0, 0)− hP (y,−y). (24)

Letting y = 0 in (24), we find that hP (0, 0) = 0, implying that

hP (0, y) = −hP (y,−y).

Thus, hP (y,−y) = −hP (0, y) and using this relation in equation (23) yields

hP (z, y) = hP (0, z + y)− hP (0, z).

(b) The proof of part (b) follows the same line of arguments as in part (a), where K is replaced with R
n̄.

A question may raise about what relation between potential games and duopoly potential games holds. In the sequel,
we investigate this relation and show that a necessary and sufficient condition for an N -player game to be potential is
that every 2-player game of a suitably defined subgame is potential game.

Consider a pair i, j ∈ N of distinct players, and without loss of generality, assume that i < j. We define
hij(zi, zj, yi, yj; z−{i,j}) as follows:

hij(zi, zj , yi, yj ; z−{i,j}) =fi
(

zi + yi, zj ; z−{i,j}

)

− fi
(

zi, zj ; z−{i,j}

)

+ fj
(

zj + yj , zi + yi; z−{i,j}

)

− fj
(

zj , zi + yi; z−{i,j}

)

(25)

for every zi ∈ Ki, zj ∈ Kj , z−{i,j} ∈ K−{i,j}, and yi and yj with zi + yi ∈ Ki and zj + yj ∈ Kj .

Aside from the paths from z to z+ y for two-player strategies, we will also use longer paths. In particular, a finite path
in the strategy space K is a sequence (x1, x2, . . . , xm) of elements xk ∈ K such that the strategies xk and xk+1 differ
only in an action of a single player ik, for all k = 1, 2, . . . ,m − 1. In other words, starting from a strategy profile
x1 ∈ K , the next strategy x2 is obtained by a single player i1 deviating from its decision x1

i1
, and so on.

8
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For a finite path Q = (q0, . . . , qℓ), where ql ∈ K for l ∈ {0, 1, . . . , ℓ}, and a collection f = (f1, . . . , fN ) of the cost
functions fi : K → R, we consider the following quantity:

I(Q, f) =
ℓ−1
∑

e=0

(

fie(q
e+1)− fie(q

e)
)

, (26)

where, ie is the unique deviator at step e (i.e., qeie 6= qe+1
ie

). Note that this quantity I(Q, f) has been used in [23] to

study potential games. In particular, in [23], it has been proven that a game Γ = (N , {fi,Ki}i∈N ) is potential if and

only if I(Q, f) = 0 for every finite simple closed path Q of length 4; here, a path Q is closed if q0 = qℓ, and it is

simple when the strategies ql, l = 1, . . . , ℓ are distinct. The length of a path is the number of distinct strategies in the
path.

Using the special paths of length 2, i.e., the quantities hij defined in (25), we have the following result.

Theorem 7. Assume that either one of the following cases holds true:

(a) 0 ∈ K and the set Ki is symmetric for all i ∈ N .

(b) The cost function fi(·) is defined on the entire set Rn̄, for all i ∈ N .

Then, the game Γ = (N , {fi,Ki}i∈N ) is potential if and only if for all i, j ∈ N and z−{i,j} ∈ K−{i,j} we have

hij(zi, zj, yi, yj; z−{i,j}) =hij(0, 0, zi + yi, zj + yj ; z−{i,j})

− hij(0, 0, zi, zj; z−{i,j}), (27)

where hij is defined in (25).

Proof. (a) Let the game Γ = (N , {fi,Ki}i∈N ) be potential. Then, according to Theorem 2.8 of [23], for every closed
path Q of length 4 we have I(Q, f) = 0. Let

Q : z → (z1, . . . , zi + yi, . . . , zN )

→ (z1, . . . , zi + yi, . . . , zj + yj , . . . , zN)

→ (z1, . . . , zi, . . . , zj + yj , . . . , zN)

→ z, (28)

where z = (z1, z2, . . . , zN ). Let y = (yi, yj ; 0−{i,j}). Consider the path P from z to z + y as given in (14). By
Theorem 6, in a potential game, we have that

hij

(

zi, zj, yi, yj ; z−{i,j}

)

= hP (z, y)

= hP (0, z + y)− hP (0, z). (29)

Since hij

(

zi, zj, yi, yj; z−{i,j}

)

= hP (z, y), for the right hand side of (29) we have that

hP (0, z + y)− hP (0, z) =hij

(

0, 0, zi + yi, zj + yj ; z−{i,j}

)

− hij

(

0, 0, zi, zj ; z−{i,j}

)

. (30)

By combining relations (29) and (30), we obtain the stated relation in (27).

For the converse statement, let assume (27) holds for every i, j ∈ N and z−{i,j} ∈ K−{i,j}. Let Q be an arbitrary

simple closed path of length 4, as given in (28). We expand the I(Q, f) along the path Q and then collect relevant

9
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terms to use functions hij(·), as follows:

I(Q, f) =fi(zi + yi, zj, z−{i,j})− fi(zi, zj , z−{i,j})

+ fj(zj + yj, zi + yi, z−{i,j})

− fj(zj , zi + yi, z−{i,j})

+ fi(zi, zj + yj , z−{i,j})

− fi(zi + yi, zj + yj , z−{i,j})

+ fj(zj , zi, z−{i,j})− fj(zj + yj, zi, z−{i,j})

=hij(zi, zj, yi, yj; z−{i,j})

+ hij(zi + yi, zj + yj ,−yi,−yj; z−{i,j})

=hij(0, 0, zi + yi, zj + yj; z−{i,j})

− hij(0, 0, zi, zj ; z−{i,j})

+ hij(0, 0, zi, zj ; z−{i,j})

− hij(0, 0, zi + yi, zj + yj ; z−{i,j})

=0,

where the first equality is obtained using the definition of hij (see (25)), while the second equality is obtained by
applying (27). Since Q is an arbitrary path of length 4 in the action space, this game is potential by Theorem 2.8
of [23].

(b) The result follows from part (a) by replacing each set Ki with R
ni .

Remark 2. Theorem 7 can be viewed as an alternative to Theorem 2.8 (part 4) of [23]. Under additional assumptions
on the strategy sets, as compared to Theorem 2.8 (part 4) of [23], Theorem 7 enables us to construct a potential
function through the use of Theorem 6. While Theorem 2.8 of [23] does not use special assumptions, it does not
provide a systematic way for constructing a potential function.

The following example illustrates an application of Theorem 7 to a 3-player Cournot game.

Example 1. Consider a 3-player Cournot game with the following cost functions:

f1(x1, x2, x3) = (a− bx̄)x1 − cx1, (31)

f2(x1, x2, x3) = (a− bx̄)x2 − cx2, (32)

f3(x1, x2, x3) = (a− bx̄)x3 − cx3, (33)

where xi ∈ R is the decision variable of player i, for i ∈ {1, 2, 3}, and a, b and c are scalars. We choose players 1 and
2 as an example to verify that the game is potential by using Theorem 7(b). For this we need to check that relation (27)
holds. We have

h12(z1, z2, y1, y2; z3)

= (a− b(z̄ + y1)) (z1 + y1)− c(z1 + y1)

− ((a− bz̄)z1 − cz1)

+ (a− b(z̄ + y1 + y2)) (z2 + y2)− c(z2 + y2)

− ((a− b(z̄ + y1))z2 − cz2) . (34)

Moreover, we have

h12(0, 0, z1 + y1, z2 + y2; z3)− h12(0, 0, z1, z2; z3)

= (a− b(z1 + z3 + y1)) (z1 + y1)− c(z1 + y1)

+ (a− b(z̄ + y1 + y2)) (z2 + y2)− c(z2 + y2)

− ((a− b(z1 + z3))z1 − cz1)

− ((a− bz̄)z2 − cz2) . (35)

We can verify that (34) and (35) are equivalent. Thus, the game is potential.

According to Theorem 7, the condition for a game to be potential reduces to checking some equalities in terms of the
functions hij(·) for every i, j ∈ N . Thus, we may employ Theorem 7 to determine a potential function of an N -player
potential game in terms of these functions. The following theorem provides a characterization of the potential function
for a potential game.

10
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Theorem 8. Let an N -player game Γ = (N , {fi,Ki}i∈N ) be potential. Assume that either one of the following cases
holds true:

(a) 0 ∈ K and the set Ki is symmetric for all i ∈ N .

(b) The function fi(·) for i ∈ N is defined on R
n̄, for all i ∈ N .

Let z ∈ K and z + y ∈ K be arbitrary, and consider the path P from z to z + y, i.e., P : z → (z1 + y1, z−1) →
(z1 + y1, z2 + y2, z−{1,2}) → . . . → z + y. Consider the function φ(·) defined by: if N = 2k + 1 for some k ∈ N,
then

φ(z) = φ(0) + hP3
(0, (z1, z2, z3))

+

k
∑

i=2

h2i,2i+1(0, 0, z2i, z2i+1; ẑ2i−1), (36)

else if N = 2k, then

φ(z) = φ(0) + hP2
(0, (z1, z2))

+

k
∑

i=2

h2i−1,2i(0, 0, z2i−1, z2i; ẑ2i−2), (37)

where P3 and P2 denote the first 3 and the first 2 steps of the path P , respectively, while ẑi = (z1, . . . , zi, 0, . . . , 0) for
all i. Then, φ(·) is a potential function of the game.

Proof. We prove the statement when N = 2k+1 for some k ∈ N. In the path P , let i = N−1 and j = N , i.e., i = 2k
and j = 2k+ 1. By Theorem 6, in a potential game, we have that relation (29) holds with y = (0, . . . , zN−1, zN ) and
z = (z1, . . . , zN−2, 0, 0), implying that

h2k,2k+1

(

0, 0, z2k, z2k+1; ẑ2k−1

)

= hP (z, y)

= hP (0, (z1, . . . , zN−2, zN−1, zN ))

− hP (0, (z1, . . . , zN−2, 0, 0)). (38)

Additionally, we know that by Theorem 6 we have

φ(z1, . . . , zN−2, zN−1, zN)

= φ(0) + hP (0, (z1, . . . , zN−2, zN−1, zN )). (39)

Rearranging (38) and substituting in (39) we have

φ(z1, . . . , zN−2, zN−1, zN )

= φ(0) + hP (0, (z1, . . . , zN−2, 0, 0))

+ hN−1,N

(

0, 0, zN−1, zN ; ẑN−2

)

. (40)

In (40), we have that N − 2 is again an odd number. Moreover, the N − 2-player game, obtained by omitting players
N and N − 1 from game Γ, satisfies the conditions of Theorem 7. Hence, the N − 2-player game is potential, and we
can repeat the preceding argument. Continuing this process, we eventually reach (36), which completes the proof for
the case when the number N of players is odd. The proof for the other case is identical and it is omitted.

While Theorem 7 provides a necessary and sufficient condition for a game to be potential, Theorem 8 goes further
by providing a systematic way to construct a potential function of the game. The necessary and sufficient condition
in terms of function value differences obtained in Theorem 7 is comparable with [23, Theorem 4.5] for games with
one-dimensional action space and differentiable cost functions. However, an alternative to Theorem 8, which offers a
potential function construction for potential games has not been proposed in the existing literature.

4.3 Examples

In this subsection, we demonstrate the use of Theorems 7 and 8 in a construction of a potential function in potential
games through some examples.

11
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Example 2. (Aggregative Game) Suppose that we have the following utility functions:

f1(x1, x2, x3, x4) = (a− bx̄)x1 − cx1,

f2(x1, x2, x3, x4) = (a− bx̄)x2 − cx2,

f3(x1, x2, x3, x4) = (a− bx̄)x3 − cx3,

f4(x1, x2, x3, x4) = (a− bx̄)x4 − cx4,

where xi ∈ R is the decision variable of player i for i ∈ {1, 2, 3, 4}. Using Theorem 8, we have

φ(x) = φ(0) + (a− bx1)x1 − cx1

+ (a− b(x1 + x2))x2 − cx2

+ (a− b(x1 + x2 + x3))x3 − cx3

+ (a− b(x1 + x2 + x3 + x4))x4 − cx4. (41)

We have that φ(x1 + y1, x2, x3, x4)− φ(x1, x2, x3, x4) = (a− bx̄)y1 − bx1y1 − by21 − cy1, which can be seen to be
equal to the difference f1(x1 + y1, x2, x3, x4)− f1(x1, x2, x3, x4).

In aggregative games, instead of z−{i,j}, the term z̄−{i,j} appears in the derivations. Therefore, the conditions in

Theorem 7, in particular (27), need only to be satisfied for every fixed strategy z̄−{i,j} ∈ K̄−{i,j}.

Example 3. (Network Congestion Game) Here, we consider the game of network congestion, which was introduced
by Rosenthal in 1973 [25]. Different aspects of this problem have been examined extensively in the literature, including
the complexity of obtaining a solution for maximizing social welfare [22], analyzing the price of anarchy and stability
[10], determining whether there is a Nash equilibrium [13, 23, 28], and checking whether it is a potential game [23],
[30]. This type of games is proven to be potential by Rosenthal [25], who has provided a potential function, and also
later by Monderer and Shapely [23]. However, no systematic way to obtain the potential function is introduced in the
literature. Our Theorems 7 and 8 provide a systematic approach to constructing a potential function for this game.

For simplicity, we focus on the variant of the problem where N players are departing from a point O in a given network
G(V,E), with node set V and edge set E, to reach their destination at point D, where O,D ∈ V . In this problem, the
cost of using link e ∈ E is equivalent to Ce(ve), where ve is the total number of players who choose link e in their
path from O to D, and Ce : N → R is the cost of using link e, which is a function of the total number of players who
choose this link. For the sake of simplicity, let us assume there are m ∈ N different paths from the origin O to the
destination D, and there is no restriction on choosing among them for any player. Therefore, the action space for each
player i is Ki := {p1, p2, . . . , pm} where pl is the lth path available to each player. Hence, the cost function for player
i ∈ N = {1, 2, . . . , N} is

fi(x1, . . . , xN ) =
∑

e∈xi

Ce

(

ve(x1, . . . , xN )
)

,

where the summation is over the links e traversed in a path xi. Every player aims to minimize his cost function [25].

To apply Theorem 7 or Theorem 8, we need to transform the game to an appropriate form. Let us assign an arbi-
trary order to the elements of the action space, i.e., the path collection {p1, . . . , pm}, so that each player i action
set is Ai := {1, 2, . . . ,m}, as an alternative to set Ki. Moreover, let us consider another network G(V ′, E′) such
that V ∩ V ′ = {O}, E ∩ E′ = ∅, and there is a destination D′ ∈ V ′ that can be reached from O via m-different
paths. Additionally, we add a self-loop to node O, which is denoted as path p0. We now consider a game where each
player i has action space Ai := {−m, . . . ,−1, 0, 1, 2, . . . ,m}, where −j ∈ Ai denotes the path pj connecting O to
D′ ∈ G(V ′, E′). Assume that Ce(ve) is very large for all e ∈ E′ in comparison to all e ∈ E for every possible value
of ve. We also choose the cost of using the self-loop of O large enough so that no one has an incentive to choose
it. As a result, in this newly constructed game, players can choose a path to reach D on the actual network, D′ on
the artificial network, or stay at the origin O. Clearly, with the costs as described above, nobody has the incentive to
move into the artificial network G(V ′, E′). Therefore, this game on an augmented network is identical to the network
congestion game on G(V,E).
We will show that the game on the augmented network is potential and construct a potential function by using The-
orem 7, i.e., by using (27). Let us assume all players apart from i, j have already taken their decision, and ve is the
number of users for any link e, excluding players i, j. Assume player i chooses path li and later deviates to path l′i
and, similarly, player j selects lj and later on deviates to l′j . For simplicity, we consider the case when there is no
link in common among these paths; however, similar arguments can be presented for the case when there are links in
common. Therefore, the left-hand side of (27) is

∑

e∈l′
i

Ce(ve + 1)−
∑

e∈li

Ce(ve + 1) +
∑

e∈l′
j

Ce(ve + 1)−
∑

e∈lj

Ce(ve + 1). (42)

12
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When players i and j, rather than remaining at the origin, choose to deviate to l′i and l′j , respectively, results in a
difference in the cost of

∑

e∈l′
i

Ce(ve + 1) +
∑

e∈l′
j

Ce(ve + 1)−
∑

e∈l0

Ce(ve)−
∑

e∈l0

Ck(ve), (43)

and similarly, rather than remaining at the origin, deviating to li and lj for players i, j causes a difference in the cost
of

∑

e∈li

Ce(ve + 1) +
∑

e∈lj

Ce(ve + 1)−
∑

e∈l0

Ce(ve)−
∑

e∈l0

Ce(ve). (44)

Subtracting (44) from (43) results in (42). This shows by Theorem 7 that the game is potential. Note that by checking
(26) for an arbitrary cycle of length 4, we will see that the right-hand side of (26) is zero - which alternatively shows
that the game is potential.

To obtain the potential function using Theorem 8, we note that this theorem enables us to load the network incremen-
tally. As immediate result of applying Theorem 8, where at each step two players are selected and assigned to their
route in the network, the following potential function is obtained

φ(x) = φ(0)−
N
∑

k=1

C0(k) +
∑

e∈E

ve(x)
∑

k=1

Ce(k),

where φ(0) is some constant, C0 is the cost of using the self loop at the origin, and ve(x) is the number of users using
link e when decision variables are set to (x1, . . . , xN ). The non-constant part of this potential function is identical to
that which was introduced originally in [25].

5 Some Characterization of Ordinal and Generalized Ordinal Potential Games

In this section we provide some sufficient conditions for a game to be an ordinal potential game and a generalized ordi-
nal potential game. We start by considering the case of an ordinal potential game by using the following assumption.

Assumption 1. Consider a game Γ = (N , {fi,Ki}i∈N ). Assume that for all i, j ∈ N , xi, xi+yi ∈ Ki, xj , xj+yj ∈
Kj , and x−{i,j} ∈ K−{i,j}, we have

fi(xi + yi, xj + yj , x−{i,j})− fi(xi, x−i) < 0 ⇐⇒
fj(xj + yj , xi + yi, x−{i,j})− fj(xj , x−j) < 0. (45)

Under Assumption 1, we have the following result.

Theorem 9. Under Assumption 1, a game Γ = (N , {fi,Ki}i∈N ) is ordinal potential with fi(·) as ordinal potential
function for any i ∈ N .

Proof. Since (45) holds for any yi such that xi + yi ∈ Ki, we can consider yi = 0. Therefore, for any j ∈ N we have

fi(xi, xj + yj, x−{i,j})− fi(xi, x−i) < 0 ⇐⇒
fj(xj + yj , xi, x−{i,j})− fj(xj , x−j) < 0.

This means by Definition 2 the game Γ = (N , {fi,Ki}i∈N ) is ordinal potential with ordinal potential function fi(·)
for i ∈ N .

When the player’s cost functions are twice continuously differentiable and the action space of each player is one
dimensional, Assumption 1 is equivalent to

∇2
xi,xj

fi(x) < 0 ⇐⇒ ∇2
xj ,xi

fj(x) < 0 for all x ∈ K, (46)

In [12] an analogous local version of (46) has been shown as a necessary condition for a game to be generalized ordinal
potential. In particular, for a game with smooth costs to be generalized ordinal potential, it is necessary that following
relation holds

∇2
xi,xj

fi(x
∗) · ∇2

xj ,xi
fj(x

∗) ≥ 0, (47)

for all points x∗ in the joint action space satisfying ∇xi
fi(x

∗) = ∇xj
fj(x

∗) = 0 for all i, j. Our Theorem 9 provides
a sufficient condition for such a game to be ordinal potential. Specifically, by Theorem 9, we have that if (46) holds
globally, then the game is ordinal potential.
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Next, we derive a sufficient condition for existence of a generalized ordinal potential for a game with strongly convex
cost functions with Lipschitz continous gradients. Such functions can be characterized by the first-order condition, as
follows. Let X ⊆ R

n be a nonempty convex set and f : X → R be a continuously differentiable function on X .
Then, f(·) is strongly convex on X with a constant η > 0 if and only if the following relation holds in [8], [7]: for all
x, y ∈ X ,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ η

2
‖y − x‖2. (48)

A continuously differentiable function f(·) is strictly convex on a convex set X if and only if the following relation
holds [8], [7]: for all x, y ∈ X , with x 6= y,

f(y) > f(x) + 〈∇f(x), y − x〉. (49)

A function f(·) has Lipschitz continuous gradients on a set X with a constant L > 0 when the following relation
holds:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for all x, y ∈ X.

When a function f(·) has Lipschitz continuous gradients on a convex set X , with a constant L > 0, then the following
inequality is valid [24], [6]: for all x, y ∈ X ,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L

2
‖y − x‖2. (50)

Theorem 10. Consider a game Γ = (N , {fi,Ki}i∈N ) where each strategy set Ki is convex and each cost function
fi(·, x−i) is strongly convex for all x−i ∈ Ki with a constant ηi. Assume there exists a differentiable function φ(·)
such that:

(a) For every i ∈ N , xi, yi ∈ Ki, and x−i ∈ K−i, if 〈∇xi
fi(xi, x−i), yi − xi〉 < 0, then

〈∇xi
φ(xi, x−i), yi − xi〉 ≤ 〈∇xi

fi(xi, x−i), yi − xi〉.

(b) The function φ(·) has a Lipschitz continuous gradients with a constant L > 0 such that

L ≤ min
1≤i≤N

ηi.

Then, the game is a generalized ordinal potential game with a generalized ordinal potential function φ(·).

Proof. Let i ∈ N be an arbitrary player. Consider xi, yi ∈ Ki with xi 6= yi and x−i ∈ K−i, and assume that

fi(yi, x−i)− fi(xi, x−i) < 0.

By the strong convexity of fi(·), we have for x = (xi, x−i) ∈ K and y = (yi, x−i) ∈ K ,

fi(x) + 〈∇xi
f(x), yi − xi〉+

ηi
2
‖yi − xi‖2 ≤ fi(yi, x−i).

By combining the preceding two relations, we find that

〈∇xi
f(x), yi − xi〉+

ηi
2
‖yi − xi‖2 < 0. (51)

In view of the preceding relation, it follows that

〈∇xi
f(x), yi − xi〉 < 0. (52)

On the other hand by our assumption the function φ(·) has Lipschitz continuous gradients and, thus, satisfies for
x = (xi, x−i) and y = (yi, x−i),

φ(y) ≤ φ(x) + 〈∇φ(x), y − x〉+ L

2
‖y − x‖2

= φ(x) + 〈∇xi
φ(x), yi − xi〉+

L

2
‖yi − xi‖2.

By relation (52) and the assumed property (a) for the function φ(·), it follows that

φ(y) ≤ φ(x) + 〈∇xi
fi(x), yi − xi〉+

L

2
‖yi − xi‖2

≤ φ(x) + 〈∇xi
fi(x), yi − xi〉+

ηi
2
‖yi − xi‖2

< φ(x),

where the second inequality follows by L ≤ ηi for all i (see the assumed property (b)), while the last inequality follows
from (51). Therefore, φ(·) is a generalized ordinal potential function for the game Γ.
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We next consider a variant of Theorem 10, where we relax the strong convexity of the cost functions. In this case, we
will require the existence of a function φ(·) that is concave over the set K , i.e., for all x, y ∈ K , and α ∈ [0, 1],

φ(αx + (1− α)y) ≥ αφ(x) + (1− α)φ(y).

In the sequel, we will need a concept of a subgradient of a concave function h(·). We say that a vector s is a subgradient
of a concave function h(·) at a point x, if the following relation holds:

h(y) ≤ h(x) + 〈s, y − x〉 for all y ∈ dom(h),

where dom(h) denotes the domain of the function h(·).
For a game with a strictly convex functions in players’ decision variables, we have the following result.

Theorem 11. Consider a game Γ = (N , {fi,Ki}i∈N ) where each strategy set Ki is convex and each cost function
fi(·, x−i) is strictly convex over the set Ki for every x−i ∈ K−i. Assume that there exists a function φ(·) on the set K
that is concave in xi ∈ Ki and has a subgradient at each xi ∈ Ki, for every x−i ∈ K−i. Moreover, for every i ∈ N ,
xi, yi ∈ Ki, and x−i ∈ K−i, if 〈∇xi

fi(xi, x−i), yi − xi〉 < 0, there exists a subgradient si(xi, x−i) of φ(·, x−i) at
xi ∈ Ki satisfying

〈si(xi, x−i), yi − xi〉 ≤ 〈∇xi
fi(xi, x−i), yi − xi〉.

Then, φ(·) is a generalized ordinal potential for the game.

Proof. Let i ∈ N be an arbitrary player. Consider xi, yi ∈ Ki with xi 6= yi and x−i ∈ K−i, and let

fi(yi, x−i)− fi(xi, x−i) < 0.

By the strict convexity of fi(·), we have for x = (xi, x−i) ∈ K and y = (yi, x−i) ∈ K ,

fi(x) + 〈∇xi
f(x), yi − xi〉 < fi(yi, x−i).

The preceding two relations yield

〈∇xi
f(x), yi − xi〉 < 0. (53)

By our assumption the function φ(·) is concave and has subgradients on the set K , so it satisfies the following relation:
for x = (xi, x−i) ∈ K , and y = (yi, x−i) ∈ K , and some subgradient si(x) of φ(·, x−i) at the point x, so that

φ(y) ≤ φ(x) + 〈si(x), yi − xi〉.
By relation (53) and the assumed property for the function φ(·, x−i), it follows that

φ(y) ≤ φ(x) + 〈∇xi
fi(x), yi − xi〉

< φ(x).

Hence, φ(·) is an ordinal potential function for the game Γ.

The next example is designed to show that the sufficient condition obtained in Theorem 11 can capture nontrivial
generalized ordinal potential games.

Example 4. Consider following cost functions

f1(x1, x2) = (x1 + x2)
2 for x1, x2 ∈ (0, 1],

f2(x1, x2) = (x1 + x2)
6 for x1, x2 ∈ (0, 1].

By Theorem 9, we can verify that the game is ordinal potential, where both φ1(x1, x2) = (x1+x2)
6 and φ2(x1, x2) =

(x1 + x2)
2 are ordinal potential functions. However, we will construct a generalized ordinal potential function φ(·)

based on Theorem 11. First, we note that the sets Ki = (0, 1], i = 1, 2, are convex and each cost function fi(·, x−i) is
strictly convex on Ki. Next, for the partial derivatives ∇ifi(x1, x2) we have

∇x1
f1(x1, x2) = 2(x1 + x2) > 0 for all x1, x2 ∈ (0, 1],

∇x2
f2(x1, x2) = 6(x1 + x2)

5 > 0 for all x1, x2 ∈ (0, 1].

Now, consider the function φ(·) of the form:

φ(x1, x2) = a
√
x1 + b

√
x2, for all x1, x2 ∈ (0, 1],

15
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where a, b > 0. This function is concave, so it is concave in each of the variables individually. Next, we choose the
coefficients a, b > 0 so that the condition on the partial gradients in Theorem 11 is satisfied. Since

∇x1
φ(x1, x2) =

a

2
√
x1

, ∇x2
φ(x1, x2) =

b

2
√
x2

,

we have that

∇x1
φ(x1, x2) ≥

a

2
, ∇x2

φ(x1, x2) ≥
b

2
, for x1, x2 ∈ (0, 1].

By choosing a ≥ 8 and b ≥ 6 · 26, we can see that for all x1, x2 ∈ (0, 1],

∇x1
φ(x1, x2) ≥ 4 ≥ ∇x1

f1(x1, x2),

∇x2
φ(x1, x2) ≥ 6 · 25 ≥ ∇x1

f1(x1, x2).

To have 〈∇xi
fi(xi, x−i), yi − xi〉 < 0 for i ∈ {1, 2}, the term yi − xi must be negative. As a result, we can see that

for all x1, x2 ∈ (0, 1],
〈∇x1

φ(x1, x2), y1 − x1〉 ≤ 〈∇x1
f1(x1, x2), y1 − x1〉,

〈∇x2
φ(x1, x2), y2 − x2〉 ≤ 〈∇x1

f1(x1, x2), y2 − x2〉,
implying that the condition on the partial gradients in Theorem 11 is satisfied. Thus, φ(·) is a generalized ordinal
potential for the game.

For a game with a strictly convex functions in players’ decision variables, we also have the following result.

Theorem 12. Consider a game Γ = (N , {fi,Ki}i∈N ) where each strategy set Ki is convex and each cost function
fi(·, x−i) is strictly convex over the set Ki for every x−i ∈ K−i. Assume that there exists a function φ(·) on the set K
that is concave in xi ∈ Ki and has a subgradient at each xi ∈ Ki, for every x−i ∈ K−i. Moreover, for every i ∈ N ,
xi, yi ∈ Ki, and x−i ∈ K−i, if 〈∇xi

fi(xi, x−i), yi − xi〉 < 0, there exists a subgradient si(xi, x−i) of φ(·, x−i) at
xi ∈ Ki and some scalar function αi(x) with αi(x) > 0 for every x ∈ K satisfying

〈si(xi, x−i), yi − xi〉 ≤ 〈αi(x)∇xi
fi(xi, x−i), yi − xi〉.

Then, φ(·) is a generalized ordinal potential for the game.

Proof. Let i ∈ N be an arbitrary player. Consider xi, yi ∈ Ki with xi 6= yi and x−i ∈ K−i, and let

fi(yi, x−i)− fi(xi, x−i) < 0.

By the strict convexity of fi(·), we have for x = (xi, x−i) ∈ K and y = (yi, x−i) ∈ K ,

fi(x) + 〈∇xi
f(x), yi − xi〉 < fi(yi, x−i).

The preceding two relations yield
〈∇xi

f(x), yi − xi〉 < 0. (54)

By our assumption the function φ(·) is concave and has subgradients on the set K , so it satisfies the following relation:
for x = (xi, x−i) ∈ K , and y = (yi, x−i) ∈ K , and some subgradient si(x) of φ(·, x−i) at the point x, so that

φ(y) ≤ φ(x) + 〈si(x), yi − xi〉.
By relation (54) and the assumed property for the function φ(·, x−i), it follows that

φ(y) ≤ φ(x) + 〈αi(x)∇xi
fi(x), yi − xi〉

< φ(x).

Hence, φ(·) is an ordinal potential function for the game Γ.

The next example is designed to show that the sufficient condition obtained in Theorem 12 can capture nontrivial
generalized ordinal potential games.

Example 5. Consider following cost functions

f1(x1, x2) = (x1 + x2)
2 for x1, x2 ∈ (0,∞],

f2(x1, x2) = (x1 + x2)
6 for x1, x2 ∈ (0,∞].

We will construct a generalized ordinal potential function φ(·) based on Theorem 12. We can simply check that a gen-
eralized ordinal potential function φ(x) = 2(x1 + x2)

0.4 along with α1(x) =
4

10(x1+x2)1.6
and α2(x) =

4
30(x1+x2)5.6

satisfy the conditions in Theorem 12. Thus, φ(·) is a generalized ordinal potential for the game.
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6 Conclusions

In this paper, we first derived a necessary and sufficient condition for games to fall under the category of potential
games. These conditions do not require any differentiation or integration processes in constrast to those obtained in
[16]. We stepped further and simplified the general criteria we obtained for potential games for the class of aggregative
games. This relation completely describes aggregative potential games in terms of every two players’ cost functions
and coupling behavior. We checked the condition through a 3-player Cournot game.

Under the assumptions of action space containing zero or the cost functions being definable on the entire R
n̄, we

can find a useful closed form expression for the potential function in terms of those functions constructed for the
evaluation to be potential game. We also examined the form of potential function for potential games through an
example of 4-player aggregative game, as well as an example of a network congestion game.

Moreover, we proposed some characterizations of ordinal potential games and generalized ordinal potential games.
In comparison to the results of [12] on local necessary conditions for smooth games to be ordinal potential, we ob-
tained analogous global sufficient condition for games with possibly non smooth cost functions to be ordinal potential.
Additionally, we proposed some characterization of generalized ordinal potential games where cost functions are
strongly/strictly convex in terms of their player decision variable. We also provide an example for a 2-player ordinal
potential game.
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