2405.06241v1 [cs.CV] 10 May 2024

arxXiv

MGS-SLAM: Monocular Sparse Tracking and Gaussian Mapping with
Depth Smooth Regularization

Pengcheng Zhu'2, Yaoming Zhuang'*, Baoquan Chen!, Li Li3,
Chengdong Wu', and Zhanlin Liu*

Abstract—This letter introduces a novel framework for
dense Visual Simultaneous Localization and Mapping (VSLAM)
based on Gaussian Splatting. Recently Gaussian Splatting-based
SLAM has yielded promising results, but rely on RGB-D input
and is weak in tracking. To address these limitations, we
uniquely integrates advanced sparse visual odometry with a
dense Gaussian Splatting scene representation for the first time,
thereby eliminating the dependency on depth maps typical of
Gaussian Splatting-based SLAM systems and enhancing track-
ing robustness. Here, the sparse visual odometry tracks camera
poses in RGB stream, while Gaussian Splatting handles map
reconstruction. These components are interconnected through
a Multi-View Stereo (MVS) depth estimation network. And we
propose a depth smooth loss to reduce the negative effect of
estimated depth maps. Furthermore, the consistency in scale
between the sparse visual odometry and the dense Gaussian
map is preserved by Sparse-Dense Adjustment Ring (SDAR).
We have evaluated our system across various synthetic and real-
world datasets. The accuracy of our pose estimation surpasses
existing methods and achieves state-of-the-art performance.
Additionally, it outperforms previous monocular methods in
terms of novel view synthesis fidelity, matching the results of
neural SLAM systems that utilize RGB-D input.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a
key technology in robotics and autonomous driving. It aims
to solve the problem of how robots determine their loca-
tion and reconstruct maps of the environment in unknown
scenes. The development of SLAM technology has gone
through multiple stages, starting with the initial filter-based
methods [1l], [2], advancing to graph optimization-based
methods[3], [4]], and more recently, integrating deep learning.
This integration has significantly improved the accuracy and
robustness of SLAM systems. With the rapid development
of deep learning technology, a new approach to SLAM
technology has emerged, utilizing differentiable rendering.
The initial applications of differentiable rendering-based
SLAM utilized Neural Radiance Fields (NeRF) as their
foundational construction method. NeRF, as detailed in [5],
employs neural networks to represent 3D scenes, enabling
the synthesis of high-quality images and the recovery of
dense geometric structures from multiple views. NeRF-based
SLAM systems preserve detailed scene information during

*Corresponding author (email: zhuangyaoming @mail.neu.edu.cn).

IFaculty of Robot Science and Engineering, Northeastern University,
Shenyang 110819, China.

2College of Information Science and Engineering, Northeastern Univer-
sity, Shenyang 110819, China.

3JangHo School of Architecture, Northeastern University, Shenyang
110819, China.

4 AstrumU, Bellevue, Washington, 98004, USA.

= B =
;‘ .
MVS &= depth

* ” ti timizati
estimation optimization @ mapping

Fig. 1. Map reconstruction process by the proposed system. The prior
depth map is estimated from the keyframes of sparse visual odometry and
optimized by a sparse point cloud map, and the optimized depth map is
used to construct a dense Gaussian map.

mapping, which enhances support for subsequent naviga-
tion and path planning. However, NeRF’s approach requires
multiple forward predictions for each pixel during image
rendering, leading to significant computational redundancy.
Consequently, this inefficiency prevents NeRF-based SLAM
from operating in real-time, thus limiting its practicality for
immediate downstream tasks.

Recently, a novel scene representation framework called
3D Gaussian Splatting [6] has demonstrated superior perfor-
mance compared to NeRF. It features a more concise scene
representation method and real-time rendering capability. 3D
Gaussian Splatting represents the geometries in a scene using
a smooth and continuously differentiable method. This rep-
resentation method not only delivers an accurate description
of the scene but also offers a differentiable approach for
optimizing the scene and camera poses. This opens up a new
research direction for differentiable rendering-based SLAM.
However, current Gaussian Splatting-based SLAM systems
rely on the depth maps input from RGB-D cameras, which
constrains the scope of their application.

This letter presents MGS-SLAM, a novel monocular
Gaussian Splatting-based SLAM system. This work intro-
duces several groundbreaking advancements in the field of
SLAM, which include integrating Gaussian Splatting-based
techniques with sparse visual odometry, employing a pre-
trained Multi-View Stereo (MVS) depth estimation network,
pioneering a geometric smooth depth loss, and develop-
ing the Sparse-Dense Adjustment Ring (SDAR) to ensure
scale consistency. Together, these innovations significantly
improve the accuracy and functionality of SLAM systems
that rely solely on RGB images input. Fig. [T] illustrates the

Frontend

patch update MVS depth
extract operator estimation

<=

T diff
1

rendered color

r

pose
optimization

endered depth

T S N (R O

Fig. 2.

System pipeline. The system inputs an RGB stream and operates frontend and backend processes in parallel. In the frontend, sparse visual

odometry extracts patch features from images to estimate poses. These estimated poses and images are inputs to a pre-trained Multi-View Stereo (MVS)
network, which estimates priori depth maps. In the backend, the estimated priori depth maps and images, coupled with poses from the frontend, are utilized
as supervisory information to construct a Gaussian map. The frontend and backend maintain scale consistency through the Sparse-Dense Adjustment Ring

(SDAR) strategy.

map construction process: initially, sparse visual odometry
constructs the sparse map; subsequently, the MVS depth
estimation network generates priori depth maps; this depth
maps, along with the sparse point map, is then refined
through depth optimization in the SDAR; and finally, the
Gaussian map is constructed using the optimized priori depth
maps and depth smooth regularization loss.

The key contributions of the proposed system are summa-
rized as follows:

« Introducing the first SLAM system that combines sparse
visual odometry with 3D Gaussian Splatting to achieve
the construction of a dense Gaussian map using only
RGB images as input.

e Developing a pre-trained Multi-View Stereo (MVS)
depth estimation network that utilizes sparse odome-
try keyframes and their poses to estimate prior depth
maps, thus providing crucial geometric constraints for
Gaussian map reconstruction.

e Proposing a geometric depth smooth loss method to
minimize the adverse impacts of inaccuracies in esti-
mated prior depth maps on the Gaussian map and guide
its alignment to correct geometric positions.

o Proposing a Sparse-Dense Adjustment Ring (SDAR)
strategy to unify the scale consistency of sparse visual
odometry and dense Gaussian map.

II. RELATED WORKS

Monocular Dense SLAM. Over the past few decades,
monocular dense SLAM technology has seen significant
advancements. DTAM [7] pioneered one of the earliest real-
time dense SLAM systems by performing parallel depth

computations on GPU. To balance computational costs and
accuracy, there are also semi-dense methods such as [8]], [9],
but these methods struggle to capture areas with poor texture.
In the era of deep learning, DROID-SLAM [10] utilizes op-
tical flow networks to establish dense pixel correspondences
and achieve precise pose estimation. Another study [11], [12]
combines a real-time VO/SLAM system with a Multi-View
Stereo (MVS) network for parallel tracking and dense depth
estimation, and then the Truncated Signed Distance Function
(TSDF) is used to fuse depth maps and extract mesh.
[14] and [135] incorporate sparse point cloud correction and
volumetric fusion strategy on the estimated depth map to
mitigate the impact of errors in the estimated depth map.
We have also adopted a strategy for correcting the estimated
depth map, but the difference is that we use a linear variance
correction as depth optimization, which is less computations.

Differentiable Rendering SLAM. With the emergence of
Neural Radiance Fields (NeRF) in 2020, numerous NeRF-
based SLAM works have been proposed. iNerf [16] was the
first to propose optimizing camera poses within a fixed NeRF
reconstruction scene, which initiated the SLAM adaptation
of NeRF. iMAP represented the pioneering work in
NeRF-based SLAM, utilizing a dual-threading mode to track
camera poses and execute mapping simultaneously. NICE-
SLAM [18] introduced feature grids based on iMAP, en-
abling NeRF-based SLAM to represent larger scenes. Sub-
sequent works such as GO-SLAM [19], HI-SLAM [20], and
Loopy-SLAM [21] incorporated global bundle adjustment
(BA) and loop closure correction, further enhancing pose
estimation accuracy and mapping performance. Recently,
3D Gaussian Splatting has shown superior performance in

Fig. 3.
images with poses from sparse visual odometry, image features are extracted
by Feature Pyramid Network (FPN) and warping to 2D cost volume. Finally,
encoded and decoded to depth maps using coarse-to-fine strategy.

The priori depth estimation network. The inputs to the network is

3D scene representation, with its fast rendering capability
and Gaussian scene representation being more suitable for
online systems like SLAM. SplaTAM [22] combines 3D
Gaussian Splatting with SLAM, leveraging the realistic scene
reconstruction ability of 3D Gaussian Splatting to surpass
NeRF-based SLAM methods in rendering quality. MonoGS
[23] achieves monocular map reconstruction of Gaussian
Splatting-based SLAM in small scenes through a map clip-
ping strategy. However, existing Gaussian Splatting-based
SLAM implementations typically require depth maps input
from RGB-D sensors, and their monocular methods are often
unable to operate effectively on larger datasets, such as
Replica [24]. We propose the system utilizing only RGB
images as input and demonstrated enhanced robustness by
successfully operating on the Replica dataset.

III. METHODS

Our approach utilizes RGB images as input, parallelly
performing camera poses estimation and photorealistic dense
mapping. As depicted in Fig. 2] the core idea of the approach
is to use a pre-trained Multi-View Stereo (MVS) network to
couple monocular sparse visual odometry and dense Gaus-
sian Splatting mapping and to maintain scale consistency
between sparse point cloud map and dense Gaussian map by
the Sparse-Dense Adjustment Ring (SDAR). Specifically, in
the frontend part, tracking RGB images provides the backend
with coarse camera poses and priori depth maps (Sec.
[A). In the backend part, represent the dense map using
Gaussians, and jointly optimize the map and the coarse poses
from the frontend (Sec. [[lI-B). In the system components
part, system initialization, selecting the keyframes for the
system and correcting the scale between sparse point cloud
map and dense Gaussian map by SDAR strategy are reported

(Sec. [II-C)).

A. Sparse Visual Odometry Frontend

To achieve more accurate camera poses tracking and
provide dense depth geometry before backend mapping, the
frontend of our framework is built on the Deep Patch Visual
Odometry (DPVO) [25] algorithm. DPVO is a learning-based
sparse monocular visual odometry method for estimating
camera poses and building sparse point cloud map by con-
structing and optimizing errors on patch graph. Given an
input RGB stream, the scene is represented as a collection

of camera poses T € SE(3)" and a series of square image
patches P extracted from the images, and add them to the
bi-directional patch graph that connects the patches to the
frames. The reprojection of a square patch k taken from
frame ¢ in frame j can be formulated as:

P/ ~ KT,;T; 'K 'P}, (1)

where K refers to camera intrinsic matrix, P; = [u,v,1,d]”
denotes patch & in frame 4, and [u,v] denote the pixel
coordinates in images, d denotes the inverse depth.

The core of DPVO is an update operator that computes
the hidden state for each edge (k,i,j) € e. It optimize
the reprojection errors on the patch graph to predict a 2D
correction vector 4,7 € R? and confidence weight ¢’ € R2.
Bundle Adjustment (BA) is performed using optical flow cor-
rection as a constraint, with iterative updates and refinement
of camera poses and patch depths achieved through the non-
linear least squares method. The cost function for bundle
adjustment is as follows:

S IKT, T KR - [P+ 67
(k,i,5)€e

2
)

where | - ||, represents Mahalanobis distance, P denotes the
centre of patch.

Multi-view priori depth estimation. The backend dense
Gaussian mapping requires the supervision of geometric
depth maps. Unlike the previous method [26], we use a
pre-trained Multi-View Stereo (MVS) network to estimate
priori depth maps on the keyframes window of DPVO, the
network is shown in Fig. Inspired by the monocular
depth estimation method [27], our MVS network consists
entirely of 2D convolutions with a coarse-to-fine structure
that progressively refines the estimated priori depth map to
reduce the runtime of the MVS network.

To be more specific, the frame currently tracked by the
sparse visual odometry is used as the reference image I°.
Additionally, we employ the previous N keyframes as a series
of original images I~V These images and their corre-
sponding camera poses, serve as inputs to the MVS network.
Utilizing the Feature Pyramid Network (FPN) module, we
extract three layers of image features F; for each image,
with s denoting the layer index and 7 representing the image
index. Each layer contains image features with twice the
length and width of the previous layer. In each layer, the
image features of the original images dot the image feature
of the reference image by a differentiable warping operation
to obtain a cost volume with dimensions D x H® x W?*,
and the priori depth map of each layer is obtained by 2D
convolutions encoding and decoding. The estimated depth
map of the previous layer is upsampled as the reference depth
map of the next layer to reduce the number of depth samples
in the next layer. Each layer performs similar encoding and
decoding operations, The final depth map are estimated after
three layers to achieve the coarse-to-fine effect. Our MVS
depth estimation network is trained on the ScanNet dataset
[28]], with a scale-invariant loss function to accommodate the

relative poses of the sparse visual odometers:
S 1 S
e \/HSWS 2 (g - Zgw 3)
i,

where gf ; = 14¢ log lA)i ; —log Dgt Dgt denotes a ground
truth depth map, which is ahgned to the size of predicted
depth Dg ! by an upsampling operation 4. A is a constant
0.85.

In addition, the multi-view loss and the normal loss are
added to the loss function to maintain geometric consistency
of depth estimation:

. 1
Lovs = i Z ‘Tgt log Ton (D} ;) — log DY, | (4)

n,%,]

HSW5

1 \TS s
SHWS Z(l - Nij - Niy) o)

4,J

‘warmal
where T, denotes the transformation matrix from the
reference image to the original image n. Nf] and N7,
respectively denote the prediction normals and ground truth
normals. The final MVS depth estimation network loss is as
follows:

l
1
L= Z 9s)‘si‘czi +)\m’licfnv +)‘nOTmal‘warmal) (6)
s=0

where [is 2, and we assign the loss weights Ay, A\, and
Anormal t0 1.0, 0.2 and 1.0 respectively.

B. 3D Gaussian Splatting Mapping Backend

The main responsibility of the backend is to further opti-
mize the coarse poses from the frontend and map a Gaussian
scene. The key to this thread is differentiable rendering and
depth smooth regularisation loss, computing the loss between
the renderings and the ground truth, and adjusting the coarse
poses and Gaussian map by backward gradient propagation.

Differentiable Gaussian map representation. We use 3D
Gaussian Splatting as a dense representation of the scene. 3D
Gaussian Splatting is an efficient 3D spatial representation
that maps scenes in a way similar to point clouds, avoiding
the need to sample in the blank areas of the space like NeRF
and having the ability to render in real-time. The influence
of a single 3D Gaussian p; € R? in 3D scene is as follows:

f(pi) = o(0i) - exp(—%(pi —)" i —) (D

where o; € R denotes the opacity of the Gaussian, p; € R3
is the centre of the Gaussian, ¥ = RSSTRT c R33 is
the covariance matrix computed with S € R? scaling and
R € R33 components. The expression for the projection of
a 3D Gaussian onto the image plane is as follows:

wr =m(Tow - pw) (8)
Y =JWEywhiT ©)

where 7(-) denotes the projection of the 3D Gaussian center,
Tew € SE(3) is the the transformation matrix from world
coordinate to camera coordinate in 3D space, J is a linear

W/ Lsmooth W/0 Lsmooth

Color

4

Depth

?

Fig. 4. Depth smooth regularization loss. Comparing the effect of having
no depth smooth loss, there is better photometry and geometry in the left
with depth smooth loss, and bad photometry and geometry in the right.

approximation to the Jacobian matrix of the projective trans-
formation, W is the rotational component of Tcywy. The Eq.
(). () is differentiable, which ensures that the Gaussian map
can be used with first-order gradient descent to continuously
optimize the geometric and photometric of the map, allowing
the map to be rendered as photo-realistic images. A single
pixel color C), is rendered from N Gaussians by splatting
and blending:

Cp = Z C;0; 1:[(1 — Oj)

iEN j=1

(10)

where ¢; is the color of Gaussian ¢, and o; is the opacity of
Gaussian 1.

Mapping Optimization Losses. We changed the loss
function of the original 3D Gaussian splatting and added
more geometric constraints to make it more suitable for
online mapping systems like SLAM. Specifically, our losses
function consists of four components: photometric loss,
depth geometric loss, depth smooth regularization loss and
isotropic loss. In the photometric loss, the L1 loss is calcu-
lated between the rendered color image and the ground truth
color image in the current camera pose Tow:

Lpho = ||1(G, Tew) — (1)

where I(G, Tow) is the rendered color image from Gaus-
sians G, and 19 is ground truth color image.

To improve the geometric accuracy of the Gaussian map,
similar to Eq. @), We also rendered the depth:

i—1
Dp = Z Z;04 H(]. — Oj)
j=1

iEN

19|y

12)

where z; is the distance along the camera ray to the center
ww of Gaussian ¢. Therefore, the depth geometric loss is as
follows:

Egeo - HD(g,TCW) - Dd”l

where D(G, Tcw) is the rendered depth map from Gaussians
G, Dy is the optimized priori depth map by SDAR strategy.
The optimization process is in Sec. [[II-C}

(13)

The prior depth maps obtained from the MVS network
may not be entirely accurate. As depicted in Fig. [} direct
utilization of this depth maps lead to erroneous guidance in
the geometric reconstruction of the Gaussian map. Therefore,
we introduce the depth smooth regularization loss:

Lomooth = ||dij—1 — dijllo + [|diy1,5 — dijll2 (14

where d; ; denotes the depth value of the pixel coordinate
at (i,7) in the rendering depth map, it reduces the effect
of errors in priori depth maps by regularizing neighboring
pixels in rendered depth maps.

The original 3D Gaussian Splatting algorithm places no
constraints on the Gaussians in the ray direction along the
viewpoint. This has no effect on 3D reconstruction with fixed
viewpoints. However, SLAM is an online mapping system,
so this causes the Gaussians to elongate along the direction of
the view ray, leading to the appearance of artifacts. To solve
this problem, as well as [23], we also introduce isotropic

loss:
1G]

Livo=Y _lsi—5i-1lh

i=1

5)

where s; is the scaling of Gaussians, suppressing the elon-
gation of the Gaussians by regularizing both the scaling and
mean 5;. The final mapping optimization loss function is as
follows:

L= /\pﬁpha +)\gﬁgeo + Asﬁsmooth + Aiﬁiso (16)

where we assign the loss weights A, Ay, A; and A; to 0.99,
0.01, 1.0 and 1.0 respectively.

Camera poses optimization from the Gaussian map.
We use the camera pose TgW obtained from sparse visual
odometry tracking in the frontend as the initial pose for
Gaussian mapping in the backend. As in Eq. (I0) and Eq.
(T2), we render the color image and depth map from the
Gaussian map at the viewpoint of the current initial pose and
compute the losses of renderings and the ground truth. Since
this process is differentiable, the loss gradient is propagated
to both the Gaussian map and the initial pose during the
gradient backward process. The equation of the initial pose
optimization update is as follows:

arg min Emappmg(g,TgW,Igt, Dy) 17

Tgw7g

where Lpapping 18 the Eq. , 19t and D, is ground
truth color image and optimized priori depth map from the
viewpoint of TgW. Minimize the mapping loss to optimize
both Gaussians G and initial pose TgW simultaneously.

C. System Components

System initialization. Similar to DPVO, The system uses
8 frames for initialization. The pose of the new frame is
initialized using a constant velocity motion model. Adding
new patches and frames until 8 frames are accumulated and
then running 12 iterations of the update operator. The 8
frames in the initialization are used as MVS network inputs
to estimate the priori depth of the first frame. The backend

Sparse PC

Before Opt

After Opt

X
o

Fig. 5. Priori depth optimization. this optimization strategy in the SDAR
is to correct the geometry of the priori depth map from MVS network and
align the scale with the sparse point cloud map.

uses the first priori depth as the foundation to initialize the
Gaussian map.

Keyframe selection. In the frontend tracking process,
we always consider the 3 most recent frames as keyframes
to fulfill the constant velocity motion model requirement.
However, these 3 frames are not utilized for Gaussian map-
ping. Instead, we assess whether 4th frame satisfies Gaussian
covisibility criteria. If it does, we add it into the mapping
process in the backend; otherwise, we discard this frame.
Between two keyframes i, j, we define the covisibility using
Intersection of Union (IOU):

o 1Gin Gyl

10U 0y (i,7) G:UG,]

where G;, G; are visible Gaussians in the viewpoints of frame
1 and frame j.

Sparse-Dense Adjustment Ring. We propose the Sparse-
Dense Adjustment Ring (SDAR) strategy to achieve scale
unification of the system. The method consists of three parts
is as follows:

Firstly, We use a sparse point cloud map with better
geometric accuracy to correct the priori depth map from the
MVS network estimate. Specifically, the sparse point cloud
is transformed to the camera coordinate where the priori
depth map is located, and then the sparse point cloud is
projected to the sparse depth map. The priori depth map and
the sparse depth map conform to the normal distribution of
Dy ~ N(pa,02) and Dy ~ N(us,02). Align the priori
depth map with the sparse depth map using the following
equation:

(18)

Os

. o
-~ Dd"*‘Md(/fS -2)
P fta 0q

Dy = 19)
where 64 and fi4 are the mean and standard deviation status-
tics of the sparsified priori depth map extracted from Dy at
the pixel coordinates of D,. This strategy corrects the prior
depth errors and maintains the scale consistency, as shown
in Fig. [}

Secondly, we backproject the optimized prior depth map
with RGB color into space, generating a new point cloud.
Subsequently, downsampling is performed on this new point
cloud. New Gaussians are then initialized with the downsam-
pled point cloud as the center and added to the Gaussian map.
This operation ensures consistent scale between the Gaussian
map and the sparse point cloud map, while downsampling
helps mitigate errors in the prior depth map.

Finally, to achieve scale closure, we leverage the real-time
rendering capability of the Gaussian map to generate the

NICE-SLAM

Vox-Fusion

Room 1 Office 1 Room 0

Office 3

Ground Truth

Fig. 6. The results of novel view rendering demonstrate the visualization outcomes on the Replica dataset for the proposed MGS-SLAM and other methods.
Our system consistently generates significantly higher-quality and more realistic images than other monocular and RGB-D methods. This observation is

further supported by quantitative results in Tab. [ITI]

TABLE I
ATE [CM] RESULTS ON TUM DATASET

Input Method frl/desk fr2/xyz fr3/office Avg.
A iMAP 4.90 2.00 5.80 4.23
A NICE-SLAM 4.26 6.19 6.87 5.77
O Vox-Fusion 3.52 1.49 26.01 10.34
~ SplaTAM 3.35 1.24 5.16 3.25
DSO 22.40 1.10 9.50 11.00

s DROID-VO 5.20 10.70 7.30 7.73
5 DPVO 3.80 0.54 7.00 3.78
= MonoGS 4.15 4.79 4.39 4.44
Ours 2.33 0.44 3.00 1.92

TABLE II
ATE [CM] RESULTS ON REPLICA DATASET

Input Method RO RI R2 00 Ol 02 03 04 Avg
o iMAP 312 254 231 169 103 399 405 193 258
2 NICESSLAM 097 131 107 088 100 106 110 113 1.07
© Vox-Fusion 137 470 147 848 204 258 111 294 3.09
~ SplaTAM 031 040 029 047 027 029 032 055 036
DROID-VO 050 070 030 098 029 0.84 045 153 0.70

S NICER-SLAM 136 1.60 1.14 2.12 323 212 142 201 1.88
£ DPVO 049 054 054 077 036 057 046 057 054
= MonoGS 994 X X X X X 1158 X 1076
Ours 036 035 032 035 028 026 032 034 032

depth map of the frame being tracked at the frontend. We
then initialize the depth of the tracking frame’s point cloud
using this depth map. This strategy ensures that the frontend
track aligns with the scale of the backend Gaussian map,
facilitating the transfer of scale consistency from the backend
to the frontend.

IV. EXPERIMENTS

We evaluate our proposed system on a series of real
and synthetic datasets, including the TUM dataset [29] and
the Replica dataset [24]]. We compare the pose estimation
accuracy (ATE) and Novel View Rendering quality with
previous works, utilizing experimental results from papers

or open-source code of these works. The experimental data
from the source code represents the average of three runs.
Additionally, we conduct an ablation study to demonstrate
the effectiveness of the components of our system. Finally,
we analyze the system runtime.

A. Implementation Details

We evaluate our proposed system and other methods on
a desktop with an Intel Core i7 12700 processor running
at 3.60GHz and a single NVIDIA GeForce RTX 3090. The
size of input images is consistent with the dataset size in
our system, but these images are resized to 512x384 when
estimating prior depth maps to better align with the resolution
of MVS training images and enhance efficiency. Similar
to Gaussian Splatting, mapping rasterization and gradient
computations are implemented using CUDA. The remainder
of our system pipeline is developed with PyTorch. For map
optimization, we set the maximum gradient threshold to
0.0002 and the minimum opacity threshold to 0.65 for the
Gaussians in the densify and prune operation of the mapping.

B. Camera Tracking Accuracy

For camera tracking accuracy, we report the Root Mean
Square Error (RMSE) of the keyframes Absolute Trajectory
Error (ATE). We benchmark our system against other ap-
proaches that, like ours, do not have explicit loop closure. We
compared not only the monocular methods but also the RGB-
D methods. The comparative work is very comprehensive
including traditional direct visual odometry [9], learning-
based SLAM[IQ], neural implicit slam [26], [30], and more
recently Gaussian Splatting-based SLAM [22]], [23].

Tab. [I| shows the tracking results on the TUM dataset.
The tracking accuracy of SplaTAM exceeds other RGB-D
methods. The tracking accuracy of our system also outper-
forms other monocular methods by 40%, while surpassing

TABLE III
RENDERING PERFORMANCE ON REPLICA DATASET. BEST RESULTS ARE
HIGHLIGHTED AS | FIRST , SECOND , AND THIRD

TABLE VI
RUNTIME ANALYSIS ON TUM FR3/OFFICE

Method Tracking/Frame[s] Mapping/Frame[s] Total Time[s] FPS

Method Metric RO R1 R2 00 o1 02 03 04 Avg.

PSNR[dB]T 22.12 2247 2452 29.07 3034 19.66 2223 2494 2442
SSIMT 0.689 0.757 0.814 0.874 0886 0.797 0.801 0.856 0.809
LPIPS| 0330 0271 0208 0229 0.181 0235 0209 0.198 0.233

PSNR[dB]T 2239 2236 23.92 2779 29.83 2033 2347 2521 2441
SSIMT 0.683 0.751 0.798 0.857 0876 0.794 0.803 0.847 0.801

NICE-
SLAM

LPIPS| 0303 0269 0.234 0241 0.184 0243 0213 0.199 0236
GO PSNR[dB]T 2325 20.70 21.08 21.44 2259 2233 2219 2276 22.04
SLA;\/I SSIMT 0712 0.739 0.708 0.761 0.726 0.740 0.752 0.722 0.733

LPIPS| 0222 0492 0317 0319 0269 0434 0396 0385 0.354

_ PSNR[dB]T 2533 2392 2612 2854 2586 21.95 2613 2547 2541

SLAM SSIMT 0.751 0.771 0.831 0.866 0.852 0.820 0.856 0.865 0.827
LPIPS) 0250 0215 0.176 0.172 0.178 0.195 0.162 0.177 0.191

Mono PSNR[dB]T 25.11 2466 2230 28.76 29.17 23.74 2366 2399 25.17
GS SSIMT 0.790 0.790 0.843 0.884 0852 0.840 0.855 0.863 0.840

LPIPS] 0260 0360 0.351 0293 0274 0290 0216 0340 0.298

PSNR[dB]T 2537 2729 29.64 3485 3432 2817 26.64 3288 29.90
Ours SSIMT 0.796 0.825 0.886 0.932 0930 0.890 0.855 0933 0.881
LPIPS| 0.153 0.072 0.071 0.069 0.098 0.112 0.086 0.079 0.093

TABLE IV
MAPPING LOSSES ABLATION ON OFFICE 0

‘Cgeo stnooth ‘Ciso ATElch\l/ PSNR[dBH\ Depth Ll[CmH/
X X X 0.53 31.21 25.46
X X 0.45 33.80 11.09
X 0.40 33.88 7.21
0.35 34.85 5.37
TABLE V

SPARSE-DENSE ADJUSTMENT RING ABLATION ON OFFICE 0

Comp. 1 Comp. 2 Comp. 3 ATE[cm]| PSNR[dB]{ Depth L1[cm]{
X X X 0.61 28.66 15.55
X X 0.49 29.53 11.01
X 0.41 33.22 5.56
0.35 34.85 5.37

SplaTAM. Tab. [lI| shows the tracking results on the Replica
dataset. The same Gaussian Splatting-based MonoGS with
monocular input experienced tracking loss in some scenes
in the Replica dataset. Our system completes the full scene
tracking, demonstrates robustness, and achieves state-of-
the-art tracking results. In addition, The experimental data
from both tables show that our tracking performance is
superior to the DPVO on which the frontend is based. This
demonstrates the effectiveness of our combination of sparse
visual odometry and Gaussian mapping to achieve a more
robust and accurate SLAM system.

C. Novel View Rendering

We evaluated the methods for novel view rendering on
Replica. To evaluate map quality, we report standard photo-
metric rendering quality metrics (PSNR, SSIM and LPIPS)
following the evaluation protocol used in [31]]. The methods
we are comparing have RGB-D input and monocular input.
NICE-SLAM and Vox-Fusion are RGB-D input and the rest
are monocular input. The rendering results of MonoGS is
the average before it tracking loss. Tab. [[II| shows the results,
our proposed system performs state-of-the-art in most scenes.
The visualisation of the rendering is shown in Fig. [6] where
the quality of our rendered image is higher than the other
methods and almost indistinguishable from the ground truth.

SplaTAM 3.65 1.44 10652 0.24
MonoGS 0.55 1.70~2.00 79890 3.20
Ours 0.25 1.61~1.90 628.1 4.00
12
1.0
0.8
2
£0.6
D
=
0.4
0.2 *) A
—— ATE
0.0 D
1 2 3 4 3 6 7

Window Size

Fig. 7. MVS window analysis on Office 0. The MVS window size is a
hyperparameter that allows for finding a balance between speed, tracking,
and rendering quality. PSNR is divided by 50.

D. Ablative Analysis

Mapping losses ablation. We changed the losses function
of the original 3D Gaussian Splatting by introducing depth
loss, smooth loss, and isotropic loss. As shown in Tab.
LVl we did an ablation study of these losses and evaluated
their impact through ATE, PSNR, and Depth L1 metrics.
The results show that all these losses contribute to the
accuracy improvement of the system. It is worth noting that
the depth loss utilizes the estimated priori depth map from
the Network. Although this improves the geometry of our
system, it also leads to incorrect geometric guidance. After
adding the smooth loss, the geometric accuracy is further
enhanced, proving that the smooth loss can correct some
adverse effects of the estimated priori depth map.

Sparse-Dense Adjustment Ring ablation. We propose
the Sparse-Dense Adjustment Ring (SDAR) strategy to unify
the frontend and backend scales. This strategy comprises
three components (Sec. [[II-C). We conducted an ablation
study of these three components to demonstrate their effect
on the system. The metrics for the ablation study are also
adopted as PSNR, SSIM, and LPIPS. As shown in Tab.
the contribution of SDAR to the system is mainly in the
tracking accuracy ATE. The tracking accuracy of the system
is similar to DPVO without the SDAR strategy. The tracking
accuracy of the system is state-of-the-art with the SDAR
strategy. This demonstrates the significance of combining
sparse visual odometry and Gaussian mapping to build a
more accurate and robust SLAM system.

MYVS window analysis. Since the MVS network requires
at least one reference frame and one source frame, the
minimum window size is 2, and the maximum is the number
of keyframes required for DPVO initialization. As depicted
in Fig. [/, we have analyzed the effect of different window
sizes of MVS on the accuracy and speed of the system.

Since our MVS network consists of 2D convolutions, in-
creasing the window size has little effect on inference time.
However, increasing the window size improves the system’s
tracking accuracy and mapping quality. This is because more
keyframes with different views provide additional geomet-
rical cues, which can estimate better prior depth map and
enhance system accuracy.

E. Runtime Analysis

As shown in Tab. [VI[we analyzed the runtime of our
proposed system on the TUM fr3/office dataset and com-
pared it to other methods. The results indicate we achieve
higher frames per second (fps) than other Gaussian Splatting-
based SLAM methods. This advantage is primarily attributed
to the fast frontend tracking. These findings underscore the
effectiveness of our approach, which combines sparse visual
odometry and Gaussian mapping.

V. CONCLUSIONS

This letter introduces MGS-SLAM, a novel Gaussian
Splatting-based SLAM framework. For the first time, our
framework integrates sparse visual odometry with Gaus-
sian mapping, addressing the tracking loss issue in larger
scenes encountered by Gaussian Splatting-based SLAM and
eliminating the need for depth maps input. We develop
a lightweight MVS depth estimation network to facilitate
this integration. Additionally, we propose the Sparse-Dense
Adjustment Ring (SDAR) strategy to adjust the scale be-
tween the sparse map and the Gaussian map. Comparative
evaluations demonstrate that our approach achieves state-of-
the-art accuracy compared to previous methods.

REFERENCES

[1] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam:
Real-time single camera slam,” IEEE transactions on pattern analysis
and machine intelligence, vol. 29, no. 6, pp. 1052-1067, 2007.

[2] G. Klein and D. Murray, “Parallel tracking and mapping for small ar
workspaces,” in 2007 6th IEEE and ACM international symposium on
mixed and augmented reality. 1EEE, 2007, pp. 225-234.

[3] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a
versatile and accurate monocular slam system,” /IEEE transactions on
robotics, vol. 31, no. 5, pp. 1147-1163, 2015.

[4] R. Mur-Artal and J. D. Tardés, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE transactions
on robotics, vol. 33, no. 5, pp. 1255-1262, 2017.

[5] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng, “Nerf: Representing scenes as neural radiance fields
for view synthesis,” Communications of the ACM, vol. 65, no. 1, pp.
99-106, 2021.

[6] B. Kerbl, G. Kopanas, T. Leimkiihler, and G. Drettakis, “3d gaussian
splatting for real-time radiance field rendering,” ACM Transactions on
Graphics, vol. 42, no. 4, pp. 1-14, 2023.

[71 R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “Dtam: Dense
tracking and mapping in real-time,” in 2011 international conference
on computer vision. 1EEE, 2011, pp. 2320-2327.

[8] J. Engel, T. Schops, and D. Cremers, “Lsd-slam: Large-scale di-
rect monocular slam,” in European conference on computer vision.
Springer, 2014, pp. 834-849.

[9] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” [EEE

transactions on pattern analysis and machine intelligence, vol. 40,

no. 3, pp. 611-625, 2017.

Z. Teed and J. Deng, “Droid-slam: Deep visual slam for monocular,

stereo, and rgb-d cameras,” Advances in neural information processing

systems, vol. 34, pp. 16 558-16 569, 2021.

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

R. Craig and R. C. Beavis, “Tandem: matching proteins with tandem
mass spectra,” Bioinformatics, vol. 20, no. 9, pp. 1466-1467, 2004.
X. Yang, L. Zhou, H. Jiang, Z. Tang, Y. Wang, H. Bao, and G. Zhang,
“Mobile3drecon: Real-time monocular 3d reconstruction on a mobile
phone,” IEEE Transactions on Visualization and Computer Graphics,
vol. 26, no. 12, pp. 3446-3456, 2020.

R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in
2011 10th IEEE international symposium on mixed and augmented
reality. leee, 2011, pp. 127-136.

H. Matsuki, R. Scona, J. Czarnowski, and A. J. Davison, “Codemap-
ping: Real-time dense mapping for sparse slam using compact scene
representations,” IEEE Robotics and Automation Letters, vol. 6, no. 4,
pp. 7105-7112, 2021.

A. Rosinol, J. J. Leonard, and L. Carlone, ‘“Probabilistic volumetric
fusion for dense monocular slam,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, 2023, pp.
3097-3105.

L. Yen-Chen, P. Florence, J. T. Barron, A. Rodriguez, P. Isola, and
T.-Y. Lin, “inerf: Inverting neural radiance fields for pose estimation,”
in 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 1EEE, 2021, pp. 1323-1330.

E. Sucar, S. Liu, J. Ortiz, and A. J. Davison, “imap: Implicit map-
ping and positioning in real-time,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 6229-6238.
Z.Zhu, S. Peng, V. Larsson, W. Xu, H. Bao, Z. Cui, M. R. Oswald, and
M. Pollefeys, “Nice-slam: Neural implicit scalable encoding for slam,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 12786-12796.

Y. Zhang, F. Tosi, S. Mattoccia, and M. Poggi, “Go-slam: Global
optimization for consistent 3d instant reconstruction,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2023,
pp. 3727-3737.

W. Zhang, T. Sun, S. Wang, Q. Cheng, and N. Haala, “Hi-slam:
Monocular real-time dense mapping with hybrid implicit fields,” IEEE
Robotics and Automation Letters, 2023.

L. Liso, E. Sandstrom, V. Yugay, L. Van Gool, and M. R. Oswald,
“Loopy-slam: Dense neural slam with loop closures,” arXiv preprint
arXiv:2402.09944, 2024.

N. Keetha, J. Karhade, K. M. Jatavallabhula, G. Yang, S. Scherer,
D. Ramanan, and J. Luiten, “Splatam: Splat, track & map 3d gaussians
for dense rgb-d slam,” arXiv preprint arXiv:2312.02126, 2023.

H. Matsuki, R. Murai, P. H. Kelly, and A. J. Davison, “Gaussian
splatting slam,” arXiv preprint arXiv:2312.06741, 2023.

J. Straub, T. Whelan, L. Ma, Y. Chen, E. Wijmans, S. Green, J. J.
Engel, R. Mur-Artal, C. Ren, S. Verma, et al., “The replica dataset:
A digital replica of indoor spaces,” arXiv preprint arXiv:1906.05797,
2019.

Z. Teed, L. Lipson, and J. Deng, “Deep patch visual odometry,”
Advances in Neural Information Processing Systems, vol. 36, 2024.
Z. Zhu, S. Peng, V. Larsson, Z. Cui, M. R. Oswald, A. Geiger, and
M. Pollefeys, “Nicer-slam: Neural implicit scene encoding for rgb
slam,” arXiv preprint arXiv:2302.03594, 2023.

C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocu-
lar depth estimation with left-right consistency,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017,
pp- 270-279.

A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. NieBner, “Scannet: Richly-annotated 3d reconstructions of indoor
scenes,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 5828-5839.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers,
“A benchmark for the evaluation of rgb-d slam systems,” in 2012
IEEE/RSJ international conference on intelligent robots and systems.
IEEE, 2012, pp. 573-580.

X. Yang, H. Li, H. Zhai, Y. Ming, Y. Liu, and G. Zhang, “Vox-
fusion: Dense tracking and mapping with voxel-based neural implicit
representation,” in 2022 IEEE International Symposium on Mixed and
Augmented Reality (ISMAR). 1EEE, 2022, pp. 499-507.

E. Sandstrom, Y. Li, L. Van Gool, and M. R. Oswald, “Point-
slam: Dense neural point cloud-based slam,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2023, pp.
18433-18444.

	INTRODUCTION
	RELATED WORKS
	METHODS
	Sparse Visual Odometry Frontend
	3D Gaussian Splatting Mapping Backend
	System Components

	EXPERIMENTS
	Implementation Details
	Camera Tracking Accuracy
	Novel View Rendering
	Ablative Analysis
	Runtime Analysis

	CONCLUSIONS
	References

