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Abstract—Compiling programs to an instruction set architec-
ture (ISA) requires a set of rewrite rules that map patterns
consisting of compiler instructions to patterns consisting of ISA
instructions. We synthesize such rules by constructing SMT
queries, whose solutions represent two functionally equivalent
programs. These two programs are interpreted as an instruc-
tion selection rewrite rule. Existing work is limited to single-
instruction ISA patterns, whereas our solution does not have
that restriction. Furthermore, we address inefficiencies of existing
work by developing two optimized algorithms. The first only
generates unique rules by preventing synthesis of duplicate and
composite rules. The second only generates lowest-cost rules
by preventing synthesis of higher-cost rules. We evaluate our
algorithms on multiple ISAs. Without our optimizations, the
vast majority of synthesized rewrite rules are either duplicates,
composites, or higher cost. Our optimizations result in synthesis
speed-ups of up to 768 x and 4004 x for the two algorithms.

I. INTRODUCTION

As we approach the end of Moore’s law and Dennard
scaling, drastically improving computing performance and
energy efficiency requires designing domain-specific hardware
architectures (DSAs) or adding domain-specific extensions to
existing architectures [22]. As a result, many DSAs have
been developed in recent years [4], [8], [24], [27], [30], each
with its own custom instruction set architecture (ISA) or ISA
extension.

Targeting such ISAs from a compiler’s intermediate repre-
sentation (IR) requires a custom library of instruction selection
rewrite rules. A rewrite rule is a mapping of an IR pattern
to a functionally equivalent ISA pattern. Manual specification
of rewrite rules is error-prone, time-consuming, and often
incomplete. It is therefore desirable to automatically generate
valid rewrite rules.
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When specifying instruction selection rewrite rules, there
are two common cases. When ISAs have complex instructions,
rewrite rules will often map multi-instruction IR patterns to a
single ISA instruction. When ISAs have simple instructions,
rewrite rules will often map a single IR instruction to a multi-
instruction ISA pattern. A rewrite rule generation tool should
be able to create rewrite rules for both cases. We call such
rewrite rules many-to-many rules.

Generating instruction selectors is not a new idea. Most
relevant to this work is Gulwani et al. [21] who use a satisfia-
bility modulo theories (SMT) solver to synthesize a loop-free
program that is functionally equivalent to a given specification.
Their approach is called component-based program synthesis
(CBPS), as each synthesized program must include functional
components from a given component library. Buchwald et
al. [6] use and extend CBPS to efficiently generate multi-
instruction loop-free IR programs equivalent to a single ISA
instruction program; that is, they solve the many-to-one rewrite
rules synthesis problem. However, multi-instruction ISA pro-
grams cannot be synthesized.

Both of these algorithms produce many duplicate rules,
which are removed during a post-processing step. As we show,
this adds significant additional cost. Another issue is that
CBPS as currently formulated does not incorporate the notion
of optimizing for cost. In practice, we often want only the set
of lowest-cost rules, making it unnecessary (and expensive) to
generate equivalent higher-cost rules.

This paper presents an algorithm for automatically generat-
ing a complete set of many-to-many rewrite rules. We address
the above issues by preventing the synthesis of both duplicate
and high-cost rules at rule generation time, using exclusion
techniques. As a further optimization, we generate rules in
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stages and exclude composite rules, i.e. rules that can be
composed of smaller rules found in previous stages. These
ensure we produce a minimal but complete set of rewrite
rules. Compared to previous work, our approach eliminates
unnecessary rules and significantly reduces the time required
to produce the unique necessary ones.

Our contributions are as follows:

« We define generalized component-based program synthe-
sis (GCBPS) as the task of synthesizing two functionally
equivalent programs using two component libraries. We
then present an SMT-based synthesis approach inspired
by Gulwani et al. to solve it.

o« We present an iterative algorithm genAll to generate
all unique many-to-many rules up to a given size. We
identify a set of equivalence relations for patterns encoded
as programs and for rules that map IR programs to
ISA programs. We use these relations to enumerate and
exclude duplicate rules. Furthermore, we directly exclude
composite rewrite rules. These result in up to a 768 x
synthesis speed-up.

« We present an algorithm genAll; .~ which generates only
the lowest-cost rules by incorporating a cost metric in
addition to excluding duplicate and composite rewrite
rules. This results in a synthesis speed-up up to 4004 x.

The rest of the paper is organized as follows. Section II
discusses instruction selection, existing rule generation meth-
ods, SMT, and program synthesis. Section III describes a
program synthesis query for generating many-to-many rules.
Section IV presents an algorithm for generating only unique
rewrite rules and defines duplicates and composites. Section V
presents an algorithm for synthesizing only the lowest-cost
rules. Section VI evaluates both algorithms, and Section VII
discusses limitations and further optimizations.

II. BACKGROUND AND RELATED WORK
A. Instruction Selection

Instruction selection is the task of translating code in the
compiler’s intermediate representation (IR) to functionally
equivalent code for a target ISA. Typically, a library of rewrite
rules is used in instruction selection. A rewrite rule is a
mapping from an IR pattern consisting of IR instructions
to a functionally equivalent ISA pattern consisting of ISA
instructions. Such patterns can be expression trees or directed
acyclic graphs (DAGs).

Significant work has been devoted to developing rewrite rule
tiling algorithms to perform instruction selection [1], [5], [12],
[14]-[17], [19], [26], [29]. For each rule in the rule library, a
tiling algorithm first finds all fragments from the IR program
in which the rule’s IR pattern exactly matches that fragment.
Then, the instruction selector finds a tiling of these matches
that completely covers the basic block and minimizes the total
rule cost according to some cost metric.

Simple instruction selectors only handle tree-based IR pat-
terns, which is inefficient for reused computations. Modern
instruction selectors like LLVM, use DAG-based matching that

allows for both a richer rules and better tiling. Koes et al.
[26] describe a similar near-optimal DAG-based instruction
selection algorithm [5]. We want to generate rules that can be
used with such modern instruction selectors.

B. Generating Instruction Selectors

Generating instruction selectors from instruction semantics
has been a topic of research interest [6], [7], [9], [10], [23].
Dias and Ramsey [10] introduce an algorithm for generating
rewrite rules based on a declarative specification of the ISA.
While this solves part of the many-to-many rule task, their
work relies on an existing set of algebraic rewrite rules for
synthesizing semantically equivalent rules. Our work uses
SMT for the instruction and program semantics. However,
incorporating certain kinds of algebraic rewrite rules could
be an avenue for future optimizations.

Daly et al. [9] propose a way to synthesize instruction
selection rewrite rules from the register-transfer level (RTL)
specification of a processor. Their algorithm requires a set
of pre-specified IR patterns. In contrast, we can efficiently
synthesize rules that consider all possible multi-instruction IR
patterns up to a given size. Their approach for synthesizing
complex instruction constants and handling floating point
types could be combined with the approaches in this paper.

The most relevant to this work is the work by Buchwald
et al. [6], that leverages component-based program synthe-
sis to generate rules with multi-instruction IR patterns and
single-instruction ISA patterns. In contrast, our work synthe-
sizes rules with both multi-instruction IR patterns and multi-
instruction ISA patterns. We additionally prevent the synthesis
of duplicate, composite, and high-cost rewrite rules, unlike any
of the above approaches.

C. Program Synthesis and Equivalence

We use SMT-based program synthesis to enumerate a com-
plete set of instruction selection rewrite rules. In program
synthesis enumeration, it is common to remove equivalent
solutions [3]. We use the equivalence relation defined in
Section IV-A to determine equivalent rewrite rules. In prior
work [2], observational equivalence (i.e., programs with the
same semantics) has been used for de-duplication [2], however
observational equivalence does not take into account the
structure of the program which is essential for rewrite rule
pattern matching.

D. Logical Setting and Notation

We work in the context of many-sorted logic (e.g., [13]),
where we assume an infinite set of variables of each sort.
Terms are denoted using non-boldface symbols (e.g., X).
Boldface symbols (e.g., X) are used for sets, tuples, and
multisets, whose elements are either terms or other collections
of terms. Y := (Y7,...,Yy) defines a tuple, where |Y| = N
and Y; refers to the i-th element. Z := {2} defines a multiset,
where the multiplicity of element 2z is n € N. Both ¢ and ¢
are used to denote formulas. ¥(X) is a formula whose free
variables are a subset of X. We use M F (X) to denote



the satisfiability relation between the interpretation M and
the formula . Assuming X is a collection of variables, Mx
denotes the assignment to those variables induced by M. For
an assignment «, we write a = ¢¥(X) if M |E ¥(X) for
every model M such that Mx = o.

E. Component-based Program Synthesis

CBPS is a program synthesis task introduced by Gulwani
et al. The inputs to the task are:
o A specification S := (I%,0%, ¢spe.(I°,0°)) containing
a tuple of input variables I°, a single output variable O°,
and a formula @gpe.(I°,07) relating the inputs and the
output.
o A library of components (e.g., instructions) K, where the
k-th component Ky, := (I, Ok, ¢r(Ix, Ox)) consists of
a tuple of input variables Iy, a single output variable
Oy, and a formula ¢ (I, Og) defining the component’s
semantics.
An example component for an addition instruction is shown
below using the theory of bit-vectors, QF_BYV, where BV
is an n-bit sort.

((Io : BVg), 11 : BVig), 0 : BV ig), Io +116) It = O)

The task is to synthesize a valid program functionally
equivalent to the specification using each component from K
exactly once.

For notational convenience, we group together the
set of all inputs and outputs of the components:
W = Ugq, 0., )ek (Or U (UI;)). Gulwani et al. encode

the program structure using a connection constraint:
G eonn (L, 1%, 0% 'W). This is a formula representing how the
program inputs (I¥) and program output (O°) are connected
via the components. The connections are specified using
location variables L. We do not go into the details of how
location variables encode connections (they are in [21]). It
is sufficient for our purposes to know that these are integer
variables, and an assignment to them uniquely determines a
way of connecting the components together into a program.
The program semantics ¢p,.q are defined as the components’
semantics conjoined with the connection constraint:

d)prog(L>ISaOSaW) = (D
(/\ ¢k (Ik7 Ok)) A ¢conn(La ISv OSa W)
k

They define a verification constraint that holds if a par-
ticular program is both well-formed (specified using a well-
formedness constraint ,yf,) and satisfies the specification

Pspec:
Puerif = Pupp (L) A vI®, 0% W. 2)
Gprog(L, 15,05, W) = ¢,..(I%,07).
A synthesis formula ¢y, existentially quantifies L in (2):
Dsynth = JL.VI®, 0%, W. 3)
Vugp (L) A (Gprog (L, 17, 0%, W) == apec(I%,0%)).

This formula can be solved using a technique called counter-
example guided inductive synthesis (CEGIS). CEGIS solves
such exist-forall formulas by iteratively solving a series of
quantifier-free queries and is often more efficient than trying
to solve the quantified query directly. More details are in
[21]. For our purposes, we assume the existence of a CEGIS
implementation, CEGIS, which takes an instance of ¢gynn
and returns a model M with the property that My, = ¢yeris,
from which a program that is a solution to CBPS can be
constructed.

III. COMPONENT-BASED PROGRAM SYNTHESIS FOR
MANY-TO-MANY RULES

Given the IR and ISA instruction sets K% and K54,
Buchwald et al. [6] use CBPS to synthesize rewrite rules.
They use a single ISA instruction k’%4 € K’54 for the CBPS
specification and a subset of the IR instructions for the CBPS
components. A solution to the resulting ¢s,n, formula gives
a program P If P54 is the single-instruction program
consisting of k%4, they interpret the pair (P, P/54) as an
instruction selection rewrite rule.

However, Buchwald et al.’s solution is insufficient for gen-
erating many-to-many rules, as they cannot synthesize IR and
ISA programs that both contain multiple instructions. Instead,
two functionally equivalent programs need to be synthesized.
We first define an extension to CBPS called generalized
component-based program synthesis (GCBPS) to address this
problem. Then we show how to construct a synthesis query
whose solutions represent pairs of functionally equivalent
programs.

A. Generalized Component-based Program Synthesis

We define the GCBPS task as that of synthesizing two
programs, P?® and P?, represented using location variables
L® and L°, given two sets of components K® and K°, two
sets of inputs I¢, I® where [I¢| = |I°|, and two outputs 0%, O°
where the following conditions hold true:

1) P® uses each component in K¢ exactly once.

2) P? uses each component in K’ exactly once.

3) P is functionally equivalent to P°.

B. Solving GCBPS

We start with the CBPS verification constraint from (2)
using components K (and a corresponding set of inputs and
outputs W), but modify it slightly by introducing variables
(I*,0%) that are fresh copies of (I, 0%):

Pufp (L) AVI, 0%, W TS, 05,
(0% 10y (LI, 0% W) A fgpec(19,09)) =
(N If=17) = 0%=0%).

4)

Assuming the formulas for both the program and the specifi-
cation, if their inputs are the same, their outputs must also be
the same.

We next replace the specification program with a different
component-based program using components K® and quantify



over that program’s inputs I’, output O, and component
variables W?:

¢verif = ¢wfp(La) A 1pwfp (Lb) A\ VIaa Ib7 Oa7 Ob7 Wa7 Wb-
(5)
(L% 1%,0%, W) A ¢b,, (L, 17,0, W) =

( a
prog prog

(nIf=1)) = 0"=0").

This is our generalized verification constraint stating the
correctness criteria for when two component-based programs
are semantically equivalent.

To synthesize such a pair of programs, a synthesis formula
@ syntn 18 defined by existentially quantifying L and L in the
verification formula (5):

Gsyntn := ILY, LEVI® TP, 0%, 0°, W WP, (6)
¢wfp(La) A wwfp(Lb)/\

(6500 . 12.0% W) 1 08, (10,1, 00 W) —
(I =10 = 0° = ob)).

As above, we assume that calling CEGIS on ¢gyny, returns
a model M such that Mypayre = @uerss. This can be
converted into a pair of programs (P? P°) representing a
rewrite rule that is a solution for the GCBPS task. We
write rewriteRule(K?®, Kb Mya, Mys) for the rewrite rule
constructed from a specific model M using the component
sets K% and K°.

IV. GENERATING ALL MANY-TO-MANY REWRITE RULES

Buchwald et al. [6] describe an iterative algorithm,
Iterative CEGIS, to synthesize rewrite rules using CBPS. This
algorithm iterates over all multisets of IR instructions up to
a given size and only runs synthesis on each such multiset.
Compared to running synthesis using all the IR instructions at
once, this iterative algorithm works better in practice.

However, lterativeCEGIS cannot synthesize rewrite rules
with both multi-instruction IR programs and multi-instruction
ISA programs. Furthermore, it produces duplicate rewrite
rules which are then filtered out in a post-synthesis filtering
step. Although the results are correct, this approach is highly
inefficient because each call to CEGIS is expensive, and a
CEGIS call is made, not just for some duplicate rules, but for
every possible duplicate rule. In our approach, we make the
requirement that a solution is not a duplicate part of the CEGIS
query itself, ensuring that each successful CEGIS query finds
a new, non-redundant rewrite rule.

Our iterative algorithm, genAll, is shown in Figure 1. It
takes as parameters the IR and ISA component sets, K%
and K94 respectively, as well as a maximum number of
components of each kind to use in rewrite rules, N IR and
NTS4_ and iteratively builds up a set Sp of rewrite rules,
which it returns at the end. Line 3 shows that n; and ns
iterate up to these maximum sizes. Line 4 iterates over all

genAll(KR KA NTR NISAY.

1

2 SR < {}

3 for ny,ne € [1, N x [1, NP4]:

4 for m™ € multicomb(K'™®,n):

5 for m™ € multicomb(K™ ny) :

6 for IR 194 ¢ alilnputs(m'™®, m™4):
; 6 LI LISA

GCBPS(mIR, mISA’ IIR, IISA)

8 ¢ < ¢ A-AllComposites(Sr, .. .)
9 Sr < Sgr U

CEGISAll(¢, m™® m™4 LIE 1,154)
10 return Sg

Fig. 1: Iterative algorithm to generate all unique rewrite rules
up to a given size.

1 CEGISAll(¢, m'™®, m™4 L® L154).

2 Se={}

3 while True:

4 M «— CEGIS(¢)

5 if M=_1: return Sg

6 R « rewriteRule(m™, m™* My, My 1sa)
7 Sr + Sr U {R}

8 ¢ < ¢ A ﬁwdu;l) (R7 (LIR7 LISA))

Fig. 2: AlISAT algorithm to synthesize all unique rules. Line 8
excludes all rules that are duplicates of the current synthesized
rewrite rule.

multisets of elements from K% of size n; using a standard
multicombination algorithm multicomb [25] (not shown). Line
5 is similar but for multisets from K754 of size no. Next, for a
given choice of multisets, line 6 enumerates all possible ways
of selecting input vectors from those multisets that could create
well-formed programs. Line 7 constructs fresh sets of location
variables L’ and L’94 and returns them along with the
instantiated GCBPS synthesis formula (using Equation (6)).'
Line 8 excludes all composite rules from the synthesis search
space. Composite rules are rules that can be constructed using
the current set of rules Sy and are thus unnecessary for
instruction selection. We discuss this in more detail in Section
IV-B. Finally, on line 9, the current set of rules Sg is updated
with the result of calling CEGISAII, which we describe next.

Figure 2 shows the CEGISAIl algorithm that performs
the AIISAT [20], [31] task. Its parameters are the synthesis
formula ¢, the multisets m!f® and m’54, and the location
variables L% and LS4, 1t returns a set Sp of rewrite rules.
Initially this set is empty. The algorithm iteratively calls
a standard CEGIS algorithm to solve the synthesis query,
constructing a new rewrite rule R, which is added to the set
Sg of rewrite rules, when the call to CEGIS is successful. The
iteration repeats until the CEGIS query returns L, indicating
that there are no more rewrite rules to be found. Note that
after each iteration, the ¢gyy, formula is refined by adding

'We augment the well-formed program constraint in (6) to prevent syn-
thesizing programs containing dead code and unused inputs. This can be
accomplished by enforcing that each input and intermediate value is used
in at least one location.



the negation of a formula capturing the notion of duplicates
for this rule. We describe how this is done next.

A. Excluding Duplicate Rules

Consider the two distinct rules below. As a syntactical con-
vention, infix operators are used for IR patterns and function
calls for ISA patterns.

Il + (IQ . Ig) — Cde(Il, mul(IQ, Ig))
(Il . 13) + I, — add(Ig, mul(]l, 13))

The two IR patterns represent the same operation despite the
fact that the variable names and the order of the commutative
arguments to addition are both different. Both rules would
match the same program fragments in an instruction selector
and would result in the same rewrite rule application. Thus, we
consider such rules to be equivalent and would like to ensure
that only one is generated by our algorithm.

We first define a rewrite rule equivalence relation, ~.q;c.
Informally, two rules are equivalent if replacing either one
by the other has no discernible effect on the execution of an
instruction selection algorithm. We make this more formal by
considering various attributes of standard instruction selection
algorithms.

Commutative Instructions Modern pattern matching algo-
rithms used for instruction selection try all argument orderings
for commutative instructions [5]. We define the commutative
equivalence relation ~ci as PIE ~oim PR iff PIF is a
remapping of P{’s commutative instruction’s arguments.

Same-kind Instructions Programs P generated by GCPBS
have a unique identifier, the program line number, for each
instruction. This means that if two instructions of the same
kind appear in a program, interchanging their line numbers
results in a different program, even though it makes no
difference to the instruction selection algorithm. We define
the same-kind equivalence relation ~ g as PIF ~pn PIF
iff P27 is the result of remapping the line numbers for same-
kind instructions in P{%,

Data Dependency Modern instruction selection algorithms
perform pattern matching, not based on a total order of instruc-
tions, but on a partial order determined by data dependencies.
Many different sequences may thus lead to the same partial
order. We define ~pm as PIf ~ i PLIE iff P{® and PLF
have the same data dependency graph.

Rule Input Renaming For a given rewrite rule, the input vari-
ables used for the IR program must match the input variables
used for the ISA program, but the specific variable identifiers
used do not matter. We define the equivalence relation ~ jrue
on rules (i.e., pairs of programs) as R; ~jme Ro iff Ro is
the result of remapping variable identifiers in R;.

Rule Equivalence The first three equivalence relations defined
above are for IR programs, but the analogous relations (~gisa,
~isa, ~pisa) for ISA instructions are also useful.

Putting everything together, we define rule equivalence
~rule as follows.

~igp = W{~em, ~gm, ~pm} (7N
~isa = W{~gisa, ~isa, ~pisa} (8)
~rute = W{(~1rR ® ~1g4), ~ prue } &)

Overall IR equivalence is defined as the transitive closure
of the union (notated with W) of the three individual IR
relations. ISA equivalence is defined similarly. Overall rewrite
rule equivalence is then defined using the ® operator, where
~g=nrg ® ~y is defined as: (a1, b2) ~g (ag,be) iff a; ~q ag
and b; ~p bso. Specifically, rule equivalence is obtained by
combining IR equivalence in this way with ISA equivalence,
and then combining the result with ~ e using .

The set of all duplicates of rule R is the rule equivalence
class [R]yuie, where R' € [R]ruie <= R ~pue R
Y qup can be constructed by enumerating all elements of the
equivalence class [R],ye.

B. Excluding Composite Rules

We also exclude any rule whose effect can already be
achieved using the current set of generated rules (line 8
of Figure 1). We elucidate this using a simple example.
Assume the algorithm just constructed a new query for the
multisets m’?, m’54, and the input I’ (line 7 of Fig-
ure 1) and assume that the rule library S currently contains
rules for addition (I; + Iy — add(I;,I3)), and multiplication
(I1 - Iy — mul(I, I)). Consider the following cases.

D) If ' = (I;), m™® = {+}, and m™* = {add}, then
the rule I; + I; — add(Iy,1;) will be synthesized by
CEGISAIL. But this rule is a specialization of the existing
rule for addition. Any use of this specialized rule could
instead be replaced by the more general rule and this
rule can thus be excluded. Note that we order the inputs
on line 6 of Figure 1 to guarantee that the most general
version of a rule is found first.

2) If IIR = (Il,lg,lg), l’I’IIR = {—f—, -}, and mISA =
{add, mul}, then the composite rule (I; + (Iz - I3)) —
add(I, mul(Iz, I3)) will be synthesized by CEGISAIL.
Using similar logic, any use of this composite rule
could instead use the simpler and more general rules
for addition and multiplication, and this rule can thus be
excluded. The multiset ordering used in lines 4 and 5 of
Figure 1 ensures that subsets are visited before supersets,
guaranteeing that smaller rules are found first.

Only a subset of composite rules built from existing rules
need to be excluded for each synthesis query. In general, for
a specific query based on m’®, m’%4, and I'F, we exclude
composite rules R := (P? P194) that meet the following
criteria:
o R has exactly |I’%| inputs.
o PP has the same components as m
o P’54 has the same components as m
o P’ is built from the IR programs of already-found rules
in SR.

IR
ISA



1 genAll, o (K™ KIS N NISA cost)
2 Kortea + sortByCost(K'4, NTS4 cost)
3 Sr + {}
4 for n € [1,N"]:
5 for m’® € multicomb(K™ n):
6 for m™* € Kprpea:
7 Cour < cost(m™4)
8 for I 1554 ¢ allnputs(m™, m™*):
9 6, LR LI5A
GCBPS(m'™ m
10 ¢ < ¢ N —AllComposites ;- (Sr, Ceur, - - -)
11 Sr < Sr U
CEGISAll ¢ (¢, m'E m™4 LIE L154)
12 return Sg

ISA IR fISA
I T0)

Fig. 3: Iterative algorithm to generate all lowest-cost rules.
ISA multisets are ordered by cost. CEGISAIl is modified to
exclude rules with duplicate IR programs.

o P54 s the result of applying the rewrite rules used to
build P/,

These checks are encapsulated by the call to AllComposites
on line 8 of Figure 1.

V. GENERATING ALL LOWEST-COST RULES

Because all duplicates are excluded, the genAll algorithm
generates only unique rewrite rules. However, two unique rules
can share the same IR pattern. For a particular IR pattern, only
the lowest-cost rule is needed for some cost metrics. Knowing
the instruction selection cost metric at rule-generation time
presents another time-saving opportunity because we can also
prevent the synthesis of high-cost rules.

We make a few assumptions about such a cost metric.

o The cost for an instruction selection tiling is equal to the
sum of the costs of each tiling rule’s ISA program.

o The cost of an ISA program P4 only depends on the
instruction contents, not the program structure. This cost
is the sum of the cost of each instruction in the program.

While these assumptions are a restriction on the space of
possible cost metrics, they are sufficient to represent common
ones like code size and energy. If the compiler’s cost metric
violates these assumptions, the genAll algorithm can be used
instead. This restricted space of cost metrics has the important
property that the cost of any rule that would be synthesized
using the components m’54 can be determined up front as
the sum of the cost of each component.

Figure 3 shows our synthesis algorithm updated to only
synthesize the lowest-cost rules for each unique IR pattern.
The first change is to sort all possible mulitsets of ISA
instructions up to size N 154 by cost (lower cost first) (line
2). This ordering ensures that the first rule synthesized for a
particular IR program will be the lowest-cost version of that
rule. Therefore, after synthesizing a new rule, all rules with
a duplicate IR program can be excluded. The second change

excludes rules with duplicate IR programs. A duplicate IR
program is defined using the IR equivalence relation:
~IRpc ‘= &J{NCIR,NKIR,NDIR,NIIR} (10)
This is the same definition as (7), but with an additional
relation ~;n defined as P{F ~ i PIF iff PIE is the result
of remapping variable identifiers in PI®. The CEGISAllLc
function called on line 11 is the same as CEGISAIl, except
that it uses ~1g, instead of ~rr when constructing ) gyp.
The third change modifies AllComposites to use the
known up-front cost cost(m’54). To see how this works,
we consider again the example from Section IV-B. As be-
fore, we assume Sp currently contains two rules: one for
addition (I1 + Is — add(I1,1I3)) and one for multiplication
(I1 - Iy — mul(Iy,I5)). We assume the target (ISA) expres-
sions for these rules have cost 5 and 10, respectively. Consider
the following situation:

e Suppose I'f' = (I ,I5,I3), and m'™® = {+ .} 1t
might be possible to synthesize a rule that has IR pat-
tern (I3 + (Iz - I3)). We know that the composite rule
(I1 + (Iz - I3)) — add(I;, mul(I3,I3)) would have a
cost of 15 since rule costs are additive. Therefore, we
can exclude any rule that matches this IR pattern and has
cost(m!94) > 15.

To implement this, only one adjustment needs to be made
to the conditions in Section IV-B. Instead of requiring P/54
to have the same components as m’54, we simply require
cost(P154) > cost(m!54), i.e., for rules matching the other
conditions, if the ISA program has a cost equal to or greater
than cost of the ISA program in the current rule, it is
excluded. These conditions are encapsulated by the call to
AllComposites - (line 10).

VI. EVALUATION

Our evaluation strategy is threefold. We first show that our
algorithm is capable of producing a variety of many-to-many
rules. A good set of rewrite rules involves both many-to-
one and one-to-many rules. We also show that by removing
duplicate, composite, and high-cost rules, we produce a much
smaller set of rewrite rules. Second, we analyze the effect on
performance of the optimizations described above. We show
that they all significantly reduce the time spent in synthesis.
Finally, we show that by using different cost metrics, we can
generate different sets of lowest-cost rewrite rules.

A. Implementation

All instructions are formally specified using the hwtypes
Python library [11], which leverages pySMT [18] to construct
(quantifier-free) SMT queries in the theory of bit-vectors.
We also use annotations indicating which instructions are
commutative. We use Boolector [28] as the SMT solver and
set a timeout of 12 seconds for each CEGIS invocation. Every
synthesized rewrite rule is independently verified to be valid.



B. Instruction Specifications

To evaluate our algorithms, we selected small but non-trivial
sets of IR and ISA instructions operating on 4-bit bit-vectors.

IR We define the IR instruction set to be constants (0, 1),
bitwise operations (not, and, or, xor), arithmetic operations
(neg, add, sub), multiplication (mul), unsigned comparison
operations (ult, ule, ugt, uge), equality (eq), and dis-equality
(neq).

ISA 1 This is a minimal RISC-like ISA containing only 6
instructions: nand, sub, three comparison instructions (cmpZ,
cmpN, empC) which compute the zero (Z), sign (N), and
carry (C) flags respectively for a subtraction, and a flag
inverting instruction (inv).

ISA 2 This is an ISA specialized for linear algebra. It supports
the 5 instructions: neg, add, add3 (addition of 3 values), mul,
and mac (multiply-accumulate).

C. Rewrite Rule Synthesis

For each ISA we run three experiments. The first experiment
(All Rules) is the baseline that generates all many-to-many
rules including duplicate, composite, and high cost rules. This
is an implementation of Buchwald et al.’s IterativeCEGIS al-
gorithm extended to use GCBPS for many-to-many rules (no-
tated as IterativeCEGISccpps)- The second (Only Unique)
generates only unique rules by excluding all duplicates and
composites using the genAll algorithm. The third (Only
Lowest-Cost) generates only the lowest-cost rules using the
genAll; ~ algorithm in Figure 3. A code-size cost metric is
used, i.e., cost(K) is just the number of components in K.

For ISA 1, we split the rule generation into two parts.
The first part (ISA 1a) synthesizes rules composed of bitwise
and arithmetic IR instructions using the ISA’s nand and
sub instructions. The second part (ISA 1b) synthesizes rules
composed of constants and comparison instructions using the
four instructions cmpZ, cmpN, empC, and inwv.

For la and 1b, we synthesize rewrite rules up to an IR
program size of 2 and an ISA program size of 3 (written 2-to-
3). For (Only Lowest-Cost), we increase the ISA program size
to 5 and 4 respectively. For ISA 2, we synthesize all rewrite
rules composed of constant, and arithmetic (including mul)
IR instructions up to size 3-to-2.

The number of rewrite rules produced for ISA 1a, 1b, and
2 are shown in Tables I, II, and III, respectively. Each table
entry is the number of rewrite rules synthesized for a particular
IR and ISA program size. For all ISAs, the extra synthesized
rules in (All Rules) were compared against the duplicate and
composite rules excluded by (Only Unique). Entries in (All
Rules) marked with a ‘(-n)’ represent ‘n’ rules that (Only
Unique) synthesized, but (All Rules) missed due to CEGIS
timeouts. The (All Rules) experiment for the entry marked
with an asterisk could not complete in 70 hours, so the number
calculated from (Only Unique) is shown.

For both ISAs we were able to synthesize 1-to-many
and many-to-1 rules for both IR and ISA instructions.

genAll produced a more complete set of rules than
IterativeCEGIS zcBps .-

Table IV shows the percentage of rules that are duplicates
or composites in the first column, and the percentage of rules
that are high cost in the second column. Most rules in (All
Rules) are duplicates, composites, or high cost. Out of the
3491709 rules up to size 3-to-2 for ISA 2 (i.e. the sum of the
(All Rules)), 99.5% are duplicates or composites. Similarly,
most rules are high cost. In ISA 1a, 59672 out of 59822 rules
(99.7%) up to size 2-to-3 are high cost.

D. Synthesis Time Improvement with genAll

In this section we showcase the synthesis time im-
provements of genAll. The first experiment is the baseline
Tterative CEGISgcpps- The second excludes duplicate rules
(i.e., with line 8 of Figure 2). The third, genAll, excludes both
duplicates and composites (i.e. with line 8 of both Figure 2
and Figure 1).

For each GCBPS query, we note the time required (¢s4¢)
to run CEGISAIl. Next, we measure the number of unique
rules (Nynigue) found by CEGISAIll. We then add the pair
(Nunique tsat) to our dataset. We plot the cumulative synthesis
time versus the number of unique rules found by doing the fol-
lowing. Each data point is sorted by its slope (tsq1/Nunique)-
Then, the increase in both ¢,4; and Nyp;que is plotted for each
sorted point. Some data points have N4 = 0 indicating
that every synthesized rule was redundant and is shown using
a vertical slope.

The synthesis time plot for unique rewrite rules for ISA
1b up to size 2-to-3 is shown in Figure 4a. Excluding all
duplicates shows a 5.3x speedup. Excluding both duplicates
and composites shows a 6.2x speedup. Both optimizations
find an additional 5 unique rules.

E. Synthesis Time Improvement with genAll; o

We also showcase the synthesis time improvements of
genAll; ~ using a similar setup. The first experiment is the
baseline IterativeCEGISccpps. The second excludes IR du-
plicate rules. The third, genAll; ., excludes both IR duplicates
and IR composites.

We use the same experimental setup as before except when
computing Nypique, all higher-cost rules are filtered instead.
The synthesis time plot for lowest-cost rewrite rules for ISA
1b up to size 2-to-3 is shown in Figure 4b.

Excluding rules with duplicate IR programs provides a 41x
speed-up. Also excluding high-cost composites provides a
1254 x speed-up over the baseline (All Rules) configuration.

F. Total Speed-up

We summarize the speed-ups of genAll and genAll; -
compared to the IterativeCEGISccpps baseline for all con-
figurations in Table V. We compare the synthesis time in the
“Synth” column. We compare the total algorithm runtime in
the “Total” column (including time for iterating, solving, rule
filtering, etc.). The last row’s baseline did not complete in 70
hours, so we provide lower bounds for speed-up.



ISA Program Size
All Rules Only Unique Only Lowest-Cost
1 2 3 1 2 3 1 2 3 4 5
IR Prog 1|5 32 1096 3 10 96 3 4 2 1 0
Size 2| 76 1719 56894 || 40 189 1940 || 40 67 34 12 6
TABLE I: Number of synthesized rewrite rules for ISA 1la.
ISA Program Size
All Rules Only Unique Only Lowest-Cost
1 2 3 1 2 3 1 2 3 4
IR Program 1 [ 17 71 3662 9 51 873 7 3 0 0
Size 2 | 89 3942 (-5) 199572 || 78 717 21511 52 64 9 0

TABLE II: Number of synthesized rewrite rules for ISA 1b.

IR Program Size
All Rules Only Unique Only Lowest-Cost
1 2 3 1 2 3 1 2 3
ISA Program 1| 11 287 3998 314 315 3 14 315
Size 2 | 10 3115 341758* 3 69 1337 1 32 760

TABLE III: Number of synthesized rewrite rules for ISA 2.
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ISA  Rule Size up % Duplicate % High-cost
to (IR, ISA) or Composite
la 2, 3) 96.2% 99.7%
1b 2,3) 88.8% 99.9%
2 3,2) 99.5% 99.7%

TABLE IV: Percent of rewrite rules up to (IR, ISA) size that
are a duplicate or a composite, and percent that are high-cost.

The speed-ups depend on many parameters including the
maximum size of the rewrite rules, the number of possible
instructions, the commutativity of the instructions, and the
semantics of the instructions. The optimizations discussed
produce several orders of magnitude speed-ups. Further op-
timizing the non-solver portions (e.g. re-coding in C) would
drastically increase the “Total” speed-ups to be closer to the
“Synth” ones. Clearly, the combination of all optimizations
discussed in this paper can produce speed-ups of several orders
of magnitude.

G. Cost Metric Comparisons

Our final experiment explores how the choice of cost metric
influences the rules. We have implemented two cost metrics:
a code size metric (CS) and an estimated energy metric (E).

ISA  Rule Size up genAll Speed-up genAll; - Speed-up
to (IR, ISA) Synth Total Synth Total

la 2,2) 3.5x% 1.3x 11x 2.8%

1b 2,2) 3.1x% 1.7x 26 2.8%

2 2,2 11x 2% 53x 2.5%

la 2, 3) 12x 6.8% 601 x 57x

1b 2, 3) 6.2% 2.7x 1254 x 63

2 3,2 > 768x > 81x > 4004x > 171x

TABLE V: Speed-ups compared to lterativeCEGISgcpps-

ISA" Rule Size up | Unique Unique Common
to (IR, ISA) (CS) (E)
la 2,5) 121 161 48
1b 2,4) 99 198 36
2 (3,2) 134 137 991

TABLE VI: Number of unique and common rewrite rules
synthesized for code size (CS) and energy (E) cost metrics.

The energy metric was created to correspond to real hardware
energy data. For example the cost ratio for mul and add is
1:1 for code size, but is 2.5 : 1 for energy. The number of
common and unique lowest-cost rewrite rules for each ISA is
shown in Table VI.



While there is some overlap in common rules, each cost
metric produces a differing set of unique lowest-cost rules.

VII. CONCLUSION AND FUTURE WORK

We showed that many-to-many instruction selection rewrite
rules can be synthesized for various ISAs using program
synthesis. This supports two major trends in computer archi-
tecture. The first is the trend towards simple or reduced instruc-
tion architectures where multiple instructions are needed for
simple operations. It also supports the trend to introduce more
complex domain-specific instructions for energy efficiency.
In this case, a single instruction can implement complex
operations.

We showed that our algorithms are efficient. Removing du-
plicates, composites, and higher-cost rules results in multiple
orders of magnitude speed-ups. Synthesizing many-to-many
rewrite rules for modern IRs and ISAs may require further
optimizations. Many of our synthesized rules contain program
fragments that a compiler would optimize before instruction
selection (e.g., sub(X, X)). Excluding these could result in
further speed-ups.

Buchwald et al. [6] presented generalizations for multi-
sorted instructions, multiple outputs, preconditions, and inter-
nal attributes, enabling the modeling of memory and control
flow instructions. Our synthesis query and algorithms are
orthogonal and could incorporate these features, allowing for
a broader range of possible instruction sets.

As is the case in prior work, we limit synthesis to loop free
patterns. Relaxing this constraint and using other instruction
selection algorithms would be an interesting research avenue.

We believe this research area is fertile ground and hope our
work inspires and enables future research endeavors towards
the goal of automatically generating compilers for emerging
domain-specific architectures.
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