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Mutual information is commonly used as a measure of similarity between competing labelings
of a given set of objects, for example to quantify performance in classification and community
detection tasks. As argued recently, however, the mutual information as conventionally defined can
return biased results because it neglects the information cost of the so-called contingency table, a
crucial component of the similarity calculation. In principle the bias can be rectified by subtracting
the appropriate information cost, leading to the modified measure known as the reduced mutual
information, but in practice one can only ever compute an upper bound on this information cost, and
the value of the reduced mutual information depends crucially on how good a bound is established. In
this paper we describe an improved method for encoding contingency tables that gives a substantially
better bound in typical use cases, and approaches the ideal value in the common case where the
labelings are closely similar, as we demonstrate with extensive numerical results.

I. INTRODUCTION

A common task in data analysis is the comparison of
two different labelings of the same set of objects. How
well do demographics predict political affiliation? How
accurately do blood tests predict clinical outcomes? How
well do clustering algorithms recover known classes of
items? Questions like these, in which an experimental or
computational labeling is compared against a “ground
truth,” are commonly addressed using the information
theoretic measure known as mutual information [1].

Mutual information is a measure of how easy it is to de-
scribe one labeling of a set of objects if we already know
another labeling. Specifically, it measures how much less
information it takes (in the Shannon sense) to communi-
cate the first labeling if we know the second versus if we
do not. As an example, mutual information is commonly
used in network science to evaluate the performance of al-
gorithms for network community detection [2]. One takes
a network whose community structure is already known
and applies a community detection algorithm to it to in-
fer the communities. Then one uses mutual information
to compare the output of the algorithm to the ground
truth node labels. Algorithms that consistently achieve
high mutual information scores are considered good.

Mutual information has a number of appealing prop-
erties as a tool for comparing labelings. It is invariant
under permutations of the labels in either labeling, so
that labelings do not have to be aligned before compar-
ison. It also generalizes gracefully to the case where the
number of distinct labels is not the same in the two label-
ings. On the other hand, the mutual information in its
most common form also has some significant drawbacks
and, in particular, it is known to be biased towards la-
belings with a large number of distinct labels. Various
proposals have been made for mitigating this effect [3–7].
In this paper we focus on the recently proposed reduced
mutual information [7], which improves on the standard

measure by carefully accounting for subleading terms in
the information that are normally neglected.
Any version of the mutual information is an approxi-

mation to the true information cost of the labelings be-
ing compared. One computes the information cost by
defining some encoding scheme for labelings and then
counting the number of bits needed to specify a label-
ing within that encoding. In this paper we highlight two
common pitfalls that occur when quantifying informa-
tion cost in this way, which produce errors in opposite
directions. The first is the neglect of the information
cost of certain parts of the transmission process, result-
ing in an underestimate of the total cost of transmis-
sion. The standard, unreduced mutual information is
an example: it does not include the cost to transmit the
“contingency table” that summarizes the relationship be-
tween the two labelings, causing it to underestimate—
sometimes drastically—the total information cost, par-
ticularly for labelings with many groups.
The second pitfall, and the focus of this paper, is the

use of inefficient encoding schemes, which result in over-
estimates of information cost. The reduced mutual infor-
mation, in its conventional form, suffers from this issue
because it uses a relatively crude encoding of the contin-
gency table. In this paper we offer an improved encoding
that gives better bounds on the value of the reduced mu-
tual information, different enough to change outcomes in
some practical situations, as we demonstrate with a selec-
tion of illustrative examples. Code implementing our new
similarity measure may be found at https://github.
com/maxjerdee/reduced_mutual_information.

II. CONDITIONAL ENTROPY AND
MUTUAL INFORMATION

To motivate our discussion, we first rederive the con-
ventional mutual information using the language of infor-
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mation transmission, before progressing to the reduced
mutual information and its variants.

A. Mutual information

Mutual information can be thought of in terms of the
amount of information it takes to transmit a labeling
from one person to another. Suppose, first, that we want
to transmit to a receiver a discrete quantity X, which
can take any one of a known finite set of N values. For
example, we could be transmitting the outcome of a coin
flip X ∈ {heads, tails} or one possible labeling of a group
of objects. If we assign to each possible value of X a
unique binary string, we can convey any particular value
by transmitting the appropriate string. The minimum
length of string that can encode all N values is

H =
⌈
log2 N

⌉
≃ log2 N, (1)

where ⌈x⌉ denotes the smallest integer not less than x.
This tells us the number of bits of information needed to
transmit X.

Conventionally one uses base-2 logarithms in equations
like (1), which gives H in units of bits, as here. Some
authors use natural logarithms, which changes the re-
sults by a constant factor, but the difference is not an
important one. In this paper we use base-2 logarithms
for explicit numerical calculations, but our formal results
are all independent of the base of the logarithm and one
can use any base one wishes provided one is consistent.
Henceforth, we will write logarithms without any base
indicated.

Suppose now that X is actually a labeling g of a set
of n objects, with each object having exactly one label
and each label having the same qg possible values, which
we represent by integers in the range 1 . . . qg. Then there
are N = qng possible values of the entire labeling and
hence any labeling can be transmitted using an amount
of information

H(g) = logN = n log qg. (2)

This, however, is not necessarily the most efficient way
to transmit such a labeling. In particular, if different
labels occur with different frequencies then a more effi-
cient encoding may be possible, resulting in a smaller
information cost. The standard encoding used to do
this has three parts. First we transmit the number of
groups qg in the labeling. The maximum possible value
of qg is n, so if we use a simple “flat” encoding as in
Eq. (1), then transmitting any particular value requires
information H(qg) = log n. Next we transmit a vec-

tor n(g) of qg integers n
(g)
r equal to the number of objects

having each label r. By definition, the n
(g)
r sum to n,

and the number of ways to choose qg nonnegative inte-

gers that sum to n is
(
n+qg−1
qg−1

)
, so if we again use a flat

encoding to transmit n(g) the information cost will be

H(n(g)|qg) = log

(
n+ qg − 1

qg − 1

)
. (3)

Finally, we transmit the labeling g itself, choosing only

from among those that have the correct multiplicities n
(g)
r

of the labels. The number of such labelings is given by

the multinomial n!/
∏

r n
(g)
r ! and hence, choosing a flat

encoding one more time, the information cost is

H(g|n(g)) = log
n!∏

r n
(g)
r !

. (4)

Putting everything together, the complete cost to trans-
mit the labeling is

H(g) = H(qg) +H(n(g)|qg) +H(g|n(g))

= log n+ log

(
n+ qg − 1

qg − 1

)
+ log

n!∏
r n

(g)
r !

. (5)

This three-step scheme is not the only one that could be
applied to this problem, but it is a fairly efficient one in
the common case of a small number of groups qg ≪ n
with potentially unequal sizes, and it is the one on which
the conventional definition of labeling entropy is based.
The conventional definition, however, ignores all but

the last term and approximates the entropy as

H0(g) = log
n!∏

r n
(g)
r !

. (6)

In most cases this is a good approximation. The other
terms are subleading contributions—they grow more
slowly with n than the leading term—and in practice they
are negligible even for quite modest values of n. Com-
monly one also makes a further approximation, applying
Stirling’s formula to each of the factorials, which gives the
Shannon form of the entropy H0(g) = −n

∑
r pr log pr,

where pr = n
(g)
r /n is the probability that a randomly

chosen object has label r.
Now consider the corresponding encoding scheme for

mutual information. Suppose that we have two different
labelings of the same set of objects, a ground-truth label-
ing g which represents the “true” labels, and a candidate
labeling c, generated for instance by some sort of algo-
rithm. The mutual information I(g; c) between the two
is the amount of information saved when transmitting
the truth g if the receiver already knows the candidate c.
We can write this information as the total information
or entropy needed to transmit g on its own, minus the
conditional entropy, the amount to transmit g given prior
knowledge of c:

I(g; c) = H(g)−H(g|c). (7)

For the first term, we use the three-part encoding
scheme described above, Eq. (5). For the second we use
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n(gc)n(g)

n(c)
g c

FIG. 1. A contingency table for two labelings represented as
colorings of the nodes of a network, one with three colors and
one with two. The entries in the 3×2 contingency table n(gc)

count the number of nodes that have each combination of
labels. The row and column sums n(g) and n(c) count the
number of nodes with each label in the two labelings. Note
that, although we illustrate the contingency table with an
application to a network, the table itself is independent of
the network structure.

a similar multipart scheme, but one that now takes ad-
vantage of the receiver’s knowledge of c. In this scheme
we first communicate qg and n(g) as before, at the same

information cost of H(qg) + H(n(g)|qg). Then we com-

municate a contingency table n(gc), a matrix with ele-

ments n
(gc)
rs equal to the number of objects that simul-

taneously belong to group r in the ground truth g and
group s in the candidate labeling c. Figure 1 shows an
example of a contingency table for two labelings of the
nodes in a small network.

The contingency table consists of non-negative integer
elements and its row and column sums are equal to the
multiplicities of the labels in g and c respectively:

qc∑
s=1

n(gc)
rs = n(g)

r ,

qg∑
r=1

n(gc)
rs = n(c)

s . (8)

Since the receiver already knows the values of n(g)

and n(c) (the former because we just transmitted it and
the latter because they know c), only contingency ta-
bles with these row and column sums need be considered.
The information cost to transmit the contingency table
with a flat encoding is then equal to log Ω(n(g), n(c)),
where Ω(n(g), n(c)) is the number of possible tables with
the required row and column sums. There is no known
general expression for this number, but approximations
exist that are good enough for practical purposes [8–10].

Finally, having transmitted the contingency table, it
remains only to transmit the ground-truth labeling itself,
where we need consider only those labelings consistent
with the contingency table and the candidate labeling c.

The number of such labelings is
∏

s n
(c)
s !/

∏
rs n

(gc)
rs !, so

the information needed to uniquely identify one of them is

H(g|c, n(gc)) = log

∏
s n

(c)
s !∏

rs n
(gc)
rs !

. (9)

Putting everything together, the total conditional infor-

mation is then

H(g|c) = H(qg) +H(n(g)|qg)
+H(n(gc)|n(g), n(c)) +H(g|c, n(gc))

= log n+ log

(
n+ qg − 1

qg − 1

)
+ logΩ(n(g), n(c)) + log

∏
s n

(c)
s !∏

rs n
(gc)
rs !

. (10)

In typical applications the number of labelings compat-
ible with the contingency table is much smaller than
the total number of labelings, and hence the amount of
information needed to transmit the ground truth using
this encoding is substantially smaller than Eq. (5). The
difference—the amount saved—is the quantity we call the
mutual information:

I(g; c) = H(g)−H(g|c)
= H(qg) +H(n(g)|qg) +H(g|n(g))

−
[
H(qg) +H(n(g)|qg)
+H(n(gc)|n(g), n(c)) +H(g|c, n(gc))

]
= H(g|n(g))−H(g|c, n(gc))−H(n(gc)|n(g), n(c))

= log
n!

∏
rs n

(gc)
rs !∏

r n
(g)
r !

∏
s n

(c)
s !

− log Ω(n(g), n(c)). (11)

Once again this encoding is not necessarily the most
efficient one, but it works well in practical situations and
forms the basis for the conventional definition of mutual
information. And once again the conventional definition
drops the subleading term, retaining only the first term
in (11):

I0(g; c) = log
n!

∏
rs n

(gc)
rs !∏

r n
(g)
r !

∏
s n

(c)
s !

. (12)

Commonly one again also applies Stirling’s approxima-
tion, which leads to the familiar expression for the mutual
information I0(g; c) = n

∑
rs prs log(prs/prps), where

prs = n
(gc)
rs /n is the joint probability that a randomly

chosen object has label r in the ground truth and s in
the candidate labeling.

Though the principles behind them are similar, an im-
portant practical difference between Eq. (12) for the mu-
tual information and Eq. (6) for the entropy is that the
subleading term neglected in the mutual information is
typically larger and can significantly affect the overall
value. It is the neglect of this term that produces the
bias towards an excessive number of groups described in
the introduction. The cure for this bias is to retain the
subleading term, which leads to the measure known as
the reduced mutual information.
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B. Reduced mutual information

Equation (12) defines the standard mutual informa-
tion I0, which neglects subleading behavior. In the limit
of large n this is a good approximation, but for finite n,
including values large enough to be of practical conse-
quence, the subleading term can contribute significantly.
In this section, we demonstrate how this gives rise to a
bias in favor of labelings with larger numbers of groups
and how simply retaining the subleading term removes
this bias.

The full expression in Eq. (11) is known as the reduced
mutual information, with this particular version (we will
shortly consider others) distinguished by the fact that it
assumes a flat encoding when transmitting the contin-
gency table. We will denote this measure by Iflat:

Iflat(g; c) = log
n!

∏
rs n

(gc)
rs !∏

r n
(g)
r !

∏
s n

(c)
s !

−log Ω(n(g), n(c)). (13)

The moniker “reduced” derives from the fact that
the − log Ω term is always negative and so reduces the
value of the mutual information relative to the conven-
tional definition of Eq. (12), but we emphasize that func-
tionally we are simply retaining terms that are usually
neglected. As mentioned previously, there is no gen-
eral closed-form expression for the number Ω(n(g), n(c))
of contingency tables with given row and column sums,
and its numerical computation is #P-hard in general [11]
and hence intractable for all but the smallest of examples.
In practice, therefore, the value must be approximated.
In this paper we make use of the “effective columns” ap-
proximation of [10], which has good performance over a
wide range of situations and a simple closed-form expres-
sion:

Ω(n(g), n(c)) ≃(
n+ qcα− 1

qcα− 1

)−1 qc∏
s=1

(
n
(c)
s + α− 1

α− 1

) qg∏
r=1

(
n
(g)
r + qc − 1

qc − 1

)
,

(14)

where

α =
n2 − n+

(
n2 −R

)
/qc

R− n
, R =

∑
r

(n(g)
r )2. (15)

This estimate differs from the one originally used for the
reduced mutual information in [7], but we favor it here
since it performs better in certain regimes.

To understand the importance of the contingency ta-
ble term in the mutual information, consider the simple
case where the candidate labeling c places every object
in a group of its own: c = (1, . . . , n). No matter what
the ground truth labeling is, this choice of c clearly con-
tains no information about it whatsoever, so we expect
the mutual information to be zero. But it is not. We
have n

(c)
s ! = 1 for all s in this case, while the contingency

table has a single 1 in each column and all other elements
are 0, so nrs! = 1 for all r, s, and hence the conventional
mutual information of Eq. (12) simplifies to

I0(g; c) = log
n!∏

r n
(g)
r !

= H0(g). (16)

This answer is as wrong as it possibly could be: we ex-
pect the mutual information to take the minimum value
of zero, but instead it is equal to the entropyH0(g), which
is its maximum possible value, since the largest amount
of information we can save by knowing c when we trans-
mit g is equal to the entire information H0(g). In other
words, the conventional mutual information would have
us believe that this candidate labeling which puts every
object in its own group tells us everything there is to
know about the true labeling g, when in fact it tells us
nothing at all.
The reason for this dramatic failure is that in this case

the contingency table itself uniquely defines g, so neglect-
ing it puts the mutual information in error by an amount
equal to the complete information cost of the ground
truth. If we include the cost of transmitting the con-
tingency table, this erroneous behavior disappears. We
can calculate the number Ω(n(g), n(c)) of contingency ta-
bles exactly for this example. Since there is just a single 1
in every column of the table, the number of tables is

Ω(n(g), n(c)) =
n!∏

r n
(g)
r !

, (17)

and the reduced mutual information is

Iflat(g; c) = I0(g; c)− log
n!∏

r n
(g)
r !

= 0, (18)

which is now the correct answer.

C. Improved encodings

The reduced mutual information offers a significant im-
provement over the traditional measure for finite-sized
systems, particularly when the candidate labeling has a
large number of distinct label values. And, as we have
seen, it gives exactly the correct answer in the case where
every object is in a group of its own. In this paper, how-
ever, we argue that the reduced mutual information, as it
is usually defined, is itself an imperfect measure, and in
particular that it often overcorrects for the flaws of tradi-
tional mutual information because the encoding scheme
used for both H(g) and H(g|c) is inefficient and poorly
approximates the best possible encoding. All calculated
entropies are merely upper bounds on the true value: cal-
culating the information cost of transmitting a labeling
using a specific encoding guarantees that no more than
that amount of information is needed, but it is possible
that a better encoding exists that can do the job with
less. In this section, we propose more efficient encodings
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that give better bounds on the entropy and the condi-
tional entropy, particularly in the common case where
the two partitions g and c are similar.
The central observation behind our proposed encod-

ings is that quantities like n(g) and n(gc) usually have un-
evenly distributed elements, sometimes strongly so. For
example, mutual information is most often used to com-
pare labelings that are quite similar, which means the
elements of the contingency table are very non-uniform—
those that correspond to common pairs of labels are large,
while all the others are small. This in turn means that
choices of the contingency table with these properties are
much more likely to occur than others and hence that a
“flat” encoding that assumes all choices are equally likely
is inefficient. By using an encoding that allows for a non-
uniform distribution, we can save a substantial amount
of information and achieve a better approximation of the
mutual information.

The encodings we propose are based on the sym-
metric Dirichlet-multinomial distribution, a standard,
one-parameter family of discrete distributions over q-
vectors X of non-negative integer elements that sum to
a given total N . The distribution is derived from a two-
part generative process in which, first, a set of q probabil-
ities p1 . . . pq are drawn from a symmetric Dirchlet distri-
bution with concentration parameter α ≥ 0, and then a
set of q integers X1 . . . Xq are drawn from a multinomial
distribution with those probability parameters. The re-
sulting distribution over X is given by

P (X|N, q, α) =

∫ ∏q
r=1 p

α−1
r

B(α)︸ ︷︷ ︸
Dirichlet

N !

q∏
r=1

pXr
r

Xr!︸ ︷︷ ︸
Multinomial

dp, (19)

where B(α) is the multivariate beta function and the in-
tegral is over the simplex of non-negative values pr such
that

∑
r pr = 1. Performing the integral then gives the

standard expression for the Dirichlet-multinomial distri-
bution:

P (X|N, q, α) =

(
N + qα− 1

qα− 1

)−1 q∏
r=1

(
Xr + α− 1

α− 1

)
,

(20)

where for non-integer α we generalize the binomial coef-
ficient in the obvious way:(n

k

)
=

Γ(n+ 1)

Γ(k + 1)Γ(n− k + 1)
, (21)

with Γ(x) being the standard gamma function.
If α = 1, the Dirichlet-multinomial distribution is uni-

form over all vectors X of non-negative integers that sum
to N :

P (X|N, q, α = 1) =

(
N − q − 1

q − 1

)−1

. (22)

Smaller values 0 ≤ α < 1 produce a distribution biased
towards more heterogeneous X. In the extreme limit

where α → 0 (which we will denote as α = 0) the dis-
tribution is supported only on vectors that have a single
nonzero entry equal to N :

P (X|N, q, α = 0) =

{
1/q if X has one nonzero entry,
0 otherwise.

(23)

Conversely, for α > 1 the Dirichlet-multinomial distri-
bution favors vectors X with more uniform entries, and
in the limit α → ∞ it approaches the symmetric multi-
nomial distribution where pr = 1/q for all r:

P (X|N, q, α → ∞) =
N !∏q

r=1 Xr!
(1/q)N . (24)

Different choices of the parameter α thus place more or
less weight on different types of vectors X.
We can use the Dirichlet-multinomial distribution to

improve the encoding of the group sizes n(g) and so
better approximate the total unconditional information
cost H(g). The information cost used in the definition of
the standard reduced mutual information is

Hflat(g) = H(qg) +H(n(g)|qg) +H(g|n(g)), (25)

where as previously the subscript “flat” indicates the
flat encoding that assumes equal probability for all out-
comes at each step. Here we propose an alternative ap-
proach that still uses flat encodings for qg and g but uses
a nonuniform Dirichlet-multinomial distribution for the
group sizes n(g).
Generally when transmitting a sequence of n values

with unequal probabilities such that value r occurs nr

times, the information cost is given by Eq. (4):

log
n!∏
r nr!

≃ n log n− n−
∑
r

(nr log nr − nr)

= −
∑
r

nr log pr, (26)

where pr = nr/n is the probability of value r and we
have approximated the factorials using Stirling’s formula.
Equation 26 tells us that the information cost to transmit
the value r is simply − log pr. Applying this observation
to the Dirichlet-multinomial distribution we can calcu-
late the total information cost to transmit a vector n(g)

drawn from the Dirichlet-multinomial distribution with
concentration parameter αg:

H(n(g)|qg, αg) = − logP (n(g)|αg)

= log

(
n+ qgαg − 1

qgαg − 1

)
−

qg∑
r=1

log

(
n
(g)
r + αg − 1

αg − 1

)
.

(27)

The optimal encoding for transmitting n(g) within the
Dirichlet-multinomial family is given by the minimum of
this expression with respect to αg, which is also equiva-

lent to simply maximizing P (n(g)|αg), i.e., to finding the
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FIG. 2. Optimal values of αg for the transmission of the com-
munity sizes n(g), along with the resulting information cost
in bits HDM(n(g)) in our new Dirichlet-multinomial encoding

scheme and the corresponding cost Hflat(n
(g)) in the old, flat

encoding. Note how vectors with more extreme values benefit
from smaller values of αg, while more uniform vectors favor
larger αg.

maximum-likelihood value of αg. In practice we can find
the maximum-likelihood value with standard numerical
optimization techniques, as described in Appendix C.

We apply this procedure to a selection of example val-
ues of n(g) in Fig. 2, giving the optimal values of αg for
each one, along with the resulting values for the entropy.
In each case, as we can see, the Dirichlet-multinomial
encoding is more efficient than the conventional flat en-
coding, sometimes by a wide margin. In the extreme case
where n(g) has only a single nonzero entry, the optimal
value of αg is zero and the information cost is

H(n(g)|qg, αg = 0) = log qg, (28)

whereas the cost to transmit the same n(g) using a flat
encoding (equivalent to αg = 1) is considerably steeper:

H(n(g)|qg, αg = 1) = log

(
n+ qg − 1

qg − 1

)
≃ qg log n. (29)

One could argue that to truly make a fair compar-
ison, one should also include the cost to transmit the
value of αg itself. As shown in Appendix C, however,
this cost is small in practice, and moreover cancels com-
pletely from the final value of the mutual information, so
it is normally safe to ignore it, as we do here.

Although the information saved by using the Dirichlet-
multinomial distribution is in some cases a significant
fraction of the information needed to transmit n(g), it is
normally quite small next to the information needed to
transmit the entire labeling, which is dominated by the
cost H(g|n(g)) of sending the labeling itself. The same
is not true, however, when we turn to the conditional
entropy H(g|c), where using the Dirichlet-multinomial
distribution can result in large efficiency gains, and this
is our primary motivation for taking this approach.

Recall that the standard model for the conditional
information breaks the transmission process into four
steps—transmission of qg, n

(g), n(gc), and g—which can

be represented by the equation

Hflat(g|c) = H(qg) +H(n(g)|qg) +H(n(gc)|n(g), n(c))

+H(g|c, n(gc)), (30)

with a flat encoding at each step. In our alternate pro-
posal, we again transmit qg using a flat encoding, but
then combine the second and third steps to transmit the
contingency table all at once, given qg and n(c). This
transmission again leverages a nonuniform encoding to
achieve efficiency gains. The final step of transmitting g
itself remains unchanged.
Our process for transmitting the contingency table

involves transmitting one column at a time using the
Dirichlet-multinomial distribution. We use the same
value αg|c for each column, but the columns are other-

wise independent. If we denote column s by n
(gc)
·s , then

the information cost of this procedure can be written

H(n(gc)|n(c), qg, αg|c) =

qc∑
s=1

H(n
(gc)
·s |n(c)

s , qg, αg|c)

=

qc∑
s=1

[
log

(
n
(c)
s + qgαg|c − 1

qgαg|c − 1

)

−
qg∑
r=1

log

(
n
(gc)
rs + αg|c − 1

αg|c − 1

)]
. (31)

Consider for instance the special (but not implausible)
case where g = c, so that n(gc) is a diagonal matrix and

each column n
(gc)
·s has only a single nonzero entry. Then,

as in Eq. (28), αg|c = 0 is the optimal choice for trans-
mitting the contingency table and the total information
cost is simply

H(n(gg)|n(g), αg|c = 0) =

qg∑
r=1

H(n(gg)
.r |n(g)

r , αg|c = 0)

=

qg∑
r=1

log qg = qg log qg. (32)

In the traditional flat encoding the cost is much greater:

H(n(gg)|n(g)) = H(n(g)|n, qg) +H(n(gc)|n(c), n(g))

= log

(
n− 1

qg − 1

)
+ logΩ(n(c), n(q))

= O(qgqc log n). (33)

This significant improvement also extends to the case
where g ≃ c and the labelings are similar but not identi-
cal. This is precisely the regime in which these measures
are typically applied to quantify similarity, so that in re-
alistic settings the new encoding is much preferred over
the old one, a conclusion strongly confirmed by the ex-
ample applications given in Section III.
Figure 3 shows the equivalent of Fig. 2 for the trans-

mission of a selection of example contingency tables.
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  1.73            0               0.37                  0.20

17.91         11.61            44.74              56.58

 18.26         44.25            46.32              62.53

This paper
NMIDM(g;c)

HDM(n(gc)|n(c))

Flat reduction
NMIflat(g;c)

αg|c

αg|c

n(gc)

n(c)

Hflat(n(gc)|n(c))

qc = 1 c = g qc = qg qc > qg

n

n(g)

n(c)

n(gc)

FIG. 3. Comparison of the information cost of transmitting example contingency tables under the old and new encodings.
The top half of the figure shows the new encoding, along with the values for the optimal Dirichlet-multinomial parameter αg|c

and the resulting information cost HDM(n(gc)|n(c)). The bottom half shows the old encoding and associated information

cost Hflat(n
(gc)|n(c)). Note that the new encoding is more efficient in every case, and especially so in the case of equal

labelings c = g.

In the case where the candidate labeling places all ob-
jects in a single group, so that qc = 1, our proposed
scheme is exactly analogous to our method for trans-
mitting the vector n(g), which implies that the mu-
tual information is IDM(g; c) = 0 (the DM denoting
“Dirichlet-multinomial”). This is a desirable property
which is also shared by the traditional and reduced mu-
tual informations—a candidate labeling that places all
objects in a single group tells us nothing about the
ground truth g. We also note the considerable gulf in
efficiency between the two encodings for the case of iden-
tical labelings g = c, the second column in Fig. 3, while
for labelings that are dissimilar (the final two columns
of the figure), the gains of the new encoding are more
modest, as we would expect.

Employing our new encoding in the calculation of the
conditional information, we now obtain a revised infor-
mation cost of

HDM(g|c) = H(qg) +H(n(gc)|n(c), qg, αg|c)

+H(g|c, n(gc)). (34)

(Once again one could arguably also include the fixed
cost of transmitting the value of αg|c, but in practice this
cost is small and moreover cancels from the final value of
the mutual information—see Appendix C.)

Putting everything together, we then arrive at our im-

proved mutual information measure

IDM(g; c) = HDM(g)−HDM(g|c)
= I0(g; c) +H(n(g)|n, qg, αg)−H(n(gc)|n(c), qg, αg|c)

= I0(g; c)

+ log

(
n+ qgαg − 1

qgαg − 1

)
−

qg∑
r=1

log

(
n
(g)
r + αg − 1

αg − 1

)

−
qc∑
s=1

log

(
n
(c)
s + qgαg|c − 1

qgαg|c − 1

)

+

qg∑
r=1

qc∑
s=1

log

(
n
(gc)
rs + αg|c − 1

αg|c + 1

)
. (35)

Besides giving an improved estimate of the mutual infor-
mation, this formulation has a number of additional ad-
vantages over the standard reduced mutual information.
The closed-form expression means that approximations
like those used for the number Ω(n(g), n(c)) of contin-
gency tables in Eq. (14) are unnecessary—the measure
can be calculated exactly without approximation. The
measure also has the same advantage over other measures
like the adjusted mutual information of Vinh et al. [4],
for which the corresponding correction term is calculated
using numerically costly Monte Carlo methods. Another
advantage of our proposed measure is that it is possible
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to prove that IDM(g; c) ≤ IDM(g; g) for all c, with the ex-
act equality holding only when g and c are identical up
to a permutation of labels, an intuitive result that is re-
quired for proper normalization, but which has not been
shown for the standard reduced mutual information. We
give the proof in Appendix A.

This being said, the encoding we use is not necessar-
ily the last word in calculation of the mutual informa-
tion. As discussed at the start of this section, all entropy
calculations only give bounds on the true value and it
is possible that another encoding exists that could give
better bounds. One could imagine trying an approach
analogous to that used for the standard reduced mutual
information and constraining not only the column sums
of the contingency table but also the row sums, while
still using a nonuniform distribution over tables subject
to these constraints. Placing more constraints on the
contingency table should reduce the number of tables we
need to consider and hence save on transmission costs.
This approach, however, turns out to offer little bene-
fit in practical situations because the gains must be off-
set against the information needed to transmit the row
sums. It turns out that, in the common case where the
candidate and ground-truth labelings are similar to one
another, the possible values of the row sums are already
tightly restricted, even without placing any explicit con-
straint on them, so that imposing such a constraint saves
little information, while the cost of transmitting the row
sums is considerable. In most cases, therefore, this ap-
proach is less efficient than the one we propose.

Equation 35 does still have some shortcomings. For
one thing, it is not fully analytic, since the values of the
parameters αg and αg|c must be found by numerical op-
timization (see Appendix C). Also, because of the asym-
metric encoding used to capture the contingency table,
in which rows and columns are treated differently, the
measure is not symmetric under interchange of c and g.
For typical applications where one is comparing candi-
date labelings against a single ground truth this does not
matter greatly, since the problem is already inherently
asymmetric, but there may be cases where a symmet-
ric measure would be preferred. Lastly, the encoding we
propose is not guaranteed to always perform better than
the standard (flat) reduced information. In particular, if
the pairs of labelings g and c are truly drawn from the
distribution corresponding to the flat encoding scheme,
then by definition the flat mutual information will give an
optimal encoding and our method cannot do better. Our
broader claim, however, is that in the realistic regime of
labelings that have a significant degree of similarity, our
new encoding can be expected to perform better than the
flat encoding.

D. Normalized mutual information

So far we have defined various measures of absolute
information content, as quantified in bits for example,

but such absolute measures can be difficult to interpret.
Are 20 bits of mutual information a little or a lot? To
make sense of the results, they are often expressed in
terms of a normalized mutual information (NMI) that
represents the information content as a fraction of its
maximum possible value [2]. There are various ways to
perform the normalization [12]. Here we use the form

NMI(g; c) =
I(g; c)

I(g; g)
. (36)

Note that this expression is asymmetric in g and c—the
value is not invariant under their interchange. Other nor-
malized mutual information measures use a symmetric
denominator, such as 1

2 [I(g; g) + I(c; c)] [2, 12], but for
reasons given elsewhere [10] we believe the asymmetric
measure to be less biased.

We can define a normalized mutual information for any
of the mutual information measures discussed in this pa-
per, including the Dirichlet-multinomial measure. All of
the resulting versions of NMI have the desirable prop-
erties of being 1 when c = g and zero when the mutual
information is zero. Thus NMI values approaching 1 gen-
erally indicate similar labelings and values near zero in-
dicate dissimilar ones, making this an intuitive measure
of similarity. It is also possible for the NMI to become
(slightly) negative for the reduced mutual information
measures we consider [7]. (This cannot happen with the
traditional unreduced mutual information.) A negative
value indicates that the encoding scheme that makes use
of c when transmitting g is actually less efficient than sim-
ply transmitting g alone. This, however, happens only
when c and g are very dissimilar and hence rarely occurs
in practical situations (where we are usually concerned
with candidates c that are similar to the ground truth).

For the particular case of the Dirichlet-multinomial
mutual information, the NMI has the additional desirable
property that it takes the value 1 if and only if c and g
are identical up to a permutation of labels, while for all
other c it is less than 1—see Appendix A. This follows
directly from the inequality IDM(g; c) ≤ IDM(g; g) men-
tioned above. The same is not true of the conventional
unreduced NMI, which can be 1 even for very dissimi-
lar labelings (see Section II B). It is potentially true, but
currently unproven, for the flat reduced mutual informa-
tion.

III. EXAMPLE APPLICATIONS

In this section we give a selection of example appli-
cations of our proposed measure, demonstrating that
it can give significantly different answers from previ-
ous measures—different enough to affect scientific con-
clusions under real-world conditions.
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A    B    C    D    E    F    G   H     I A    B    C    D    E    F    G   H     I A    B    C    D    E    F    G   H     I

Contingency
table n(gc)

True groups
g

Claimed groups
of size 1

Claimed groups
of size 3

Claimed groups
of infinite size

 0.000                            0.750                                                       1.000           

 0.000                             0.497                                                     1.000   

 1.000                              1.000                                                     1.000   

This paper
NMIDM(g;c)

Flat reduction
NMIflat(g;c)

No reduction
NMI0(g;c)

IFC

B E H

A D G

IFC

B E H

A D G

IFC

B E H

A D G

FIG. 4. Examples of situations where the three normalized mutual information measures considered here can differ substantially.
A set of objects (circular dots) are divided into three ground-truth groups, represented by the horizontal stripes of red, green,
and blue. Three competing candidate divisions of the same objects are represented by the black boxes denoted A to I. In each,
the ground-truth groups are divided into a set of equally sized subgroups. But regardless of how many objects are in each
subgroup, the unreduced measure NMI0 returns a maximal score of 1 for all the candidate divisions, while the reduced measures
rightfully return lower scores, except in the case where the sizes of the subgroups diverge. For subgroups of intermediate size,
however, such as the groups of size three in the middle column, the Dirichlet-multinomial measure NMIDM of this paper can
give a substantially different, and larger score compared to the standard (“flat”) reduced mutual information NMIflat.

A. Comparison of the proposed measure and the
standard reduced mutual information

In some circumstances the results returned by the mea-
sure proposed in this paper can diverge significantly from
those given by either the non-reduced mutual informa-
tion or the standard (“flat”) version of the reduced mu-
tual information. We have already seen examples for the
non-reduced measure: cases in which the candidate la-
beling c has many more labels than the ground truth can
cause the unreduced measure to badly underestimate the
true information cost, sometimes maximally so—see Sec-
tion II B.

A simple example illustrating the difference between
the Dirichlet-multinomial and flat versions of the reduced
mutual information is shown in Fig. 4. In this example
a set of objects, represented by the dots in the figure,
are split into three equally sized ground-truth groups.
The candidate labeling c respects this division but fur-
ther splits each of the three groups into three subgroups,
also of equal size. This is a special case of the situa-
tion mentioned above in which the candidate division
has more labels than the ground truth, so it comes as
no surprise that the conventional, unreduced mutual in-
formation overestimates similarity in this case—indeed it

returns the maximal value of 1.

To understand the behavior of our two reduced mutual
information measures we consider three special cases. In
the first, shown in the left column of Fig. 4, each of the
subgroups, labeled A to I, has size 1, meaning that every
group in c has only a single object in it. We discussed
this case previously in Section II B and argued that the
correct mutual information should be zero. As the figure
shows, both versions of the reduced mutual information
give this correct result, while the unreduced measure is
maximally incorrect.

Next, consider the right column of Fig. 4, which shows
what happens as the total number of objects tends to
infinity and the size of the subgroups A to I diverges.
Asymptotically, the candidate c now gives full informa-
tion about the ground truth—g is fully specified when
both c and the contingency table are known, but the in-
formation cost of transmitting the contingency table is
a vanishing fraction of the total. Thus the NMI should
be 1 in this case, and again both versions of the reduced
mutual information give the right answer. (In this limit
the unreduced measure also gives the right answer.)

But now consider the middle column of the figure, in
which subgroups A to I have size 3. In this case the
contingency table, as shown in the figure, is highly non-
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FIG. 5. Comparison of the two normalized reduced mutual
information measures considered here for the example sys-

tem in Fig. 4, for various sizes n
(c)
r of the subgroups as de-

noted by the labels. In all cases (except n
(c)
r = 1 and ∞)

the flat reduced mutual information NMIflat returns a lower
value than the Dirichlet-multinomial reduced mutual infor-
mation NMIDM because it overestimates the information cost
of the contingency table.

uniform, and hence is transmitted much more efficiently
by the Dirichlet-multinomial encoding than by the flat
encoding. This produces a substantial difference between
the values of the two reduced mutual information mea-
sures. The Dirichlet-multinomial measure gives a rel-
atively high value of 0.75, indicating a strong similar-
ity between candidate and ground truth, while the stan-
dard flat measure gives a significantly smaller value, less
than 0.5. This is a case where the standard measure has
penalized the mutual information too heavily by overesti-
mating the information content of the contingency table,
thereby giving a misleading impression that the two la-
belings are more dissimilar than in fact they are.

Figure 5 shows a plot of the difference between the
two reduced measures for this example system with sub-

group sizes n
(c)
r ranging all the way from 1 to ∞. Across

the entire range we observe that, apart from the limiting

values of n
(c)
r = 1 and ∞, the flat reduced mutual infor-

mation consistently gives underestimates relative to the
Dirichlet-multinomial measure.

Figure 6 shows a different aspect of the two reduced
measures. In this example the ground-truth labeling di-
vides a set of 19 objects into four groups of varying sizes,
and we compare outcomes for two proposed candidate
labelings, denoted c1 and c2. Labeling c1 has identified
the four groups correctly but has split one of them into
a further four subgroups. As we would expect, the con-
ventional unreduced NMI awards this labeling a maxi-
mal score of 1, which is clearly incorrect. Both reduced
measures correctly give a value less than 1, although the

 0.762                 0.646   

 0.548                 0.673   

 1.000                 0.854   

Claimed groups c1 

True groups
g

This paper
NMIDM(g;c)
Flat reduction
NMIflat(g;c)
No reduction
NMI0(g;c)

Claimed groups c2 

Contingency
table n(gc)

CBA D

A    B    C    D    E    F    G

D

A B

E

F

G

C

A    B    C    D

FIG. 6. Two candidate labelings of the same set of objects. In
this figure, 19 objects are divided among four ground-truth
groups, represented by the horizontal stripes of red, green,
blue, and magenta, and two candidate labelings c1 and c2
are denoted by the boxes labeled A to G. The Dirichlet-
multinomial measure of this paper favors the left labeling c1
while the flat reduced mutual information prefers the right
one c2.

values are somewhat different.
Now consider candidate labeling c2, which erroneously

amalgamates the second ground-truth group with part
of the first as shown. Most observers would probably
say that this labeling is worse than c1, but that is not
what the standard reduced mutual information reports:
the standard measure favors c2 over c1 by a substantial
margin. On the other hand, the Dirichlet-multinomial
measure of this paper correctly favors c1, by a similar
margin.

B. Network community detection

The examples of the previous section are illustra-
tive but anecdotal. To shed light on the performance
of the new measure in a broader context we apply
it to the outcomes of a large set of network commu-
nity detection calculations. In these tests we use the
popular Lancichinetti-Fortunato-Radicchi (LFR) graph
model [13] to generate 100 000 random networks with
known community structure and realistic distributions
of node degrees and group sizes. Then we use six dif-
ferent popular community detection algorithms to gener-
ate candidate divisions of these networks, which we com-
pare to the known structure using both the conventional
reduced mutual information and the measure proposed
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FIG. 7. Fractional reduction in information cost when trans-
mitting the group sizes n(g) under the Dirichlet-multinomial
encoding versus the flat encoding. The horizontal axis is lin-
ear from 0 to 0.01 and logarithmic above 0.01. The bar chart
is a simple histogram of the relative frequencies, while the
curve shows the same results smoothed using a quartic kernel
density estimator with the same bin width.

here. Some technical details of the calculations are given
in Appendix D1.

As discussed in Section IIC, our Dirichlet-multinomial
approach improves the efficiency of information trans-
mission in two places: in the transmission of the group
sizes n(g) and the transmission of the contingency ta-
ble n(gc). Figure 7 shows the fractional improvement
in information cost for the group sizes for each of our
test networks. The gains vary substantially between net-
works, and some are close to zero, but in a large fraction
of cases they reach 10% or more.

More important, however, are the gains in transmis-
sion of the contingency table. Since the contingency ta-
ble depends on the candidate c as well as the ground
truth, these gains also depend on the candidate and hence
vary between the six different community detection algo-
rithms, but for our purposes here we aggregate the re-
sults over algorithms. Figure 8a shows the distribution
of the resulting fractional information savings for all net-
works in a single plot. The different curves in the plot
how the distribution varies as a function of how similar
the ground-truth and candidate divisions are, measured
using the Dirichlet-multinomial NMI.

Based on these results we observe that when g and c
are similar (NMI > 0.8, brown curve in the figure) the in-
formation gains when transmitting the contingency table
are large, up to a factor of ten or more. This aligns with
our observation, discussed in Appendix A, that for g ≃ c
the new encoding scheme is near-optimal, while the flat
scheme is very inefficient. Even in cases where g and c
are less similar, efficiency gains are often significant, typ-
ically above 10% and as high as 100% or more. There are

a handful of cases, all occurring when the candidate la-
beling and ground truth are very dissimilar (NMI < 0.2,
blue in the figure), where the new encoding performs
slightly worse than the standard one, as discussed in Sec-
tion IIC. However, given that mutual information mea-
sures are normally applied in cases where the two label-
ings are significantly similar, the evidence of Fig. 8 sug-
gests that our new encoding should be preferred, often
by a wide margin, in most practical community detection
scenarios.
As a result of the changes in both H(g) and H(g|c),

the value of the mutual information itself can also change
significantly. Figure 8b shows the fractional change in
the mutual information in our test set, with the different
curves again showing the results for different ranges of
similarity between the ground truth and the candidate
division. Because the standard encoding usually over-
estimates the conditional information H(g|c), it tends to
underestimate the mutual information I(g; c) = H(g) −
H(g|c), although this bias is offset somewhat by the
smaller overestimate of the unconditional entropy H(g).
On balance, however, the standard encoding significantly
underestimates the mutual information in many cases
and there are substantial information savings under the
new encoding, with the mutual information changing by
up to 20% or more in the common case where the two
labelings are similar (NMI > 0.8, brown curve in the
figure).

IV. CONCLUSIONS

In this paper we have presented an improved formula-
tion of the mutual information between two labelings of
the same set of objects. Our approach is in the spirit
of the recently proposed reduced mutual information:
like that measure it addresses the bias towards an ex-
cessive number of groups present in traditional measures
by taking full account of information costs including par-
ticularly the cost of the contingency table. Where our
proposal differs from the standard reduced mutual in-
formation is in using a more efficient encoding for the
contingency table. While all information theoretic mea-
sures are, in a sense, merely bounds on the true value,
our formulation gives significantly tighter bounds in the
common regime where the two labelings are similar to
one another.
We have demonstrated our proposed measure with a

number of examples and performed extensive tests on
network community structures generated using the LFR
benchmark model. In the latter context we find that the
new encoding does produce considerable savings in in-
formation cost and the resulting values for the mutual
information differ from the standard reduced mutual in-
formation by up to 20% of the total value under com-
monly occurring conditions.
Looking ahead, the improved encoding we present for

contingency tables could also be used in applications be-
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(b)(a)

FIG. 8. (a) Fractional change in the information cost of transmitting the contingency table n(gc) using the Dirichlet-multinomial
encoding compared to the flat encoding. The different curves show the distribution of values for different ranges of similarity
between the ground-truth and candidate labelings, as measured by the (Dirichlet-multinomial) normalized mutual information.
The horizontal scale is linear between −0.1 and 0.1 and logarithmic outside that range. (b) Fractional change in the mutual
information from the improved encoding of the contingency table and group sizes. The horizontal axis is linear across the entire
range and the different curves again indicate distributions for different ranges of normalized mutual information. Cases where
both mutual informations give a result of 0, for example when qc = 1, have been removed, since they yield a fractional change
of 0/0.

yond the computation of the mutual information that
is the focus of this paper. In general, the Dirichlet-
multinomial distribution that underlies our encoding pro-
vides a more informative prior than a standard uni-
form prior for Bayesian analysis involving contingency
tables [14]. The encoding presented here could thus be
used to improve data compression performance of any
model that requires the specification of a prior distribu-
tion over contingency tables, for example in the methods
for clustering discrete data presented in [15, 16].
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Appendix A: Upper bound on the
normalized mutual information

In this appendix we show that the value of the normal-
ized mutual information measure proposed in this paper
is bounded above by 1:

NMIDM(g; c) =
IDM(g; c)

IDM(g; g)
≤ 1, (A1)

and moreover that the exact equality is achieved if and
only if g and c are identical up to a permutation of their
labels. These properties ensure that no candidate can
receive a score higher than that of the ground truth it-
self and enable us to interpret a score of 1 as equality up
to permutation. The conventional (non-reduced) NMI
does not have the same properties. As shown in Fig. 4,
there are possible labelings c that are substantially dif-
ferent from g but nonetheless give a conventional NMI
of 1. It is possible that the standard (“flat”) reduced
mutual information satisfies a bound like (A1), but no
such bound has been proven. It is known to be violated
if poor approximations of Ω(n(g), n(c)) are used, so any
proof would require an exact expression for Ω(n(g), n(c))
or a sufficiently good estimate. It is unclear whether
current estimates are good enough, although we are not
aware of any violations of the relevant inequality when
the estimate of Eq. (14) is employed.

To prove (A1) we express the numerator and denomi-
nator as

IDM(g; c) = I0(g; c) +H(n(g)|n, qg, αg)

−H(n(gc)|n(c), qg, αg|c), (A2)

IDM(g; g) = I0(g; g) +H(n(g)|n, qg, αg)

−H(n(gg)|n(g), qg, αg|g)

= H0(g) +H(n(g)|n, qg, αg)− qg log qg, (A3)

as in Eqs. (32) and (35). Then our desired bound can be
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rewritten as

log

∏
s n

(c)
s !∏

rs n
(gc)
rs !

+H(n(gc)|n(c), qg, αg|c) ≥ qg log qg.

(A4)

The left-hand side of this inequality decreases when the
entries of the contingency table decrease. To demonstrate
this we define a table ñ(gc) which is identical to the orig-
inal table n(gc) except that a single entry is decreased

by 1: ñ
(gc)
rs = n

(gc)
rs − 1. With this change the first term

in Eq. (A4) must decrease, since

log

∏
s n

(c)
s !∏

rs n
(gc)
rs !

− log

∏
s ñ

(c)
s !∏

rs ñ
(gc)
rs !

= log
n
(c)
s

n
(gc)
rs

≥ 0. (A5)

Similarly, the second term in Eq. (A4) also decreases if
we make the further assumption that

n(gc)
rs ≥ n(c)

s /qg, n(gc)
rs > 1. (A6)

Under these conditions we can bound the change in the
second term by

H(n(gc)|n(c), qg, αg|c)−H(ñ(gc)|ñ(c), qg, αg|c)

= log

(
n
(c)
s + qgαg|c − 1

qgαg|c − 1

)
− log

(
ñ
(c)
s + qgαg|c − 1

qgαg|c − 1

)
− log

(
n
(gc)
rs + αg|c − 1

αg|c − 1

)
+ log

(
ñ
(gc)
rs + αg|c − 1

αg|c − 1

)
= log

n
(c)
s + qgαg|c − 1

n
(c)
s

− log
n
(gc)
rs + αg|c − 1

n
(gc)
rs

≥ log
n
(c)
s + qgαg|c − qg

n
(c)
s

− log
n
(gc)
rs + αg|c − 1

n
(gc)
rs

= log
n
(c)
s /qg + αg|c − 1

n
(c)
s /qg

− log
n
(gc)
rs + αg|c − 1

n
(gc)
rs

≥ 0,

(A7)

where in the last step we have made use of (A6) and the
the fact that log((x+α−1)/x) is monotonically decreas-
ing in x for all x > 0.
Now we observe that if there is any entry of n(gc) such

that n
(gc)
rs > 1, then there must be an entry n

(gc)
rs ≥

n
(c)
s /qg, i.e., it is greater than or equal to the average

for its column. We apply this observation repeatedly to
decrement each non-zero entry of the table to 1 until

ñ
(gc)
rs = min

(
n
(gc)
rs , 1

)
, while at the same time ensuring

that

log

∏
s n

(c)
s !∏

rs n
(gc)
rs !

+H(n(gc)|n(c), qg, αg|c)

≥ log

∏
s ñ

(c)
s !∏

rs ñ
(gc)
rs !

+H(ñ(gc)|ñ(c), qg, αg|c). (A8)

This reduces the problem of showing the general inequal-
ity (A4) to proving it for tables ñ whose entries are 0 or
1 only, which we can do as follows:

log

∏
s ñ

(c)
s !∏

rs ñ
(gc)
rs !

+H(ñ(gc)|ñ(c), qg, αg|c)

=
∑
s

[
log ñ(c)

s ! + log

(
ñ
(c)
s + qgαg|c − 1

qgαg|c − 1

)

−
∑
r

log

(
ñ
(gc)
rs + αg|c − 1

αg|c − 1

)]
=

∑
s

[
log(ñ(c)

s + qgαg|c − 1)!− log(qgαg|c − 1)!

− ñ(c)
s logαg|c

]
≥

∑
s

ñ(c)
s −1∑
t=0

log(qgαg|c + t)− ñ(c)
s logαg|c

 (A9a)

≥
∑
s

ñ(c)
s

[
log(qgαg|c)− logαg|c

]
(A9b)

≥
∑
s

ñ(c)
s log qg ≥ qg log qg, (A9c)

where in the final step we have made use of the fact that
each of the qg groups must contain at least one object,

so there must be at least qg nonzero entries in n(gc) and

hence also in ñ(gc). We also observe that the inequal-

ities (A9a)-(A9c) are saturated only when ñ
(c)
s = 1 for

all s and qc = qg. These conditions together imply that

the contingency table n(gc) must be diagonal, and hence
that the labelings g and c are equivalent up to a per-
mutation of their labels. The reverse conclusion, that
RMIDM(g; c) = 1 when g and c are equivalent up to a
permutation, also follows since our measure is invariant
under label permutations.
Finally, we note that if we instead normalize the re-

duced mutual information symmetrically according to

NMI
(S)
DM(g; c) =

IDM(g; c) + IDM(c; g)

IDM(g; g) + IDM(c; c)
, (A10)

then the results of this section also ensure
that NMI

(S)
DM(g; c) ≤ 1 and that this bound is satu-

rated only for g and c equivalent up to a permutation.
This symmetric normalization may be more appropriate
when comparing two labelings neither of which can be
considered a ground truth.

Appendix B: Clustering and permutation invariance

In this paper we have focused on the comparison of
different labelings of a set of objects, but the most com-
mon applications of the mutual information are actually
to the comparison of clusterings, i.e., partitions of ob-
jects into some number qg of (unlabeled) groups. One
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can easily represent a clustering by arbitrarily assigning
integer labels 1 . . . qg to the groups and then recording
the label of the group to which each object belongs, but
the mapping from clusterings to labelings is not unique:
here are qg! permutations of the labels that correspond
to the same clustering. This means that the information
cost of transmitting a labeling, as discussed in this paper,
is larger than the information cost of transmitting a clus-
tering. In the most extreme case, suppose that we want
to transmit the unique clustering of n objects into n dis-
tinct groups, with a single object in each group. There
are n! possible labelings that represent this clustering,
so the information cost to transmit any one of them is
H0(g) = log n! as in Eq. (6). Yet there is only a sin-
gle clustering that places each object in its own group,
so in principle the information cost should be log 1 = 0.
Thus the label-based approach grossly overestimates the
true information cost in this case. As we argue in this
appendix, however, the amount of the overestimate is a
constant that plays no role in typical applications, and
cancels completely from the mutual information itself,
so in practice the measures described in this paper give
correct and useful answers as is.

What is the actual information content of a clustering,
not just of the labeling that represents it? To answer
this question we adopt a notation that directly describes
clusterings rather than labelings. For a given labeling g
with qg labels we define the equivalence class g̃ to be the
set of all qg! variants of g obtained by permutations of
the label values, including the original permutation g it-
self. By combining all these permutations into a single
object, the equivalence class directly represents the clus-
tering of which labeling g is a manifestation. With this
definition we can adapt the encoding schemes for label-
ings described in this paper to give encoding schemes for
clusterings.

Any encoding of labelings effectively defines a proba-
bility distribution over all labelings via P (g) = e−H(g).
Since the schemes of this paper are all invariant under
the qg! possible permutations of the labels, we can easily
sum up the resulting probability weight over all label-
ings that represent a given clustering to find the induced
probability distribution over clusterings:

P (g̃) =
∑
q∈g̃

P (g) = qg!P (g). (B1)

Under this distribution the cost to directly transmit the
clustering g̃ independent of its label assignment is

H(g̃) = − logP (g̃) = H(g)− log qg! (B2)

Thus, if we could find a way to transmit only the clus-
tering we would realize an information savings of log qg!
compared with the transmission of an arbitrary labeling.

A practical way to achieve this is simply to agree upon
a single unique labeling that will represent each possible
clustering. Only these agreed labelings will be transmit-
ted and no others. By definition this reduces the number

of possible labelings by a factor of qg! and hence reduces
the information by log qg!, as above.
To give an explicit example of such an encoding, we

could stipulate that every labeling must have the follow-
ing two properties:

1. Groups are labeled in order of increasing size, so
that group 1 is the smallest and group qg is the
largest.

2. If two groups have the same size, the tie is broken
by giving the smaller group label to the group that
appears first in the ordered list of all objects.

For every clustering there is only one labeling that sat-
isfies these rules, and any labeling that does not satisfy
them can easily be converted into one that does. For
example, g = 33132112 becomes 22321331.
If enforcement of the above rules is denoted by R, the

information content of a clustering is

H(g̃) = H(g|R), (B3)

and with these definitions we can now explicitly calcu-
late the information needed to transmit a clustering. As
before, we transmit the clustering in three steps. In the
first step we transmit the number of groups qg. The fact
that a labeling respects the rules R has no effect on qg, so
the information required for this step is unchanged from
before: H(qg|R) = H(qg).

In the second step we transmit the group sizes n(g),
and here there is a change because rule 1 above implies
that the group sizes must appear in non-decreasing or-
der, and hence the possible values of n(g) are drawn only
from the set of such non-decreasing candidates, a subset
of the

(
n−1
qg−1

)
possible vectors that sum to n. We further

note that not all of these non-decreasing vectors will oc-
cur with equal frequency. The number of ways one such
vector can occur in our transmission process is equal to
the number of unique starting vectors that can be per-
muted into the given non-decreasing form. If we define
the multiplicity of the group sizes as

Mt =
∣∣{r|n(g)

r = t}
∣∣, t = 1 . . . qg, (B4)

then there are qg!/
∏

t Mt! such permutations. So
the probability that any individual one will occur is
(qg!/

∏
t Mt!)/

(
n−1
qg−1

)
and the information cost to trans-

mit n(g) is minus the log of this probability:

H(n(g)|qg, R) = log

[(
n− 1

qg − 1

)∏
t Mt!

qg!

]
. (B5)

In the third step of the transmission process we trans-
mit the labeling itself, and here too the information cost
is modified because of our rules. Whenever two groups
of the same size are present, we know that the group ap-
pearing first must have the smaller group label because
of rule 2 above and hence we need only consider labelings
that satisfy this requirement. This leaves only a fraction
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1/
∏

t Mt! of the original n!/
∏

r n
(g)
r ! labelings, giving an

information cost of

H(g|n(g), R) = log
n!∏

r n
(g)
r !

∏
t Mt!

. (B6)

Combining these terms, the total information cost to
transmit the clustering is

H(g̃) = H(g|R)

= H(qg|R) +H(n(g)|qg, R) +H(g|n(g), R)

= H(qg) +H(n(g)) + log
∏
t

Mt!− log qg!

+H(g|n(g))− log
∏
t

Mt!

= H(g)− log qg! (B7)

as expected.
Taking, for instance, our earlier example in which there

are n groups of one object each, all groups have the same
size, so by rule 2 above they are simply labeled in order
of their appearance 123 . . . n. This is the unique valid
labeling with this set of group sizes, so setting qg = n,
the information cost is correctly given as H(g)− log qg! =
log n!− log n! = 0.

The same discounted information cost also applies to
the conditional entropy. Suppose we are given a candi-
date clustering denoted by equivalence class c̃ and repre-
sented as above by a unique labeling c within that class,
such as the one obeying the rules R. Since our encod-
ing schemes are invariant under label permutations, all
labelings in c̃ are equally informative, including the one c
that we have selected, and hence

H(g̃|c̃) = H(g̃|c). (B8)

Using the same argument as before, the conditional in-
formation cost of the clustering is then given by

H(g̃|c) = H(g|c)− log qg! (B9)

and hence the mutual information between two cluster-
ings is given by

I(g̃; c̃) = H(g̃)−H(g̃|c̃)
= H(g)− log qg!−

[
H(g|c)− log qg!

]
= H(g)−H(g|c) = I(g; c). (B10)

Thus, the mutual information between clusterings is the
same as between any corresponding pair of labelings.
In practice, this means that we never need to consider
mutual information measures between clusterings: cal-
culating the mutual information between labelings, as
described in this paper, is more straightforward and will
give the same result.

Using this clustering perspective we can also show that
the encoding we propose in this paper is near optimal
in the important case where c = g. All the encoding

schemes we consider are invariant under label permuta-
tions, which implies that

H(g|g) = H(g|g̃) = H(g̃|g̃) + log qg! ≥ log qg! (B11)

From Eqs. (32) and (34) our Dirichlet-multinomial en-
coding has cost

HDM(g|g) = H(qg) +H(n(gg)|n(g), αg|g) +H(g|c, n(gg))

= log n+ qg log qg. (B12)

If we accept the cost log n of transmitting the number
of groups qg as a necessary price of doing business, this
value for HDM(g|g) very nearly saturates the bound in
Eq. (B11), since the gap between qg log qg and log qg! is
only of order O(qg). By contrast, the flat encoding is
far from saturating the bound in this case, explaining
its poorer performance in the important regime where
c ≃ g. Equation (B12) also helps explain a point made
in Section IIC, that it is rarely beneficial to constrain
both the row and column sums of the contingency table,
since the Dirichlet-multinomial encoding is already near-
optimal while constraining only the columns.

Appendix C: Choosing and transmitting the
value of the Dirichlet-multinomial parameter

In computing the information costs H(n(g)|qg, αg)

and H(n(gc)|n(c), qg, αg|c) that appear in Eqs. (27)
and (31), we have used the values of the Dirichlet-
multinomial parameters αg and αg|c that minimize those
costs. These values were found by numerical optimiza-
tion, using golden-ratio search in the space of logα with
a starting bracket of α ∈ [10−3, 103].
In Figs. 7 and 8 we compared the information costs

of transmitting the group sizes n(g) and the contin-
gency table n(gc) within the Dirichlet-multinomial encod-
ing scheme and the standard (flat) encoding, but we ne-
glected the cost of sending the value of α, which arguably
means the comparison is not entirely fair. Assigning a
cost to the transmission of α is somewhat delicate, since
it is a continuous-valued parameter with a potentially in-
finite number of decimal digits, and hence its complete
transmission would require an infinite amount of informa-
tion. In practice, however, high accuracy is not needed to
get most of the benefit of the Dirichlet-multinomial ap-
proach and we can use a small number of bits to transmit
a value chosen from a finite set of possibilities without
losing much. For example, by using four bits of infor-
mation we can transmit a value chosen from the sixteen
possibilities α ∈ {10−2, 10−1.75, 10−1.5, . . . , 101.5, 101.75}.
In Figure 9 we show the resulting difference in informa-
tion cost between the Dirichlet-multinomial and flat en-
codings when this additional small cost is taken into ac-
count. As panel (a) shows, the cost of transmitting αg

does have a noticeable effect on the (already small) in-
formation to transmit n(g), the flat encoding now being
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(a) (b)

FIG. 9. (a) The absolute change in the information cost of transmitting the vector of true group sizes n(g) between the standard
flat encoding and the optimized Dirichlet-multinomial encoding. In contrast with Fig. 7, the information cost H(αg) = 4 bits
for transmitting the Dirichlet-multinomial parameter is included in this comparison. (b) The absolute change in the information

cost of transmitting the contingency table n(gc) between the standard flat encoding and the Dirichlet-multinomial encoding
(including H(αg|c)). The different curves show the distribution for different levels of similarity between the ground-truth and
candidate labelings, as measured by the normalized mutual information. The horizontal scale is linear between −10 and 10
and logarithmic outside that range. In both panels the densities of cases are transformed and smoothed as in Figure 7.

favored in a number of cases, but this is usually not an is-
sue, since the information cost of n(g) is not a large part
of the total in most practical situations. As panel (b)
shows, we retain the significant gains in the transmission
of the contingency table under the Dirichlet-multinomial
scheme, even allowing for the cost of transmitting αg|c,
especially in the common regime where c ≃ g.

Moreover, these concerns will not impact our final mu-
tual information score at all if the same method is used
to transmit both αg and αg|c. Any costs that we include
will cancel in the expression for the mutual information
because

IDM(g; c) = I0(g; c) +H(n(g)|n, qg, αg) +H(αg)

−
[
H(n(gc)|n(c), qg, αg|c) +H(αg|c)

]
= I0(g; c) +H(n(g)|n, qg, αg)−H(n(gc)|n(c), qg, αg|c).

(C1)

In practice, therefore, the cost of transmitting α plays no
role in our calculation of the mutual information.

Appendix D: Benchmark generation

In this appendix we briefly describe the generation of
benchmark networks and the community detection algo-
rithms used in our network clustering tests.

1. LFR network generation

The networks we use for benchmarking are generated
using the LFR model described in [13], which creates
networks with relatively realistic features by the following
procedure.

1. Fix the number of nodes n and mixing pa-
rameter µ. In our examples we use node counts
in the range n ∈ [200, 51200]. The parame-
ter µ controls the relative number of edges within
and between communities. For small µ there are
many more edges within communities than between
them, which makes the communities relatively easy
to detect. But as µ increases there are more edges
between communities and detection becomes more
difficult. Our examples span values of µ in the
range [0.2, 0.8].

2. Draw a degree sequence from a power-law
distribution with exponent τ1. Many networks
have power-law degree distributions, typically with
exponents between 2 and 3 [17], and the LFR
model exclusively uses power-law distributions. We
use τ1 = 2.5, with average degree ⟨k⟩ = 20 and
a maximum degree that scales with graph size
as kmax = n/10.

3. Draw a set of community sizes from a power-
law distribution with exponent τ2. Many networks
also have community sizes that approximately fol-
low a power law, with typical exponents in the
range from 1 to 2 [13, 18–20]. We use τ2 = 1.5



17

and a minimum community size of smin = 20 in
all cases, while the maximum community size is set
to smax = max(n/10, 100). Empirically, our results
are not very sensitive to the choices of degree and
community size distributions.

4. Assign each node to a community at random
while ensuring that the community chosen is always
large enough to support the added node’s intra-
community degree, given by (1−µ)k where k is the
total degree.

5. Rewire the edges attached to each node while
preserving the node degrees so that the fraction of
edges connected to each node running outside its
community is approximately µ.

The parameter values above are similar to those used for
instance in [21].

2. Community detection algorithms

We perform community detection on the LFR net-
works using six well-known algorithms to generate re-
alistic pairs (g, c) of ground truths and candidates as fol-
lows. (We use the implementations found in the igraph
library [22], except for the inference method, for which
we use the graph-tool library [23].)

1. InfoMap: InfoMap is an information theoretic
community detection method that defines a com-
pression algorithm for encoding a random walk on
a network based on the communities that the walk
passes through [24]. Different community labelings
yield different compression efficiencies, as quanti-
fied by the so-called map equation, and the label-
ing with the highest efficiency is considered the best
community division.

2. Modularity maximization: Modularity is a
quality function for community divisions equal to
the fraction of edges within communities minus
the expected such fraction in a randomized ver-
sion of the network. Modularity maximization al-
gorithms work by searching for the division of the

network that maximizes this modularity. Exact
maximization is NP-hard and computationally in-
tractable in most practical situations, but the mod-
ularity can be approximately maximized using var-
ious methods such as the Louvain and Leiden al-
gorithms [25, 26], spectral methods [27], and simu-
lated annealing [28–30].

3. Modularity with enhanced resolution: Stan-
dard modularity maximization is known to suffer
from a “resolution limit”—it cannot detect com-
munities smaller than a certain threshold size [31].
This can be remedied by generalizing the mod-
ularity to include a resolution parameter γ such
that higher values of γ push the algorithm towards
smaller communities [30]. Standard modularity
maximization corresponds to γ = 1, but for com-
parison we also conduct tests with γ = 10 using the
Leiden algorithm.

4. Statistical inference: Community detection can
also be formulated as a statistical inference prob-
lem. In this approach one assumes the network
to have been generated from a randomized model
in which the probabilities of edges depend on the
group membership of the nodes at their ends. Then
finding the communities in a given network be-
comes a question of fitting the model to the network
to find the best set of group assignments. Here we
fit the so-called degree-corrected stochastic block
model [32] to our LFR networks using a Bayesian
method [33].

5. Walktrap: Walktrap is an agglomerative algo-
rithm in which initially separate nodes are com-
bined into progressively larger communities in or-
der from strongest to weakest connections, where
strength is defined in terms of the time for a ran-
dom walk to reach one node from another [34].

6. Labelprop: The label propagation or “labelprop”
algorithm likewise initially places every node in its
own community, then it iteratively updates the la-
bels of randomly chosen nodes by majority vote
among their network neighbors [35].

[1] T. M. Cover and J. A. Thomas, Elements of Information
Theory. John Wiley, New York, 2nd edition (2006).

[2] L. Danon, J. Duch, A. Diaz-Guilera, and A. Arenas,
Comparing community structure identification. J. Stat.
Mech. 2005, P09008 (2005).

[3] B. E. Dom, An information-theoretic external cluster-
validity measure. In A. Darwiche and N. Friedman (eds.),
Proceedings of the 18th Conference on Uncertainty in Ar-
tificial Intelligence, pp. 137–145, Morgan Kaufmann, San
Francisco, CA (2002).

[4] N. X. Vinh, J. Epps, and J. Bailey, Information theoretic

measures for clusterings comparison: Variants, proper-
ties, normalization and correction for chance. Journal of
Machine Learning Research 11, 2837–2854 (2010).

[5] P. Zhang, Evaluating accuracy of community detection
using the relative normalized mutual information. J. Stat.
Mech. 2015, P11006 (2015).

[6] A. Amelio and C. Pizzuti, Correction for closeness: Ad-
justing normalized mutual information measure for clus-
tering comparison. Computational Intelligence 33, 579–
601 (2017).

[7] M. E. J. Newman, G. T. Cantwell, and J.-G. Young, Im-



18

proved mutual information measure for clustering, clas-
sification, and community detection. Phys. Rev. E 101,
042304 (2020).

[8] P. Diaconis and B. Efron, Testing for independence in
a two-way table: New interpretations of the chi-square
statistic. Annals of Statistics 13, 845–874 (1985).

[9] A. Barvinok and J. Hartigan, Maximum entropy Gaus-
sian approximations for the number of integer points and
volumes of polytopes. Advances in Applied Mathematics
45, 252–289 (2010).

[10] M. Jerdee, A. Kirkley, and M. E. J. Newman, Improved
estimates for the number of non-negative integer matrices
with given row and column sums. Proc. R. Soc. London
A 480, 20230470 (2024).

[11] M. Dyer, R. Kannan, and J. Mount, Sampling contin-
gency tables. Random Structures & Algorithms 10, 487–
506 (1997).

[12] A. F. McDaid, D. Greene, and N. Hurley, Normalized
mutual information to evaluate overlapping community
finding algorithms. Preprint arXiv:1110.2515 (2011).

[13] A. Lancichinetti, S. Fortunato, and F. Radicchi, Bench-
mark graphs for testing community detection algorithms.
Phys. Rev. E 78, 046110 (2008).

[14] I. J. Good, On the application of symmetric Dirichlet
distributions and their mixtures to contingency tables.
Annals of Statistics 4, 1159–1189 (1976).

[15] A. Kirkley, Spatial regionalization based on optimal in-
formation compression. Communications Physics 5, 249
(2022).

[16] A. Kirkley, Inference of dynamic hypergraph rep-
resentations in temporal interaction data. Preprint
arXiv:2308.16546 (2023).

[17] G. Caldarelli, Scale-Free Networks. Oxford University
Press, Oxford (2007).
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