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Altermagnetism, recently spotlighted in condensed matter physics, presents captivating physical
properties and holds promise for spintronics applications. This study delves into the theoretical
description and categorization of two-dimensional altermagnetism using spin group theory. Em-
ploying spin-group formalism, we establish seven distinct spin layer groups, extending beyond the
conventional five spin Laue groups, to describe two-dimensional altermagnetism. Utilizing these
findings, we classify previously reported two-dimensional altermagnets and identify novel materials
exhibiting altermagnetism. Specifically, monolayer MnTeMoO6 and VP2H8(NO4)2 are predicted to
be two-dimensional altermagnets. Furthermore, we scrutinize their spin-momentum locking charac-
teristics through symmetry analysis and density functional theory calculations, substantiating their
altermagnetic properties.

I. INTRODUCTION

Altermagnetism, characterized by collinear-
compensated magnetic order in real space and time-
reversal symmetry breaking in reciprocal space, has
recently attracted considerable attention in condensed
matter physics[1–4], for its intriguing physical prop-
erties and promising application in spintronics. This
phenomenon was proposed in scientific literature as
early as 2019[5–9], and subsequently formalized with
the name ‘altermagnetism’ in 2022[10]. In the realm of
nonrelativistic spin groups[11–13], altermagnetism has
emerged as a distinct third magnetic state, characterized
by the connection between opposing sublattices through
rotational or mirror symmetries, rather than through
translational or inversional symmetries, leading to the
disruption of PT symmetry[10]. Due to its unique
spin-momentum locked electronic structure, there are a
number of unconventional anomalous magnetic response
predicted in altermagnets, such as anomalous Hall
effect[8, 14] and Kerr effect[15, 16], which have been
verified by experiments[17]. Moreover, very recently,
the spin-splitting electronic structure has been reported
experimentally in MnTe, through angle-resolved photoe-
mission spectroscopy measures, which provides direct
evidence for altermagnetism[18].

So far, a wide range of materials has been classified as
altermagnets, such as RuO2[8], MnTe[18, 19], MnF2[9],
and so on. However, the majority of reported alter-
magnets are three-dimensional (3D), while there are few
reports on two-dimensional (2D) altermagnets. It has
been shown that monolayer MnP(S,Se)3 can transform
from antiferromagnetism to altermagnetism by apply-
ing an electric field or through a Janus structure, which
breaks the inversion symmetry between one sublattice
and another[20]. Furthermore, some 2D altermagnets
have been theoretically predicted, such as V2Te2O[21]
and RuF4[22]. It has been proposed that magnon-
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mediated superconductivity may occur in 2D altermag-
nets and the critical temperature can be enhanced by
tuning the chemical potential[23]. However, to date,
no specific material exhibiting altermagnetism have been
demonstrated to show this result experimentally. There-
fore, the search for 2D materials with altermagnetism is
crucial for a deeper understanding of the fundamental
physical properties inherent in 2D altermagnets.

On the other hand, 3D altermagnetism has been de-
scribed by spin Laue group in the previous research[10],
while how to describe 2D altermagnetism has not been
solved. On the basis of Laue group and spin-group for-
malism, which considers symmetry transformation in de-
coupled real and spin space, it is suggested that there
are 32 nontrivial spin Laue groups, which correspond to
three distinct magnetic phases. According to the char-
acteristics of spin-momentum locking, the ten nontrivial
spin Laue groups of altermagnetism are classified into
two types, the plane and bulk. Five plane spin Laue
groups are considered to appear in both two-dimensional
and three-dimensional crystals, whereas the five bulk
spin Laue groups are thought to appear only in three-
dimensional crystals. Here, we discover that there are
seven spin groups to describe the spin-momentum lock-
ing in 2D altermagnet, rather than five spin Laue groups.
The unexpected spin groups were previously classified as
bulk type.

In fact, the significance of altermagnetism in 2D ma-
terials remains an open question. As stated by the
Mermin-Wagner theorem[24], magnetic anisotropy orig-
inating from spin-orbit coupling (SOC) is essential for
magnetic order in 2D materials at finite temperatures.
The impact of SOC on RuF4, identified as a 2D altermag-
net, has been discussed. It has been proposed that in the
presence of SOC, 2D altermagnets may exhibit weak fer-
romagnetism and SOC-induced band splitting[25]. Nev-
ertheless, in our theoretical analysis and DFT calcula-
tions, we have neglected the SOC effect, given the non-
relativistic origin of altermagnetism.

In this work, we focus on the description and clas-
sification of 2D altermagnetism. Utilizing a method
similar to that used to deduce the spin group theory,
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we have explored the two-dimensional spin layer group,
which is grounded in the layer group concept. The spin
layer groups are clearly beneficial for the search for and
further understanding of 2D altermagnetism. We opt
for layer groups, rather than point groups, as the sym-
metry transformations in real space for two main rea-
sons. First, the 2D materials we commonly study are
not two-dimensional strictly but quasi two-dimensional.
Secondly, employing point groups can introduce ambigu-
ity. Consequently, we believe that layer groups provide
a more accurate symmetry description for 2D materials.
To verify our results, we employ spin layer groups that
describe altermagnetism to search for potential materials
with 2D altermagntism in material project database[26]
and to classify the reported 2D altermagnets.

The paper is organized as follows: in the second sec-
tion, we illustrate the process of deducing spin layer
groups. In the third section, we provide some examples
of 2D altermagnets to verify our result and analyze their
spin-momentum locking properties. Finally, we present
our conclusions and offer some prospects about 2D alter-
magnetism.

II. DERIVATION OF SPIN LAYER GROUP

As is known to all, spin group is expressed as the
direct product rs ⊗ Rs, where rs represents spin-only
group containing symmetry transformations acting on
spin space, and Rs represents nontrivial spin group con-
taining pairs of transformations [Ri||Rj ], in which the
transformations on the left of the double bar only act
on the spin space and those on the right of the dou-
ble bar only act on the real space. For collinear spin
arrangements, the spin-only group mainly include two
transformations[10]. One is all rotations in spin space
around the common axis of spins C∞, which make spin
a good quantum number, so the band structure can be
strictly separated into spin-up and spin-down channels.
The other is a 2-fold rotation around an axis perpendic-
ular to the spins, combined with inversion symmetry of
spin space, C2 , which is always accompanied by time-
inversion symmetry(T ), and can be written as [C2||T].
When we apply it on the spin and momentum-dependent
bands, [C2||T]ε(s,k) = ε(s,−k) can be obtained. There-
fore, this transformation is equivalent to the real-space
inversion in reciprocal space. Meanwhile, because this
transformation makes the whole system invariant, for all
collinear magnets, we can obtain [C2||T]ε(s,k) = ε(s,k),
and thus ε(s,k) = ε(s,−k). It can thus be concluded
that under real-space inversion, the nonrelativistic band
structure remains invariant for all collinear magnets, re-
gardless of whether the system possesses real-space inver-
sion symmetry. This conclusion is significant, as you can
see later in this article, greatly simplifies the derivation
of the spin layer group.

We now focus on the nontrivial spin group. The
nontrivial spin group involves pairs of transformations

[Ri||Rj ], which act independently on spin space and real
space. Regarding the spin-space symmetry, for collinear
spin arrangements, we select two transformations. One
is the identity E of spin space, and the other is a 2-fold
rotation around an axis perpendicular to the spins, de-
noted as C2. Alternatively, spin-space inversion can also
be chosen. These options result in the formation of two
spin-space groups, S1 = {E} and S2 = {E,C2}.
Next, we address the real-space transformations within

the nontrivial spin group. First of all, we assume that the
2D material under consideration lies parallel to the xy-
plane. For the reasons mentioned earlier, we select the
layer group as the real-space group to construct nontriv-
ial spin layer group. Detailed information on layer groups
can be found in a referenced book[27]. As the promi-
nent property of altermagnetism we focus on is spin-
momentum locking, which is independent of real-space
translation symmetry, we only consider the point-group
symmetry operator of layer-group symmetry. For exam-
ple, the glide reflection through the xy-plane is regarded
as mirror symmetry through the xy-plane regardless of
the translation direction. Similarly, the screw rotation
around x -axis is regarded as a 2-fold rotation around x -
axis. As stated above, for all collinear magnets with or
without real-space inversion symmetry, the nonrelativis-
tic band structure will be invariant, when applied with
real-space inversion symmetry operations. To avoid con-
fusing between layer-group symmetry and the symmetry
that keeps band structure invariant, we refer to the latter
as reciprocal-space symmetry. Through the direct prod-
uct of the space-inversion group and the layer groups, we
can obtain all reciprocal-space groups that correspond to
the eighty layer groups, as listed in Table I. In fact, these
groups belong to the Laue groups.

According to the isomorphism theorem[12], which im-
plies the decompositions with the same number of cosets
for the two groups, the nontrivial spin layer group can
be constructed into three types, corresponding to three
magnetic phase respectively. Selecting S1 as the transfor-
mation for the spin space, there exists a unique scenario
in which the nontrivial spin layer group R1 = [S1||G] can
be derived, with G representing the layer groups. They
describe nonzero magnetization and band structure with
broken time-inversion symmetry, corresponding to ferro-
magnetism.

Similarly, if we choose S2 as the spin-space transfor-
mation, two cases will appear. One is that the non-
trivial spin layer group is given by R2 = [S2||G] =
[E||G] + [C2||G], which describes zero magnetization
and spin-degenerate band structure with time-inversion
symmetry, corresponding to antiferromagnetism. The
other is that the nontrivial spin layer group is given by
R3 = [E||H] + [C2||G − H], where H is a halving sub-
group of layer group G. They describe zero magnetiza-
tion and band structure with broken time-inversion sym-
metry, corresponding to altermagnetism, which we will
focus on later. The transformation associated with spin-
space identity will link atoms within the same sublattice,
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TABLE I. All reciprocal-space symmetry corresponding to layer groups. The plus (+) and minus (-) denote the counterclockwise

and clockwise rotations, respectively. The bar above the symbol denotes inversion symmetry. For example, C+
4z denotes 90

degree rotation counterclockwise with space inversion. A sequence of three numbers denotes the direction of axis or plane. The
direct product is denoted by ⊗.

reciprocal-space group Layer group reciprocal-space symmetry

1 1-2 E,E
2 3-7 E,E,C2z,mz

3 8-18 E,E,C2x,mx

4 19-48 E,E,C2z,mz, C2x,mx, C2y,my

5 49-52 E,E,C2z,mz, C
+
4z, C

−
4z, C

+
4z, C

−
4z

6 53-64 E,E,C2z,mz, C
+
4z, C

−
4z, C

+
4z, C

−
4z, C2x,mx, C2y,my, C

110
2 ,m110, C

110
2 ,m110

7 65-66 E,E,C+
3z, C

−
3z, C

+
3z, C

−
3z

8 67-72 E,E,C+
3z, C

−
3z, C

+
3z, C

−
3z, C

110
2 ,m110, C2x, C2y,m210,m120

9 73-75 E,E,C+
3z, C

−
3z, C

+
3z, C

−
3z, C2z,mz, C

+
6z, C

+
6z, C

−
6z, C

−
6z

10 76-80 {E,E} ⊗ {E,C+
3z, C

−
3z, C2z, C

+
6z, C

−
6z, C

110
2 , C2x, C2y, C

110
2 , C120

2 , C210
2 }

whereas the transformation involving a 2-fold rotation
in spin space will connect atoms from one sublattice to
those of the opposite sublattice.

In 2D system, certain symmetries protect the spin de-
generacy of the nonrelativistic band structure for all k-
vector in the whole Brillouin zone. First, [C2||τ ] symme-
try obviously implies spin degeneracy of band structure,
where τ is translation symmetry connecting atoms of the
opposite sublattices. As the spin degeneracy is indepen-
dent of real-space translation symmetry, [C2||τ ] is equiva-
lent to [C2||E], which means [C2||E]ε(s,k) = ε(−s,k) =
ε(s,k). Moreover, the spin degeneracy is also protected
by the inversion symmetry connecting atoms of the op-
posite sublattices, i.e. [C2||E]. This is because [C2||T ] is
one of spin-only symmetry and the spin (layer) group is
a direct product of spin-only group and nontrivial spin
(layer) group, i.e. [C2||E][C2||T ] = [E||TE], which is PT
symmetry to protect Kramers spin degeneracy. These re-
sults have been reported previously[10]. For 2D symme-
try, however, there are two extra symmetries to protect
Kramers spin degeneracy. The first one is [C2||mz], which
represents that the atoms of the opposite sublattices can
be connected by the mirror symmetry through the xy-
plane. In this case, we can obtain [C2||mz]ε(s,k) =
ε(−s,k). Meanwhile, [C2||mz] is also the symmetry of
system, i.e., [C2||mz]ε(s,k) = ε(s,k). Therefore, spin de-
generacy of the band structure will appear in the materi-
als with symmetry [C2||mz]. The second one is [C2||C2z],
which represents the atoms of the opposite sublattices
can be connected by a 2-fold rotation around z -axis. It
can be found that the product of [C2||C2z] and spin-only
symmetry [C2||T ] equals to [E||TC2z]. This means that
[E||TC2z]ε(s,k) = ε(−s,k) = ε(s,k), so spin-degeneracy
band structure is protected in the 2D materials with
symmetry [E||TC2z]. These four symmetries must be
excluded, when we deduce nontrivial spin layer group
for altermagnetism. If a 2D material possesses any of
the crystal symmetries {τ,mz, E,C2z} in real space, this
symmetry must be accompanied by spin-space identity

in the altermagnetic phase. Therefore, the atoms of the
opposite sublattices can not be connected by any of the
crystal symmetries {τ,mz, E,C2z} in 2D altermagnets.

Then, we are going to focus on constructing the
nontrivial spin layer groups to describe altermagnetism,
starting from the formalism R3 = [E||H] + [C2||G −H]
and the reciprocal-space groups coming from layer
groups. We finally obtain seven nontrivial spin layer
groups, as listed in Table II. Here we adopt Litvin’s
notation of the spin groups[13], in which upper index
1 represents the identity symmetry in spin space and
the upper index 2 represents the rotation symmetry C2

in spin space. Notably, some reciprocal-space groups
are incapable of forming nontrivial spin layer group for
altermagnetism, as they lack the appropriate halving
subgroup. This deficiency necessitates that the sym-
metries, E,mz, E and C2z, should be accompanied by
spin-space identity to prevent spin degeneracy if these
symmetries are present in the real-space group. For
example, the second reciprocal-space group in Table I
possesses four symmetries {E,mz, E,C2z}, all of which
must be accompanied by spin-space identity when con-
structing nontrivial spin layer group for altermagnetism.
Interestingly, two results that were not categorized as
plane-type altermagnetism in previous research have
emerged. One such case is the nontrivial spin layer
group 22/2mx, i.e., R3 = [E||{E,E}] + [C2||{C2x,mx}],
which exhibits the same spin-momentum locking char-
acteristics as the group 2m2m1m, previously identified
as plane-type altermagnetism. By symmetry analysis,
we find that the material RuF4 exhibits the symmetries
in this group, as described in Section III. The other is

group 132m, i.e., R3 = [E||{E,E,C+
3z, C

−
3z, C

+
3z, C

−
3z}] +

[C2||{C110
2 ,m110, C2x, C2y,m210,m120}], which has

been classified as bulk-type altermagnetism in three-
dimensional altermagnetism. However, they share
the same spin-momentum locking properties as the
group 16/1m2m2m in two-dimensional altermagnetism,

given that the symmetry C+
3z is equivalent to C−

6z in
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TABLE II. All nontrivial spin layer groups, corresponding layer groups, the basic characteristic of spin-momentum locking and
material candidates. Here we adopt Litvin’s notation of the spin groups. The sign * denotes that the material is predicted by
symmetry analysis in this work and the evidence of altermagnetism can be obtained in Section III. The other materials have
been reported in the previous research.

Nontrivial spin layer group Spin-momentum locking (kx, ky) Layer group Material candidate

22/2mx 8-18 RuF4[22, 25]

2m2m1m 19-48 MnTeMoO∗
6

24/1m 49-52

24/1m2m1m 53-64 V2Se2O[5], V2Te2O[21], Cr2O2[28, 29]

14/1m2m2m 53-64 VP2H8(NO4)
∗
2

132m 67-72 Mn2P2S3Se3[20]

16/1m2m2m 76-80

two-dimensional reciprocal space. Additionally, we have
identified that Mn2P2S3Se3, with a Janus structure,
exhibits the symmetries in this group, a topic that
will be further discussed in the following section. In
summary, we have derived spin layer groups above by
combining spin group and layer groups to describe 2D
altermagnetism, and have provided their corresponding
layer groups. In the subsequent section, we will give
some examples of 2D altermagnet and discuss their
property of spin-momentum locking properties.

III. SPIN-MOMENTUM LOCKING IN
MATERIAL CANDIDATE

We now focus on the main characteristic of spin-
momentum locking in 2D altermagnets, and subse-
quently, we will provide examples of the above derived
spin layer groups of altermagnetism and discuss their
characteristic of spin-momentum locking. Symmetry en-

ables us to obtain information about band structure,
such as spin-degeneracy k-vector and nodal line, prior
to calculating the band structure. First of all, the
spin-degeneracy nodal line is protected by the symme-
try [C2||G − H] in R3, particularly when this symme-
try transforms the wave vector on this line to itself, i.e.,
[C2||G − H]ε(s,k) = ε(−s,k) = ε(s,k). For instance,
the symmetry [C2||C2x], where C2x is a 2-fold rotation
around the x -axis, determines a spin-degeneracy nodal
line along x -axis. Moreover, if a symmetry [C2||G −H]
in R3 transforms a wave vector to itself or another wave
vector separated by a reciprocal lattice vector, the band
structure at this k-vector will exhibit spin-degeneracy. A
typical example is the band structure at Γ-point, which
is consistently spin-degenerate because any symmetry of
[C2||G−H] transforms Γ-point to itself. Meanwhile, op-
posite spins will appear at two distinct k-vector which
can be connected by the symmetry of G − H. This oc-
curs due to [C2||G−H]ε(s,k) = ε(−s,k′), where k can be
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FIG. 1. The crystal structure and nonrelativistic band structure of RuF4 and Mn2P2S3Se3. (a), (d) The crystal structure of
RuF4 and Mn2P2S3Se3, where different colors of magnetic atom represent the opposite spin sublattices. (b), (e) The band
structure of RuF4 and Mn2P2S3Se3 without SOC, where red solid line and blue dotted line represent the opposite spin channels.
(c), (f) The k-path we use to calculate band structure.

altered to k′ by the symmetry in G−H. This outcome is
instrumental for determining the opposite spin-splitting
k-vectors during the calculation of the band structure.
The fundamental characteristic of spin-momentum lock-
ing for each spin layer group is listed in the second column
of the Table II.

On the basis of spin layer group, we classify the re-
ported 2D altermagnets, as listed in Table II. It is ob-
served that these materials mostly correspond to the spin
layer group 24/1m2m1m. Furthermore, there are mate-
rials that exemplify two unexpected spin layer groups,
which serve to validate our aforementioned results. RuF4

is composed of Ru atoms located at the center of an
octahedron formed by F atoms, as shown in FIG.1(a),
with the layer group NO.18. We also provide the mag-
netic configuration in altermagnetic state in FIG.1(a).
Through symmetry analysis, it is demonstrated that
atoms with opposite magnetic moment can be connected
by C2xτ andmxτ , where τ is a translation by half the lat-
tice vector. Additionally, atoms with same magnetic mo-
ment are connected by space-inversion symmetry. Con-
sequently, its spin layer group is identified as 22/2mx

and the k-path Γ-S exhibits an opposite spin sign to
Γ-S1. The employed k-path is displayed in FIG.1(c).
FIG.1(b) provides the nonrelativistic band structure of
RuF4, which corroborates the analysis results mentioned
above.

The monolayer Mn2P2S3Se3 with a Janus structure has

been identified as 2D altermagnet in previous report[20].
Within the framework of spin layer group, it can be clas-
sified as 132m. In FIG.1(d), we illustrate the crystal
structure of Mn2P2S3Se3, where all S atoms are below
Mn plane and all Se atoms above, along with the mag-
netic configuration in altermagnetic state. Through sym-
metry analysis, it is revealed that Mn2P2S3Se3 belongs
to layer group NO.70 and atoms with opposite magnetic
moments can be connected by mirror symmetry through
a plane perpendicular to the xy-plane. Therefore, its
spin-layer-group is 132m and the k-path Γ-K1 exhibits
an opposite spin sign to Γ-K2. The k-path utilized in
our analysis is shown in FIG.1(f). FIG.1(e) provides the
band structure of Mn2P2S3Se3 which confirms the basic
characteristic of spin-momentum locking with the spin
layer group 132m.

However, four spin layer groups lack corresponding
materials. We employ the symmetry operation in spin
layer group and space group corresponding to its layer
group[30, 31] to search for material candidates of these
four groups in material project database. It is sug-
gested that monolayer MnTeMoO6 has spin layer group
2m2m1m and VP2H8(NO4)2 has 14/1m2m2m; these are
not reported in previous researches. Nevertheless, we
have not identified the potential materials for the spin
layer group 24/1m and 16/1m2m2m, likely due to their
high symmetry requirements. Of course, we believe that
these two spin layer groups exist, as they are also repre-
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FIG. 2. The crystal structure and nonrelativistic band structure of MnTeMoO6. (a) The crystal structure of MnTeMoO6,
where pick and blue colors represent the opposite spin sublattices. (b) The Brillouin zone of MnTeMoO6 and high-symmetry
points used to calculate band structure.(c) The band structure of MnTeMoO6 without SOC along k-path Γ−X − S1− Y − Γ
is spin-degeneracy, where red solid lines and blue dotted lines represent the opposite spin channels. (d) The band structure
of MnTeMoO6 without SOC along k-path S1 − Γ − S2 is spin-splitting, where red solid lines and blue dotted lines represent
the opposite spin channels.(c) and (d) clearly exhibit the basic characteristic of spin-momentum locking of spin layer group
2m2m1m.

sented within spin Laue group.

The crystal structure of MnTeMoO6 is schematically
illustrated in FIG.2(a), where pink and blue colors rep-
resent the real-space sublattices with opposite spins in
altermagnetism. As a van der Waals material, it can be
exfoliated from the bulk compound. Our DFT calcula-
tions reveal that the energy of the altermagnetic state is
8.5 meV per magnetic atom lower than that of the ferro-
magnetic state. Therefore, its magnetic ground state is
the altermagnetic state. It has layer group NO.21 and a
spin layer group of 2m2m1m. The sublattices can be re-
lated by a 2-fold rotation around x -axis (or y-axis) with
translation, and the 2-fold rotation around z -axis maps
the sublattice to itself. Therefore, the spin-momentum
locking of MnTeMoO6 is determined by the symmetry of
[C2||C2x] ([C2||C2y]), i.e., the spin-degeneracy nodal line
at kx = 0 (ky = 0) is protected by [C2||C2x] ([C2||C2y]).
The k-paths, related by C2x (C2y) but not separated
by a reciprocal lattice vector, have opposite spin signs.
FIG.2(c) and 2(d) show the DFT calculated nonrelativis-
tic band structure and the employed k-paths is shown in

FIG.2(b). When we select a high-symmetry path along
Γ − X − S1 − Y − Γ to calculate the band structure,
we obtain only spin-degeneracy bands, as illustrated in
FIG.2(c), which are protected by symmetry [C2||C2x]
([C2||C2y]). However, it is observed that the band struc-
ture of k-path S1-Γ-S2 is spin splitting with the Γ-S1
path having an opposite spin to Γ-S2. This is a typical
altermagnetic characteristic. These results are consistent
with the conclusions we have reached earlier in our dis-
cussion.

For the spin layer group 14/1m2m2m, we have iden-
tified VP2H8(NO4)2, which has a layer group NO.56,
as exhibiting this symmetry. The crystal structure of
VP2H8(NO4)2 is schematically illustrated in FIG.3(a),
with red and blue colors representing the real-space sub-
lattices with opposite spins in altermagnetism. Being a
van der Waals material, it can be exfoliated from the
bulk compound. We obtain that the energy of the al-
termagnetic state is 0.47 meV per magnetic atom lower
than that of the ferromagnetic state by DFT calcula-
tions indicating that its magnetic ground state is an al-
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FIG. 3. The crystal structure and nonrelativistic band structure of VP2H8(NO4)2. (a) The crystal structure of VP2H8(NO4)2,
where red and blue colors represent the opposite spin sublattices. (b) The band structure of VP2H8(NO4)2 without SOC along
k-path Γ−X −M − Γ is spin-degeneracy, where red solid lines and blue dotted lines represent the opposite spin channels. (c)
The band structure of VP2H8(NO4)2 without SOC along k-path X1− Γ−X2 is spin-splitting, where red solid lines and blue
dotted lines represent the opposite spin channels.(b) and (c) clearly exhibit the basic characteristic of spin-momentum locking
of spin layer group 14/1m2m2m. (d) The Brillouin zone of VP2H8(NO4)2 and high-symmetry points used to calculate band
structure.

termagnetic state. The sublattices can be related by re-
flection through the xz -plane (yz -plane, (110) or (110)
plane), and a 4-fold rotation around z -axis maps sub-
lattice to itself. Consequently, the spin-momentum lock-
ing of VP2H8(NO4)2 is determined by the symmetries
[C2||{mx,my,m110,m110}]. That is the spin-degeneracy
nodal line at kx = 0 and ky = 0 are protected by
[C2||mx] and [C2||my]. The k-paths, related by mx

(my,m110,m110) but not separated by a reciprocal lattice
vector, have opposite spin signs. FIG.3(b) and (c) show
the DFT calculated band structure without SOC and the
employed k-paths is shown in FIG.3(d). If we choose
high-symmetry path along Γ − X − M − Γ to calculate
the band structure, only the spin-degeneracy bands are
obtained, as illustrated in FIG.3(b), which is protected
by symmetry mx and m110. However, the band struc-
ture of k-path along X1-Γ-X2 is spin-spliting and Γ-X1
has opposite spin to Γ-X2, which is a typical altermag-
netic characteristic. Again, these results are consistent
with the conclusions we have reached above.

IV. CONCLUSION

In summary, we have constructed seven spin layer
groups to describe and classify 2D altermagnetism, ex-
tending beyond the previously reported plane-type spin
Laue group. We believe that spin layer groups will be
helpful in future search for 2D altermagnets. Meanwhile,
we have utilized these spin layer groups to identify ma-
terial candidates, validating the use of symmetry in the
search for 2D altermagnets. We have also determined
their magnetic ground state is altermagtic state and cal-
culated the band structure by DFT calculations with-
out SOC. Furthermore, we have conducted a symmetry-
based analysis to evaluate the spin-momentum locking
characteristics of the materials.

Nevertheless, several key issues require further investi-
gation. Firstly, the significance of altermagnetism in 2D
materials remains an open question, necessitating further
discussion and DFT calculations with SOC. Secondly,
there has been a lack of the experimental exploration into
2D altermagnets so far. Finally, determining whether
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the noncollinear magnetic state in altermagnetism dif-
fers from that in antiferromagnetism is a question that
merits further exploration.
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Appendix A: COMPUTATIONAL DETAILS

All calculations were performed using the Vienna ab
initio Simulation Package (VASP)[32, 33], employing the
projector-augmented wave (PAW) method[34] based on
density functional theory. For the exchange-correlation
functional, we use the generalized gradient approx-

imation (GGA) with Perdew-Burke-Ernzerhof (PBE)
functional[35], along with Hubbard U correction[36]. The
employed U value and lattice constant are listed in Ta-
ble III. A cut-off energy of 500 eV was set for the plane
wave basis. The structure was relaxed until the forces on
atoms were below 0.01 eV/Å and the convergence criteria
was 1 × 10−7 eV for the energy difference in electronic
self-consistent calculation. A vacuum of 15Å was con-
structed perpendicular to the material plane. The SOC
effect was not considered in calculations.

TABLE III. The employed U value and lattice constant. ’–’
denote that we do not apply Hubbard U correction on this
material.

material U (eV) a (Å) b (Å)
RuF4 – 5.42 5.09

Mn2P2S3Se3 – 6.22 6.22
MnTeMoO6 3.9(Mn), 4.38(Mo) 5.14 5.41

VP2H8(NO4)2 3.25(V) 8.46 8.46
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