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A CENTRAL LIMIT THEOREM ASSOCIATED WITH A SEQUENCE OF POSITIVE LINE
BUNDLES

AFRIM BOJNIK AND OZAN GUNYUZ

ABSTRACT. We prove a central limit theorem for random currents of integration along the zero divisors
of standard Gaussian holomorphic sections in a sequence of holomorphic line bundles with Hermitian
metrics of class € over a compact Kéhler manifold. In the course of our analysis, we derive first-order
asymptotics and upper decay estimates for near and off-diagonal Bergman kernels, respectively. These
results are essential for determining the statistical properties of the zeros of random holomorphic
sections.

1. INTRODUCTION

Over recent years, there has been a growing interest in probabilistic challenges within the scope
of complex algebraic or analytic geometry. Such problems initially arose from studying the zeros of
random polynomials and other analytic functions, analyzed by mathematicians under different as-
sumptions about random coefficients. The field gained momentum with the foundational works of
Bloch-Pélya[BP], Littlewood-Offord [LO43]], Hammersley [HAMS56], Kac [Kac43]], and Erdos-Turan
[ET50], and has now become a classical area of study. A significant breakthrough was achieved by
Shiffman and Zelditch [SZ99], who extended these ideas into a complex geometric setting. They
demonstrated that the zeros of random sections of high tensor powers of a positive line bundle L on
a projective manifold X tend to become uniformly distributed in accordance with the natural mea-
sure from line bundle L. In a series of papers, these authors further delved into the correlations,
variance, expected distribution and other statistical properties related to zeros of holomorphic sec-
tions, as elaborated in references [SZ10Q]. In this framework, Dinh and Sibony
innovated a method for analyzing zero distribution by applying formalism of meromorphic trans-
forms from complex dynamics, and set convergence speed bounds in the compact case, enhancing
Shiffman and Zelditch’s initial results. For a thorough understanding of zero distribution, espe-
cially in the light of broader probability distributions and various geometric scenarios, we invite
the reader to look into the survey [BCHM18]]. Furthermore, it is important to emphasize that ran-
dom polynomials and holomorphic sections have significant role in the field of statistical physics.
Holomorphic random sections, in particular, are employed as an important model for understand-
ing quantum chaos, and physicists have conducted extensive research to analyze the distribution of
their zero points see for example INVOg].

Alongside these developments, investigation of the central limit theorem in the context of smooth
linear statistics, such as integrals of smooth test forms over zero divisors of random holomorphic
sections, is another intriguing challenge. In this domain, the work by Sodin and Tsirelson is
particularly noteworthy. They established the following asymptotic normality result for Gaussian
random polynomials and analytic functions in the complex plane. This result stands as a crucial
instrument that will play an essential role in our study presented in this paper.
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1.1. Theorem of Sodin and Tsirelson. Given a sequence {v;}72,; of complex-valued measurable
functions on a measure space (G, o) such that

(1.1) > lyj(@))> =1 for any z € G,
=1

following (and also [[SZ1Q]), a normalized complex Gaussian process is defined to be a complex-
valued random function a(z) on a measure space (G, o) in the following form

(1.2) a(r) = Z bjvi(x),
j=1

where the coefficients b; are i.i.d. centered complex Gaussian random variables with variance one.
The covariance function of a(x) is defined by

(1.3) C(x,y) = Ela(z)a(y)] = Y _ (@), (1).
j=1

A simple observation gives that |3(z,y)| < 1 and §(z,z) = 1.
Consider a sequence {a;}32, of normalized complex Gaussian processes on a finite measure

)
space (G, o), and let A(p) € L2(R*,e™2 pdp). Suppose ¢ : G — R is a bounded and measurable
function, we will focus on the following non-linear functionals that also serve as random variables
in this context.

(1.4 Folo) = [ Aoy(@)ota)do(a).
The next theorem (Theorem 2.2 of [[ST]) was proved by Sodin and Tsirelson.

Theorem 1.1. For eachn = 1,2, ..., let C,(r, s) be the covariance functions for the complex Gaussian
processes. Assume that the two conditions below hold for all v € N:
€y ,
i i e ol 8) P 0(r)(5)do () dor (s

> 0.
W suDreq g IColr )| da(s)

(i)
lim sup/ |Cp(r,s)|do(s) = 0.
G

n—o0 reG
Then the distributions of the random variables
Fy () — E[F5 ()]
Var[ 7 (a)]

converges weakly to the normal distribution N (0,1) as p — oc. If X is increasing, then it is sufficient
for (i) to hold only for v = 1.

The proof is based on applying the method of moments, a fundamental tool in probability the-
ory, coupled with the use of the diagram technique. This approach facilitates the computation of
moments for non-linear functionals, which are then compared to the moments found in a standard
Gaussian distribution. Such an approach is a classical one in establishing the central limit theorem
for non-linear functionals within Gaussian fields. We also remark that the condition (ii) ensures
that Var[fl?(ap)] — 0asp— oo.



There are two extensions of Theorem [1.7] in different contexts. The first, due to the work of
Shiffman and Zelditch ([SZ1Q]), applies to the prequantum line bundle setting. This involves ran-
dom holomorphic sections of a Hermitian line bundle (with ¢® Hermitian metrics) over a compact
Kahler manifold, where the first Chern form and Kahler form satisfy the prequantum line bundle
condition. The second extension is studied in [Bay16]l, where Bayraktar expanded Theorem [I.1] to
encompass general random polynomials in C™ with techniques of weighted pluripotential theory.

In both these adaptations, the asymptotic behavior of the normalized Bergman kernel, particu-
larly off-diagonal and near-diagonal, proves to be critical. This kernel, functioning as a covariance
function of normalized complex Gaussian processes, is pivotal to the analyses. Separately, Nazarov
and Sodin ([NS]]) explored the asymptotic normality of linear statistics of zeros in Gaussian entire
functions on C. Their approach is broader, considering measurable bounded test functions and the
clustering of k-point correlation functions.

The primary objective of the current study is to apply Theorem [I.I] to a broader framework
than previously discussed scenarios, specifically to standard Gaussian holomorphic sections in a se-
quence of positive holomorphic line bundles with class 4 Hermitian metrics on a compact Kihler
manifold. To achieve this, we start by setting up our geometric and probabilistic framework, build-
ing upon the foundations presented in earlier studies [CLMM], [CMM]. The key to our analysis is
the upper decaying estimate of the off-diagonal Bergman kernel and the first order asymptotics of
the Bergman kernel function. In this context, for the asymptotic distribution and variance estimates
of smooth linear statistics of random zero sets in any codimension under more general probability
measures, we refer the interested reader to [BGI.

2. BACKGROUND

Let (X,w) be a compact Kéhler manifold, with dim¢ X = n, and let {(Ly, h;)};2, be a sequence
of positive line bundles with Hermitian ¢*3-metrics h,. In this paper, we employ the concepts of
Nakano and Griffiths positivity for vector bundles. It is important to note that Nakano positivity
implies Griffiths positivity in vector bundles, though the reverse is not always true (refer to
for more details). However, in the case of line bundles, these two notions of positivity coincide.
Therefore, in our context, we define positivity for a holomorphic line bundle (Hermitian, but not
necessarily with " *°-metrics), denoted as (L, ), in the following way: a line bundle is considered
positive or semi-positive if its local weight functions ¢, which are of class > and corresponding to
the metric h, are strictly plurisubharmonic and plurisubharmonic, respectively.

Since our focus is on positive line bundles, the associated local weight functions ¢ are strictly
plurisubharmonic. This means that they belong to the class ¢ and satisfy dd°p > 0 at every point.
According to a well-known characterization of ampleness (refer to Corollary 13.3 of [Dem12]),
the line bundles we are currently investigating are ample. This also indicates, following Kodaira’s
projectivity criterion, that any compact Kahler manifold with a positive line bundle is projective.

We denote the global holomorphic sections of L, by H°(X, L,). In this context, we consider an
inner product on the space of smooth sections ¢*°(X, L), using the metric h, and the volume form
fl—? on X. This inner product is defined as

n

w
(21) <81,32>p ::/ <81($),82($)>hp—',
X .
and the norm of a section s is given by |[s||2 := (s,s),. Based on the Cartan-Serre finiteness

theorem, we know that H°(X, L,) is finite-dimensional. We denote the dimension of this space as
d, := dim H°(X, L,). Subsequently, we consider £*(X, L,), which is the completion of ¢>°(X, L,)
under this norm, forming a Hilbert space of square-integrable sections of L,,.



Next, we define the orthogonal projection operator K, : £%(X, L,) — H°(X, L,). The Bergman
kernel, K,(x,y), is the integral kernel of this projection. If {S;’ };l’; , is an orthonormal basis for

HY(X, L,), by using reproducing property of K,(z,y), we express K,(z,y) in terms of this basis as
follows:

(2.2) ZSP )@ () € Lp.® Ly,
where S%(y)* = (., SY(y)n, € Ly, The restriction of the Bergman kernel to the diagonal of X
is called the Bergman kernel function of H°(X, L,), which we denote by K,(z) := K,(x,z), and
(2.2) becomes

dP
(2.3) Kyx) = 3 IS0(@) 3,

j=1
The Bergman kernel function has the dimensional density property, namely

wn
K — =d
/X p(x) ol P

In addition, it satisfies the following variational principle
(2.4) Ky(z) = max{|S(z)[;, :S € H(X,Ly), |IS|l, = 1}.

This holds for every z € X for which ¢, (x) > —oo, with ¢, denoting a local weight, defined above,
for the metric h,, in the vicinity of z.
We also define the normalized Bergman kernel as follows:

|Kp(x’ y)|hp,w®hp,y

o) = VW)

which will be important throughout.

2.1. Reference Covers. (U, z), z = (z1,...,2,), will indicate local coordinates centered at a point
x € X. The closed polydisk around y € U of equilateral radius (r,...,r), » > 0, is given by
P(y,r)={2€U:|zj—y;|<r, j=1,2,...,m}.

The coordinates (U, z) are said to be Kéhler at y € U in case

... m
(2.5) w, = %Zdsz%jJroqz—y\?)Zdszdz—k on U.
J=1 Jik
Definition 2.1. A reference cover of X is defined as follows: for j = 1,2,..., N, a set of points z; € X
and

(a) Stein open simply connected coordinate neighborhoods (U;, w)) centered at zj = 0.
(b) R; > 0such that P"(x,2R;) € U; and for every y € P"(x;,2R;) there exist coordinates on
U; which are Kdhler at y.
N
(C) X = Uj:l Pn(.%'j,Rj).
We will write R = min R; once a reference cover is provided.
It is not difficult to see how one can construct a reference cover. Indeed, first, for x € X, take

a Stein open simply connected neighborhood (for instance, a round ball in C*) U of 0 € C",
where = 0 under a determined chart. Choose some R > 0 so that P"(z,R) € U and for every



y € P"(z, R) there exist Kdhler coordinates (U, z) at y. The compactness of X implies that there

exist finitely many points {x; }jvzl such that the three conditions above are satisfied.
We take into consideration the differential operators D¢, a € N2 on Uj, corresponding to the

w?

real coordinates associated to w = w’. For p € €*(U;), we define
(2.6) el = llellew = sup{[Dgp(w)| : w € P"(x;,2R;), |af < k}.

Let (L, h) be a Hermitian holomorphic line bundle on X, i.e., the metric h is smooth. For k£ < [,
write

allko, = inf {llg;llx : ¢; € €' (U;) is a weight of i on Uj},

and
[A]lx = max {1, ||Allky, : 1 <j < N}

; is said to be a weight of h on Uj if there exists a holomorphic frame e; of L on U; such that
lejln = e,

Lemma 2.2. Let a reference cover of X be given. Then there exists a constant D > 0 relying on the
reference cover with the following property: When provided with any Hermitian line bundle (L, h) on
X,any je{l,...,N} and any x € P"(z;, R;), there exist coordinates z = (21, ...,2,) on P"(x, R)
which are centered at x = 0 and Kdhler coordinates for x such that
(D) dV < (14 Dr?)%; and ; < (1+Dr?)dV hold on P™(z,r) for any r < R where dV = dV (2)
is the Euclidean volume relative to the coordinates z,
(i) (L,h) has a weight ¢ on P"(z, R) with p(z) = Rt(z) + 377, Ajlzi|? + @(2), where t is
a holomorphic polynomial of degree at most 1, \; € R and |p(z)| < D'||hl|s|z|® for =z €
P"(z, R).

Proof. By the definition of a reference cover, there exist coordinates z on U; which are Kéhler for
x € P"(z;,R;). Thenw = Y"1, dzy Adz + O(|z — z]?) >k dzj A dz; and (1) holds with a constant
D; uniform for x € P"(x;, R;). Let e; be a frame of L on U}, ¢ a weight of h on U; with |e;|, = e™%
and ||¢||3,> < 2||h||3. By translation, we may assume z = 0 and write ¢(z) = Rt(z) + pa2(z) +
¢3(z), where #(z) is a holomorphic polynomial of degree < 1 in 2, ¢2(2) = > i ,_; ur12Z; and
Rf(2) + ¢2(2) is the Taylor polynomial of order 2 of ¢ at 0. In order to estimate ¢3(2), let [|¢|[3 -
be the supremum norm of the derivatives of ¢ of order 3 on P"(x;, R;) in the z-coordinates. Then,
by (2.6), there exists a constant D} being uniform on P"(z;, R;) such that ||¢|[3. < D’[|¢|]3w <
2D%]|h||3, which also gives that [p3(z)| < 2D;»||h\|3|z|3 for all z € P"(z, R).

Applying a unitary change of coordinates, we may suppose that ¢(¢) = Rt(¢) + Z?Zl A? G? +
©(¢). Under these coordinates, %T and ¢(() verify the required estimates with a uniform con-
stant D; for z € P"(x;, R;), as unitary transformations preserve distances. Finally putting D’ =
maxi<;<y Dj finishes the proof.

O

Let (X,w) be a compact Kéhler manifold of dim¢ X = n. Following [CLMM], the diophantine
approximation of the Kahler form w is defined as follows:

1

2.7) A—pcl(Lp, hp) = w + O(A, ) in the ¢°-topology as p — oo,
where a > 0, A, > 0 and lim,_,, A, = co. This means that
(28) ' A—pCl(Lp, hp) — W o = O(A;a)




where A, > 0, a > 0 and lim,_,, A, = +oco. This was first considered in in the ¥"*°-norm
topology induced by the Levi-Civita connection V7¥ because the authors deal with the complete
asymptotic expansion of the Bergman kernel restricted to the diagonal. We do not need such a
strong topology, in fact, only the ¥°-norm (or continuous norm) topology will be sufficient for us.

Let {U; }jV: , be a finite subcover of X. Locally, on each U;, we have the following representations

1

(2.9) 1Ly ) ZZ A —ay(2)dz, A A7
P

and

(2.10) —ZZX}W (2)dzy, A dZj.

Here [x;(2)]x; is a positive definite Hermitian matrix, because in a Kdhler manifold, we always
have a strictly plurisubharmonic local potential function ¢ so that

0%

Xkj(2) = m(z) €R, foreachl <k, j <n.

Similarly, since line bundles L,, are positive, by the definition of positivity, [a;(2)]x; = [;Zj—g;k(z)] ki
is a positive definite Hermitian matrix , where ¢, is the corresponding local weight function for A,,.
Note that in particular oy;(2) € R forevery 1 <k, j < n.

Let us fix some U, taken from the subcover. By the diophantine approximation condition
on U, for any € > 0, there exists some pg = po(€) € N such that, for all p > py,

(2.11) —e< ——aP(z) = xui(2) < e

for all z € U,. Take, for example,

1
€ = -(min min ye; ().
Jik ZGUJ'

Then (2.11) gives

3 1T )
Xk (2) < W—Ap%]( 2) < g (2)-

Summing this last inequality over idz;, A dz;, we have, for all z € U, C X and for all p > py

3k 1 5
izixz(z)dzk/\dz_jgiZ—WApalg])( )z NdZ <Py X’”( X652 g p iz,
k,j k,j k,j

which concludes that

3w 1 dw
2.12 — < —c¢(L < —.
( ) 4 = Apcl( pahp)_

for p > pg. This will be useful in the proof of Theorem [4.1] and Theorem [4.2]

We also observe that, at the point z = 0 where we have the Kahler coordinates by (2.5), we have

n
1
Wy = ZZ §dzj A dzZ;
j=1



Also, by using the local representation of ¢;(L,, h,) and Lemma[2.2]

(2.13) c1(Lp, hy)e = dd°ep(0) =iy ?ﬂdzj A dZ;.

j=1
Diophantine approximation (2.7) implies

N 4
(2.149) lim —— =— forj=1,2,...,n,
pooo A, 2
which in turn gives
DL V4 s

2.15 lim 20 = ()™
(2.15) pho An (5)

In order to measure the distance between any two points x,y on the compact Kéhler manifold
(X,w), we use the Riemannian distance, which is defined as follows: As is well-known, the Kahler
form w and the complex structure J on X compatible with w determine a Riemannian metric g on
X by g(u,v) := w(u, Jv) for all u,v € TX. Given a piecewise smooth curve v : [a,b] — X with
~v(a) = x and y(b) = y, the length L(~) of the curve ~ is given by

b
Liy) = / o GO, A ()t

and the Riemannian distance d is defined by

d(z,y) = inf {L(7) : v(a) = z, y(b) = y}.

3. DEMAILLY’S L2-ESTIMATIONS FOR O OPERATOR

Essential for proving both the upper decay estimate of the Bergman Kernel and the first or-
der asymptotics of the Bergman kernel function in our current diophantine setting, we follow the
approaches in and to provide first certain L? estimations for solutions of the 0-
equation, and then derive a weighted estimate for these solutions.

Theorem 3.1. ([Dem82], Théoréme 5.1) Let (X,w) be a Kdhler manifold with dim¢c X = n having
a complete Kdhler metric. Let (L,h) be a singular Hermitian holomorphic line bundles such that
c1(L,h) > 0. Then for any form g € L%J(X, L, loc) verifying

(3.1) 0g =0, /\g[%w—'<oo
X n

there is u € L2 4(X, L, loc) with du = g such that

(3.2) / R / o

Theorem 3.2. Let X be a complete Kdhler manifold with dim¢c X = n and let w be a Kdhler form
(not necessarily complete) on X such that its Ricci form Ric, > —2nTyw on X for some constant
To > 0. Let (Ly, hy) be a sequence of holomorphic line bundles on X with Hermitian metrics h, of
class € such that (227) holds and there is a py € N such that A, > 4Ty for all p > po. If p > po and
f e L (X, Ly, loc) satisﬁes gf =0and [y |f|% YL < oo, then there exists u € L3 y(X, Ly, loc) such

that au—fand Ix |u|hp ©r < Ap Ix |f|hp e



Proof. By the diophantine approximation relation - fix some py € N so that the assertions in
the theorem are satisfied and also for all p > py, 3 > cl(Lp, hy) > 37“’. Let L, = F),® Kx, where

F,=L, K Xl. The canonical line bundle Kx is endowed with the metric %% induced by w. If

gp = hp, ® REx" is the induced metric on F,, then, since ¢1(Kx, hi, ) = —5=Ric, and A4, > 4T for
allp>p0,
(31'3) 1 1 1 1 3

w w w
—e(Eyy gy) = ——c1(Lpy hy) — ——c1(Kx, hEX) = ——¢1 (L, hy) + ———Ric, > 2 - Y~ % 59
qu( > 9p) Ap01( > Ip) qu( x,h"X) qu( - p)+27TAp w2 =7 =52

for all p > pg. On the other hand, there exists a natural isometry,
U =~: A%(T*(X)) ® L, - A™(T*(X)) ® F,

by
(3.4) Uls)=5=(w' A... AW As)®@ (wy A... Awy),
where wy, . .. w, is a local orthonormal frame of 7 (X) and {w!,...,w"} is the dual frame. This

operator ¥ commutes with the action of 0. Now for a form f € L§ (X, Ly, loc) satisfying 9f = 0
and [y |f|h ¥+ < oo, obviously we have_fX A%|f|%p_% < 00. By using the isometry ¥, we can find
U(f)=F € L2 (X, F,,loc) with OF = dV(f) = W f = 0 and Jx ZIFI; 4 < o0 since isometries
preserve the L?-norm. By Theorem 3.1} there exists f € L7, ((X, Fy, loc) such that 9f = F and
Ix |f|hp L < [ R v |F; « - Taking u := U~!f and f = U~!(F) finishes the proof since ¢! is an
isometry as well. O
Theorem 3.3. Let (X,w) be a compact Kdhler manifold, dim¢ X = n and let {(Ly, h,)}p>1 be a
sequence of holomorphic line bundles on X with € Hermitian metrics as before such that the dio-

phantine approximation condition (2.7) holds. Then there exists py € N such that if u,, are real-valued
functions of class ¢? on X such that

_ VA A
(3.5) 0up || oo (x) < 3 P ddu, > —Ipw,
then
2 2u Wn
(36) /)\( |/U|hp6 P— | = 3A / |a |hp

holds for p > po and for every ¢1-smooth section v of L, which is orthogonal to H°(X, L,) with
respect to the inner product induced by h, and w".

Proof. As in the proof of Theorem [3.2] via the diophantine convergence assumption (2.7), we
first fix some py € N so that for any (fixed) p > py, one can get 37“’ < Aipcl(Lp,hp) < 37“’ and
A, > 4T). The main idea is to use Theorem [3.2] To this end, let us fix a constant 7j > 0 so that
Ric,, > —2nTow on X. Using the real-valued functions u, given in the assumptions of theorem, we
consider the metrics g, := e~ 2up h, on L,. From (2.3.5) in [MMI](p. 98) and the second relation
in yield the following

3A A A
c1(Lyp, gp) = c1(Lp, hyp) + ddup > 47’“ _ Z‘*’ _ ;w_

If we define an inner product by using g, in L*(X, L,) as (s1,52)g, = [y (51,52)g, %7, We see, by
the relation g, = e 2“rh,,, for every s € H(X, L,),

w™ w™
(eupv78)9p - /X <62upv78>9pm - /X <U s>hl7 = 0

n!



for every ¢’!-smooth section v of L,,.
Write

(3.7) B = d(e*rv) = *"r(20u, A v + Ov).

Since 93 = 0 and by assumptions on up, and v, it follows immediately that 3 € L(2),1(X , Ly, loc), so
by Theorem[3.2] there exists © € Lg o(X, Ly, loc) such that 99 = 3 and

(3.8) /! !gp oS /ng T

Since e?“»v is orthogonal to H(X, L,) for every v € €*(X, L,), by writing ¢ = e?“rv + s for some
s € H°(X, L,), one can observe

3.9 2up 2u, 2up, 12 2 \W" > Qup (2 w"
3.9 (e*Pv + 5,570 + 5)g4 ]v\gp = (]e v\gp—kls]gp)m_ X\e v]gpg
From (3.8) and (3.9), we have

(3.10) /!ez“Pv\gp ,—/\ !gp—l—A /\mg,, '

Let us now estimate |3 \Zp from above. By (3.7) and the first upper bound in (3.5), we obtain the
following

_ _ _ _ A _
(3.11) ]ﬁ@p = %P |20u, A v+ 81}]%}7 < 2e%7 (4]0, A v\%p + ]81}]%}7 < 262“"(1—9?}\%@ + \31}\%p),

where, in the first estimation, we use an elementary inequality for norms: |z + y|? < 2(|z|? + |v?|).
Finally, putting (3.17) into (3.10) finishes the proof. O

4. BERGMAN KERNEL ESTIMATIONS

Theorem 4.1. Let (X,w) be a compact Kihler manifold with dim¢ X = n. Let {(Ly, hy)};3, be a

sequence of holomorphic line bundles with Hermitian metrics h,, of class ¢ such that (Z7) holds.

Assume that n, = ”\7}'3 — 0 as p — oo. Then we have
P

K
4.1) lim Ep(@) =1
P—00 Ag
Proof. We begin by taking a reference cover of the Kdhler manifold X, as in Definition[2.1] Selecting
x € X and a corresponding z-coordinate system based on Lemma[2.2]at z € X. Then

(4.2) wp(2) = Rtp(2) + 0p(2) + Gp(2),  Wp(2) = D Nzl

¢, is the weight for the Hermitian metric h, on P"(x, R) satisfying the condition (ii) in Lemma 2.2]
and t, is the polynomial of degree at most 2. Let e, be a local frame of L, on U; with the norm
lep|n, = e~ #». Next, we choose R, € (0, R/2), which we will determine later.

To estimate the norm of a section S € H°(X, L,) at the point = = 0, we consider S = f e, where
f is aholomorphic function on P"(z, R). Utilizing the sub-averaging property for plurisubharmonic
functions, we obtain:



10

‘2672%,,6—2@;,672@; wr
mn.

> fP"(QRp) |f

(43) S(r 2 _ 0 e—tp(O) 2 _ 0 26—2%%(0) . S
S@IE, = 1£0) O = |7(0) [
For the right-hand side of (4.3), by Lemma [2.2] there exists a constant D > 0 such that

—D||hy|I3]2]> < $p(2) < D|hyl|3]2|?, and by considering (2.1I) and (4.2) we have,

Jpno.ry) |f[Pe 2Rt e 2oh e 2o ey Jeno,m,) |[flPe2erer
Jonmy €€ 5 T Jpuom,y € e P S0
- (1+ DRIQ))ezDthllst, HSH;Q;
- an(o,R,,) e 2%rdV ’

Combining the above inequality with (4.3) yields

(1+ D R2)e2Plhllafy | g2
—2¢! *
fpn(o,R,,) e "Yrdv

Let us now estimate the integral in the denominator of (4.4). To do this, we consider the
Gaussian-type integrals of finite radius,

(4.5) F(p) = A< e—2|§|2dm(£) — g(l _ e—2p2)’
<p

(4.4) [S(@)[}, = 1/(0)e~ O = |f(0)]Pe 2 <

where dm is the Lebesgue measure on C. It is easy to see that F' is an increasing function of p. We
also write

(4.6) F(eo)i= lim [ e Pame) = [ e 2Fam(e) = 3.
P70 JIg|<p C
Since
(4.7) / 67290;7dv — / 672()\5)‘Zl|2+---+)\g|zn‘2)dv(z)’
P (0,Rp) P (0,Rp)

it is enough to treat the integral
(4.8) / e 2151 dm(z))
A(0,Ry)

in order to get a lower bound for the integral (4.7), where A(0, R,) is the unit closed disk in C. By
the relation (2.12), there exists p; € N such that, for all p > pq,

3A 5A
(49) prx < Cl(Lpa hp):v < prxa
which, on account of (2.1I) and (2.13), leads to
37rA 5mA
.10 P NP2
(4.10) g = Aj < 3

Let us go back to the integral (4.7),

e 251 dm(z;),

/A(Oﬁp){lzj |<Rp}
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which, by a change of variable (, /)\? zj = w;), equals the following

1 / _2| _|2
N e il dm(wj).
XS S{lws| <Ry /30}

P
Now, (4.10) gives 1/ ;\1—; > \/%’r > 1, which gives R,\/A, < Ry, /)\5? . Combining this with the fact
that F' is increasing, we get

72|wj\ dm(wj) P\/7 )

(4.11) N

/{w]|<RPW}

/A(Ova):{ZﬂSRP}

Consequently, from (4.7), we have

F(Ry\/Ap)"

,2()0/
e “rdV > —————.
/};n(&Rp) )\11) “ e )\Z;L

Inserting this last inequality in (4.4) give
(1+ DRZQ,)BQD lIhplls B3
F(Rp\/Ap)"

If we take the supremum in (£12) for all S € H°(X, L,) with ||S||, = 1 and use the variational
principle (2.4) for K),, we get

(4.12) 1S(@)[; < ARSI,

(1+ DR2)62D||hPH3 R}
(4.13) K,(x) < P

T PRy /Ay

XL AP
forany R, € (0, 4).

We will now determine a lower bound for K, by employing L? estimations obtained earlier as
Theorem 3.2 Let x : C™ — [0, 1] be a cut-off function with a compact support in P™(0,2), x = 1 on
P™(0,1). By defining k,(2) := k(7). we consider H = ry e'?e,, which is a (smooth) section of L,,

and |H(x)[? = |k, (x)[2e?Rte(®) ¢=#r(#) We estimate || H ||, from above as follows:
hy P P

() Wz

4.14) ||H||;2) g/ 629%1517(33)6*2%0;7(1')&)_2? :/ o~ 265 (@) =28 (x _g;«
P(0,2Ry) n: P7(0,2Ry) n!

By using Lemma (i) along with the relations (4.6) and (4.11)) on the integral at the very right
end of the inequality (4.14), we get the following

(4.15)
|H|2 < (1 + 4DR2)e!0P Il 7 / e2haV < (144D B2 P sl i (Tyn 1
Pn(0,2Rp) 2 )\1 . e An

Let us define ® = 9H. Noting that [|0k,|* = ||0x|?/R2, where [0k is the supremum of |9k,
we deduce the following inequality:

2 2,16 D ||hpll3 RS
A R et _ LB ), (1 4D RyeloP o
T o ”!_ RZ 2 N

72RP
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As A, — oo, by using Theorem [3.2] there exists p > p, such that, for all p > py, we can find a
smooth section I of L, as a solution to the §-equation for ® such that oI' = & = H and

9 3
2H<9f<aH( n (1+ 4D R2) 16D Ihslla )
T ARG Y '

(4.16) TN, < ||‘I>H2

Given that H = ¢, is holomorphlc on P*(0,R,), I' is holomorphic on P"(0,R,) as well since
Ol = OH = 0 on P"(0, R,). Applying estimate (£.12) to I on P"(0, R,) leads us to the following
inequality

(1 _|_DR2) 2D||hp | R
(4.17) IT(2)]7, < P el

F(Ry\/Ap)"

112
2|0k || (w) (144D R2)2e 18D ||hplls Ry

<
= A R2F(Ry\ /A" 2

Now we will construct a new section A := H —T' € H°(X,L,). Then, by a basic inequality
|S1 — 52|%p > (|S1]n, — |S2|n,)? for norms applied to A, combined with (4.17) and the observation
|F'(z)[n, =1, we get

A@)[R, = (|H (@)[n, — [T(@)]n,)?
2
(4.19) 5 (1= Eypa 2O+ ADE) gy g2
- 2" Ry /A F (R /A2
On the other hand, by (4.15) and (4.16) together with the triangle inequality, we obtain
\/_Haffll)
p \/

(4.18)

T 1

(4.20)  [AIR < (1H]lp + IT1p)* < ()"

2\ 16 D ||hpllz RS
5)" 3 )\p(1+4DRp)e lFoplls v (1+

To simplify what we have done so far, we write

3 2
T inje VORI +4DRY) o1, my2

@20 By = = ) g Ty A 2 )
and
(4.22) Ba(Ry) = (1+4D R2) 0PIl B (1 1 \fllf%\l)

Ry /4,

The variational property (2.4) combined with (4.19) and (4.20) implies

A APLAE By(R,)
4.23 K > LA | n b/
(4.23) YO ZTRE 2T @ Ba®y)

For the upper bound (4.13)), as above, we put
/2

Py /)

(4.24) By(Ry) i= (o) (14 D) 2Pl T

Observe that

(4.25) Z

5" (@) < By(Rp) X ... N,

n:
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Ihplla

P

By our hypothesis 7, = = els ), and now we determine R, in the following way

1/3 _ 7772/3
)kl >

VA,

Rp _np

which means
Mp = thH:aRﬁa 77;2/3 = Rpy Ap.

Since ||h,||3 > 1 from Subsection 2.1} we have R, < 7711/3 and so R, — 0 when p — co. All in all,
based on R, it follows from the quantities B;(R,), B2(R,) and B3(R,) that we find uniform upper
and lower bounds for K, depending only on 7,

Bl(Rp)

.26
(4.26) Bo(R,) =

— D'p?? and B3(R,) < 1+ D'n?/3.

Here D’ > 0 denotes a constant that merely depends on the reference cover. We finally consider

the following inequality that holds for all p > pg
1 7w M Bi(Ry) 7w, Ky(x) 1 )

. < (=) < — AP
An( ) (g)n BQ(Rp) — (2) A" =~ Ant(Rp))\l )‘n7

which, in light of the findings (2.13), (4.23), (4.25) and (4.26), finishes the proof.

4.27)

O

Relying on the proof presented in [BCM], which incorporates methods from [Brn], [CMM] and
[Lil, we provide a proof for the off-diagonal decay estimate of the Bergman kernels K, (z,y) asso-
ciated with the corresponding line bundles (L,, h,) in the current setting of diophantine approxi-
mation.

Theorem 4.2. Let (X,w) be a compact Kdhler manifold with dimc X = n. Let {(Ly, hy)}p>1 be a
sequence of holomorphic line bundles with Hermitian metrics h,, of class € such that (2.7 is satisfied.

Write 1, ”h"”?’ — 0 when p — oo. Then there exist constants G, B > 0, po > 1 such that for every

x,y € X and p > po, the following estimation holds true
(4.28) Ky, y)F, < Ge™ BV Ao 2,

Proof. Initially, we select a reference cover for X in accordance with the earlier definition above
and choose a large enough py € N such that

1
R, =

<

|

B

and Theorem [3.2] and Theorem [3.3] are valid for all p > py.
Let y € X and r > 0. Write

B(y,r):={z € X : d(y,z) <r},
which is the ball of radius > 0 centered at y. Choose a constant § > 1 so that for any y € X,
Pn(ya Rp) g B(y? aRp)a

where P"(y, R,) is the (closed) polydisk centered at y given by the coordinates centered at y in
view of Lemma
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Claim: There exists a constant D’ > 1 such that if y € X, so y € P"(zj, R;) for some j and
z-coordinates centered at y are due to Lemma[2.2] then

n
2 W
ho p1”

(4.29) Swi, <oay [ s
! Pr(y,Ry)

where, as above, P"(y, R,) is the (closed) polydisk centered at y = 0 in the z-coordinates and S is
an arbitrary continuous section of L, on X which is holomorphic on P"(y, R),).
Proof of the Claim: By Lemma [2.2((ii), (L,, h,) has a weight ¢, on P"(y, R) such that

(4.30) p(2) = Rtp(2) + & (2) + Gp(2),
where #,(2), ¢}, (z) = >iy X|z|* and §,(z) satisfies the inequality
(4.31) =Dl|hylls|zI* < Gp(2) < Dllhy|slel®

for z € P"(y, R) (Recall that R = min R;). Let ¢, be a frame of L, on U; so that S = fe,, where
[ is a holomorphic function on P"(y, R,) and |e,|n, = e ¥». As in the beginning of the proof of
Theorem [4.1] we have first the relation, which is nothing but (4.4)

(1+ D R2)e2Pllhllaky | g2

(4.32) 1Sy = [F(0)e~ @12 = | f(0)]2e 2O < -
’ Jpno.r,) 2erdv

Since

(4.33) / 2y — / 20811 PN a2 g7 ).
Pm(0,Rp) Pm(0,Rp)

as we have done in the proof of Theorem [4.1] it will be sufficient for us to find a lower bound for
the integral

(4.34) / e N dm(z;)
A(0,Rp)

in order to get a lower bound for the whole integral (4.33), where A(0, R,) is the unit closed disk

in C. By the relation (4.10), there exists p; € N such that, for all p > p;, 3”8A L < A? < 57;4 2 and as

AP
before, A—’p > %’T > 1. We also observe that

(4.35) F(1) = 2(1 AT g ;—;

>1
2

since g < e < 3. By the same argument used in the proof of Theorem 4.1}, we get

L L I —2fuy 2 v L
e 9 dm(z)) = / 7e ldm(wy) > 5,
/A(O,Rpwzj-gﬁ} A {\wﬂg./%} A
since F/(1) > 1 by (4.35) and F is increasing. Consequently, from (4.33]), we have

/ 1
(4.36) / e 2 dV > ——
Pn(O,Rp) )\117 . e )\I;L
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Inserting into the sub-mean estimation (4.32]) and using (4.10), one has

wn
(4.37) 1S@)I7, < (1+ DRp)ePIelisfiozl Aﬁ/ 1512, %5
Pn(y,RP) n.
(4.38) < (1+DR;)62D||hp|3R§(5_7T)nAZ/ 52 <
8 Pn(vaP) ! n'
= L i — lhplls '
As R, = T — 0 and by our assumption that 7, i, — 0 when p — oo, one can find a

constant D’ > 1 such that, for a large enough p; € N,

(1+ DRIQ))GQDIIhpllng(%T)” <D
for all p > max {pg, p1,p2}. Hence
wn
(4.39) S(y)[; gD’A”/ Sl7 =,
S, <04y [ ISk

which completes the proof of the claim. Let us fix # € X. Then there exists S, = S, , € H*(X, L,)
such that

|Sp(y)|i2zp = |Kp(33,y)|i2zp

for all y € X. By Theorem [4.]] there exists a constant D” > 1 and p3 € N such that, for all p > ps,

(4.40) Ky(x) < D"Ap,

where D" is some constant that depends only on the reference cover. On the other hand,
w"(y) w"(y)

(4.41) 15,0 = [ 18,008, 2 = [ e, 2 = Ko

In the rest of the proof, we proceed with the near-diagonal and off-diagonal estimations of K, (x, y).
For the near-diagonal estimation, let y € X and d(z,y) < —2%—. By the variational property (2.4)

Ve
of K,(z), the inequality (4.40) and (5.10), we have
(4.42)
’Kp(xay)’%p = ’Sp(y)‘%p < Kp(y)HSpHIQ; < Kp(x) Kp(y) < (D”)QA;Q;H < 646(D”)2A;2;n e~ VArdey),
We go on with the far off-diagonal estimation. Let y € X, and this time, consider
1

VA,

By the choice of S, and the claim in the beginning of the proof, we get

§:=d(x,y) > 40 =40R,,.

wn
) 2 _ 2 o~ gn 2 _C.
(4.43) S, =Kol <45 [ 1 Of,
We observe that the inclusions
) 30
(4.44) Pn(xaRp) - B(x? Z) and Pn(yaRp) - {C €X: d(x,() > Z}

hold.
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Let 3 be a non-negative smooth function on X with the following properties:
B¢) = 1 d(, () 2 =
)

5(¢) = 0 if d(2,¢) < 5
|0B(0))? < 5%5(() for some ¢ > 0.

According to these data, we first have

2 an 2 an
445 Lo R O, 5% < [ 1 O, 505
P(y,Ry) v Jx

n!’

Using the variational property for K,(z), the right-hand side of the inequality (4.45) takes the

following form:

max{[K,(35)}, : 5 € B L), [ IS, 6% =11,
where .
K88)(w) = [ Ko, 0)5 S(0)55

is the Bergman projection of the smooth section 35S to H%(X, L,). Note that when 3 = 1, the usual
variational formula (2.4) is obtained. Therefore, if we manage to estimate |Kp(ﬁS)|%p, then we

will be done. To this end, to find an upper bound for |Kp(55)|%p, we use the decomposition of the
space L?(X, L,) as below:

(4.46) L*(X,L,) = H'(X,L,) @Y.

(Since L?*(X, L,) is an Hilbert space and H%(X, L,) is a closed subspace of it, such an orthogonal
complementary subspace Y always exists). Since 35 € €°°(X, L,) — L*(X, L,), it follows from
the decomposition (4.46) that there exists an element u € Y such that

u=BS — K,(B8S).

Owing to the inclusion P"(z,R,) C B(z, %) from @44) and 5(¢) = 0 for {( € B(x,3) given
previously in the proof, we readily have g = 0 on P"(z, R,), so u = S — K,(85) = —K,(8S),
which is holomorphic on P"(x, R,,) (defined by the coordinates centered at x provided by Lemma
2.2). Therefore, by using the claim in the beginning, one has

2 _ 2 I gn g W'
(4.47) K, (BS)2, = u(z)}, < D'AT /P o 5T
We provide an upper bound for the integral on the right-hand side of (4.47) by Theorem [3.3] For
this purpose, let 7 : [0, 00) — (—o0, 0] be a smooth function defined as follows:

(@) = {O, ifx <

—x, ifz>

DO s

Write ¢s(x) = 67(%). Observe that 7’ and 7 have compact supports within the set [%, 1], and so are

¢ and ¢}. This means that there exists a constant M, > 0 such that |¢}(z)| < My and |¢}(z)| < 2k
for all z > 0. Define the function

0p(€) = e/ Apos(d(, ().
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Since ¢ and ¢} are smooth and have compact supports, we can find a constant M; > 0 such that

(448) HgUpHLOO(X < M16\/
(4.49) dd‘v, > e\/ pw > — epr

because of the inequality § > 46 1A . Now we can choose ¢ = 8—]\141 for the conditions of Theorem
P

[331to hold. Since 7(z) = 0 for z < 1, we have that

() = /Ay ps(d(,()) :eﬂdr(d(QZ’C)) —0

for d(z,¢) < 2. Also, by the inclusion P"(z, R,) C B(x, %) given in (£44), we get v,(¢) = 0 on
P"(x, R,). By the definition of 3, it is seen that du = 9(35) = 9B A S (because S is holomorphic)
has the following (compact) support

l\')lQﬂ

Us={¢eX: (ﬂcC)<—}

so, for ¢ € Uy, by the definitions of Uy, 7 and ¢s5 we obtain

v<>=e\/A_p¢a<d<:c,o>=e\/A_p67(d( ) = —e/Apd(z,() < —ef—

By Theorem [3.3]and the definition of 3, we have

n
ulf == < |l e
Pn(mpr) P TL' P

16 w"

160 —ey/ApS 9 Hw"
< P -
= 34,02° /U5 |S|hpﬁn!

Plugging this last inequality into (4.47) gives
|Kp(BS)I5, < D' Ay cem VA,
which gives, by using the inequality (4.45),

/ | Kp(2, C)\h <D’A"ce e/ Apd(ay).
" (y,Rp)

From the inequality (4.43), we infer
(4.50) Byl ), < (D)2 A v/ Aren),

which finalizes the proof. O
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4.1. Linearization. Let V' C X, U C C" be open subsets, and 2o € V, 0 € U. Let us take a
(Kéhler) coordinate chart as follows v : (V,z¢) — (U,0), v(xo) = 0. We will use the following
notation, so-called linearization of the coordinates on the Kiahler manifold X: For any u,v € C",
we write v~ !(u) = ¢ + v and v~ (v) = xg + v, and

(4.51) Kp(y™ ()77 (v)) o= Kp(o + u, 20 + ).

Since 0 € C™ and C" is a complex vector space, we can write v = 0+ v and u = 0+ u. Linearization
means that when we translate 0 € C" by u (or by v for that matter), by thinking of 0 € C™ as
o € X, we can also write y~!(u) = g + u, so in local coordinates we express the difference
between v~ !(u) and g (not meaningful in X) by the difference u — 0 (meaningful in C" because
C™ is a complex vector space). This is also called the abuse of notation in, for instance, and
ISZ10].

Modifying the argument in ([Bay1l6]l, Theorem 2.3), we consider the following holomorphic
functions

()t ()

Kp(\/:_p, \/Z_p)e VAp VAp
Fplu,v) = Z (hpu)
Ap et
v () () —E(Fe) —Ge(F)
K L Y e VAp VA e VAape VAp© w o
_ p(\/A_p \/A_p) _ _ e@p(ﬁ%‘ﬂp(ﬁ)
A;)L BTP <APU7U>
on Q = {(u,v) : u, v € P*(0, R)}, where A, := Diag[\],..., \}], which is a diagonal matrix whose

diagonal entries A? are positive from the discussions in Section[2l Let Q¢ := {(u,u) : u € P"(0, R)}.
It follows from Theorem [4.1] and Lemma (ii) that I, — 1 on Q. Observe that since I', is
uniformly bounded on €2, there is a subsequence {I',,} such that I'), — I'y uniformly on (2, where
we must have that 'y = 1 on §2y. Since 2 is a maximally totally real submanifold, we get I’y = 1
on the whole (2. Since this argument can be applied to any subsequence of I';, we see that I', — 1.
We make now an observation for |T',(u,v)|* that will be used in our main theorem. Since A, has

positive diagonal entries, its square root All/ ? is defined, so we have

(4.52) (Apu, B) = (ALY ?u, A}/ D).

~2ep( =) Rl E)

K u v 2
4.53) |I‘p(u,v)|2:‘ p(\/A—p’\/A_p)’ e

Az A M)

u - 2Rty (—Ls) 2Rty (—2=)
’Kp(\/A—p7\/—A—p)’2€ P \/5 e P m
P

AP AP ’
A2n 622?:1T;|uj‘2 622?:1T;‘Uj|2 6_221':1,47;|uj_vj‘2
P

p P

)

_ e‘PP(m)B@(\/i—p)

AP
A2n 6*22?:1 Ti, |uj—v;5]?
p

(5 e ) )

B
B
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where, in the second equality, we have used (4.52]) and the polarization identity
1
R((x,¥) = S (x[” + [y1* = Ix = y[I*)

for the vectors x = All,/ *vand y = All/ °7, and in the third equality, we take into account the repre-
sentation @, (z) = Rty (2) + X7, N|zj|* + $p(2) from Lemma[22] (ii). By the limit argument made
above regarding the holomorphic functions T, the expression (&53) for |I',(u,v)> and Lemma

[2.2/(ii), we have

o —2pp(—=) —2¢p( 2 )
| K (=, —=)[%e Virte Vi
(4.54) VAr VA ; 1

A2n 6*22?:1 ,LT; ‘“j*U_j‘Q
P

as p — oo. By linearization (4.51) on the coordinate polydisk P"(x, R) C U;, where we have the
Kahler coordinates at the point x = 0 provided by Lemma [2.2] for (4.54)), we obtain

7 e ) e )

T+ =,z + —F~
(4.55) VA VA

AQn 6722?:1 Z% |“j7v_j‘2
14

- — 1 when p — oc.

5. ASYMPTOTIC NORMALITY

5.1. Random holomorphic sections and random zero currents of integration. Lets € H°(X, L)\{0}.
We denote by Z, the set of zeros of s. Z; is a purely 1-codimensional analytic variety of X. By the
symbol [Z;], we mean the current of integration on Z,, defined by

<[Zs]a90>=/sso,

here ¢ € D"~ 1"~1(X), which represents the space of test forms of type (n — 1,n — 1).

A complex random variable W is said to be standard Gaussian in case W = X + /—1Y, where
X and Y are i.i.d. centered Gaussian distributions of variance 1/2. The Poincaré-Lelong formula is
one indispensable instrument that will be of use in the proof of our main theorem. Let us state it
for a zero current associated with the zero set of a holomorphic section s, € H(X, L,).

(5.1) [Zs,) = dd°log sl + c1(Lp, by).
Here and throughout dd® = g 00.

5.2. Asymptotic normality of random zero currents. Now we are ready to state and prove our
main theorem. For the proof, we use the arguments from [SZ10].

Theorem 5.1. Let {(L,, hp)};%l be a sequence of positive holomorphic line bundles over a compact
Kdhler manifold (X, w) of dimension n with diophantine condition (2.7) and Hermitian metrics of class
€ such that % — 0asp — oo . Suppose that H°(X, L,) is endowed with the standard Gaussian

P

probability measure for all p > 1. Let s, € HY(X, L,) and ¢ be a real valued (n —1,n — 1)-form on X
with €3-coefficients and dd°¢ # 0. Then the distributions of the random variables

((Zs,), &) — E([Zs,], 9)
Var([Zsp], o)
weakly converge towards the standard (real) Gaussian distribution N'(0,1) as p — oc.

(5.2)
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Proof. To begin with, we modify the information about analytic functions from the introduction to
suit our present setting. The normalized Gaussian processes «, on X will be constructed as follows:
We take a measurable section ey, of L, such that ey, : X — L, with |er,(z)|, = 1 for any z € X.

We pick now an orthonormal basis {sp} o v, of H(X, L,), where sl = ple L,- Let us write

(5.3) fi) = %, j=1,2,....,d,.
p\Ly

Notice that )| = |57 h, and Zj”: 1 f(x)|? = 1 by the relation (2.3). Therefore, we can express a
normalized complex Gaussian process on X for each p € N as follows:

dP
(5.4) ap =Y bifl,
j=1

where the coefficients b; are i.i.d. complex Gaussian centered random variables with variance one.
. . d ;
We observe that a random holomorphlc section s, = Y/ b;sp can be represented as

(5.5) Zb 33 = (z,z)oper,,

which indicates the presence of the normahzed complex Gaussian process. The relation (5.5) gives
us that

_ Isp(@)ln,
(5.6) lay ()] = K1)

We proceed to compute the covariance functions C, of the complex Gaussian processes «,,. We
observe from the fact that the complex Gaussian random coefficients b; in (5.4) are centered, i.i.d.,
and have variance one

(5.7) Var[b;] = E[|b; ] =1, Ebb] =0 if k # 1.
By the relation (I.3), (5.4) and (5.7), we have

dp ’
(5.8) Cplw,y) =E[Y_bifj (= bep =Y @) ).
7=1

Since {sp} " | is an orthornormal basis, due to the representation sp = gope 1, and the relation (5.3),
we have gop( )¢k (y) = 0 whenever k # I. Combining this with (5.8) yields

(5.9 ICp(z,y)| = Z’fp IRFAO

Next, after a series of computations, we arrive at

(5'10) ’Kp(x7y)’hp,z®hp,y = Z ’Sp ’hp )’hp y °

By putting together (5.9), (5.10) and (5.3), we find
(5.11) Kp(@,y) = [Col(,y)|

because ]si\hp = \90%‘-
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Take A\(p) =logp and (G,0) = (X, fl—T) In the rest of the proof, to make the notation lighter, we
will write d¥ x := %L for the (Riemannian) volume form on X. Let us fix a (n—1,n— 1) real-valued
form ¢ with € coefficients. Then

=1 _
(5.12) dd®¢ = Taﬁgb =Y dix,
where the function v is a real-valued ¢* function on X. By invoking the Poincaré-Lelong formula
(51D, the non-linear random functional given by (I.4]) assumes the subsequent form in our case,

(5.13) f;f(ap) = /X (log |5p|hp — log \ Kp(:v,:v))gaaﬁ(x) = <[Zsp], ¢) + Cp,Lp,

where ¢, 1, = ( — c1(Lp, hy) — log \/K,(x, ), ¢), namely, (, 1, is some constant depending only
on the line bundle L, and the dimension of the Kahler manifold X. Thanks to a standard property
of variance, the expression shows that .7-";,” (ap) and ([Z,,], ¢) have the equal variances.

For the remaining part of the proof, our goal is to validate the fulfillment of the requirements
(i) and (ii) of Theorem [I.1] for the current setting. First, with A(p) = log p being increasing, we
only consider the case where v = 1. To use both far off-diagonal and near-diagonal asymptotics,

. . . . . X log A, log Ap :
we split the integration regions accordingly: d(z,y) < o and d(z,y) > A Let us start with

log Ap

b
\/?p) y

the simpler condition (ii). For the integral on the far off-diagonal set where d(z,y) >
Theorem [4.2] we have,

lim sup/ _ Ep(x,y)dﬁx(y) < lim sup/ _ Ge*B\/A_Pd(:r,y)dﬂX(y) =
N0 peX d(x,y)z% P70 e X Jd(z,y) OgA:

For the integral over the near-diagonal set where d(x,y) < 84y due to the relations (511D and

\/_
(T.3), we get

lim sup/ o A, I/C\p(x,y)dﬁx(y) < lim sup/
d( 7y) T A d(x7y)

n—00 pcx n—=0 e X

P

Our next step is to affirm the condition (i). For the integral on the far off-diagonal set where

d(z,y) > %, as p — oo, the integrand of the numerator approaches zero more rapidly compared
P

to that of the denominator because, by Theorem [4.2] the corresponding decaying orders (to zero)
for numerator and denominator are O(4,¢) and O(4, ¢/ 2), respectively.

Finally, we verify that the lower limit below will be strictly positive on the near-diagonal set
where {|v| < M} :

VA

fX f|v|<lo Ap IC ($ xr + )QS(x)QS(x + )d’l) dﬂX(x)
(5.14) lim inf ¢ \A/_P VA “o
e f|v|<logAp Kp(z,x + \/A—p) dv
Let

f fv<o ICQ(m T+ Jo(z)p(z + ) dv d9 x ()
(5.15) J(p) = o IEE L/’T” N B
f\v\ﬁlogAp,C (.%' T+ \/—)dfu

Let us examine the numerator and the denominator separately. By using the left part of the in-
equality (4.27) for the denominator and the right part of the same inequality for the numerator,
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the linearization (4.51) on the neighborhood U, where we have the Kahler coordinates at the point
x on the polydisk P"(z, R) C U; provided by Lemma[2.2] we get

+ ) dvddx (@)

/X /|v|§10gAp’€3(’ fA—W”CW =

|Kp(z, z + N2 p(x) plz + —==)
(2 PZBL Vi
5.16 )2 dv d) = I,(p).
( ) / /|v|<logA 5 A2n (1 + D 2/3) v X(CE) 1(]?)
and
|Kp(x, x + )n
i v 4 \/_ P
5.17 Ky(x, —)dv < dv = I1(p),
( ) /USIOgAp p(@t \/A_p) ’ /vﬁlogAp (3) An( — D’772/3) v 2(p)

which implies, by extractmg the weight functions and multiplying and dividing both the integrand

AP
25m —n
of Iy and I, by e ~77=! AP' Ul and ¢ Fi-1 A 101 respectively

(5.18)

| Kp(z,x + e —2ep(2)¢ “erlt 7

¢( ) o(x —) A
4 T : TE T e M
11(17)—/ / (3)% 7 il e 27| J‘dedﬁx(x)
v|<log A n
[v|<log Ap 120 (1 D,m%/g) —2%7

lA Jv; |2

and

o (z) (Tt =)
4 \Kp(m,m—i— = )’e ep(@)e TP VAp e ﬁ|v|2
(5.19) Ig(p):/ (=)™ . e AT du.

v|<log A 3 2/3 nn X
> p —
Ap (1= D'y’ ")e

j:lfi,|vj|2
By (5.16), (5.17), (5.18) and (5.19), we obtain

(5.20)
—2¢p(z+—7~=)
| Kp(z,a+—2=)[? e 29 @e W@¢mMH—U>,
4 A a o \ |2
fX f|v|§logAp (5)271 VAp N VAp = 1Ap Y5 dvdﬁx( )
J(p) > Ii(p) Agr (1+D’n§/3)26722?:1T;‘“j‘2
p - - v
IQ(p) . — o (@) _(Pp(x+\/A_) P
f (é)n‘Kp($7$+M)|e ep(@)g P I o
[v|<log Ap \3 ﬁ‘ ‘

_nn 12
Ay (Dol S A

Since ¢ € €, it follows that ¢( ”A ) = ¢(x) + O(\/LA_). Now, as p — oo on the inequality
P P
(5.20), and making use of (4.54) and (2.14) yield that

2 dqﬂ . 2n *Wz 12 d
lim inf J(p) fX ¢*(@)dix () Jen ( - v

2
= )d
p—00 an % e 3 ]_I‘Ujl dv 52n/ ¢ X

which ends the proof. 0
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In the papers [CMM] and [BCM], the authors use a more general hypothesis between the first
Chern forms and the Kahler form. More precisely, they assume

(5.21) c1(Lp, hp) > apw forall p > 1 and a, > 0, such that a, — oco.

In our setting, the role of a, is played by A, (which was defined as A, = [ ¢1(Lp, hy) Aw™ ! in
[CMM] and[BCM])), and there are two different limits because of the diophantine approximation

relation (2.7) between A? and A,. In the case of (5.2I), we do not have (2.14) (and consequently
(2.15)). However, as Theorem 1.3 in [CMM] shows, there still exists a limit: lim,, /\Ifl}’—(i% - (%)n

r
Despite the existence of the limit in terms of A?, we do not know whether the limit lim,_, 2—;

exists, which is crucial in the proof of Theorem 5.1l Therefore, the arguments followed in this
paper cannot be used to prove a central limit theorem in this framework.
Acknowledgement: We thank Turgay Bayraktar for his interest in and comments on this work.
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