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Abstract. In this work, we study the critical long-range percolation on Z, where an edge
connects i and j independently with probability 1 − exp{−β|i − j|−2} for some fixed β > 0.
Viewing this as a random electric network where each edge has a unit conductance, we show
that with high probability the effective resistances from the origin 0 to [−N,N ]c and from the
interval [−N,N ] to [−2N, 2N ]c (conditioned on no edge joining [−N,N ] and [−2N, 2N ]c) both
have a polynomial lower bound in N . Our bound holds for all β > 0 and thus rules out a
potential phase transition (around β = 1) which seemed to be a reasonable possibility.
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1. Introduction

Consider the critical long-range percolation (LRP) on Z, where edges ⟨i, j⟩ with |i− j| = 1
(i.e. i and j are nearest neighbors) occur independently with probability p1, while edges ⟨i, j⟩
with |i − j| > 1 (which we refer to as long edges in what follows) occur independently with
probability

(1.1) 1− exp

{
−β

∫ i+1

i

∫ j+1

j

1

|u− v|2
dudv

}
.

Here, β > 0 is a parameter of this LRP model. We also call this model as a β-LRP model, and
denote E for the edge set. Additionally, for ease of notation, we will also use ∼ to denote edges,
that is, i ∼ j implies ⟨i, j⟩ ∈ E. Note that we chose the expression (1.1) for the connecting
probability since it has a strong scaling invariance property and is thus a convenient choice
especially when studying scaling limits. That being said, it would be clear that our proof
extends to the case when the connecting probability is within a multiplicative constant of
β|i− j|−2.

In this study, we focus on the particular case for p1 = 1, where the connectivity, thus the
existence of the infinite cluster, is trivial. Placing a unit conductance on each edge, we may
then view this LRP model as a random electric network on Z. Our goal is to study the effective
resistance (of the β-LRP), which we now define. Let f be a function defined on Z2. We call f
a flow on the β-LRP model if it satisfies

fij =

{
−fji, ⟨i, j⟩ ∈ E,

0, otherwise

for all i, j ∈ Z. So the net flow out of a point i is f(i) :=
∑

j ̸=i fij. Moreover, given two finite
disjoint subsets I1, I2 ⊂ Z, we say f is a unit flow from I1 to I2 if it is a flow satisfying∑

i∈I1

f(i) = 1 and f(j) = 0 for all j /∈ I1 ∪ I2.

J. Ding: School of Mathematical Sciences, Peking University, Beijing, China. dingjian@math.pku.edu.cn.
Z. Fan: School of Mathematical Sciences, Peking University, Beijing, China. 1900010670@pku.edu.cn.
L.-J. Huang: School of Mathematics and Statistics, Fujian Normal University, Fuzhou, China.

huanglj@fjnu.edu.cn.
1

ar
X

iv
:2

40
5.

03
46

0v
1 

 [
m

at
h.

PR
] 

 6
 M

ay
 2

02
4



2 JIAN DING ZHERUI FAN LU-JING HUANG

Note that the condition above implies
∑

i∈I2 f(i) = −1. The effective resistance between disjoint
subsets I1, I2 ⊂ Z is then defined as

(1.2) R(I1, I2) = inf
J1,J2

inf

{
1

2

∑
i∼j

f 2
ij : f is a unit flow from J1 to J2

}
,

where the first infimum is taken over all finite subsets J1 ⊂ I1 and J2 ⊂ I2. In particular, when
I1 = {i} is a singleton, we denote R(i, I2) as R(I1, I2).

Our main result establishes polynomial lower bounds on effective resistances, as detailed in
the following theorem. For any subset A ⊂ Z2, we denote by EA = E ∩ A.

Theorem 1.1. For any β > 0, there exists a constant δ > 0 (depending only on β) such that
the following holds. For any ε ∈ (0, 1/2], there exists a constant c = c(ε) > 0 (depending only
on β and ε) such that for all N ≥ 1,

(1.3) P
[
R(0, [−N,N ]c) ≥ cN δ

]
≥ 1− ε,

and

(1.4) P
[
R([−N,N ], [−2N, 2N ]c) ≥ cN δ

∣∣E[−N,N ]×[−2N,2N ]c = ∅
]
≥ 1− ε.

1.1. Related work. Electric networks are commonly associated with reversible Markov chains,
providing a sophisticated and efficient method for understanding properties of these chains [13,
18]. An essential measurement in electric network theory is the effective resistance, which plays
a crucial role in evaluating the conductivity of the electric network. Effective resistances are
closely related to various aspects of random walks on networks, including recurrence/transience,
heat kernels and mixing times, see e.g. [1, 17, 15].

The study of effective resistances for LRP on Zd has sparked great interests, as this meas-
urement is not only an intriguing intrinsic property of the underlying random graph but also
provides effective tools for studying random walks on this model. Specifically, consider the
sequence {px}x∈Zd , where px ∈ [0, 1] and px = px′ for all x, x′ ∈ Zd such that |x| = |x′|. Assume
that

0 < β := lim
|x|→∞

px|x|s < ∞

for some s > 0. The LRP on Zd, introduced by [21, 22], is defined by edges ⟨x, y⟩ occurring
independently with probability px−y.

We first review progress on effective resistances as well as behavior for random walks on non-
critical (i.e. (d, s) ̸= (d, 2d)) LRP models. In [16] the authors employed methods to estimate
volumes and effective resistances from points to boxes, obtaining the corresponding heat kernel
estimates for the case where d = 1, s > 2 and p1 = 1. In fact, the authors showed this in a more
general random media setting. In [19], the author derived up-to-constant estimates for the box-
to-box resistances for d = 1, s ∈ (1, 2)∪(2,∞) as well as for d ≥ 2 and s ∈ (d, d+2)∪(d+2,∞).
For random walks on infinite clusters of these LRP models, when s ∈ (d, d + 2), it was shown
in [12] (for s ∈ (d, d + 1)) and [6] (for d ≥ 2 and s ∈ [d + 1, d + 2)) that the random walk on
the infinite cluster converges to an α-stable process with α = s − d. In the case where d = 1
and s > 2, it was also shown in [12] that the random walk converges to a Brownian motion.
It is worth mentioning that [7] studied the quenched invariance principle for random walks on
LRP graphs with s > 2d for all d ≥ 2. According to [7, Problem 2.9], it seems that it remains
a challenge to establish scaling limits of random walks on the LRP models with d ≥ 2 and
s ∈ (d+ 2, 2d]. There are also numerous related results regarding the heat kernel, mixing time
and local central limit theorem of the random walk, see e.g. [4, 11, 9, 10].

There are relatively few results for effective resistances and random walks on the critical LRP
model for d ∈ {1, 2} (note that in [19] resistance bounds are obtained in the critical case for
d ≥ 3). The author of [5] established recurrence for the random walk in the case of s = 2d
for d ∈ {1, 2}, by showing that the effective resistance from the origin to [−N,N ]c diverges as
N → ∞. This was then extended in [3] to more general LRP models with weight distribution
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satisfying some moment assumptions. In addition, bounds on box-to-box resistances were
provided in [19] for d ∈ {1, 2}, including a constant lower bound for d = 1. Despite these
progresses, it seems a challenge to determine the divergence rate of the effective resistance. In
fact, from our conversations with colleagues, it seems there is a folklore debate on whether
for d = 1 and s = 2 the effective resistance grows polynomially for all β > 0 or has a phase
transition at β = 1. Our contribution in this work confirms the former scenario.

1.2. Outline of the proof of Theorem 1.1. Since the main ideas for proving (1.3) and (1.4)
in Theorem 1.1 are essentially same, we mainly offer an overview for the proof of (1.3). To begin
with, let us fix a sufficiently large N ∈ N and recall that the effective resistance R(0, [−N,N ]c)
is defined in (1.2) with I1 = {0} and I2 = [−N,N ]c. Our objective is to establish a polynomial
lower bound for the effective resistance R(0, [−N,N ]c).

When β ∈ (0, 1), intuitively there are relatively few long edges. This actually allows for a
straightforward proof of a polynomial lower bound on R(0, [−N,N ]c) by finding a sufficient
number of cut-edges. Here, an edge is a cut-edge (and in general a set is a cut-set) if 0 is
disconnected from [−N,N ]c after its removal. To be more specific, for i ∈ [−N,N)Z, define

ξi =

{
1, (i, i+ 1) is a cut-edge,
0, otherwise.

A simple calculation reveals that P[ξi = 1] = (2N)−β, leading to

E [R(0, [−N,N ]c)] ≥ E

[
N−1∑
i=−N

ξi

]
≥ c(β)N1−β,

which then (together with a second moment computation) implies a polynomial lower bound
on the resistance. However, as β increases, the number of long edges also increases, rendering
the method of identifying cut-edges ineffective in providing a satisfactory lower bound.

In addition, as mentioned in Subsection 1.1, [19] established a constant lower bound for
the effective resistance associated with our β-LRP models. Indeed, the author showed the
probability of the resistance being less than a certain constant is very low by choosing a specific
test function in the dual variational formula of (1.2). However, obtaining a polynomial lower
bound for the resistance through this method seems to be quite challenging, as a priori we
have no information about the form of the function that achieves the infimum in the dual
of (1.2). A diverging lower bound was shown in [5] via constructing a collection of disjoint
cut-sets, although the bound diverges rather slowly. In fact, the method of [5] can be seen as
an application of multi-scale analysis, although the contribution obtained from each scale is
barely large enough to obtain a diverging lower bound. The key contribution of our work, as
we elaborate in what follows, is to employ a novel framework of multi-scale analysis.

The main idea of our approach for multi-scale analysis is to provide a lower bound for the
effective resistance by combining the total energy generated by flows in (1.2) passing through
“good” subintervals of different scales within [−N,N ]. The novelty of our multi-scale analysis
is largely captured by the application of the analysis fact that

(1.5) aα,n ≥ c

⌊
√

n/ logn⌋∑
k=1

aα,n−k log k

k log k
=⇒ aα,n ≥ c̃(α)eδ(α)n

for all α ∈ (0, 1/2] and some constants c > 0 and c̃(α), δ(α) > 0 (depending only on
β and α). Here n = log2N , and aα,k is the (1 − α)-quantile of the “effective resistance”
R̂((−∞, 0], (2k,+∞)) defined in (1.9) below. The key challenge of this work is to prove the
recursive formula on the left-hand side of (1.5), and one difficulty is that we have to simul-
taneously control all unit flows. To this end, we partition the region near points where the
flow enters the interval (0, N ] into intervals of length 2i for i ≥ 1. Then we search for “cut-
intervals” at each step with k log k layers. Here a cut-interval essentially plays the role of a
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cut-set, and roughly speaking it means that any unit flow from (−∞, 0] to (N,∞) must pass
through the cut-interval (i.e., the flow must enter and then exit from the cut-interval). In our
rigorous proof, the notion of cut-interval will be replaced by Definition 2.1. In addition, we will
show that a significant fraction of cut-intervals will be very good, in the sense that when the
flow passes through these intervals it generates a significant amount of energy (resulting in a
significant contribution to effective resistances). By using this and suitably selecting associated
parameters, we can establish the left-hand side of (1.5), as incorporated in Proposition 3.11.

Now, let us provide a slightly more detailed overview of the proof of (1.3) in Theorem 1.1.
By a simple first moment computation, it is clear that with probability 1 there are only finitely
many edges joining [−N,N ] and [−N,N ]c. This implies that unit flows from 0 to [−N,N ]c are
well-defined, since they can be viewed as unit flows from 0 to the finite set

I =
{
i ∈ [−N,N ]c : ∃j ∈ [−N,N ] such that ⟨i, j⟩ ∈ E[−N,N ]×[−N,N ]c

}
.

Now let f be a unit flow from 0 to [−N,N ]c attaining the infimum in (1.2). Then, we can see
that the flow f emanates from 0 (with an outflow of f(0) =

∑
i:0∼i f0i = 1) and ultimately flows

into [−N,N ]c (with an inflow of
∑

j∈[−N,N ]c

∑
i∈[−N,N ]:i∼j fij = 1). As a result, the flow f must

pass through intervals [−N, 0) or (0, N ] (unless 0 is directly connected to [−N,N ]c, which is
unlikely). So let us define θ1 as the portion of flow f that passes through the interval (0, N ]
and then flow into [−N,N ]c. Similarly, we define θ2 by replacing (0, N ] with [−N, 0) in the
definition of θ1. We also let

(1.6) |θ1| =
∑

i∈(0,N ]

∑
j∈[−N,N ]c

fij and |θ2| =
∑

i∈[−N,0)

∑
j∈[−N,N ]c

fij

represent amounts of flows exiting from intervals (0, N ] and [−N, 0), respectively. It is clear
that max{|θ1|, |θ2|} ≥ 1/2. Define

(1.7)

R̂([−N, 0], [−N,N ]c) = inf

{
1

2

∑
u∼v

f 2
uv : f is a unit flow from [−N, 0] to [−N,N ]c,

and fuv = 0 for all ⟨u, v⟩ ∈ E[−N,0]×[−N,N ]c

}
as the effective resistance generated by unit flows from [−N, 0] to [−N,N ]c, passing through
the interval (0, N ]. Similarly, denote R̂([0, N ], [−N,N ]c) as the effective resistance generated by
unit flows from [0, N ] to [−N,N ]c, passing through the interval [−N, 0). Then we can deduce
that

(1.8) R(0, [−N,N ]c) ≥ max
{
|θ1|2R̂([−N, 0], [−N,N ]c), |θ2|2R̂([0, N ], [−N,N ]c)

}
.

(See Figure 1 for an illustration). Note that R̂([−N, 0], [−N,N ]c) and R̂([0, N ], [−N,N ]c)

0 N−N

θ1θ2

f

Figure 1. The illustration for (1.8). The red arrow represents the unit flow f
entering at 0. The blue curves represent the flows exiting from (0, N ], while the
green curves represent the flows exiting from [−N, 0).

have the same distribution. Consequently, it suffices to prove that R̂([−N, 0], [−N,N ]c) has a
polynomial lower bound with high probability.

Furthermore, for the sake of convenience in employing an iterative approach for estimating
resistances, we lower-bound R̂([−N, 0], [−N,N ]c) via the resistance generated by unit flows
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from (−∞, 0] to (N,+∞) passing through the interval (0, N ], which is defined as

(1.9)

R̂((−∞, 0], (N,+∞)) = inf

{
1

2

∑
u∼v

f 2
uv : f is a unit flow from (−∞, 0] to (N,+∞)

and fuv = 0 for all ⟨u, v⟩ ∈ E(−∞,0]×(N,+∞)

}
.

(See Subsection 4.1 for more details). In conclusion, our primary focus is to establish a poly-
nomial lower bound for the resistance R̂((−∞, 0], (N,+∞)) as incorporated in Theorem 3.1.

To prove Theorem 3.1, we first introduce the concept of good pairs of intervals. Roughly
speaking, for any z ∈ Z and i ∈ N, we say the pair of intervals ([z−2i+1, z−2i), (z+2i, z+2i+1]) is
good if any path originating from z to [z−2i+1, z+2i+1]c must pass through either [z−2i+1, z−2i)
or (z + 2i, z + 2i+1] (see Definition 2.1). Essentially, we may consider good pairs of intervals as
some kind of “cut-intervals”. Hence, when the flow exits from z, it must pass through at least
one of these two intervals, generating a certain amount of energy. We will employ the Firework
process theory (see e.g. [14]) by viewing coverage of long edges over intervals as the propagation
in the Firework process, to obtain some estimates for the distribution of the number of intervals
that can be covered at a time (see Lemma 2.4). The definition of an interval covered by long
edges will be provided in (2.1) below. From this and a general Chernoff-Hoeffding bound, we
can show that for a fixed z, with high probability there exist a sufficient number of good pairs
of intervals at various scales around it (see Proposition 2.2).

We next consider the area surrounding points where the unit flow (from (−∞, 0] to (N,+∞))
enters (0, N ]. We segment such area into intervals of length 2i for i ≥ 1, which we will refer
to as the i-th layer intervals. Then we search for good pairs of intervals at each step with
k log k layers and show that with high probability we can find enough good pairs of intervals
in many layers (see Figure 5). Note that the k log k here is in correspondence with n− k log k
in the subscript in (1.5) and is also responsible for the factor of k log k in the denominator
there. Therefore, when the flow passes through those good intervals, it will provide sufficiently
large energies (i.e. effective resistances). This implies an effective lower bound for the resistance
(see Lemma 3.13). Then we can establish a recursive formula for quantiles of the resistance
R̂(·, ·) (see Proposition 3.11). From this we can obtain a polynomial lower bound in N for the
resistance R̂((−∞, 0], (N,+∞)) as in Theorem 3.1. We re-iterate that one difficulty is that
we have to simultaneously control all unit flows. To achieve this, we show that good pairs of
intervals found above through multi-scale analysis are essentially cut-sets, so all unit flows must
pass through these intervals and then generate enough energy. This is incorporated in Section
3.

Notational conventions. We denote N = {1, 2, 3. · · · }. For a < b, we define [a, b]Z =
[a, b] ∩ Z. When we refer to an interval I, it always implies that I ∩ Z. For any two disjoint
sets I1, I2 ⊂ Z, let f be a flow from I1 to I2, we write |f | for its amount, that is,

(1.10) |f | =
∑
i∈I1

∑
j∈Ic1

fij.

For example, if f is a unit flow, then |f | = 1. In addition, for any two sets I1, I2 ⊂ Z, we recall
EI1×I2 := E ∩ (I1 × I2).

Throughout the paper, we use c1, c2, c, c
′, · · · to denote positive constants, whose values are

the same within each section but may vary from section to section.

2. Good intervals and associated estimates

For z ∈ Z and i ∈ N, denote by I+i (z) and I−i (z) the intervals (z + 2i, z + 2i+1] and [z −
2i+1, z − 2i), respectively.
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Definition 2.1. We say the pair of intervals (I−i (z), I
+
i (z)) is good if

(1) [z − 2i+1, z + 2i] and (z + 2i+1,+∞) are not directly connected by any long edge;

(2) (−∞, z − 2i+1) and [z − 2i, z + 2i+1] are not directly connected by any long edge.

z z + 2i z + 2i+1z − 2iz − 2i+1

Figure 2. The illustration for the definition of the good pair of intervals. The
blue dashed curve in the graph represents the absence of long edges directly
connecting intervals [z−2i+1, z+2i] and [z+2i+1,+∞) (blue lines), while the green
dashed curve represents the absence of long edges directly connecting intervals
(−∞, z−2i+1] and [z−2i, z+2i+1] (green lines). Therefore, for any path starting
from z to [z − 2i+1, z + 2i+1]c (the red curve), it must pass through either I−i (z)
or I+i (z).

In the following, we aim to provide a large deviation estimate for the number of good pairs
of intervals. To do this, we only need to consider the case where z = 0 due to the translation
invariance of our model. For simplicity, we denote I±i (0) as I±i in this case. We now define a
sequence of Bernoulli random variables {ξi}i≥1 as

ξi =

{
1, (I−i , I

+
i ) is good,

0, otherwise.

Proposition 2.2. For any β > 0, there exists a constant κ = κ(β) ∈ (0, 1) (depending only on
β) such that for all n ≥ 1, we have

P

[
n∑

i=1

ξi ≤ (1− κ)n/2

]
≤ exp

{
−(1− κ)2n/2

}
.

To prove Proposition 2.2, we need some preparations.

Lemma 2.3. There is a constant κ ∈ (0, 1) (depending only on β) such that the following holds.
For any r ∈ N and any S = {i1, i2, · · · , ir} ⊂ N in the ascending order, let

wr = P[ξi1 = 0, ξi2 = 0, · · · , ξir = 0].

Then wr ≤ κr.

To prove Lemma 2.3, we will review the Firework process (see e.g. [14]) and view coverage
of long edges over intervals as the propagation in the Firework process. For that, we fix r ∈ N
and S = {i1, i2, · · · , ir} ⊂ N being a set in the ascending order.

For k ∈ [2, r+1]Z, let Lk represent the minimum number of s ≤ k− 1 such that there exists
at least one long edge within

E[−2ik+1,−2ik−1+1)×[−2is ,2is+1] ∪ E(2ik−1+1,2ik+1]×[−2is+1,2is ],

where ir+1 := +∞ (see Figure 3 for an illustration). It is worth emphasizing that L1, · · · , Lk+1

are independent from the independence of edges in our model. We say the pair of intervals
(I−is , I

+
is
) is covered by long edges if there exists at least one long edge within

(2.1) E(−∞,−2is+1)×[−2is ,2is+1] ∪ E(2is+1,+∞)×[−2is+1,2is ].

For the distribution of Lk, we have the following property.
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−2ir+1 −2ir 0 2ir+12ir−2ir−s+1 −2ir−s

−2ir−s−1+1

−2ir−s−1 2ir−s−1

2ir−s−1+1

2ir−s 2ir−s+1

0−2ik+1 −2ik

−2ik−1+1

−2ik−1

−2ik−s−1

2ik−s−1+1 2ik−1

2ik−1+1

2ik 2ik+1

2ik−s−1

−2ik−s−1+1

Figure 3. The illustrations for the definitions of Lr+1 (at the top) and
Lk, k ∈ [2, r]Z (at the bottom). For k ∈ [2, r + 1]Z and s ∈ [0, k −
1]Z, the event Lk > s is equivalent to the event that there exists at
least one long edge in E[−2ik+1,−2ik−1+1)×[−2ik−s−1 ,2ik−s−1+1] (blue curves) or
E(2ik−1+1,2ik+1]×[−2ik−s−1+1,2ik−s−1 ] (red curves).

Lemma 2.4. For r ∈ N and S = {i1, · · · , ir} ⊂ N in the ascending order, we have

P[Lk > s] ≤ 1−
(
1− 3

2s+1 + 2

)2β

for all k ∈ [2, r + 1]Z and s ∈ [0, k − 1]Z.

Proof. It follows from the definition of Lk that for each k ∈ [2, r+ 1]Z and each s ∈ [0, k− 1]Z,

P[Lk > s] = 1− exp

{
−2β

∫ −2ik−1+1

−2ik+1

∫ 2ik−s−1+1

−2ik−s−1

1

(u− v)2
dudv

}

= 1− exp

{
−2β

∫ −2ik−1−ik−s−1+1

−2ik−ik−s−1+1

∫ 2

−1

1

(u− v)2
dudv

}

≤ 1−
(
1− 3

2ik−1−ik−s−1+1 + 2

)2β

≤ 1−
(
1− 3

2s+1 + 2

)2β

,

where the last inequality is from ik−1 − ik−s−1 ≥ s. □

We let A0 = {ir + 1} and for m ≥ 1, we inductively define
(2.2) Am = {is ∈ S : there exists ik ∈ Am−1 such that s ∈ {k − Lk, · · · , k − 1}} \ Am−1.

The above definition in fact corresponds to a “spreading” procedure of the edge set for the LRP
model, where in the m-th step we explore long edges in

(2.3) ∪ik∈Am−1

(
E(−2ik+1,−2ik−1+1]×[−2is ,2is+1] ∪ E[2ik−1+1,2ik+1)×[−2is+1,2is ]

)
to determine if the element is is in Am. That is, if the edge set in (2.3) is non-empty, then
is ∈ Am. We see that is ∈ Am (namely, the pair of intervals (I−is , I

−
is
) is newly covered at the

m-th step) if it was not covered by the edge set

∪ik∈Am−2

(
E(−2ik+1,−2ik−1+1]×[−2is ,2is+1] ∪ E[2ik−1+1,2ik+1)×[−2is+1,2is ]

)
,

but covered by the edge set in (2.3). The “spreading procedure” will stop upon Am = ∅ and from
(2.2) we can see that Am′ = ∅ for all m′ > m if Am = ∅. Moreover, ∪m≥0Am ⊂ S ∪ {ir + 1}
represents the set of subscripts for intervals (“spreaders”) at the end of the above spreading
procedure. Let
(2.4) Mr := min {k ∈ N : ik ∈ ∪m≥0Am}
be the subscript of the last pair of intervals that are covered in this spreading procedure.
Combining this with definitions of good pair of intervals and ξk, we can see that
(2.5) P[ξi1 = 0, · · · , ξir = 0] ≤ P[Mr ≥ r].
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(See Figure 4 for an illustration). We will use some estimates for the Firework process (see e.g.
[14]) to bound the right-hand side of (2.5) from above, which in turn provides an upper bound
on the left-hand side of (2.5).

0−2i1+1 −2i1−2ir−1+1−2ir−1

· · ·
2i1+12i1 2ir−1+12ir−1

· · ·
−2ir+1 −2ir 2ir 2ir+1

Figure 4. The illustration for (2.5). The event {ξi1 = 0, · · · , ξir = 0} is equi-
valent to that (I+i1 , I

−
i1
), · · · , (I+ir , I

−
ir
) are all covered by long edges. Thus we have

{ξi1 = 0, · · · , ξir = 0} ⊂ {Mr ≥ r}.

Lemma 2.5. There exists κ ∈ (0, 1) (depending only on β) such that for all r ≥ 1,

P[Mr ≥ r] ≤ κr.

Proof. For k ∈ [2, r + 1]Z and s ∈ [0, k − 1]Z, denote
αk(s) = P[Lk ≤ s] = 1− P[Lk > s].

Then from Lemma 2.4, we can see that for each s ∈ [0, r]Z,

(2.6) min
s<k≤r+1

αk(s) ≥
(
1− 3

2s+1 + 2

)2β

=: α̃(s).

Moreover, from the fact that log(1− x) ≥ −2x for all x ∈ (0, 3/4), we can see that

(2.7) log
∏
s≥0

α̃(s) = 2β
∑
s≥0

log

(
1− 3

2s+1 + 2

)
≥ −12β

∑
s≥0

1

2s+1
= −12β.

We now consider a sequence of i.i.d. random variables L̃1, · · · , L̃r+1 with the distribution
α̃(s), and define Ãm and M̃r according to (2.2) and (2.4) by replacing Lk with L̃k, respectively.
Then from (2.6) and the independence of L1, · · · , Lr+1 as previously mentioned before (2.1),
we can see that

(2.8) P[Mr ≥ s] ≤ P
[
M̃r ≥ s

]
for all s ∈ [0, r]Z.

Additionally, it follows from (2.6) and (2.7) that α̃(s) increases exponentially to 1 as s → ∞ and∏
s≥0 α̃(s) ≥ e−12β > 0, which implies that conditions stated in [14, Proposition 1] are satisfied.

Consequently, by applying [14, Proposition 1] to α̃(s), we get that there exist κ1 ∈ (0, 1) and
R > 0 (both depending only on β) such that for all r ≥ R,

(2.9) P
[
M̃r ≥ r

]
≤ κr

1.

Moreover, choose κ2 ∈ (0, 1) (depending only on β) such that κR
2 ≥ 1− 4−β. By combining this

with Lemma 2.4, we see that for all r < R,

(2.10) P
[
M̃r ≥ r

]
≤ 1− P[Lr+1 = 0] ≤ 1− 4−β ≤ κr

2.

Let us denote κ = max{κ1, κ2}. Then (2.9) and (2.10) yield that P
[
M̃r ≥ r

]
≤ κr for all r ≥ 1.

Hence, we obtain the desired statement by combining this with (2.8). □

With the above lemmas at hand, we can provide the

Proof of Lemma 2.3. Recall that Mr is defined in (2.4). Then from it and Lemma 2.5, we arrive
at

wr = P[ξi1 = 0, ξi2 = 0, · · · , ξir = 0] ≤ P [Mr ≥ r] ≤ κr,

where κ is the constant in Lemma 2.5, depending only on β. □

Combining the above lemmas with [2, Theorem 3.4] (see also [20, Theorem 1]), we can present
the
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Proof of Proposition 2.2. Lemma 2.3 implies that conditions stated in [20, Theorem 1] are
satisfied with δ = κ ∈ (0, 1). Thus, by applying [20, Theorem 1] with δ = κ and γ = (1+ κ)/2,
we conclude that

(2.11) P

[
n−1∑
i=1

ξi ≤ (1− κ)n/2

]
= P

[
n−1∑
i=1

(1− ξi) ≥ γn

]
≤ exp {−nD(γ∥δ)} ,

where D(γ∥δ) := γ log γ
δ
+ (1 − γ) log 1−γ

1−δ
is the binary relative entropy between γ and δ. In

addition, note that D(γ∥δ) ≥ 2(γ−δ)2 = (1−κ)2/2. Plugging this into (2.11) yields the desired
result. □

3. The estimates of effective resistance R̂n

For n ≥ 1, let N = 2n and let R̂n be the effective resistance generated by unit flows from
(−∞, 0] to (N,+∞), passing through the interval (0, N ]. That is,

(3.1)

R̂n = inf

{
1

2

∑
u∼v

f 2
uv : f is a unit flow from (−∞, 0] to (N,+∞)

and fuv = 0 for all ⟨u, v⟩ ∈ E(−∞,0]×(N,+∞)

}
.

It is obvious that R̂n depends only on edges where at least one of their endpoints falls within
the interval (0, N ].

The main focus of this section is to establish an exponential lower bound for R̂n (note that
exponential in n is consistent with polynomial in the size of the interval).

Theorem 3.1. For any β > 0, there is a constant δ > 0 (depending only on β) such that the
following holds. For any ε ∈ (0, 1/2], there exists a constant c = c(ε) > 0 (depending only on β
and ε) such that for all n ≥ 1,

P
[
R̂n ≥ ceδn

]
≥ 1− ε.

The proof of Theorem 3.1 will be provided in Subsection 3.3. A main input for proving
Theorem 3.1 is to lower-bound the quantile of R̂n, as incorporated in Proposition 3.2 below.
To be precise, for n > 1 and α ∈ (0, 1), we define the (1− α)-quantile of R̂n as

(3.2) aα,n = sup
{
r ≥ 0 : P

[
R̂n ≥ r

]
≥ 1− α

}
.

Proposition 3.2. For any α ∈ (0, 1/2], there exist constants c = c(α) > 0 and δ = δ(α) > 0
(both depending only on β and α) such that aα,n ≥ ceδn for all n ≥ 1.

The proof of Proposition 3.2 will also be included in Subsection 3.3. Note that the estimate
in Proposition 3.2 is a weaker version of Theorem 3.1. This distinction arises from the fact
that the parameter δ in Proposition 3.2 is allowed to depend on the parameter α, whereas δ in
Theorem 3.1 only depends on β.

Hereon, we provide a general overview on our proof of Theorem 3.1, which encapsulates the
primary challenge. Initially, for a fixed unit flow from (−∞, 0] to (N,+∞) passing through
(0, N ], we label points where the unit flow enters (0, N ] as z1, z2, ..., zη. Here η represents a
random variable taking values on N (see specific definitions in the final part of this subsection).
The area surrounding these points is segmented into intervals of length 2i for i ≥ 1, which we
will refer to as the i-th layer intervals.

First, we say an interval is very good if any unit flow must traverse it and generate substantial
energy within it (see Definition 3.4). In search of very good intervals, we will investigate intervals
in different layers step by step. The exact number of layers in each step is determined by a
sequence {bk} (see (3.7)), whose definition includes two parameters L and M to facilitate our
adjustments later. Using the estimate for the number of good intervals in Proposition 2.2, it
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can be inferred that with high probability we can find at least one very good pair of intervals
near every inflow point in each step, as incorporated in Proposition 3.6. This event will be
defined as Eα,n in Definition 3.5 below.

Next, a recursive formula for the (1−α)-quantiles {aα,i}i≥1 of the effective resistances {R̂i}i≥1

will be established in Subsection 3.2. To arrive at this, we will show that on the event Eα,n∩Fα,n

(here Fα,n is an event to ensure that zη is not close to the point 2n, see Lemma 3.12), any flow
must pass through many very good intervals, each of which provides sufficiently large energy
and thus result in a significant contribution to the effective resistance. This will allow us to
obtain an effective lower bound for the resistance R̂n (see Lemma 3.13). Thus by appropriately
selecting parameters M and L, we can establish the recursive formula for the (1−α)-quantiles
{aα,i}i≥1 in Proposition 3.11.

After that, we will establish an exponential lower bound for the (1−α)-quantile aα,n from the
recursive formula in Proposition 3.11. Combining this with appropriately selecting parameters
M and L, we will complete the proof of Theorem 3.1. This is included in Subsection 3.3.

In the final of this part, we will introduce some notations which will be used repeatedly. Fix
a sufficiently large n ∈ N and recall that N = 2n. For convenience, let En = E(−∞,0]×(0,N ] denote
the set of all edges with one endpoint in the interval (−∞, 0] and the other endpoint in (0, N ],
and denote Z as the collection of those endpoints in (0, N ]. Formally,

(3.3) Z = {z ∈ (0, N ]Z : ∃u ∈ (−∞, 0]Z such that ⟨u, z⟩ ∈ E} .

Clearly, 1 ∈ Z since ⟨0, 1⟩ ∈ E. Additionally, for i ∈ [1, n]Z, let ηi denote the number of points
in Z ∩ (2i−1, 2i]. More specifically, for u, v ∈ Z, denote

(3.4) ξuv =

{
1, ⟨u, v⟩ ∈ E,

0, otherwise.

Then ηi can be expressed as

ηi =
∑

2i−1<v≤2i

[
1−

∏
u≤0

(1− ξuv)

]
.

According to the independence of edges, it follows that η1, ..., ηn are independent random vari-
ables with expectations

µi := E[ηi] =
∑

2i−1<v≤2i

[
1−

∏
u≤0

E (1− ξuv)

]
=

∑
2i−1<v≤2i

[
1− exp

{
−β

∫ 1

−∞

∫ v+1

v

1

|x− y|2
dxdy

}]
for i ∈ [1, n]Z. By a simple calculation, we can see that there exists a constant c = c(β) ∈ (0, 1)
(depending only on β) such that

(3.5) cβ log 2 ≤ µi ≤ β log 2 for all i ∈ [1, n]Z.

We also denote η =
∑n

l=1 ηl. It is clear that

cβn log 2 ≤ E[η] ≤ βn log 2.

We now sort points in Z in the ascending order and denote them as z0 = 1, z1, z2 · · · , zη.
Denote

(3.6) I−i,j = [zi − 2j+1, zi − 2j) and I+i,j = (zi + 2j, zi + 2j+1] for all i ∈ [0, η], j ≥ 0.

Write {bk}k≥0 for the sequence satisfying

(3.7) b0 = n, bk = bk−1 −M − L log(n+M − bk−1) for k ≥ 1,

where M and L are two constants which will be determined later (see (3.24) and (3.25) below).
Note that {bk} is dependent on n, but for the sake of brevity, the notation we are using here
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does not reflect this. We also define

(3.8) ηbk = 1 +

bk∑
l=1

ηl

and

(3.9) Kn = sup {k ≥ 0 : bk ≥ 0} .

3.1. Very good intervals and associated estimates. We begin by extending the definition
of R̂n to a more general definition of effective resistance produced by unit flows passing through
an interval. Specifically, for two intervals I1 = [x1, x2] and I2 = [x3, x4] with −∞ ≤ x1 < x2 <
x3 < x4 ≤ +∞, define

(3.10)

R̂(I1, I2) = inf

{
1

2

∑
u∼v

f 2
uv : f is a unit flow from I1 to I2 and

fuv = 0 for all ⟨u, v⟩ ∈ E(−∞,x2]×[x3,+∞) ∪ E[x1,x4]c×(x2,x3)

}
.

We will refer to R̂(I1, I2) as the effective resistance generated by unit flows (confined to [x1, x4])
passing through the interval [x2, x3]. Moreover, from (3.1) and (3.10), it is obvious that
R̂((−∞, 0], (N,+∞)) = R̂n. The definitions of R̂(·, ·) and R(·, ·) imply that

R̂n ≥ R((−∞, 0], (N,+∞)).

In particular, when E(−∞,0]×(N,+∞) = ∅, we have R̂n = R((−∞, 0], (N,+∞)).
It is worth emphasizing that if we remove the edge set E(−∞,x2]×[x3,+∞) ∪ E[x1,x4]c×(x2,x3) from

the β-LRP model and view it as a new graph, then R̂(I1, I2) becomes the classical effective
resistance on this new graph. Thus, R̂(·, ·) clearly possesses the fundamental properties of the
effective resistance, as presented in the following lemma.

Lemma 3.3. For any two intervals I1, I2 ⊂ Z with I1 ∩ I2 = ∅, we have
(1) R̂(I1, I2) ≥ R(I1, I2);

(2) R̂(I1, I3) ≥ R̂(I1, I2) for all intervals I3 ⊂ I2.

Proof. The assertion in (1) can be deduced by combining (3.10) and (1.2), while the assertion
in (2) can be derived directly from (3.10). □

Recall that Z = {z0, z1, · · · , zη} is defined in (3.3). We now introduce the definition of “very
good” intervals as follows.

Definition 3.4. Fix α ∈ (0, 1/2]. For i ∈ [0, η]Z and j ≥ 0, we say the pair of intervals (I−i,j, I
+
i,j)

is α-very good if
(1) [(zi−2j+1)∨0, zi+2j] and (zi+2j+1,+∞) are not directly connected by any long edge,

as well as (0, (zi − 2j+1) ∨ 0) and [zi − 2j, zi + 2j+1] are not directly connected by any
long edge;

(2) the resistance R̂([zi − 2j+1, zi + 2j], (zi + 2j+1,+∞)) ≥ aα,j;

(3) the resistance R̂((zi − 2j, zi + 2j+1], (−∞, zi − 2j+1]) ≥ aα,j.

It is worth emphasizing that the event in (1) is a modified version of the definition of good
pair of intervals in Definition 2.1. Indeed, it can be observed that the event in Definition 3.4
(1) contains the event {(I−i,j, I+i,j) is good}. This implies

(3.11) P[the event in Definition 3.4 (1) occurs] ≥ P[(I−i,j, I+i,j) is good].
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We use the event in Definition 3.4 (1) here because the effective resistance R̂n (see (3.1)) we
mainly consider in this section does not depend on whether the intervals contained in (−∞, 0)
are good. Specifically, the interval (−∞, 0) serves as the outflow region for flows in the definition
of R̂n, preventing them from re-entering.

In addition, it is clear that the event in Definition 3.4 (2) (resp. (3)) depends only on those
edges with at least one endpoint falling within the interval I+i,j (resp. I−i,j), while the event in
Definition 3.4 (1) depends only on the edge set

E[(zi−2j+1)∨0,zi+2j ]×(zi+2j+1,∞) ∪ E[zi−2j ,zi+2j+1]×(0,(zi−2j+1)∨0).

Thus given En, the events in Definition 3.4 (1), (2) and (3) are independent. Moreover, recall
that aα,j represents the (1 − α)-quantile of R̂j = R̂((−∞, 0], (2j,+∞)) defined in (3.2). Then
from Lemma 3.3 (2) and the translation invariance of the model, we have

(3.12)
P[the event in Definition 3.4 (2) occurs]

=P[the event in Definition 3.4 (3) occurs] ≥ 1− α.

For the sake of concise notation, we write

(3.13) ηbk−1,bk
=

∑
bk<l≤bk−1

ηl and µbk−1,bk = E[ηbk−1,bk
] =

∑
bk<l≤bk−1

µl for all k ≥ 1.

We next define the following event.

Definition 3.5. For α ∈ (0, 1/2] and n ∈ N, let Eα,n be the event that the following conditions
hold.

(1) For each k ∈ [1, Kn]Z, ηbk−1,bk
≤ 2µbk−1,bk .

(2) For each k ∈ [1, Kn]Z and each i ∈ (ηbk , ηb0 ]Z, there exists at least one α-very good pair
of intervals in {(I−i,j, I+i,j) : j ∈ (bk, bk−1]Z}.

· · ·

· · ·

· · ·

zη̄b0

zη̄b0−1

zη̄b1+1

zη̄b0
−1 − 2b0+1 zη̄b0

−1 − 2b1+1

zη̄b0
− 2b0+1 zη̄b0

− 2b1+1

zη̄b1
+1 − 2b0+1 zη̄b1

+1 − 2b1+1

zη̄b0
+ 2b1+1
· · ·

· · ·

· · ·

zη̄b0
+ 2b0+1

zη̄b0
−1 + 2b0+1

zη̄b1
+1 + 2b0+1zη̄b1

+1 + 2b1+1

zη̄b0
−1 + 2b1+1

zη̄b0

zη̄b0−1

zη̄b1+1

zη̄b1

zη̄b1−1

zη̄b2+1

zη̄b0
− 2b1+1

zη̄b0
−1 − 2b1+1

zη̄b1
+1 − 2b1+1

zη̄b1
− 2b1+1

zη̄b1
−1 − 2b1+1

zη̄b2
+1 − 2b1+1

zη̄b0
+ 2b1+1

zη̄b0
−1 + 2b1+1

zη̄b1
+1 + 2b1+1

zη̄b1
+ 2b1+1

zη̄b1
−1 + 2b1+1

zη̄b2
+1 + 2b1+1

zη̄b0
− 2b2+1

zη̄b0
−1 − 2b2+1

zη̄b1
+1 − 2b2+1

zη̄b1
− 2b2+1

zη̄b1
−1 − 2b2+1

zη̄b2
+1 − 2b2+1

zη̄b0
+ 2b2+1

zη̄b0
−1 + 2b2+1

zη̄b1
+1 + 2b2+1

zη̄b1
+ 2b2+1

zη̄b1
−1 + 2b2+1

zη̄b2
+1 + 2b2+1

· · ·

· · ·

· · ·

· · ·

· · ·

· · · · · ·

· · ·

· · ·

· · ·

· · ·

· · ·

k = 1

k = 2

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·

Figure 5. The illustration for Definition 3.5 (2) for k = 1 (on the left) and k = 2
(on the right). When k = 1, we search for α-very good pairs of intervals among
(I−i,j, I

+
i,j) for i ∈ (ηb1 , ηb0 ]Z and j ∈ (b1, b0]Z, which are subintervals (marked with

green, orange and magenta colors) between blue dashed lines. When k = 2, we
search for α-very good pairs of intervals among (I−i,j, I

+
i,j) for i ∈ (ηb2 , ηb0 ]Z and

j ∈ (b2, b1]Z, which are subintervals (marked with green, orange and magenta
colors) between blue dashed lines.

The main result of this subsection provides the following estimate for P[Eα,n].

Proposition 3.6. For any ε ∈ (0, 1), there exist L > 0 large enough (depending only on β),
M = M(ε) > 0 and n0 = n0(ε) > 0 (depending only on β and ε) such that for all α ∈ (0, 1/2]
and all n > n0, we have P[Eα,n] > 1− ε/2.
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In what follows, we fix α ∈ (0, 1/2]. To simplify notation, we will use En to represent Eα,n.
Since the probability of the event En is challenging to estimate directly, we will decompose it
further as follows.

Definition 3.7. For each k ∈ [1, Kn]Z and each i ∈ (ηbk , ηb0 ]Z, let En,k,i be the event that none
of pairs of intervals (I−i,j, I

+
i,j), j ∈ (bk, bk−1]Z is α-very good.

Then from the definition of En in Definition 3.5, we can see that

(3.14) the event in Definition 3.5 (2) = ∩Kn
k=1 ∩

ηb0
i=ηbk

+1 E
c
n,k,i.

We now provide an upper bound for P[En,k,i].

Lemma 3.8. There exists a constant c1 = c1(β) > 0 depending only on β such that for each
k ∈ [1, Kn]Z and each i ∈ (ηbk , ηb0 ]Z, we have

P[En,k,i] ≤ exp{−c1(bk−1 − bk)}.

Proof. For each k ∈ [1, Kn]Z and each i ∈ (ηbk , ηb0 ]Z, we let Ak,i be the event that there exist at
least (1− κ)(bk−1 − bk)/2 pairs of intervals in {(I−i,j, I+i,j) : j ∈ (bk, bk−1]Z} such that the event
in Definition 3.4 (1) occurs. Here κ is the constant in Proposition 2.2, depending only on β.
Note that the event Ak,i is determined by the edge set E(0,+∞)2 and the position of zi from the
Definition 3.4 (1). Moreover, the position of zi is determined by En = E(−∞,0]×(0,N ], which is
independent of E(0,+∞)2 . Thus, from Proposition 2.2 and (3.11) we get that

P[Ac
k,i|En] ≤ exp{−(1− κ)2(bk−1 − bk)/2}.

By taking expectations on both sides of the above inequality, we obtain

(3.15) P[Ac
k,i] ≤ exp{−(1− κ)2(bk−1 − bk)/2}.

Additionally, recall that given En, the events in (1), (2) and (3) of Definition 3.4 are inde-
pendent. Therefore, combining this with (3.15), (3.12) and α ∈ (0, 1/2], we obtain that there
exists a constant c1 = c1(β) > 0 depending only on β such that

P[En,k,i] ≤ P[Ac
k,i] + P[Ak,i ∩ En,k,i] = P[A

c
k,i] + E[P[Ak,i ∩ En,k,i|En]]

≤ exp{−(1− κ)2(bk−1 − bk)/2}+ (1− (1− α)2)
−(1−κ)(bk−1−bk)/2

≤ exp{−(1− κ)2(bk−1 − bk)/2}+ (3/4)−(bk−1−bk)/2

≤ exp{−c1(β)(bk−1 − bk)}.
Hence the proof is complete. □

In addition, for each k ∈ [1, Kn]Z, we denote Dk for the event that ηbk−1,bk
> 2µbk−1,bk , and

denote D = ∪k≥1Dk. It is clear that Dc is the event in Definition 3.5 (1).
According to the Chernoff bound, we have the following estimate.

Lemma 3.9. For each k ≥ 1,

P[Dk] ≤ exp
{
−µbk−1,bk/3

}
.

Therefore,

(3.16) P[D] ≤
∑
k≥1

exp
{
−µbk−1,bk/3

}
.

Proof. For each k ∈ [1, Kn]Z, by the Chernoff bound and definitions of ηbk−1,bk
and µbk−1,bk in

(3.13), we get that

P[Dk] = P[ηbk−1,bk
> 2µbk−1,bk ] ≤ e−

µbk−1,bk
3 .

By taking the summation over k on both sides of the above inequality, we obtain (3.16). □
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To prove Proposition 3.6, we also need some asymptotic properties of the sequence {bk}k≥0.
To this end, we define dk = n− bk for k ≥ 0. That is,

(3.17) d0 = 0 and dk = dk−1 +M + L log(M + dk−1) for k ≥ 1.

Lemma 3.10. Let L > 2 and M > 2. For the sequence {dk}k≥0, we have

(3.18) kM + L
k∑

i=1

log i ≤ dk ≤ kM + 2L
k∑

i=1

log(LMi).

Proof. From (3.17), we can see that {dk}k≥0 is increasing and is just determined by L and M .
We will establish (3.18) by an induction on k.

Since d0 = 0 and d1 = M +L logM , it is clear that (3.18) holds when k = 0, 1. Now assume
that (3.18) holds for some k ≥ 1. For the lower bound, we get that

dk+1 = dk +M + L log(M + dk)

≥ (k + 1)M + L
k∑

i=1

log i+ L log

(
(k + 1)M +

k∑
i=1

log i

)

≥ (k + 1)M + L

k+1∑
i=1

log i,

which implies that the lower bound in (3.18) holds for k + 1.
We now turn to the upper bound. Since (3.18) holds for k, we get that

(3.19)

log(M + dk) ≤ log

(
(k + 1)M + 2L

k∑
i=1

log(LMi)

)

≤ log

(
(k + 1)M + 2Lk log(LMk)

)
= 2 log (LM(k + 1)) + log

(k + 1)M + 2Lk log(LMk)

L2M2(k + 1)2

≤ 2 log (LM(k + 1)) .

Here the last inequality holds because L2M2(k + 1)2 > (k + 1)M + 2Lk log(LMk) when k ≥
1, L > 2 and M > 2. Then applying (3.19) to (3.17), we get that

dk+1 = dk +M + L log(M + dk)

≤ (k + 1)M + 2L
k∑

i=1

log(LMi) + 2L log (LM(k + 1))

= (k + 1)M + 2L
k+1∑
i=1

log(LMi).

Consequently, (3.18) holds for all k ≥ 0 by induction. □

From (3.17) and Lemma 3.10 we obtain that

(3.20) bk−1 − bk = M + L log(M + dk−1) ∈ [M + L log k, M + 2L log(LMk)] .

With the above lemmas at hand, we can present the

Proof of Proposition 3.6. From (3.14), (3.16) and Lemma 3.8, we arrive at

(3.21)

P[Ec
n] ≤ P

[
D ∪

(
∪Kn

k=1 ∪
ηb0
i=η̄bk+1 En,k,i

)]
= P[D] + P

[
Dc ∩

(
∪Kn

k=1 ∪
ηb0
i=ηbk

+1 En,k,i

)]
≤
∑
k≥1

exp{−µbk−1,bk/3}+
∑
k≥1

(
2

k∑
i=1

µbi−1,bi

)
exp{−c1(bk−1 − bk)}.
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In addition, it follows from (3.20) and (3.5) that there exist two constants c2, c3 > 0 (depending
only on β) such that for each i ≥ 1,

(3.22) c2(M + L log i) ≤ µbi−1,bi =
∑

bi<l≤bi−1

µl ≤ c3(M + L log(LMi)).

This implies

(3.23) 2
k∑

i=1

µbi−1,bi ≤ c4ML(logL)k log k

for some constant c4 > 0 depending only on β. Applying (3.20), (3.22) and (3.23) to (3.21), we
conclude that

P[Ec
n] ≤ e−c2M

∑
k≥1

e−c2L log k + c5ML(logL)e−c6M
∑
k≥1

k log ke−c1L log k,

where c5, c6 > 0 are some constants depending only on β. We now take L large enough such
that

(3.24) L ≥ max
{
2, 3c−1

1 , 3c−1
2

}
.

It is worth emphasizing that constants c1 and c2 depend only on β, meaning that L also depends
only on β. Then we get

(3.25) P[Ec
n] ≤ c7e−c8M

for some constants c7, c8 > 0 depending only on β. Hence we complete the proof by taking
M ≥ c−1

8 log(2c7/ε) and sufficiently large n. □

3.2. A recursive formula of the (1−α)-quantile aα,n. Recall that for α ∈ (0, 1/2] and n ≥ 1,
R̂n represents the effective resistance defined in (3.1), and aα,n defined in (3.2) represents the
(1− α)-quantile of R̂n. The following proposition is the main output of this subsection, which
gives a recursive relation for the sequence {aα,i}i≥1.

Proposition 3.11. For any β > 0, there exists a constant c > 0 depending only on β such that
the following holds for all α ∈ (0, 1/2]. There exist L > 0 large enough (depending only on β),
M ′ = M ′(α) > 0 and n′

0 = n′
0(α) > 0 (depending only on β and α) such that for all n > n′

0,

aα,n ≥ c

Kn∑
k=2

min{aα,bk+1, · · · , aα,bk−1
}

dk
,

where dk = n− bk is defined in (3.17).

The proof of Proposition 3.11 will be presented at the end of this subsection. Before that,
we make some preparations. Let us start by controlling the position of zη, which will help us
determine which j will satisfy that I+η,j ⊂ (0, N ].

Lemma 3.12. For any γ ∈ (0, 1), there exist constants c′ = c′(γ) ∈ (0, 1) and n1 = n1(γ) > 0
(both depending only on β and γ) such that for all n ≥ n1,

P [zη ≤ c′2n] ≥ 1− γ/2.

We will refer to the event {zη ≤ c′2n} as Fγ,n.

Proof. By the definitions of zη and ξuv in (3.4), we can see that

P [zη ≤ c′2n] = P

 0∑
u=−∞

2n∑
v=⌊c′2n⌋+1

ξuv = 0


= exp

{
−β

∫ 1

−∞

∫ 2n+1

⌊c′2n⌋+1

1

|x− y|2
dxdy

}
≥ (c′ − 2−n)β.
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Hence, for fixed γ ∈ (0, 1), we can complete the proof by taking c′ ≥ (1 + (1− γ/2)1/β)/2 and
n1 = log(1/(1− (1− γ/2)1/β/2)). □

Define

(3.26)
k0 = k0(γ) = inf {k ≥ 1 : bk−1 + 1 ≤ n− log2(1/(1− c′))}

= inf {k ≥ 1 : dk−1 − 1 ≥ log2(1/(1− c′))} ,

where c′ = c′(γ) is the constant in Lemma 3.12. It can be observed that k0 depends only on β
and γ, and the definition of it ensures that on the event Fγ,n we have

I+η,bk0−1
= (zη + 2bk0−1 , zη + 2bk0−1+1] ⊂ (0, 2n].

The key input of the proof of Proposition 3.11 is to show that on the event Eα,n ∩ Fα,n, the
effective resistance R̂n is bounded from below by {aα,k}k≥1 as follows.

Lemma 3.13. For any β > 0, there exists a constant c > 0 depending only on β such that the
following holds for all α ∈ (0, 1/2]. On the event Eα,n ∩ Fα,n, we have

R̂n ≥ c
Kn∑
k=k0

min{aα,bk+1, · · · , aα,bk−1
}

dk
,

where Kn and {dk}k≥0 are defined in (3.9) and (3.17), respectively, and k0 is the constant
defined in (3.26) with γ = α.

To prove Lemma 3.13, we recall that Z is the set defined in (3.3). Let θ denote a unit flow
that satisfies conditions specified in (3.1), i.e., θ is a unit flow from (−∞, 0] to (2n,+∞) with
θuv = 0 for all ⟨u, v⟩ ∈ E(−∞,0]×(2n,+∞). For notation convenience, for i ∈ [0, η]Z, let θi denote
the portion of the flow θ that passes through the point zi. Therefore, θi is a flow that enters
the interval (0, 2n] starting from the point zi (see Figure 6). More precisely, we can decompose
the flow θ into self-avoiding paths P using the algorithm in [8, Page 54], and thus obtain a
sequence of flows θP . Then we can see that

θi =
∑

P :zi∈P

θP .

Here zi ∈ P means that zi lies on the path P . It can be observed from the algorithm that
θ1, · · · , θη exhibit unidirectionality, i.e.

(3.27) (θi)uv(θj)uv ≥ 0 for all i, j ∈ [1, η]Z and ⟨u, v⟩ ∈ E,

and

(3.28)
η∑

i=0

|θi| = 1 and
η∑

i=0

θi = θ.

Here, | · | refers to the amount of the flow as defined in (1.10).

0 2 22 23 24 25 2n−1 N = 2n

z1 z2 z3 z4 z5 zη̄

θ1 θ2 θ3 θ4 θ5 θη̄

· · · · · ·z0 = 1

θ0

Figure 6. The illustration for points {zi}i≥0 and flows {θi}i≥0. The red points
correspond to the set Z = {zi}i≥0, the collection of points through which flows
enter (0, 2n]. The red arrows represent flows {θi}i≥0 entering at points {zi}i≥0.

For each k ∈ [k0, Kn]Z, consider the point zik , where ik := ηbk + 1. Indeed, by the definition
of ηbk in (3.8), we have

zik = inf
{
z ∈ Z : z ∈ (2bk+1, 2bk+2]

}
.
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We also define j
(k)
ik

∈ (bk, bk−1] as the number such that (I−
ik,j

(k)
ik

, I+
ik,j

(k)
ik

) is an α-very good pair

of intervals. If there are multiple such numbers, we take j
(k)
ik

to be the smallest one. It is worth
emphasizing that j

(k)
ik

is well defined on the event Eα,n. Additionally, for any flow f and any
interval I ⊂ Z, let us define f(I) as the portion of the flow f that passes through I. That is,

(3.29) f(I)uv =

{
fuv, ⟨u, v⟩ ∈ EI×Z,

0, otherwise.

For i ∈ [1, η]Z, we also write θ≤i(I) for the portion of flows θ1, · · · , θi that pass through I, i.e.,

(3.30) (θ≤i(I))uv =

{∑i
m=1(θm)uv, ⟨u, v⟩ ∈ EI×Z,

0, otherwise.

Lemma 3.14. Assume that the event Eα,n ∩ Fα,n occurs and recall k0 is the constant defined
in (3.26) with γ = α. Then for each k ∈ [k0, Kn]Z,

|θ≤ik(I
+

ik,j
(k)
ik

)| ≥ |θik |+
ηbk∑
i=0

|θi| =
ηbk

+1∑
i=0

|θi|.

Proof. Assume that Eα,n ∩ Fα,n occurs and fix k ∈ [k0, Kn]Z. For notation convenience, we
will denote j

(k)
ik

as jik throughout the proof. By Definition 3.4 (1) for the α-very good pair of
intervals, we can see that on the event Eα,n, we have

(1) [(zik − 2jik+1) ∨ 0, zik + 2jik ] and (zik + 2jik+1,+∞) are not directly connected by any
long edge;

(2) (0, (zik − 2jik+1)∨ 0) and [zik − 2jik , zik +2jik+1] are not directly connected by any long
edge.

Moreover, since zik ∈ (2bk+1, 2bk+2] and jik ∈ (bk, bk−1], it is clear that

(3.31) [0, 2bk+1] ⊂ [(zik − 2jik+1) ∨ 0, zik + 2jik ] = [0, zik + 2jik ].

In addition, by definitions of Fα,n and k0 in (3.26), we have that

I+i,j ⊂ (0, 2n] for all i ∈ [1, η]Z and j ∈ [1, bk0−1]Z,

which implies I+ik,jik
⊂ (0, 2n] for all k ∈ [k0, Kn]Z. Combining this with (3.31) and (1), we

conclude that every flow, departing from the interval [0, 2bk+1] ⊂ [0, zik + 2jik ] to (2n,+∞),
must pass through the interval I+ik,jik . This implies that the flow θi passes through I+ik,jik

for
all 0 ≤ i ≤ ηbk . Similarly, from (1) and I+ik,jik

⊂ (0, 2n] again, we can also see that the flow θik
(from zi to (2n,+∞)) must pass through the interval I+ik,jik (see Figure 7 for an illustration).
Therefore, combining this with the definition of θ≤ik(I

+
ik,jik

) in (3.30), we can obtain the desired
result. □

In the following, we will use the j-th layer pairs of intervals to represent (I−i,j, I
+
i,j) for i ∈ [0, η].

For each k ∈ [k0, Kn]Z, we want to establish a lower bound for the amount of flows passing
through the pairs of intervals from the (bk + 1)-th to the bk−1-th layers.

For fixed k ∈ [k0, Kn]Z, let us start by extending the definition of j
(k)
ik

to general i. For
each i ∈ (ηbk , ηb0 ], let us define j

(k)
i ∈ (bk, bk−1] as the number such that (I−

i,j
(k)
i

, I+
i,j

(k)
i

) is an
α-very good pair of intervals. If there are multiple such numbers, we select the smallest one for
j
(k)
i . Additionally, it is important to emphasize that when i = ηbk + 1, the α-very good pair of

intervals chosen here corresponds to (I−
ik,j

(k)
ik

, I+
ik,j

(k)
ik

), which is defined in the paragraph below

(3.28).
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2bk+1 2bk+20 zikzik − 2bk+1zik − 2jik zik + 2bk+1

· · · · · ·
zik + 2jik zik + 2jik+1

θik
I+ik,jikθ0 θ1 · · ·θik−1

N = 2n

Figure 7. The illustration for the proof of Lemma 3.14 (note that we also write
jik for j(k)ik

in this illustration). The blue line represents the interval I+ik,jik , situated
to the left of the point N = 2n. The red arrows represent flows entering the
interval [0, 2bk+1] and the point zik . The green dashed lines in the graph represent
the absence of long edges directly connecting intervals [(zik−2jik+1)∨0, zik+2jik ]
and [zik + 2jik+1,+∞] (the green lines). Thus flows, departing from the interval
[0, 2bk+1] and the point zik to (2n,+∞), must pass through I+ik,jik

(the blue line).

We show that flows passing through those α-very good pairs of intervals (I−
i,j

(k)
i

, I+
i,j

(k)
i

), i ∈
(ηbk , ηb0 ] are significant as follows.

Lemma 3.15. For any fixed k ∈ [k0, Kn]Z, we have

|θ≤ik(I
+

ik,j
(k)
ik

)|+
η∑

i=ηbk
+2

max

{
|θi(I−

i,j
(k)
i

)|, |θi(I+
i,j

(k)
i

)|
}

≥ 1/2.

Proof. For each i ∈ [ηbk + 2, ηb0 ]Z, since (I−
i,j

(k)
i

, I+
i,j

(k)
i

) is an α-very good pair of intervals, the

flow θi emanating from the point zi to (2n,+∞) must pass through the interval I+
i,j

(k)
i

or I−
i,j

(k)
i

.
This means that

|θi(I−
i,j

(k)
i

)|+ |θi(I+
i,j

(k)
i

)| ≥ |θi|.

Therefore, max{|θi(I−
i,j

(k)
i

)|, |θi(I+
i,j

(k)
i

)|} ≥ |θi|/2. Combining this with Lemma 3.14, (3.28) and
ηb0 = η, we arrive at

|θ≤ik(I
+

ik,j
(k)
ik

)|+
ηb0∑

i=ηbk
+2

max

{
|θi(I−

i,j
(k)
i

)|, |θi(I+
i,j

(k)
i

)|
}

≥
ηbk

+1∑
i=0

|θi|+
1

2

η∑
i=ηbk

+2

|θi| ≥
1

2
.

Hence, the proof is complete. □

We also need the following lemma.

Lemma 3.16. Assume that k1, k2 ∈ [k0, Kn]Z with k1 ̸= k2. If I±
i1,j

(k1)
i1

∩ I±
i2,j

(k2)
i2

̸= ∅ or

I±
i1,j

(k1)
i1

∩ I∓
i2,j

(k2)
i2

̸= ∅, then we have i1 ̸= i2.

Proof. We will prove the case when I+
i1,j

(k1)
i1

∩I+
i2,j

(k2)
i2

̸= ∅ here, and the other cases can be proved

similarly. Given that k1 ̸= k2, from jk· ∈ (bk, bk−1] for all k ∈ [k0, Kn]Z we have

(3.32) j
(k1)
i1

̸= j
(k2)
i2

.

To complete the proof, we will proceed by a contradiction. Let us assume that i1 = i2. Then
from this assumption and the definition of I+ij in (3.6), we get

(zi1 + 2j
(k1)
i1 , zi1 + 2j

(k1)
i1

+1] ∩ (zi1 + 2j
(k2)
i1 , zi1 + 2j

(k2)
i1

+1] ̸= ∅,

This implies j
(k1)
i1

= j
(k2)
i1

, which contradicts (3.32). □
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We now turn to the

Proof of Lemma 3.13. For a fixed α ∈ (0, 1/2], recall that we have assumed that the event
Eα,n ∩ Fα,n occurs, k0 = k0(α) is the constant defined in (3.26) with γ = α, and aα,i represents
the (1− α)-quantile of the effective resistance R̂n (see (3.2)).

For each k ∈ [k0, Kn]Z, since the event in Definition 3.5 (1) for Eα,n occurs, from (3.13) and
(3.5) we can see that there is a constant c1(β) > 0 (depending only on β) such that

ηb0 − ηbk ≤ 2
k∑

i=1

µbi−1,bi ≤ c1(β)dk for all k ∈ [1, Kn]Z.

Combining this with Lemma 3.15 and the definition of α-very good pair of intervals in Definition
3.4 (2) and (3), we get that the sum of energies (i.e. effective resistance) of flows θ0, · · · , θη
passing through the pairs of intervals from the (bk + 1)-th to the bk−1-th layers is at least

(3.33)

|θ≤ik(I
+

ik,j
(k)
ik

)|2a
α,j

(k)
ik

+

ηb0∑
i=ηbk

+2

max

{
|θi(I−

i,j
(k)
i

)|, |θi(I+
i,j

(k)
i

)|
}2

a
α,j

(k)
i

≥ min{aα,bk+1, · · · , aα,bk−1
}

|θ≤ik(I
+

ik,j
(k)
ik

)|2 +
ηb0∑

i=ηbk
+2

max

{
|θi(I−

i,j
(k)
i

)|, |θi(I+
i,j

(k)
i

)|
}2


≥
min{aα,bk+1, · · · , aα,bk−1

}
4c1(β)dk

.

We next consider the total energy generated by flows passing through all layers from k0 to Kn.
It follows from Lemma 3.16 that although intervals I±

i,j
(k)
i

from different layers may intersect,
any two intersecting intervals must have different subscripts i. This implies that for intersecting
intervals, the energy considered in different layers comes from energies generated by different
flows (see Figure 8 for an illustration). Therefore, by (3.27) we can add up the above energy
of each layer and get a lower bound

zi1 zi2
I+
i1,j

(k1)

i1

I
i2,j

(k2)

i2 I = I+
i1,j

(k1)

i1

∩ I+
i2,j

(k2)

i2θi2θi1

Figure 8. The illustration for the intersection of α-very good intervals from
different layers. The red arrow represents the flow θi1 entering at the point zi1 ,
while the dark red arrow represents the flow θi2 entering at the point zi2 . The blue
line represents the α-very good interval I+

i1,j
(k1)
i1

discovered during the search in

the k1-th layer near zi1 , while the green line represents the α-very good interval
I+
i2,j

k2
i2

discovered during the search in the k2-th (k2 < k1) layer near zi2 . The

orange line represents the interval I := I+
i1,j

(k1)
i1

∩ I+
i2,j

k2
i2

. It can be observed that

in the k1-th layer the energy in I ⊂ I+
i1,j

(k1)
i1

considered in (3.33) (with k = k1)

is generated by the flow θi1 , while in the k2-th layer the energy in I ⊂ I+
i2,j

(k2)
i2

considered in (3.33) (with k = k2) is generated by the flow θi2 . It is important
to point out that the total energy generated when flows θi1 and θi2 pass through
the interval I together is greater than the sum of energies generated when each
of them individually passes through that interval, thanks to (3.27).
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(3.34) R̂n ≥ 1

4c1(β)

Kn∑
k=k0

min{aα,bk+1, · · · , aα,bk−1
}

dk
.

(See Figure 9 for an illustration). Hence we complete the proof by taking c = 1/(4c1(β)),

0 N = 2n
· · · zη̄zη̄−1zη̄−2

k = Kn k = Kn k = Kn

· · · · · · · · ·

2n−12n−22n−3

· · ·
k = k0k = k0 − 1k = k0

k = k0 − 1

θη̄−2 θη̄−1 θη̄

k = k0 − 1

Figure 9. The illustration for (3.34). The red arrows represent flows entering
(0, N ]; the blue, orange and dark red dashed lines represent the search steps. In
addition, green lines represent the α-very good intervals discovered (note that,
for clarity, the figure here only shows the case where flows pass through and
exit from I+· ; in reality, flows may also pass through and exit from I−· ). Each
flow, as it moves rightward, must enter the green lines within the search range
at each step and generate a certain amount of energy. Although these flows may
intersect, the total energy generated by these flows is greater than the sum of
energies generated by individual flows, thanks again to (3.27).

which depends only on β. □

We now can provide the

Proof of Proposition 3.11. Fix α ∈ (0, 1/2]. Throughout the proof, we also fix a sufficiently
large L satisfying (3.24), which depends only on β.

According to (3.26) and the definition of bk in (3.7), there exists a constant M1 = M1(α) > 0
(depending only on β and α) such that for all M ≥ M1, we have k0 = k0(α) = 2. In addition, by
taking ε = α in Proposition 3.6, we get that there exist M0 = M0(α) > 0 and n0 = n0(α) > 0
such that when M ≥ M0, we have P[Eα,n] ≥ 1 − α/2 for all n > n0. Combining the above
analysis with Lemma 3.12, we can see that for M ′(α) = max{M1,M0} and for all n ≥ n′

0(α) :=
max{n0, n1},

P[Eα,n ∩ Fα,n] ≥ 1− α and k0 = 2.

Applying this into Lemma 3.13 we arrive at

P

[
R̂n ≥ c

Kn∑
k=2

min{aα,bk+1, · · · , aα,bk−1
}

dk

]
≥ 1− α

for some constant c > 0 depending only on β. Therefore, by the definition of (1− α)-quantile
of R̂n in (3.2), we see that

aα,n ≥ c
Kn∑
k=2

min{aα,bk+1, · · · , aα,bk−1
}

dk

for all n ≥ n′
0. □

3.3. Proof of Theorem 3.1 and Proposition 3.2. Let us start with the

Proof of Proposition 3.2. Fix α ∈ (0, 1/2]. Recall that Proposition 3.11 gives a recursive for-
mula for (1 − α)-quantiles {aα,i}i≥1. With the choice of L (depending only on β) and M ′(α)
(depending only on β and α) as in Proposition 3.11, from Lemma 3.10 we can see that there
exists M1 ∈ N (depending only on β and α) such that

(3.35) c

M1∑
k=2

1

dk
> 2.
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We also choose δ > 0 (depending only on β and α) such that exp{δdM1} < 2, and choose
c̃ = c̃(α) > 0 (depending only on β and α) such that

(3.36) aα,k ≥ c̃eδk for all k ∈ [1, dM1 ]Z.

We now use induction to show that for all n ≥ 1,

(3.37) aα,n ≥ c̃eδn.

The case for n ∈ [1, dM1 ]Z holds as in (3.36) thanks to our choice of parameters. Assume
that n > dM1 and (3.36) holds for all k ∈ [1, n − 1]Z. Then by Proposition 3.11, (3.35) and
bk = n− dk, we obtain that

aα,n ≥ c
Kn∑
k=2

min{aα,n−dk+1, · · · , aα,n−dk−1
}

dk
≥ c

Kn∑
k=2

c̃eδ(n−dk)

dk
≥ c

M1∑
k=2

c̃eδ(n−dM1
)

dk

≥ c̃eδn
(
c

M1∑
k=2

1

dk

)
e−δdM1 ≥ c̃eδn.

Consequently, (3.37) holds for all n ≥ 1. □

We now turn to the

Proof of Theorem 3.1. Fix ε ∈ (0, 1/2]. We begin by considering the event E1/2,n. From Propos-
ition 3.6, we obtain that there exist L > 0 large enough (depending only on β), M0 = M0(ε) > 0
and n0 = n0(ε) > 0 (both depending only on β and ε) such that when M ≥ M0, we have
P[E1/2,n] ≥ 1− ε/2 for all n ≥ n0.

We next turn to the event Fε,n. It follows from Lemma 3.12 that there exist c′ = c′(ε) ∈ (0, 1)
and n1 = n1(ε) > 0 (both depending only on β and ε) such that for all n ≥ n1, we have
P[Fε,n] ≥ 1 − ε/2. Moreover, according to (3.26) and the definition of bk in (3.7), we can see
that there exists a constant M1 = M1(α) > 0 (depending only on β and α) such that for all
M ≥ M1, we have k0 = k0(α) = 2.

We now apply M = max{M0,M1} and L satisfying (3.24) to the definition of bk in (3.7).
Then combining this with k0 = 2, Lemma 3.13 and Proposition 3.2, we can see that on the
event E1/2,n ∩ Fε,n,

R̂n ≥ c
Kn∑
k=2

min{a 1
2
,bk+1, · · · , a 1

2
,bk−1

}
dk

≥ c
min{a 1

2
,b2+1, · · · , a 1

2
,b1
}

d2

≥ c̃(ε)eδ(
1
2
)(n−2M−2L log(2LM)) =: c̃1(ε)eδ(

1
2
)n,

where c and δ(1
2
) are parameters in Proposition 3.2 with α = 1/2 (depending only on β), and

c̃(ε), c̃1(ε) are positive constants (both depending only on β and ε). Therefore, from the above
analysis we can find c̃2(ε) > 0 (depending only on β and ε) such that

P
[
R̂n ≥ c̃2(ε)eδ(

1
2
)n
]
≥ P[E1/2,n ∩ Fε,n] ≥ 1− ε for all n ≥ max{n0, n1}.

Furthermore, since n0 and n1 depend only on β and ε, we can take c̃3(ε) > 0 (depending only
on β and ε) such that

P
[
R̂n ≥ c̃3(ε)eδ(

1
2
)n
]
≥ 1− ε for all n ≥ 1.

Hence, the proof is complete. □
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4. Proof of Theorem 1.1

For N ≥ 1, we recall that R(0, [−N,N ]c) is the effective resistance between 0 and [−N,N ]c as
defined in (1.2) with I1 = {0} and I2 = [−N,N ]c, and that R̂([−N, 0], [−N,N ]c) is the effective
resistance generated by unit flows from [−N, 0] to [−N,N ]c, passing through the interval (0, N ]

as defined in (1.7). In particular, recall that R̂((−∞, 0], (N,+∞)) = R̂n since N = 2n.
As we mentioned in Subsection 1.2, to complete the proof of Theorem 1.1, it is essential to

establish a lower bound on R̂([−N, 0], [−N,N ]c) in terms of R̂n, which will allow us to use estim-
ates for R̂n in Section 3. To achieve this, note that flows in the definition of R̂([−N, 0], [−N,N ]c)
will eventually flow into (either of) the two intervals (−∞,−N) and (N,+∞). Therefore, we
further decompose R̂([−N, 0], [−N,N ]c) (see Figure 10) and define

(4.1)

R̃n = inf

{
1

2

∑
i∼j

f 2
ij : f is a unit flow from [−N, 0] to (−∞,−N),

and fij = 0 for all ⟨i, j⟩ ∈ E[−N,0]×[−N,N ]c ∪ E(0,N ]×(N,+∞)

}
as the effective resistance generated by unit flows from [−N, 0] to (−∞,−N), passing through
the interval (0, N ]. Note that if there is no edge joining (0, N ] and (−∞,−N), we have R̃n = ∞.

0−N N

0−N N

0−N N

Figure 10. The illustration for the “decomposition” of R̂([−N, 0], [−N,N ]c).
The red arrows represent flows entering (0, N ] from [−N, 0], while the green ar-
rows represent flows exiting (0, N ] to [−N,N ]c. The blue lines represent the
interval (0, N ] that flows must pass through. Depending on whether flows ulti-
mately enter the interval (−∞,−N) or (N,+∞), flows in the definition (1.7) of
R̂([−N, 0], [−N,N ]c) can be divided into two portions corresponding to the two
figures on the right. The effective resistance generated by these flows in top right
figure is R̃n, while the effective resistance generated by these flows in bottom
right figure is R̂([−N, 0], (N,+∞)).

4.1. Properties of R̃n. In this subsection, our goal is to show the existence of a certain
stochastic control between R̃n and R̂n (see (4.4) below). This will allow us to obtain that with
high probability, R̃n also exhibits an exponential lower bound from estimates for R̂n in Section
3.

Now for any m ≥ 1, i1, · · · im ∈ (0, N ], and any j1, · · · , jm ∈ (−∞,−N), it is obvious that

(4.2)
P
[
⟨ik, jk⟩ ∈ E(0,N ]×(−∞,−N) for all k ∈ [1,m]Z

]
≤ P

[
⟨ik, |jk|⟩ ∈ E(0,N ]×(N,+∞) for all k ∈ [1,m]Z

]
.

In addition, assume that E[−N,N ]2 is given. According to the monotonicity property of the
effective resistance R̂(·, ·) in Lemma 3.3 (2), we have that R̂([−N, 0], (N,∞)) is non-increasing
with respect to the edge set connecting (0, N ] and (N,+∞). That is, for any two deterministic
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edge sets E1, E2 ⊂ (0, N ]× (N,+∞) with E1 ⊂ E2,

(4.3) R̂([−N, 0], (N,∞))(E2) ≤ R̂([−N, 0], (N,∞))(E1),

where R̂([−N, 0], (N,∞))(Ek), k = 1, 2 represent effective resistances as defined in (3.10) by
replacing E(0,N ]×(N,+∞) by Ek, k = 1, 2, respectively.

From the above analysis, we claim that for any x ≥ 0,

(4.4) P
[
R̃n > x

]
≥ P

[
R̂([−N, 0], (N,+∞)) > x

]
≥ P

[
R̂n > x

]
.

Indeed, the second inequality can be obtained from the monotonicity property of the effective
resistance in Lemma 3.3 (2). For the first inequality in (4.4), let

Ẽ(0,N ]×(N,+∞) = {⟨i, |j|⟩ : ⟨i, j⟩ ∈ E(0,N ]×(−∞,−N)}.

From (4.2), we can construct a coupling of (Ẽ′
(0,N ]×(N,+∞),E

′
(0,N ]×(N,+∞)) such that

Ẽ′
(0,N ]×(N,+∞)

law
= Ẽ(0,N ]×(N,+∞) and E′

(0,N ]×(N,+∞)
law
= E(0,N ]×(N,+∞),

and Ẽ′
(0,N ]×(N,+∞) ⊂ E′

(0,N ]×(N,+∞). Then combining this with (4.3), we arrive at

R̃n
law
= R̂n([−N, 0], (N,+∞))(Ẽ′

(0,N ]×(N,+∞))

≥ R̂n([−N, 0], (N,+∞))(E′
(0,N ]×(N,+∞))

law
= R̂n([−N, 0], (N,+∞)),

where R̂n([−N, 0], (N,+∞))(Ẽ′
(0,N ]×(N,+∞)) and R̂n([−N, 0], (N,+∞))(E′

(0,N ]×(N,+∞)) are effect-
ive resistances as defined in (3.10) by replacing E(0,N ]×(N,+∞) by Ẽ′

(0,N ]×(N,+∞) and E′
(0,N ]×(N,+∞),

respectively. This implies the first inequality in (4.4).
Combining (4.4) with Theorem 3.1, we get the following lemma.

Lemma 4.1. For any β > 0, there is a constant δ > 0 (depending only on β) such that the
following holds. For any ε ∈ (0, 1/2], there exists a constant c = c(ε) > 0 (depending only on β
and ε) such that for all n ≥ 1,

P
[
R̃n ≥ ceδn

]
≥ 1− ε.

Furthermore, we have the following estimate for R̂([−N, 0], [−N,N ]c).

Lemma 4.2. For any β > 0, there is a constant δ > 0 (depending only on β) such that the
following holds. For any ε ∈ (0, 1/2], there exists a constant c = c(ε) > 0 (depending only on β
and ε) such that for all N = 2n (n ≥ 1),

P
[
R̂([−N, 0], [−N,N ]c) ≥ ceδn

]
≥ 1− ε.

Proof. let N = 2n for some n ≥ 1. From Theorem 3.1 and Lemma 4.1, there exists a constant
δ > 0 (depending only on β) such that the following holds. For any ε ∈ (0, 1/2], there exists a
constant c = c(ε) > 0 (depending only on β and ε) such that for all n ≥ 1,

(4.5) P[A] := P
[
min

{
R̃n, R̂n

}
≥ ceδn

]
≥ 1− ε.

Now assume that the event A occurs. Let f be the unit flow from [−2n, 0] to [−2n, 2n]c,
passing through the interval (0, 2n], such that

R̂([−2n, 0], [−2n, 2n]c) =
1

2

∑
i∼j

f 2
ij.

Denote θ1 and θ2 as portions of flow f which enters intervals (2n,+∞) and (−∞,−2n), respect-
ively. Then

|θ1| =
∑

i∈(0,2n]

∑
j∈(2n,+∞)

fij and |θ2| =
∑

i∈(0,2n]

∑
j∈(−∞,−2n)

fij.
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Clearly, |θ1| + |θ2| = 1. In particular, if there is no edge joining (0, 2n] and (−∞,−2n), then
θ2 = 0.

Now according to the definition of R̂(·, ·) in (1.7), the monotonicity property of R̂ in Lemma
3.3 (2), and the fact |θ1|+ |θ2| = 1, we obtain that on event A,

R̂([−2n, 0], [−2n, 2n]c) ≥ |θ1|2R̂n + |θ2|2R̃n ≥ (|θ1|2 + |θ2|2)ceδn ≥ ceδn/2.

Combining this with (4.5), we complete the proof. □

4.2. Proof of Theorem 1.1. The proof of Theorem 1.1 is divided into proofs of (1.3) and
(1.4). Since there are similarities between the two proofs, we will omit some details of the
similar parts in the proof of (1.4). Let us start by the

Proof of (1.3) in Theorem 1.1. We begin by considering the case N = 2n for some n ≥ 1.
According to the translation invariance of the model, we can see that R̂([−N, 0], [−N,N ]c)

and R̂([0, N ], [−N,N ]c) have the same distribution. Therefore, from Lemma 4.2, there exists a
constant δ > 0 (depending only on β) such that the following holds. For any ε ∈ (0, 1/2], there
exists a constant c = c(ε) > 0 (depending only on β and ε) such that for all n ≥ 1,

(4.6) P[B] := P
[
min

{
R̂([−N, 0], [−N,N ]c), R̂([0, N ], [−N,N ]c)

}
≥ ceδn

]
≥ 1− ε.

Now assume that the event B occurs. Let f be the unit flow from 0 to [−N,N ]c that
minimizes the right-hand side of (1.2), that is,

R(0, [−N,N ]c) =
1

2

∑
i∼j

f 2
ij.

Since f must flow into [−N,N ]c finally, it must pass through either [−N, 0] or [0, N ]. In light
of this, let θ1 be the portion of flow f that passes through the interval (0, N ] and then flow into
[−N,N ]c. Similarly, we define θ2 by replacing (0, N ] with [−N, 0) in the definition of θ1. Then
we have max{|θ1|, |θ2|} ≥ 1/2 (see (1.6) for more details). Combining this with the definition
of the effective resistance R̂(·, ·) in (1.7), we get that on the event B,

(4.7)
R(0, [−N,N ]c) ≥ max

{
|θ1|2R̂([−N, 0], [−N,N ]c), |θ2|2R̂([0, N ], [−N,N ]c)

}
≥ max

{
|θ1|2, |θ2|2

}
ceδn ≥ c

4
eδn =: c1N

δ′ .

Here c1 = c/4 is a constant depending only on β and ε, and δ′ = δ/ log 2 is a constant depending
only on β. Hence, from (4.6) and (4.7) we can conclude

(4.8) P
[
R(0, [−N,N ]c) ≥ c1N

δ′
]
≥ P[B] ≥ 1− ε.

For general N ≥ 1, let n = ⌊log2N⌋ such that N = 2n+p with p ∈ [0, 1). Since the effective
resistance R(0, [−r, r]c) is nondecreasing with r, we have

R(0, [−N,N ]c) ≥ R(0, [−2n, 2n]c).

Therefore, for any ε ∈ (0, 1/2], by (4.8) we obtain that

P
[
R(0, [−N,N ]c) ≥ c2N

δ′
]
≥ P

[
R(0, [−2n, 2n]c) ≥ c2N

δ′
]
≥ 1− ε,

where c2 := c12
−δ′ is a constant depending only on β and ε. Hence, the proof is complete. □
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We next turn to the effective resistance R([−N,N ], [−2N, 2N ]c). We also first consider the
case N = 2n for some n ≥ 1. Similar to (4.1), we define

R̃([−2N,N ], (−∞,−2N)) = inf

{
1

2

∑
i∼j

f 2
ij : f is a unit flow from [−2N,N ] to (−∞,−2N),

and fij = 0 for all ⟨i, j⟩ ∈ E[−2N,N ]×[−2N,2N ]c ∪ E(N,2N ]×(2N,+∞)

}
as the effective resistance generated by unit flows from [−2N,N ] to (−∞,−2N), passing
through the interval (N, 2N ]. Note that if there is no edge joining (N, 2N ] and (−∞,−2N),
we then have R̃([−2N,N ], (−∞,−2N)) = ∞. Using similar arguments for (4.4) and the trans-
lation invariance of the model, we have that for all x ≥ 0,

P
[
R̃([−2N,N ], (−∞,−2N)) ≥ x

]
≥ P

[
R̂([−2N,N ], (2N,+∞)) ≥ x

]
≥ P

[
R̂([−∞, N ], (2N,+∞)) ≥ x

]
= P

[
R̂n ≥ x

]
.

Combining this with similar arguments in the proof of Lemma 4.2, we obtain the following es-
timate for R̂([−2N,N ], [−2N, 2N ]c), which is defined in (1.7) by replacing [−N, 0] and [−N,N ]c

with [−2N,N ] and [−2N, 2N ]c, respectively.

Lemma 4.3. For any β > 0, there is a constant δ > 0 (depending only on β) such that the
following holds. For any ε ∈ (0, 1/2], there exists a constant c = c(ε) > 0 (depending only on β
and ε) such that for all N = 2n (n ≥ 1),

P
[
R̂([−2N,N ], [−2N, 2N ]c) ≥ ceδn

]
≥ 1− ε.

We now can present the

Proof of (1.4) in Theorem 1.1. Throughout the proof, we condition on E[−N,N ]×[−2N,2N ]c = ∅,
i.e., intervals [−N,N ] and [−2N, 2N ]c are not directly connected by any long edge.

We begin by considering the case N = 2n for some n ≥ 1. It is clear from the translation
invariance of the model that R̂([−2N,N ], [−2N, 2N ]c) and R̂([−N, 2N ], [−2N, 2N ]c) have the
same distribution. Hence, from Lemma 4.3, there exists a constant δ > 0 (depending only on
β) such that the following holds. For any ε ∈ (0, 1/2], there exists a constant c = c(ε) > 0
(depending only on β and ε) such that for all n ≥ 1,

(4.9) P[C] := P
[
min

{
R̂([−2N,N ], [−2N, 2N ]c), R̂([−N, 2N ], [−2N, 2N ]c)

}
≥ ceδn

]
≥ 1− ε.

Note that, by the definition of R̂(·, ·), we can observe that the two effective resistances in (4.9)
are both independent of the edge set E[−N,N ]×[−2N,2N ]c . Therefore, (4.9) implies that

(4.10) P[C
∣∣E[−N,N ]×[−2N,2N ]c = ∅] = P[C] ≥ 1− ε.

Now assume that the event C occurs. Let f̃ be the unit flow from [−N,N ] to [−2N, 2N ]c

such that
R([−N,N ], [−2N, 2N ]c) =

1

2

∑
i∼j

f̃ 2
ij.

Similar to the argument in the proof of (1.3), we can define θ̃1 as the portion of flow f̃ that
passes through the interval (N, 2N ] and then flow into [−2N, 2N ]c, and define θ̃2 by replacing
(N, 2N ] with [−2N,−N) in the definition of θ̃1. Then we also have max{|θ̃1|, |θ̃2|} ≥ 1/2.
Therefore, we get that on the event C,

R([−N,N ], [−2N, 2N ]c) ≥ max
{
|θ̃1|2R̂([−2N,N ], [−2N, 2N ]c), |θ̃2|2R̂([−N, 2N ], [−2N, 2N ]c)

}
≥ max

{
|θ̃1|2, |θ̃2|2

}
ceδn ≥ c

4
eδn := c1N

δ′ .
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Here c1 = c/4 is a constant depending only on β and ε, and δ′ = δ/ log 2 is a constant depending
only on β. Hence, combining this with (4.10), we can conclude

P
[
R([−N,N ], [−2N, 2N ]c) ≥ c1N

δ′
∣∣E[−N,N ]×[−2N,2N ]c = ∅

]
≥ 1− ε.

For general N ≥ 1, we can complete the proof by using the similar argument in the proof of
(1.3). □
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